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Abstract

The goal of this dissertation is to investigate the different conditions of elastic
instability of an ordered crystal lattice, the corresponding mechanisms of unstable
structural responses, and the final states of the transformed lattice. The study involves a
combination of analytical analysis in linearized elasticity and atomistic simulation using
empirical interatomic potential functions for simple f.c.c. crystals. From finite-strain
continuum elasticity analysis one obtains the instability criteria, critical strains, as well as
the deformation paths required for the onset of each particular instability, while
simulation allows direct observation of the unstable structural responses to such
prescribed deformations at finite temperatures. Together, this approach makes possible
the understanding of how different modes of lattice deformation can compete with each
other under conditions of finite stress and thermal activation.

Starting with the equilibrium conditions for a stressed crystal and applying the
principle of virtual work to this system, we obtain an eigenvalue problem (with zero
eigenvalue). The requirement of the vanishing of the determinant of the elastic constant
(current) matrix C;; gives three distinct instability conditions, namely, the vanishing of
C11 +2Cy2, Cq1 - €y, and Cyy, corresponding to spinodal (dilatational), Born (normal
distortional), and shear distortional instability, respectively. For each instability the
associated eigenmode prescribes the path of strain deformation required to bring about
such an instability and allows a prediction of the critical strain in terms of the finite-strain
elastic constants. Of particular relevance to the present study are two results, that
spinodal instability is associated with volumetric (purely dilatational) deformation, and
that Born instability requires symmetry breaking and no volume change. Thus the
analysis shows that the onset of a particular instability depends on how the lattice is
deformed. On the other hand, such calculation cannot give the final state of deformation
after the instability has set in.

Both Monte Carlo and molecular dynamics simulations are used to study directly
the unstable structural response of an f.c.c. lattice and a grain-boundary superlattice
(GBSL) under various stress and strain deformations at low and elevated temperatures.
Two empirical interatomic potentials are used, the Lennard-Jones pair potential and a
many-body potential (Embedded Atom Method) for a noble metal. By selectively



suppressing the Bom instability through a constraint of maintaining lattice symmetry, we
show that pure dilatation and uniaxial stretch loadings on ihe f.c.c. lattice and GBSL all
lead to spinodal instability. At low temperatures, the transitions take the form of
decohesion and cleavage fracture in the f.c.c. lattice, and grain-boundary fracture in the
GBSL. At high temperatures, the unstable structural response of the f.c.c. lattice at the
instability is homogeneous disordering with all the attendant features of melting. For
spinodal instability, the associated structural change is a mechanical catastrophe through
the mechanism of cavitation at low temperatures, while at high temperatures,
homogeneous nucleation of a disordered phase with the help of enhanced vibrational
amplitude. Although these transitions can take different forms depending on the
temperature, their underlying cavse, i.e., large stress fluctuations at the critical strain, is
essentially the same. If there is no constraint on lattice symmetry, Born instability,
signaled by a transient orthorhombic distortion of the simulation cell, occurs through a
completely different mechanism of symmetry breaking, or bifurcation, followed by a
further shear distortion. The orthorhembic distortion predicted by analytic analysis is
found to play only an intermediate role in triggering the subsequent shear distortion. At
the temperatures below the melting point, all the transitions of the lattice under uniaxial
stress take the f.c.c. lattice to a distorted b.c.c. structure. These phase transitions are a
continuous, second-order process. In contrast, in the case of pure heating to melting
(P=0), the Born instability triggers a completely homogeneous structural disordering.
This form of melting (mechanical) is a first-order transition.
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Chapter 1
Introduction

1.1 Background and Motivation

A knowledge of the elastic constants of stressed crystals over a wide range of
temperatures is of fundamental importance in understanding rot only the inherent sirength
and deformability of crystals , but also a number of instability or structural transformation
phenomena, such as melting, mechanical failure, martensitic transition, and homogeneous
solid-state amorphization, which are associated with the: vanishing of the elastic moduli.

The elastic stability of a crystailine lattice can be defined as [Grimvill 86]

Br> 0, G(110]110} > 0, G(100{010] > 0" (1.1)

where B, G(110] 116}, and G(100{010] are: the bulk, shear moduli in (110) along [1T0]
and in (100) along [010] of an f.c.c. crystal, respectively. G(110]110] and G(100]010] are
denoted as p and sometimes JU' in the literature.

For more than half a century, many efforts have been made to interpret the observed
structural phase transitions and mechanical failures based on these elastic stability criteria.
The early studies were not very successful. The difficulties in direct comparison of
theoretical predictions and experiments arise from several stumbling blocks: First, it has
been long argued that the infinite lattice model requires a special equilibrium condition,
namely that the externally applied stresses must vanish. [Venkataraman 75] This
requirement is consistent with the fundamental assumption of the generalized Hooke's law,
stating that in the regime of linear elasticity the elastic constants are constants. This
restriction severely confines the lattice dynamics theory and leads to a long standing
confusion about the reference state for which one calculates the elastic constants
theoretically. [Wallace 72] It is only recently that the thermoelastic theory of stressed
crystals has been formulated completely enough to clarify the differences between finite
strain elastic coefficients which govemn stress-strain relations and those which govern
elastic wave propagation. Second, since the relation between the elastic instability and the

* From now on, following the literature, we will call the violation of the first inequality, i.e., By =0, as

spinodal instability or dilatatonal instability, that of the second, G(1 IOI 110] = 0, as Bom instability or
normal insatbility, and of the third one, that is G(100f010] = 0, as shear instability. Throughout the
thesis these terms will be used interchangeably.
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possible structural changes has not been well understood, controversies exist in the
interpretation of structural phase transformations, such as melting and solid-state
amorphization. [Cahn 86a] These debates partially come from the lack of knowledge about
the mechanisms of these transitions. Finally, as will be discussed in this thesis, the elastic
instabilities of crystals manifest themselves only when the crystals are in the corresponding
eigen-deformation states. Put in other words, the instabilities of the crystals may be
suppressed by improper deformation environments.

Born [Born 39, 56] was the first in attempting to investigate the instability of
crystalline lattice. According to Bom, any crystal capable of homogeneous deformation
may be treated as a homogeneous system with six degrees of freedom that can be chosen as
the six uniform strain components, thus the Helmholtz free energy of a cubic lattice can be
written as a function of temperature and of these strain components. The stability
conditions of the crystal which guarantee that the quadratic term in the free energy
expansion is positive and finite, are

%(c“ +C12)>0, Ci1-C12>0, Cag>0, (1.2)

where the elastic constants are the second derivatives of the free energy with respect to the
six strain components. He interpreted that the violation of the first inequality gives rise to
sublimation, the second leads to a transition to a "gel" state, and when C44q =0, the crystal
loses its resistance to shear and melts.

More detailed studies of these three stabilities at zero temperature and careful static
calculations of the bulk and shear moduli of the Morse-potential family of f.c.c., b.c.c. and
simple cubic crystals under arbitrary hydrostatic pressure were carried out by Milstein et
al.. [Milstein 77, 78, 79a] Their computations were extended to dilatations up to
magnitudes where the lattice would in practice be unstable and studied the entire range of
stability of cubic crystals. The significance of this work [Hill 77, Milstein 79a] is that they,
for the first time, tried to correlate the instability conditions to the eigenstates of
deformation and to explore the possible bifurcations. By applying the principles of
bifurcation analysis to the deformation processes, they no* 'y recovered all the instability
criteria proposed by Born, but further revealed the eigenstates of the strain that are
associated with each instability. They found that for spinodal instability the eigenstates are
necessarily homogeneous and purely volumetric. They defined the dilatation imposed on
the system before it fails as the fundamental path of deformation, and the eigenstates of the
instability of the crystal in the unstable region are then the extension of the fundamental
path. They called this extension the primary path. For the Bom instability, "the

12



corresponding uniform eigenmodes make the lattice orthorhombic without varying the cell
volume." They called this volume conserved path the secondary deformation path. For the
shear instability they found "the corresponding uniform eigenmodes distort the lattice
without varying the cell edges.” [Milstein 79a]

The elastic instability criteria give the physical conditions under which the
crystalline lattices will become unstable. In order to connect these instability conditions to
any structural phase transformation, fundamental understanding of temperature and volume
dependence of the elastic constants is needed. In the past few decades, measurements on
inert gas solids and metals [Collard 91, Tallon 79a, 79b 80, Wallace 70] have contributed
to a good body of experimental data. On the other hand, the equation of state of a large
number of solids has been studied up to rather high pressures, and for some, over a wide
range of temperatures fWallace 72]. The pressure dependence provides information on the
nonlinear compressibility of solids and the temperature dependence reveals the effects of
anharmonicity. The volume dependence of the compressibility shows a power law
[Murnaghan 44], or exponential dependence [Grover 73]). More recently, Tallon [Tallon
80] has found a more general volume dependence. Based on the assumption that the
isothermal, or isobaric volume derivatives of the bulk and shear moduli are independent of
temperature and volume, he showed that the volume dependence of these elastic moduli can
be well described by an exponential function that, for small volume expansion, gives a
linear temperature dependent relation of elastic moduli.

As is well known, thermal expansion effects can cause elastic constants to soften
dramatically with increasing temperature. By means of molecular-dynamics simulations,
Jaszczak and Wolf [Jaszczak 92] demonstrated the distinct thermal softening effects of
atomic-level disorder and volume expansion on the elastic constants and moduli. Atomic-
level structural disorder, either homogeneous or inhomogeneous, is a mechanism for elastic
stiffening, while the thermal volume expansion, on the other hand, resulis in a softening.
Whether the disorder or the volume expansion dominates the efastic response depends on
the detailed nature of the disorder and the anisotropy of the volume expansion.

As mentioned above, Born tried to connect elastic instability to melting based on the
observation that "the difference between a solid and a liquid is that the solid has elastic
resistance against shearing stress while the liquid has not.” [Born 39] He emphasized the
mechanical behavior of solids when they are heated up to melting. Another well-known
feature of melting is that the crystalline lattice undergoes a structural order to disorder
transition. This transition is accompanied by a considerable volume expansion. Therefore,
understanding the mechanism of structural disordering is relevant to understanding the
mechanism of melting. In several existing theoretical models melting is treated as a
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hoinogeneous process and associated with a lattice instability resulting from the atomic
dispiacements exceeding a threshold value (Lindemann's criterion) [Ubbelohde 78], from
the vanishing of the shear moduius (Born criterion) [Born 39, 56], or from the
sponiareous generation of a critical concentration of vacancies [Ubbelohde 78). On the
other hand, clear expcrimental evidence, gathered from attempts to probe mechanism of
melting in various materials, points to the dominant effects of interfaces in the actual
melting processes [Cahn 86b]. Obviously by regarding melting as a homogeneous
phenomenon, the above models are unable to address the issue of melting at an interface,
clearly an intrinsically L:cterogeneous process.

Significant progress in this topic was made by means of MD simulations. It has
been clearly demonstrated [Wolf 90b] that one can distinguish two kinds of melting
transitions, thermodynamic mei:ing and mechanical melting. Thermodynamic melting
[Lutsko 89b] basically is determined by the free energies of both the crystalline and liquid
states. In this case, the solid melts through the nucleation and growth of a liquid phase at
extended defects. such as interface, voids, or dislocations, and thus is a slow,
heterogeneous process. In contrast, mechanical melting is triggered by an elastic instability
causing the sudden collapse of the entire crystalline lattice, a fast, homogeneous process.
The mechanical melting temperature T gives the highest temperature that one can superheat
a solid. Since all realistic materials contain a large number of extended defects, it is not
surprising that nature prefers thermodynamic melting.

Very interesting piece of experimental evidence that shows the possibility of
mechanical melting was noted by Tallon. [Tallon 79a] He examined the existing elastic
moduli data measured for metals, inert gases, silver bromide and benzene as functions of
isobaric volume expansion from absolute zero to the melting point and in the melt. He
noted that in extrapolating the measured data to large volume expansion, except for the inert
gases, one finds the isothermal bulk modulus varies continuously with volume through the
melting expansion, and in every case either (Cy; - C12)/2 or Cy4 falls continuously to
essentially zero at the volume of the melt at the freezing point. This indicates thai by
suppressing thermodynamic melting one can directly correlate mechanical instability with
melting.

Based on his study Tallon emphasized the importance of an expansion-induced
mechanical instability (either one of the two shear moduli vanishes) as the fundamental
cause of melting, and he concluded that the transition is purely first-order. Boyer [Boyer
85] has also concluded that melting is the onset of a mechanical instability, but, on the
contrary, arrived at a quite different conclusion regarding the nature of the transition. He
has compared his purely continuous view of mechanical melting with the somewhat similar
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picture often used to describe low temperature, displacive or martensitic-type, solid-state
transformations. He pointed out that in general, a crystal structure is defined by two sets of
parameters, one which defines the lattice and another defines the positions of atoms within
the unit cell of the lattice. To make the analogy between melting and displacive transition
he proposes that a solid-liquid transition at the melting temperature takes place when the
structural parameter defining the lattice, char:ges from a static to a fluctuating dynamic
variable, whereas displacive transitions involve a similar change except in the parameter
describing the atom positions in the unit cell of the lattice. In both cases the crystal goes
from high to low symmetry. Clearly, since both of thiese conclusions are closely related to
elastic instability, a direct study of mechanical melting and instability may help to resolve
the controversy.

That solid-state amorphization is analogous to melting in certain respects has been
recognized by a number of authors. [Johnson 86, Cahn 86a, Richet 88, Okamoto 88,
Fecht 89, Wolf 90] Cahn and Johnson have pointed out that these two phenomena are
closely related in the sense of both involving the destruction of crystalline order. Okamoto
et al. [Okamoto 90] have discussed the similarity in the volume dependence of the shear
modulus during irradiation and heating-induced melting. In particular, Wolf et al [Wolf 90]
proposed that considerations of thermodynamic parallels between conventional melting by
heating and solid-state amorphization suggest a unified picture of how crystals undergo
structural disordering. In this view, a crystalline lattice undergoes structural disordering in
two different forms, a high-temperature crystal-to-liquid transition that manifests as
conventional melting, and a low-temperature crystal-to-glass transition in the form of solid-
state-amorphization. The basis of this generalized view of melting is that volume
expansion plays a central role in all disordering processes, whether it is induced by
temperature or by external means. A fundamental question in this context is thus whether
the lattice can disorder under homogeneous expansion at a constant temperatare.

More recently, Sciortino et al. [Sciortino 92] studied ice I, and SiO, under
compression and tension by simulations. They found that for both systems a rapid collapse
of the crystalline lattices occurs at the onset of diverging compressibility under both
compression and tension. Li and Johnson [Li 92] simulated a Lennard-Jones potential
model of two species at constant stress. The system amorphizes when the atomic siz
difference exceeds a critical value. They observed a shape change of the simulation cell
from cubic to orthorhombic before the system loses its long-range order. They suggested
that this mechanical instability indicates that the crystal to glass transition is caused by
frustrations of local shear deformations.
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Another category of "mechanical-failure” phenomena closely related to the elastic
instability is the stress- or strain- induced mechanical failures and phase transitions of
materials. In the past decade several attempts have been made primarily to study the
processes of fracture. It was assumed in these studies that the solid remains in thermal
equilibrium, i.e., responds reversibly to applied stress, all the way up to the breakdown
point. Soules and Busbey [Soules 83] have considered plastic deformation through cavity
formation in "pristine” glasses. Kieffer and Angell [Kieffer 88] have focused on the
isotropic expansion of silica network in an effort to explore the fracture structures and
dynamics induced by increasing negative pressure.

More recently several MD and MC studies of fracture of crystals have been carried
out by a group of investigators [Blumgerg Selinger 90, 91, Wang 91]. They showed that
when a crystal is subjected to an uniaxial or hydrostatic stress, it remains in metastable
equilibrium all the way up to a critical value of the applied stress, at which point the crystal
fails irreversibly via the nucleation of microcracks. The critical load (or failure strength) is
found to decrease strongly with temperature. In a statistical-thermodynamic approach to
fracture, they treated the solid under stress as a metastable state of equilibrium, then
showed that the system fractures at a failure threshold corresponding to a metastability
limit, or spinodal, and fails in the form of homogeneous nucleation of fracture.

Martensitic transition is a type of structural phase transformation that does not
involve long range diffusion of atoms. The transition is accomplished through a collective
motion of all the atoms. Consequently, the parent and daughter phases show certain
orientational relations. Since historically martensite was obtained during the guenching of
steels, martensitic transition has been referred to as concentration modulation induced by
temperature variation. However, studies by various groups [Bolling 69, 70a, 70b, 71,
Delaey 74] have shown that the enthalpies of the parent and daughter phases have strong
dependence on the variations in stress as well as in temperature. In particular, Najafabadi
and Yip [Najafabadi 83] have carried out a Monte Carlo study of stress induced reversible
b.c.c. to f.c.c. transition. Cheung and Yip [Cheung 92] have studied the f.c.c. to h.c.p.
structural transition in o-iron under uniaxial loading. In the present study we are not
interested in the martensitic transition itself, but rather in making the connection between
the Bomn instability and martensitic transition.

Milstein and Farber [Milstein 80] were the first to systematically study the possible
athermal structural phase transformation of crystals following exactly the elastic instability
criterion and its eigenstates. Guided by their theoretical results on elastic instability, they
studied model systems of an f.c.c. crystai using Morse type potential functions, with the
parameters adjusted to reproduce the experimental values of cohesive energy, lattice
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parameter, and bulk modulus for b.c.c. Fe [Girifalco 59], and lattice parameter and elastic
constants Cq; and Cy; for f.c.c. Ni [Milstein 73]. They showed for f.c.c. Fe and Ni, by
static calculation, that when the crystal is subjected to an initial uniaxial [100] tensile load,
the crystal follows the primary path, i.e., as the load is increased the crystal stretcies in the
direction of the load and contracts in the lateral directions. At the "invariant eigenstate” at
which the elastic moduli satisfy C;; = Cy,, there exists a special bifurcation enabling the
crystal to depart upon a secondary path along which the tetragonal symmetry is broken.
Along this new path, with decreasing load, the crystal starts to expand in one of the two
lateral directions and eventually its extension in that lateral direction "catches up” with the
[100] extension. The system ends up for Fe, at zero load, in an b.c.c. structure, while for
Ni again in a tetragonal face-ceniered structure. On the compression side along the primary
path, both Fe and Ni crystals undergo an f.c.c. to b.c.c. transition.

Parrinello and Rahman [Parrinelio 81] extended the MD method beyond the
constant-volume scheme. They were primarily interested in the possibility of stress-
induced polymorphism in solids involving crystal lattice with different symmetries. To
study the behavior of solids at finite temperatures and high level of extemal stress, in
particular at high values of the stress at which spontaneous defect generation and crystal
structure transformation become possible, the constant pressure MD approach of Andersen
[Andersen 80] was generalized to allow arbitrary shape (in addition to volume) for the
periodic simulation cell. Their new Lagrangian, then, involves the full anisotropic stress
tensor (rather than a scalar, hydrostatic pressure) and each cell edge (rather than the
volume) can fluctuate independently.

Using their MD method and the same Morse potential as used by Milsiein [Milstein
80], Parrinello and Rahman [Parrinello 81] studied how a single crystal of Ni behaves
under uniform uniaxial compressive and tensile loads. Their work confirmed some of the
results of Milstein and Farber. But they also showed that at finite temperature the
bifurcation predicted by the static calculation does not occur. Instead very close to the
bifurcation point the system fails. Moreover, they found a new result that, for this model
of Ni, upon uniform uniaxial compression, the f.c.c. structure transforms intc an h.c.p.
arrangemeni. They concluded that since their results of the stress-strain relation before the
bifurcation point is in good agreement with the results of static calculation, the departure of
their results away the static results is itself in the right direction because the system will be
"softer" in the presence of thermal agitation.

In the context of the above review, one can see that all these mechanical failures and
structural phase transformations are closely related to elastic instabilities. Although the
elastic instability criteria themselves have been known for more than half a century, the

17



connection between the criteria and the elastic deformations, the validity of these criteria at
finite temperature, and the mechanisms of the possible mechanical failures or structural
phase transitions are still not well understood.

1.2 Problem Statement and Approach of Study

Considering an infinite crystal lattice under stress or strain deformation, there is no
doubt that the lattice will fail when the deformation becomes large enough to destablize the
lattice. But fundamental questions one can ask are what is the underlying physics, what are
the mechanisms responsible for the failure, and what is the final state into which the
system will evolve. In principle, one can define the instability of crystal lattice at zero
temperature, solve the instability criterion and all the possible unstable modes of
deformation either through energetic argument [Milstein 77] or finite-strain continuum
elasticity analysis (see Chapter 2 for detail). But at finite temperatures, the thermal
activated micro-stress and strain fluctuation add new degrees of freedom. It is not clear
how these microscopic movements will initiate the macroscopic state changes of the
crystals.

The goal of this dissertation is to investigate the different conditions of elastic
instability of an ordered crystal lattice, the corresponding mechanisms of unstable structural
responses, and the final states of the transformed lattice at finite temperatures. The study
involves a combination of analytical analysis of finite-stain elasticity and atomistic
simulations using empirical interatomic potential functions for simple f.c.c. crystals. From
the finite-strain elasticity analysis we obtain the instability criteria, critical strains, as well as
the deformation paths required for the onset of each particular instability, while simulation
allows direct observation of the unstable structural responses to such prescribed
deformations at finite temperatures. Together this approach makes possible the
understanding of how different modes of lattice deformation can cornpete with each other
under conditions of finite stress and thermal activation.

The first question of the study concems the underlying physics of a mechanical
deformation process - the instability of a crystal lattice. Given a thermodynamic system at
equilibrium, if the thermodynamic variables are changed in a virtual process so as to bring
the system out of equilibrium, then there will be a restoring force which tends to drive the
system back to equilibrium. The presence of this restoring force means that the system is
stable. The original equilibrium configuration could be unstable if force develops which
tends to move the system further away from equilibrium. Consider a thermodynamic
function, such as the internal energy U, the general statement of thermodynamic stability
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requires the internal energy to be a minimum, with respect to all virtual variations of the
thermodynamic variables. At equilibrium:

d2U > 0. (1.3)

It can be shown [Wallace 70] that this conditicn is equivalent to the requirement that all the
second derivatives of the internal energy with respect to thermodynamic variables are
positive finite. The equation

d2Uu=0 (1.4)

therefore determines the inflection point of the internal energy.

One can define crystal thermodynamic instability through the solutions of Eq. (1.4).
The stability requires that the internal energy function to have pesiiive curvature. The
system is unstable when the curvature of the intemnal energy becomes negative. The
inflection point thus define the thermodynamic instability criteria. It is known [Wallace 70]
that thermodynamic stability can be described in terms of the standard solution of an
eigenvalue problem involving a matrix composed of second derivatives of the internal
energy. In the present case, to approach the first question above one needs te develop a
similar equation of instability as (1.4). The thermodynamic function should be generalized
to include the strain variables. Following this idea one can recover the three instability
criteria, Eq. (i.2) that are well known in literature. [Born 39, 56, Milstein 79]

Given these instability criteria the question naturally arises as to what are the
corresponding unstable states. In the same context it can be asked how does a crystal fail
in any of these unstable states. By intuition it seems that the crystal will fail at the onset of
whichever instability that gives the minimum critical strain. As one will see in this thesis,
this is only true under certain conditions. In fact the crystal does fail when it is deformed
beyond the inflection point since some of the elastic moduli will become negative, but it
does not necessarily fail at the minimum critical strain.

Starting with the equilibrium conditions for a stressed crystal and applying the
principle of virtual work to this system we obtain an eigenvalue problem (with zero
eigenvalue). As usual, to obtain a nontrivial solution requires the determinant of the elastic
constant (current) matrix Cj; to vanish. Taking the lattice with cubic symmetry as an
example, we {ind three distinct instability conditions already given in Eq. (1.2), namely,
the vanishing of Cyq; + 2Cyj, Cqj - Cq2, and Cyy, which we will refer to as spinodal
(dilatational), Born (normal distcrtional), and shear distortional instability, respectively.
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The first condition corresponds to the vanishing of the bulk modulus, and the other two to
the vanishing of the shear modulus in specific directions. It should be emphasized that
these instability criteria are cnly valid for an infinite system under stress boundary
condition.

Although these dif:erent instability conditions have been known for a long time,
there still exists some conceptual confusion about the instability criteria and the failure
modes of a lattice. Among these three criteria the failure modes asscciated with the first
and the third are quite simple to understand. Since it is a consequence of the vanishing of
the bulk modulus, the spinodal instability corresponds to a decohesive failure mode. On
the other hand, the shear distortional instability corresponds to a pure shear distortion
mode. The Bom instability is more subtle. It is given by a combination of the elastic
constants, Cy; and Cy,, yet it triggers a complicated shear failure mode.

In the present study we will not only focus on the instability but also follow
through with the solution of eigenvalue problem to obtain the eigenstates (strain)
corresponding to the different modes. These eigenstates naturally define the specific
deformation paths and reveal the particular failure modes associated with each instability.
They also allow a prediction of the critical strain for each instability in terms of the finite-
strain elastic constants. Of particular relevance to our work are two results: first spinodal
instability is associated with volumetric (purely dilatational) deformation, and secondly,
Bom instability requires symmetry breaking without changing volume and brings about a
bifurcation on the primary path of deformation. Thus the analysis shows that the onset of a
particular instability depends on how the lattice is deformed.

As pointed out earlier, although the theoretical study gives insight into the nature of
the iustabilities and the eigenmodes of the deformation, it does not give the final states of
deformation after the instability has setin. A complete study of the problem entails also
taking into account the effects of different interatomic interactions, temperature, and
inhomogeneity of the crystal. Furthermore, relatively little theoretical work has been done
on the determination of the critical strains for each of the crystal instabilities. These present
opportunities for atomistic simulation which is a unique technique to explore all these
aspects of the instability problem.

For our simulation study, we choose two potential models, the Lennard-Jones (L-J)
potential and an Embedded-Atom Method (EAM) potential. The L-J potential is a softer
interaction relative to the EAM potential, the former is usually used for inert gas elements
while the latter is constructed more specifically for metals. Both Monte Carlo (MC) and
molecular dynamics (MD) simulations are performed on an f.c.c. crystal using one or the
other of these two potentials. We calculate the elastic constants as a function of strain for

20



these two potential models. Assuming linear elasticity and combining with the instability
criteria, we obtain estimates of the critical strains for the spinodal and Born instabilities in
the case of cubic and tetragonal symmetry. Along the simulation path, we also calculate all
the mechanical, structural and dynamic properties such as potential energy, pressure, lattice
parameter, structure factor and mean-squared displacement. By the analysis of simuiation
data which include the direct observation of unstable structural responses to the
successively increasing external stress or strain loading along the deformation paths, we are
able to verify the three instabilities predicted by theory. We explicitly demonstraie that
while different potentials give different values of the critical strain, the same instabilities
occur in both potential models. The scope and main results of the study of this dissertation
are summarized in Fig. 1.1. The theoretic results, namely, the instability criteria and the
eigen-deformation paths, are valid above the arrows marked with T (finite temperature),
while the simulations follow the eigen-deformation paths and determine the final states of
transformed at finite temperatures (except the pure shear distortion indicated by the dashed
arrow).

To our knowledge, the present simulation study of deformed crystals constitutes the
first systematic investigation of crystal instability and stress-induced unstable structural
responses of crystals at finite temperatures using both pairwise and many-body potentials.
Along the dilatation path, it is found that at low temperatures both the L-J and EAM f.c.c.
crystals fail in the form of nucleation of cavitation. This transition occurs at smaller strain
than that predicted by the bulk modulus for spinodal instability. Detailed analysis shows
that this is caused by the thermal activation of inhomogeneous nucleation of cavitation. At
high temperatures a homogeneous structural disordering is observed in both models.

In order to study the effects of crystalline inhomogeneity on the transition we use a
so-called grain-boundary superlattice (GBSL) model. This model consists of thin slabs of
f.c.c. crystal of the same material. These slabs are rotated with respect to each other about
the (001) plane normal to form a periodic array of high-angle twist grain boundaries. The
elastic constant matrix of this model has tetragonal symmetry. The simulations are carried
out at temperatures T = 300K and 500K along the primary path of deformation. We
observe gain boundary fracture under hydrostatic stress and uniaxial strain. This suggests
that crystalline inhomogeneity does not affect the course of the spinodal instability.

The thesis is organized in the following manner. In chapter 2 we present our
theoretical results of finite-elasticity analysis of a deformed crystal. By applying the
principle of virtual work, we solve the instability conditions which determine the inflection
point of the strain energy and the corresponding eigenstates. These analyses bring out the
three instabilities of the crystal and enable us to assign certain distinct characteristic aspects
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of the insiability. In chapter 3 we begin with an introductory discussion about the L-J and
EAM potentials we will use and the basic simulation procedures. The elastic, inechanical,
dynamic and structural properties we will calculate and analyze are defined ir this chapter.
Chapter 4 is devoted to temperature effects on elastic instabilities and mechanical melting.
In this chapter we will show that mechanical melting is a first-order phase transformation,
demonstrate that both the spinodal instability and Bom instability are efficient in triggering
mechanical melting. In chapters 5 and 6 we present our MC and MD simulation resuits on
a single crystal with L-J and EAM potentials, where we explicitly demonstrate the spinodal
and Born instabilities and discuss the detailed characterization of the transition mechanisms.
The effects of potential and temperature are also examined in these chapters. In chapier 7
we present the MD simulation results on the unstable structural responses of GBSL with
EAM potentiai, where we focus our attention on the effects of crystalline inhomogeneity.
In the last chapter we summarize all our results and give recommendations for further
studies.
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Chapter 2

Continuum Analysis of Eiastic Instability

2.1 Elastic Constant Matrices and Elastic Moduli

The theoretical description of the mechanical behavior of a body is largely based
on elasticity theory. we shall briefly review some fundamental thermodynamic
definitions of stress and strain, and the basic formulas of linear elasticity theory.

Consider a homogeneously deformed elastic object, having an arbitrary initial
configuration X corresponding to an arbitrary applied stress X and a finite strain €.
Suppose that a further small deformation 3¢ is imposed on this system, then its free
energy change can be expressed [Landau 70, Wallace 72], in the differential form, as

dF = - SAT + Q Gppdegg, (ot B=x,y,z x) 2.1)

Here, the summation is implied over repeated subscript indices °. 2 is the volume of the
system at its initial configuration, 6 and € are the internal stress and strain tensor. The

elastic part of the free energy change can be defined as

dW = aaﬂdeup 2.2)

where W is called the strain energy density. The internal stress is then defined by

okl

where the prime indicate all the other components of strain except €,5. And the

isothermal elastic constants are defined as

2w aoaB)
Copm (aeuﬂa% (ae‘m R (2.4)

which is a fourth rank tensor. In equations (2.3) and (2.4) the subscript of the bracket
means that the derivatives are evaluated at the initially stressed reference state.

* For convenience, we shall use repeated indices to indicate summation, boldface to be tensors of any order,
Greek to indicate the component of Cartestan coordinate and Latin indices the atom number throughout of
this thesis, except where they are otherwise specified.
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For a large number of solids at low applied stresses, the internal stresses are
proportional to the strains. The elastic constant tensor relates the stress and strain by the
generalized Hooke's law [Saada 74, Grimvall 86]

Oup = CopynEn- (2.5)
The inverse relation of (2.5)

exn =[C kupnOap (2.6)
defines the compliance tensor S = C-1, which expresses strain in terms of stress.

Hooke's law (2.5) holds for both polycrystalline and single-crystal specimens.
The number of independent elastic constants Cpg,m or compliances Sggyy depends on the

symmetry of the system. Within the principal coordinate system [Saada 74], by using the
shorthand Voigt notation

xx—=1 yy—=2 zz-3
yz—4 xz-5 Xy —6 2.7)
zy—>4 z2x-5  yx—b6

the elastic constant tensor of a cubic crystal, which is characterized by three independent
elastic constants C,,, C,, and C,,, is

Cii C12 Ci2
C12 C11 C12 0
C12 Ci2 Ci1
C= Cy4 (2.8)
0 C44
Ca4
and the compliance tensor is
S11 S12 S12
Si2 S11 S12 0
S12 S12 Su1
0 S44
Sa4

For a tetragonal system, six independent elastic constants C“, Clz,Cl3,C33,C “
and C are needed io specify the symmetry, then the elastic constant tensor becomes

25



C11 C12 Ci12

Ci12 C11 Ci13 0
C13 C13 C33
C= Ca4 (2.10)
0 Caq
Ce6
and the compliance tensor
S11 S12 S13
S12 S11 Si3 0
S13 813 S33
S= Sq4 (2.11)
0 S44
S66

The elastic moduli are obtained from the inverse of the diagonal elements of the
compliance tensor [Grimvall 86, Wolf 92]:

Young's moduli

Y =S, Y, =S,, Y,=S; (2.12)

Bulk modulus
B =[S, +5,,+5,,#2 (S;;+S,5+S,3 )| (2.13)

Shear moduli
G,;=S,,=C,y G,,=Ss5 =Css, G,,=Ss =Ces- (2.14)

For cubic crystal Egs. (2.12), (2.13), and (2.14) give
2
_(CyCp) (€ +2C),)

Y =Y, =Y,=5; & (2.15)
B = Cufcn (2.16)

and
G,=G,=G, =C, 2.17)

For tetragonal symmetry one has
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2
; C,C,,-C
Y, =Y, =s: =(c“-cn{1 +—l233—‘23} (2.18a)
CiCasCis
| 2C?
Y, =8, =Cy- (2.18b)
1" 12
2
B= (C1*Cpp)C352C 5 (2.19)
€ #Cp#2C5574C
G,=G,=Cpp G, y=Cg - (2.20)

In the regime of the linear elasticity theory, the behavior of any isotropic elastic
body can be completely described by a set of so called field equations. In material
coordinate system, one has fifteen differential equations for uniquely determining the
state of the body [Malvern 69]. These equations are:

Three equations of motion

2
208 4 oFy = pdTUa @.21)

where p is the density of the system, Fq is the aith component of the body force and ug is
the oith component of displacement u, six equations of Hooke's law

Oop = A£yydap + 2Geyg (2.22)
where A is the Lame coefficient, and six geometric equations
p) du
ep =122+ =2 (2.23)
oxg Oxg

Among these fifteen equations, the first three determine the three components of
displacement wu, the last six define the six strains and the six equations of Hooke's law
relate corresponding stresses and strains. Once the displacement u is determined for
given boundary conditions, it uniquely defines the corresponding stress and strain state of
the body.
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2.2 General Definition of Instability

In this section we will introduce the basic concept of elastic instability of a crystal
by examining a very simple example of a stress-strain curve, and define the elastic

2.2.1 Concepts of Elastic Instability of Crystal

Let us consider an elastic body under applied stress T and zero body force, as
sketched in Fig. 2, (8). The deformation induced by this applied stress is described by a
strain tensor €. Then the work done by this applied stress is

w=fS Tapdeqp (2.24)

where § is the surface of eiastic body. When the System is in equilibrium, the internal
stress is equal to the applied stress

6(€)=X, (2.25)

thus

W=3} ode. (2.27)
S

Fig. 2.1 (b) shows schematically the strain energy density as a function of strain €. Using
Egs. (2.3) and (2.27) one can get a stress-strain relation as shown in Fig. 2.1 (c).
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From Fig. 2.1 (c) one can see that for an equilibrium crystal lattice when a surface
traction X is applied on the system, there is at least one solution of Eq. (2.25) which gives
the corresponding deformation state of strain. But when the magnitude of the applied
stress is increased beyond the level of X;, Eq. (2.25) has no solution any more. Physically
this means that the system will become unstable. The point g; is called the inflection
point of the strain energy density which gives the stability limit of the lattice. We will
define the conditions that determine the inflection point as the instability criteria of the
crystal iattice. In general, there could be several deformation modes at the inflection
point. The system must become unstable against at least one of these modes. The
inflection point of the strain energy density thus also define a bifurcation point of the
primary deformation path.
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Fig. 2.1 Schematic diagram illustrating the
definition of inflection point and elastic instability.
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2.2.2 Principle of Virtual Work and Instability

In this section we will begin with a brief discussion of the principle of virtual
work, then apply it to a deformed crystal with different elastic symmetries. For detail
discussion about this principle one can refer to [Malvem 69, Reismann 80].

Let us consider an elastic body which is in equilibrium under the action of a
prescribed body force Fy in volume Q, surface traction Tg, on surface S of the volume.
The equilibrium conditions for this body are summarized as follows:

aO'ap

+ Fgm 0 (2.28)
dxg
Oupnp- Ta=0 (2.29)
where Ggg is the internal stress and ng is the unit normal vector to the surface.
Now imagine that the body is displaced slightly from its equilibrium configuration
by the amount 8uy. This "virtual displacement” is arbitrary. The principle of virtual
work relates the work done by the external forces during a virtual displacement to the

corresponding change in strain energy. It can be derived as follows. As a consequence of
Eqgs. (2.28) and (2.29) we can write

0
- f m,(:gm
a axﬂ

However, with the aid of the divergence theorem one can easily show that

Q4+ J (Cogip - Ta)BuadS =0 (230)

a
f OpngduadS = f cab%“—dﬂ+ I Sug ;“B Q. (231)
s o B o B

Furthermore,

ad oW
Oop a"" = Cugleap = -~ Beog= BW (2.32)

Xp p

and the change in the strain energy

U =I oW dQ. (2.33)



Therefore Eq. (2.30) can also be written as

8U = j FoduadQ + I T uadS. (2.34)
Q S

Thus during a virtual displacement, the work done by the external forces is equal to the
change in strain energy of the body.

Substituting Eqgs. (2.31) and (2.32) into equation (2.30) yields the variational
principle

=0 (2.35)

where

M= [ (W - Foug)dQ - [ Tauads. (2.36)
Q S

Since I1T represents the total strain energy of the system in its equilibrium configuration,
Eq. (2.36) states that the change in strain energy which occurs during a virtual
displacement from an equilibrium configuration is zero.

We have shown that the strain energy of an elastic body is stationary in an
equilibrium configuration. Since we are interested in the intrinsic instability of a
deformed crystal rather than its equilibrium state, we will go a step further, by using this
principle again, to investigate the stability of the equilibrium state.

Let us assume that ug is the displacement field cocrresponding to an equilibrium
configuration of the body. The corresponding strain energy is then given by equation
(2.36). If the body is given a virtual displacement 8ug, then, for the new configuration,
the strain energy is

Hug+Suq) = fn (W{eqp+9€ag) - Falua+Sua )02 - Is T ug+8uq JdS. 2.37)

The difference in potential energy between these two states is then

{ug+8uq) - ua)= L [(Wleap+Seqp) - Wieas))) 42 - L FoduadQ - L T)8uqdS. (2.38)

However, W(enp%) - W(eqg) can be expanded into a Taylor series
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(W(EGB"’G%B) w(euﬁ)) = aeuﬂ &ua +1 2 ae Batﬁn =——=— 0685 + - -

=3W + 8 W+
Therefore
M{ug+Sug) - M(ug)= 8IT + 811 + - .- (2.39)
where
811 = f W dQ - I FaduodQ - f ThdugdS (2.40)
Q Q S
and

2
8% = Iazwm I aeaﬁa 8eqpdEem- (2.41)

Since we assumed that the system is in equilibrium, we have 8I1 = (). Therefore, for an
infinitesimal virtual displacement, we can approximate equation (2.38) by

TH{uq+Buq) - M{ug)= 8T1. (2.42)

The physical meaning of this equation is clear. When a sufficiently small virtual
displacement is applied on an equilibrium elastic body, the corresponding increase in the

elastic potential energy is given by equation (2.42). If 821'1 is positive definite, any
further deformation tends to increase the potential energy of the system. Then, the
equilibrium state determined by equation (2.35) has a local minimum of potential energy,
and thus is a stable equilibrium state. While when (2.42) is negative, it indicates that the
state determined by equation (2.35) has a maximum of potential energy. This state is an
unstable equilibrium state because any more deformation will decrease its potential
energy. When (2.42) is equal to zero, it determines the inflection point at which the
potential energy of the system changes its curvature. When the deformation brings the
system across this point, the system becomes unstable. Thus the inflection point of the
potential energy could be used to define the elastic instability of any elastic system.

Recalling the definition of the elastic constants and thermodynamic stress we can
write equation (2.41) as follows

33



_otw
or equivalently
2w
sn=L1] a9V _ = L 40 504z Seus. 2.44
2.[9 Fegdigy o= 3 R  8eap (2.44)

Now we consider the instability criterion for the general case where the virtual
work of the external forces involves the quadratic terms of strain. The physical meaning
of Eq. (2.44) is that if a virtual deformation were imposed on a system the virtual work
required for the deformation would be equal to the elastic energy stored in the system. If
this work is zero there is no resistance to this distortion. In other words the system is
unstable with regard to this deformation. Therefore, the instability of the system requires

j dQ 800 deqp =
Q

Since 8Gap Seqp should be positive definite the integral can only be zero if 804g Seqg = 0.
But €, are independent variables so for any deformation 8€ 8Gqp Se4g equals to zero
only if

ao'aﬂ =( (2.453)

or equivalently
Copyn®&m =0, af=1,23 (2.45b)

These equations state that when the system is unstable the internal stress responded to the
further deformation becomes stationary. This situation occurs at the inflection point of
the elastic energy density that, in general, is determined by Egs. (2.45). Egs. (2.45a) and
(2.45b) are the basic equations we will use in investigating the intrinsic instability of
deformed crystals.
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2.3 Elastic Instability Criteria for Cubic and Tetragonal Symmetry

In the preceding discussions we have been concerned with the .nstability of a
deformed crystal. The equaticon of instability concerns virtual variations, i.e., variations
of the system away from equilibrium stable state. The elastic instability criteria thus give
the up bounds that one can maintain the crystal in an equilibrium state. It has been shown
that the inflection point is such an important point at which the restoring force against
furtiier deformation becomes stationary. Analytically this point can be determined by the
solution of Eq. (2.452) or (2.45b). By solving these equations one can get not only the
elastic instability criteria but also the corresponding eigenstates of deformation. These
eigenstates give all the possibie unstable modes that the system may get into when the
instability criteria are satisfied. In this and following sections we will investigate in detail
the conditions and eigenmodes of instability for the crystal with different elastic
symmeiries. Besides, we will also estimate the critical strain and stress corresponding to
each of the instabilities.

2.3.1 Instability Conditions with Zero Eigenvalue of Elastic Constant Matrix

Eqgs. (2.45b) are general in determining instability conditions. We rewrite it in the
form of a matrix using Voigt notation

Cdée=0 (2.46)
One immediately see that solving this equation for the instability conditions is equivalent

to solving an eigenvalue problem of elastic constant matrix with a zero eigenvalue. The
conditions determined by these equations give the up-limit of the stability of a crystal.

In the following we will consider crystals with cubic and tetragonal symmetry.
We will solve the equations for the crystal with tetragonal symmetry first. Then the cubic
case can be easily found by setting C;; = C33, Cy2 = Cy3, and Cyq = Cgg.

For a crystal of tetragonal symmetry, since C; = C35 and Cy4 = Cs5 Eq. (2.46)

gives
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C] l&n"' Clzﬁeyy + C|35£u= 0

oS¢ + Cnﬁeyy + Cl38eu= 0

C12 XX

Ci38€xx+ C130€yy + C338€,,= 0
C“&YT- =0

C4486u =0
CosBE,, =0

(2.47)

These homogeneous equations would have at least one eigensolution which leads to the
vanishing of the quadratic terms of the potential energy. In order that equations (2.47)
have nontrivial solution the necessary and sufficient condition is that the determinant of

the coefficient matrix is zero,

detC=0

or

Cn Ci2 Ci3

Ci2 C11 Ci13 0

C13 Ci3 C33

Ca4 =0
0 Cq4
Ca6
This gives
Cu- C12)[(C11 +C12) Cas - 2C3 ] C24Cos = 0.

The solutions are

[(C11+Cr2)Caz-2¢E]=0
(Ci1-C2)=0
Cy4=Cgs=0.

Each of these conditions defines an intrinsic instability of the crystal.

For cubic symmetry, where Cj2 =C;3, C11 =C33, and Cq4 =Cog, the
corresponding instability conditions are:
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(2.49)
(2.50)
(2.51)



(C" + 2C|2 ) =0 (2.52)
{C11-C12)=0 (2.53)
C44=0. (2.54)

The zero eigenvalue of the elastic constant matrix brings cut three kinds of
instabilities, spinodal (dilatational) instability, Bom (normal distortional) instability and
shear distortional instability. Each of them may cause different structural responses of
the crystal. In the following subsections we will discuss the physical meaning and
consequences of these instability conditions.

2.3.2 Spinodal Instability and Born Instability

Spinodal instability originates from a singularity of compressibility and is defined

by the condition (gg)" = from the equation of state [Speedy 82, Zheng 901. Bom
A4

instability is defined by C); - C;2 =0 which gives the limit of the stability of
Ci1- Ci2>0 which was first discussed by Born [Born 56]. Although both of these
instabilities result in the vanishing of elastic moduli, each is of a different nature.

1. Spinodal Instability
In the case of tetragonal and cubic symmetry, the spinodal instability criteria are
[(Ci1 +C12)Cx3 -2C ] =0 (2.55)
and
(C11 +2Cy2)=9 (2.56)

If we substitute these conditions into the expressions of the bulk modulus and
Young's moduli (2.15), (2.16), (2.18) and (2.19) for each symmetry case, one can see that
for both cases the instability conditions bring the buik and Young's moduli to zero. This
means that when the crystal becomes unstable, any smali increase in the stress will cause
a huge amount of strain. In the case of the vanishing of bulk modulus, any more tension
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will cause the system to fall apart. So the failure associated with this instability must
have the characteristic of decohesion.

2. Born instahility
For this instability we have
(C11-Ci2)=0 (2.57)

for both tetragonal and cubic symmetry. In both symmetries, the instability conditions
only cause the vanishing of some of the elastic moduli. In the case of cubic symmeiry, it
leads to the vanishing of the Young's modulus (2.15), but the bulk modulus (2.16) is Ieft
in finite. This implies that in this state the system still can withstand further uniform
expansion, but it will yield to any stress increase along any one of the cubic axes. In the
case of tetragonal symmetry, the instability condition leaves both the bulk modulus (2.19)
and one Young's modulus Y, (2.18b) finite, while bringing the Young's moduli, Y, and
Yy, (2.18a), in the degenerate x-y plane, to zerc. In this case the finite bulk modulus
indicates that even when Cy; is equal to C,, the crystal is still stable against hydrostatic
tension or pure dilatation. The finite Young's modulus suggest that under uniaxial
loading the system can remain stable along this direction, but it is unstable in the two
transverse directions. There must be some in-plane structural change responding to the
instability in the transverse directions. By viewing these results one may expect that so
long as the symmetry is conserved along the deformation path, the system will be stable
against Born instability. Put in other words, the occurrence of Born instability requires a
breaking of symmetry.

3. Shear distortional instability

Shear instability is a consequence of the vanishing of the shear modulus. For a
shear distortion in the (100) plane the instability occurs when C44 = 0. On the other
hand, if the crystal is sheared in the (110) plane along the [110] direction, the system
becomes unstable against further shear when Cyj - Cy2 = 0 [Kittel 56].
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2.3.3 Critical Strain and Critical Stress

We must emphasize that all the elastic constants in the equation of instability refer
to an initially stressed reference state. This means that the instability criteria discussed
above are the instabilities of the stressed state. In the regime of linear elasticity theory,
the elastic constants are taken as those of the system under zero applied stress. In
practice when one deals with the elastic problem, in most cases the strains are small, the
zero stress elastic constants are enough to treat the problem. However, in the discussion
of instability, we are interested not only in the state of zero applied stress but in any
arbitrary stressed state. In this case the elastic constants will be a function of strain which
is measured with respect to the stress-free state. But the further strain is evaluated from
the current stressed state.

In previous discussions of instability the elastic constants are treated as a function
of the strain €. The reference state from which we measure a further deformation &€ is
the current state under arbitrary applied stress, so the all instability criteria refer to the
current external stress state. This current linearized elasticity theory enables us to treat
the finite strain problem using the formulas of the linear elasticity theory, even in the
non-linear region. This treatment is valid as far as 8¢ << €.

This treatment also allows us to estimate the critical strain in terms of the finite-
strain elastic constants. Tallon [Tallon 80] has shown that the volume dependence of
elastic moduli can be well described by an exponential function, which, for small volume
expansion, gives a linear temperature dependent relation of elastic meduli. For simplicity
we assume that the elastic constants in the stressed state are linear functions of the strain,
ie., Cij = C:j) +OLE where Cg 's are the elastic constants of the zero applied stress state
and o 's are constants, and i, j = 1, 2, 3 or x, y, z*. We will examine several simple

examples, (i) dilatation, (ii) uniaxial strain, and (iii) uniaxial stress. In all cases we take a
stress-free cubic crystal as the reference state. All the estimates are made to the first
order in the strain.

* In this section, for convenience, we shall use Voigt notation for elastic constants, and [ Bij- and¥;; to
denote the linear coefficients.
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(i) Dilatation

The deformation is sketched in Fig. 2.2 (a), where a cubic crystal is uniformly
expanded about the zero stress state. The expansion is characterized by a strain €. The

elastic constants after expansion are given by
0
C,,=C,, +o,¢ (2.58)
0
C,,=C,, +at. (2.59)

Then the Young's moduli and the bulk modulus of the strained crystal are, from (2.15)
and (2.16),

2
(Cyy-Cia) (G +2C,)
C*+Ch

Y=

2
=[(C(|)1 + a“e) °(C(l)2 + ok )] [(C(l)l + alLE, M 2(C(1)2 %yt )] (2.60)
(C?l + a“e) + (C?2 + alze)

and
B =1(C, +2C,)= (e}, + oy e)+ 2], + e | 2.61)
By setting these moduli to zero we have either
(c° +ae)+2c?, +ae)=0 2.62)
or
(€, + o, ¢)-{CS, +a ) =0. (2.63)

Here (2.62) corresponds to the spinodal instability and (2.63) to the Born instability.
Solving these two equations gives the critical strains e: and ef,

0 0
C,+2C

g=- 12 (2.64)
Oy + 20y,

and
0 0
eB =- &LS:I_Z (2.65)
¢ o, -0
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Here superscripts s and B refer to spinodal and Bomn instability respectively. Using
Hooke's law (2.5) we can calculate the corresponding critical stresses Gzand c:. They are

o' =(ch +2ct, (EU*—ZCRL (2.66)

and

(2.67)

csf:(C?l ) B_ (Cu +1C|?Kfzx -C),

These two equations can be used to approximate the strengths of the crystal. It should be
pointed out that in the literature extensive simulation studies have been carried out to
investigate the strength of crystals [Ashurst 76; Milstein 77, 78, 79; Dodson 84;
Blumberg 90, 91; Wang 91]. Different boundary conditions have been used and different
values of critical stresses have been obtained. Actually these different values, as we will
show in ihe following sections, correspond to the different deformation paths and result
from different instabilities.

(ii) Uniaxial strain

As shown in Fig. 2.2 (b), by uniaxial strain we mean that the cubic crystal is
stretched in the z direction with strain € while its sizes in the transverse directions are
held fixed. In this case the elastic constant matrix has tetragonal symmetry. The elastic
constants can be expressed as

0
11’

0 0
C,, Cu' C,;=C; +[313£=C12 + Bne (2.68)

0 0
C,=C,,=C C33=C33+B338=C“+B33s,

where the Bij 's are constants. The elastic moduli are

c?
(Cu +C,,)Cy3-2C,
C +C

2
= (C?1 + C?z)(c(l)n + 5338) - Z(C(I)Z + Bne) (2.69)
Cy +Cy, |
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2
Y=Y, = (G- Cu)l(c +C12)C33 Cl3]
C +C

=(C(1)1 - C(l)z)[(c(ljl + sz)(c(x)x + B338) - Z(C(l)z + Byt )2] (2.70)

0o .0
C +Cpy

and

2
(€, +C,,)C,, - 2Cy,
K +C ,+2C,,-4C,,

2
- (C(l)l + C?z,(c?l + B338) 3 2{C(l)z + BQE) ) (27 i)
C(l)l + C?z* 2{C(1)1 + I333‘:) - 4((:?3 + BIBE’

Again by setting (2.69), (2.70) and (2.71) to zero we only have

(C(l)l + C?2)(C(l)l + 5335) - 2‘C(1)2 +Bst )2 =0 (2.72)

for spinodal instability. Keeping € to the first order and solving (2.72) gives the critical

strain

(C(l)l +C?2)C?1 'Z(C?z)z (2.73)
( 0 o) _ 400 ) (&
Cli +Cl3) B33 - 4Cy5 Bia

Using Hooke's law the critical stresses are obtained as

e =-

%y = Oy, = Cyet = chlich +chch -Achf] 279
11 2% 12 (C“ + CIZ)B33 4C13 B13

and

o = Cyes= - ChllCh £y ch] 2.79)
(Cu +C12)533 4C13 l3|3

(iii) Uniaxial Stress

Uniaxial stress is a more physically realizable deformation. In this case the
stretch is still along z direction with the strain €_, but now Poisson’s effect is aliewed in

the response along the lateral directions, as shown in Fig. 2.2 (¢). The strains in x and y
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directions are the same under tetragonal or cubic symmetry, €yy = £xx. After stretch the
system has tetragonal symmetry and the elastic constants have the form
0 0
Cri=Cu +ME» C12=Cra + 728, and

0 0
Ci3=Clp #7158, Co=Cyy + 158, (2.76)

where '{ij 's are constants. We write the elastic moduli

2
Y _(C1 + €] Cas- 2C,
: Cht+Cy

2
= [(C?1 T lexx) + (C(I)Z 2P )] (C?x + Bj?le, - Z(C?z + Blse) @717
(C?l + 'Yl lexx ) + (C(l)2 + 7128“ )

2
Y =Y =(C11'C12)[(C11+C12)C33 - 2C))

’ C(l)l + C(l)z
=[(Cd) +Yirexn) - (€ +M2en )] X 2.78)

(€3, +Yuiene) + (€D + izene NCE) +yaen) - 2ACS, + yisef
(. + Yi1Exx) + (C% +Vi26xs)

and bulk modulus

2
g {Cu*Ci;)Cs3-2C;,

"€ +C,+2C,;-4C

2
_ [(Ctn): 1 lexx)+ (C?z 1 )Kc?n +733£zz) . Z(C?z + Yl3€zz) @79
(C?x *Y11€x ) + (C(l)z + Y128 ) + 2(C(3)3 + 733571) - 4(C(|)3 + Yi3ezz)

Setting (2.77)-(2.79) to zero we have equations

[(C?I BT ) + (C?z RRITE )]C?n + 733311} - Z(C?z + Ylgsu)z =0 (2.80)
and
(C(l)l + 'Yueu) - (C?: RRLITI ) =0 (2.81)

which correspond to spinodal and Bom instability respectively.

Solving (2.81) directly we get the critical strain for Born instability
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(1] 0
C, -C
B _n"™n (2.82)

exxc_ v .
1 2

In order to solve equation (2.81) we need one more equation. Recalling the definition of
the Poisson's ratio

0
B _ (Clz +713£u) _ (2.83)
0 0
z 1B (Clz +713£u)+(cu + Ynaeu)
In first order approximation we have for (2.83)

e =B

“ Cil+Cl3 =

Substituting this result into (2.80) and keeping the first order of strain we get
2

0  ,0)\.0 0
& = ‘Cn +Clz)cll _ 2Cl2 (2.84)
2c 0 0
C,,CL(Yy +Y5) . (0 0 0
tal 12 +(C12 +Cafa3 - 4C 1My,
Cu+Cp
and
0
C 0 0),0 0 2]
0_+uc—0—[(C" +C12)Cll -2Cyy
e;xc=_ 1" ™12 . (2.85)
CO CO Yoo+ 2 0 0 0
—u—u(‘u_'lz‘lo o +(C12 +Co M3 -4C s
Cu+Cp

The corresponding critical stress can be obtained from Hooke's law.
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Fig. 2.2 Schematic diagram illustrating elastic deformation: (a) Dilatation, (b) Uniaxial
..ggin, and (c) Uniaxial stress. The thin-line square is the initial configuration of the elastic
y.
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2.4 Deformation Modes of Instability

We have developed the instability criteria which determine the inflection point of
the strain energy density of the deformed system. At this point the strain energy changes
its curvature. We have shown that at the inflection point the elastic systern becomes
unstable against appropriate deformations which cause one or more of the elastic moduli
to vanish. The question one can ask further is that given the instability conditions and the
strain states of these instability conditions, will the system break down always, or is there
a particular mode of deformation such that the system fails in a spectacular way only
when it exists in this mode? Since these instability conditions lead to a zero eigenvalue of
the elastic constant matrix, one expects that the answer to these questions will become
clear once the eigenstates of the zero eigenvalue of the current elastic constant matrix are
determined and inspected.

2.4.1 Eigenstates of Zero Eigenvalue of Elastic Constant matrix

We will continue to consider the tetragonal and cubic symmetries in the
following. In this subsection all elastic constants are the current elastic constants.

(1) Tetragonal Symmetry

For tetragonal symmetry the eigenvalue equations are

CuSE“+ Clz&yy + C13&¢z= 0 (2.86)

Cy,8e .+ C 8, + s8¢, =0 (2.87)

2C(Be, + B, )+ C,,8€,,=0 (2.88)
CaBey; =0,C, B¢, =0,CoBe =0. (2.89)

We will solve the eigenstates for the spinodal instability first and discuss the Born and
shear distortional instabilities later.



(1) Spinodal Instability

We have shown that the spinodal instability conditions are given by

[(C11 +C12)Ca3-2C3] =0 (2.90)
(Ci1-Cia)=0 (2.91)
Cyy#0, and C, #0. (2.92)

From (2.89) and (2.92) we immediately get
Seyz = 8(-:,‘z = Sexy =0. (2.93)

Subtracting (2.87) from (2.86) gives
€y - CIZ)(&H B Seyy) =0.
Since (Cll -C,, )#0, then
Sen = 58”. (2.94)

Substituting this result into (2.89) we have
2C,, 8¢ +C,; 8¢, =0.
This gives
C

=33
By = 388, (2.95)

and no further constraint on &u. Hence the eigenstate of spinodal instability is

C C
Su. .58 1000 )Seu. (2.96)

8¢ =[- 232, -
2C|3 2Cl3

(ii) Born Instability

For Born instability we have conditions

e, +¢,,)C,- 26320 2.97)
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(C, -Cyp)=0 (2.98)
C,,#0, and C, #0. (2.99)

Again, combining (2.89) and (2.99) we have

&Eyz =8 = Zit-:xy =0. (2.100)
Since (C,, - C,, )= 0, (2.86) becomes
C,, (8e,, + 3¢, )+ C s8¢, =0 (2.101)
Multiplying (2.101) by 2C, , and (2.88) by C,, , then subtracting one from the other, we
have
(c,c,,-C2)ee,_ =0
13" i3Sz T
Since C;,C,,-C5 #0,
8 =0. (2.102)

Substituting (2.102) into (2.101) we get
8(-:“ + 8£yy =0. (2.103)

This gives
Seyy =-0¢_. (2.104)
Combining (2.100), (2.102) and (2.104) the eigenstate of Born instability is
de=(1,-1,0,0,0,0 )86“ (2.105)

with the constraint of conserving area (2.103) in x-y plane. Since 8(-:21: 0, this constraint

is equal to requirement of volume conservation.

(iii) Shear distortional instability
The shear instability conditions are
(C11+Ciz)Ca3-2C] #0 (2.106)
Ci1-Ci2#0 (2.107)

and
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Css=00rCg=0. (2.108)
Multiplying (2.106) with (2.107) we have
(Cu - Clz)[(Cn + Clz)C33 - 2C%3] =0.

The left hand side of this equation is just the determinant of the coefficients of (2.86),
(2.87) and (2.88). That it does not equal to zero indicates the only solutions for these
equations are

8, =8, =8, =0. (2.109)

This means that the shear deformation considered here requires no changes in lengths.

For the shear instability, i.e., either C44 =0 or C66 =0, from (2.89) we have

&»:yz:&:u:O
and
8(-:“:0 .
These give the eigenstates
8€=(0,0,0,1,0,0 )&:yz
for C,,=0 (2.110)
8¢=(0,0,0,0,1,0 )&,
and

8¢=(0,0,0,0,0,1 )8, for Cg;=0. @2.111)

These give no restrictions on the values of 8£yz. de  or 85“ .

(2) Cubic symmetry
For cubic symmetry we have C,, =C,;,C,,=C,; andC , =C... Then the
eigenstate equations are simplified as

C, 86+ C,, (8e,, + 8¢,,) =0 (2.112)

C,y(Be,+ B2, }+ C, 86, =0 (2.113)
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CIZ(&u+ 88yy ) + Cll&:"zz= 0 (2'1 14)

Again, we will consider the spinodal instability first and then Born instability and shear
instability.

(i) Spinodal Instability

In this case the instability conditions are

Cll + 2C12 =0 (2.116)

C“ - C12 #0 (2.117)
and

CM#O. (2.118)

Combining (2.117) and (2.118) we have
&syz = &—:u = &;y =0. (2.119)

Subtracting (2.110) from (2.109) gives
(C11-Cy2 ‘&u' 8eyy ) =0.

Since CIl - C12 # 0, there must be

de_- &zw =0
or
de = 8£yy. (2.120)
Substituting (2.120) into (2.114) and using Cll =- 2C12 we get
de =3¢ .
or
Se“=8£yy=&»:u=8£ (2.121)



where 8¢ is an arbitrary strain. Then (2.119) and (2.121) give the eigenstates of the
spinodal instability
8¢=(1,1,1,0,0,0 ) 3¢ (2.122)

with no constraint on magnitude of ée.

(ii) Born instability

For Born instability we have the conditions

Cll + 2C12 20 (2.123)

Cll -C12=0 (2.124)
and

CM#'O. (2.125)

With (2.115) and (2.125), the shear strains are
Seﬂ=5£u=6£xy=0. (2.126)

Under the condition C" =C
identical. This gives

12 the three equations (2.112), (2.113) and (2.114) are

&-:“+Beyy+&-:u=0. (2.127)

This equation says that 8¢_, 8£yy and 8¢ , can take any arbitrary values so long as their

sum is zero. Physically this requires volume conservation all aiong the deformation path.
Thus the eigenstates of Born instability in cubic symmetry is

8e =( 8e,,, 8, ¢,,,0,0,0 ) (2.128)

with the constraint of volume conservation.

(iii) Shear distortional instability

Following the same argument in the case of tetragonal symmetry, we can get the
eigenstates for shear instability
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5= (0,0,0, 1,0,0 )8,
8¢=(0,0,0,0,1,0 )8 |, for C,,=0 (2.129)

8=(0,0,0,0,0,1)8,,

with no any restrictions on the values of 8¢

d_, or &-:xy )

yz'

In Table 2.1 we summarize all the results we have obtained for cubic and
tetragonal symmetry. Conceming the "zero" eigenvalue, one argument one may make is
that in the standard eigenvalue problem, the zero eigenvalue is trivial, because any vector
of strain could be the eigenstate of the zero eigenvalue. This is true, of course, in general.
But since we are looking at some particular conditions that cause the zero eigenvalue of
elastic constant matrix, these physical conditions will narrow down the eigenstate to
several special branches. Even if we cannot determine the exact state, which is actually
not nceded for our purpose, this analysis gives insight into the nature of each instability.

Table 2.1 Summary of instability criteria and corresponding eigenstates for cubic
and tetragonal elastic symmetries.

Cubic symmetry Tetragonal symmetry

Instability criterion Eigenstates Instability criterion Eigenstates

Cy +2C12=0 (1L1,1,00,0)3e  (CutCi2) C3-2C5=0 —Cﬁﬂ-,_‘iﬁ-.l.o.o,o}aeu
2C13 2C13

C[l - C12 = 0 ( &u-&yyo&u’o'o'o) C][ - C]Z = O (1,'1,0,0,0,0)88“*
*

C4s=0 (0,0,0,1,0,0)3¢,, Cay=0 (0,0,0,1,0,0)8¢y,
Cy =0 (0,0,0,0,1,0)3¢,, Cy=0 (0,0,0,0,1,0)5ex,
Cy=0 (0,0,0,0,0,1)3e,, Ces=0 (0,0,0,0,0,1)8¢,,

* with restriction 8¢,y + 8€yy + 86, =0.
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2.4.2 Volumetric Deformation

In previous sections we have seen that when, and only when, at least one of the
three instability criteria is violated, the determinant of the equation of instability vanishes.
Each instability criterion is thus associated with a particular branch of eigenstates. We
have proved that these are the only possible eigensolutions. These eigenstates
characterize particular failure modes of the deformed crystal. Each mode terminates a
stable region of deformation and defines an eigen-deformation path which takes the
crystal to an unstable region. If the system deformation is not allowed to follow the
eigen-deformation path, then the system can be considered to maintained in a metastable

region.

By looking at Table 2.1, one can immediately recognize that a significant feature
of the spinodal instability is that its eigenstates still keep the same symmetry as that of the
original reference state. This means that in order for the crystal to get into these
eigenstates the load must be imposed in such a way that it keeps the original symmetry of
the elastic constant matrix. This kind of load brings the sysiem to failure with the
approach of the spinodal. We will define, following Milstein [Milstein 77, 80], this path
as the primary deformation path. This path conserves the original symmetry of the
reference states along the entire deformation path. This is the only path that allows the
spinodal instability to show up. This statement is easy to be verified. For convenience,
let us consider a cubic crystal with the reference state of zero applied stress. Suppose that
the system is now unstable against the Bom instability, i.e., C,, - C,, =0, while the load
is imposed along the primary path (¢, 8¢, 8¢, 0, 0, 0) ). The stress arisen from this small
distortion is given by Hooke's law

6=C, 8 +C,,8 +C 8= (C, +2C,)8e=3C, &, (2.130)

which is not zero. This tells us that even the system is unstable regarding Born
instability, there is still a finite restoring force that tends to bring the system back to
original stable equilibrium state. This simple example points an important fact that it is
not complete if one wants to study elastic instability of a crystal without considering the
loading environment.
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2.4.3 Symmetry Breaking and Bifurcation

It was shown by Milstein and his collaborators [Hill 77, Milstein 80] that when an
f.c.c. crystal is uniaxially stressed, it follows a primary path of deformation. At a point
where C,, - C,, =0, a secondary path branches the system out of the primary path of
extension. Along the secondary path, with decreasing load, the tetragonal symmetry is
broken; i.e., a, # a,, where a, and a, are the lattice parameters in the lateral directions.
This point, characterized by Born instability C,, - C,, =, defines a bifurcation point.
Along the secondary path two structures can be identified when the crystal is unloaded.
For Ni, based on their static calculation, they found that at the first zero load point, the
system is identified in a b.c.c. state, and at the second zero load point the system is in a
tetragonal state. The b.c.c. state is at a local energy maximum and the tetragonal one at a
local minimum. The existence of this secondary path was proposed as a possible
mechanism of an f.c.c. to a b.c.c. transition under conditions of a strictly [100] tensile
load. Parrinello and Rahman [Parrinello 81] studied the same bifurcation problem for Ni
at finite temperature by MD simulation. They found that bifurcation does not occur.
Instead, a failure was observed. The "bifurcation failure" was observed only under
extreme conditions of shock. The final state that the shocked crystal transforms into is an
h.c.p. rather than a b.c.c. as predicted by the static calculation.

From our calculation, table 2.1, we find that Born instability has two significant
characteristics: First, the loss of the stability of the crystal is the consequence of
symmetry breaking and associated with a possible bifurcation on the primary path of
deformation. Secondly, the eigenstates of Born instability require a volume, in the case
of cubic symmetry, or area, for tetragonal symmetry, conservation along the entire
bifurcation path. This requirement implies that Bomn instability may trigger a further
shear distortion. These features may allow the crystal to undergo a continuous allotropic
phase transformation [Milstein 80, Cheung 92] or structural disordering [Sabochik 91, Li
92].

Returning to instability, we argue that for a stress-free cubic crystal under pure
heating Born instability should occur earlier than spinodal instability. This is clear by

comparing the criterion of these two instabilities. Born instability can be satisfied even
bothC,, and C,, are stil} positive finite, while the spinodal instability only occurs when
either both C,, and C,, become zero or at least cne of them becomes negative. In the



case of uniaxial tensile load, the situation is complicated. No evidence one can argue just
by comparison of these two crit~ria.

In summary of our discussion in previous sections, a complete study of instability
of a crystal must concern not only the instability conditions but also the eigendeformation
modes associated with each of the instabilities. The latter is necessary to define the
specific deformation path that allows the corresponding instability to occur. Spinodal
instability is a singularity of compressibility. Its eigendeformation path has the
characieristics of symmetry conservaticn and pure velumetric deformation. The possible
unstable structural responses cf = ¢7:-z:l to this instability may be a decohesive failure.
Born instability, on the other %und, requires a breaking of the original symmetry and only
results in the vanishing of some of the elastic moduli. The eigendeformation mode of this
instability requires a volume conservation and then may be associated with a shear
distortion. These features may allow a crystal to undergo allotropic phase transformation
or structural disordering.
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Chapter 3
Simulation Models and Procedures

As mentioned earlier the objective of the research is to gain insight on the rature of
the instability of stressed crystalline materials under various border conditions, e. g. stress
or strain border conditions. Although in Chapter 2 theoretical approach of elastic analysis
of a stressed f.c.c. crystal with different elastic symmetries has given the three well-known
instability criteria in a crystalline material and the generic features of elastic deformation
modes associated with each instability, there are still some open questions needed to be
further studied. First, the theoretical results obtained in Chapter 2 are needed to be
ver. ied. Second, since the theory does not give the final state of the transformed lattice,
or may naturally hope that direct observations from the dynamic evolution of a system
well defined by dynamic equations may make it possible to study all the possible final state
of the transition associated with each of the instabilities. Finally, since the eigenstates of
each instability condition do not put any constraint on the driving force that takes the crystal
to the instability region, the change of temperature, inhomogeneity of crystals and defects
must have some effects on the structural response when the crystal becomes unstabie. All
theses give a large room for atomistic simulation to study the possible transitions and
mechanisms of the transitions related to each instability. In following sections we will
briefly discuss the potential models and simulation procedures that will be used in present
study.

3.1 Interatomic Poientials (Lennard-Jones and Embedded Atom Method)

The interatomic potential is essential to simulating the behavior of a model system.
In general, the potential energy of a system containing N atoms can be expressed as a
function of the coordinates of individual atoms, pairs, triplets elc.:

N N N
V= Z vi(r) + 2 vArir;) + Z v3(ri, . r) + - 3.1)
i j>i k>j>i

Where the first term v,(r;) represents the body force (for example, the electromagnetic field,
gravity and so on) on the system. All the other terms represent atomic interactions. The
second term is the pair potential, it is very important because even only including this term
in the potential energy simulation starts tc show interesting properties and behavior of the
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model system. The pair potential only depends on the magnitude of the pair separation

rij =[ri - rj}. The remaining terms v3(ry, rj, ri), v4(r;, rj, r, r)-- -, all together are so-
called many body interactions. These terms take into account the cluster effects of
interactions on the atom where there are more than one atom around it. Obviously, the
many-body inieraction is extremely important for the covalent bonding materials, and even
so in the metallic bonding.

In our simulation studies we adopt two kinds of potentials commonly used in
computier simulations. These are the simpler, more idealized Lennard-Jones (L-J) pair
potential, and the embedded atom method (EAM) many-body potential.

The L-J potential we used has the form of so called force-shifted potential [Allen
87]:

vir;;) = 4¢€ (;?j—)lz- (;?']-)6] +cy(re - 1;5) + C2 for ry<r. (3.2)

V(l‘ij) =0 for l'ijSl'c,

where ¢y =0.1€ , ¢ = 0.025¢ and 1, is the cutoff distance. This potential has two
adjustable parameters, ¢ and € (not stress and strain), defining the length and energy

scales. The potential has a long-range attractive tail of the form (- %)6 until the cutoff r.; a
ij

negative well of depth € , and a steeply rising repulsive wall at distance less thanr ~ G.
Although this potential provides a reasonable description of the properties of argon, it may
be viewed as a generic potential for an f.c.c. material if all energies and distances are scaled
with € and o respectively. In present study the L-J potential used was fitted to the lattice
parameter and melting point of Cu with € = 0.167 €V, 6 = 2.315A [Lutsko 88].

The EAM potential takes into account the role of many-body effects. It combines
density functional concepts with traditional pairwise potentials. In addition to the two-body
interaction in EAM, the potential energy for each atom is also determined by the energy
required to embed the atom in the local electronic environment provided by the other atoms
in the system. Thus EAM potential expresses the total potential energy, U, of a system of
N interacting metal atoms as a summation of a bonding term and a repulsive term.
According to [Daw 83, 84; Finnis 84]

U= Z Flpni) + 2 &ri;) (3.3)

i,)>1
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where py,; is the host electron density at atom i due to the surrounding atoms in the system,
F(pni) is the many-body energy needed to embed atom 1 into the background electron

density

Pui = 2, Pifitij) (3.4)
J

and ¢r;;) is the core-core pairwise repulsive energy between atoms i and j separated by
distance r;; =|r; - rjl. The EAM potential we used in our simulation was fitted empiricaily
to five properties of Au [Daw 84].

In order to avoid discontinuities in the energy and forces (and, the charge density in
the case of EAM potential), both potentials were shifted smoothly to zero at the cutoff
distances [r/ag = 1.4% (1.32) for the L-J (EAM) potential] [Wolf 92]. The zero
temperature lattice parameters, ag, were determined to be 3.6160A (L-J) and 4.8028A
(EAM). In the principal cubic coordinate system (with x, y, z Il <100>), the Young's
moduli, Y, were found to be 1.08 x 1012 dyn/cm2 (L-J) and 0.346 x 1012 dyn/cm2
(EAM), whereas the shear moduli, Gy, are 1.01 x 1012 dyn/cm2 (L-J) and 0.440 x 1012
dyn/cm2 (EAM). The Poisson's ratios for these potentials are 0.360 and 0.465
respectively.

A very important difference between the pairwise and many-body potentials is that
the pair potential automatically satisfies the Cauchy relation with the elastic constants Cyy =
Ca4, while the many-body potential still leaves all three elastic constants of a cubic metal to
be determined. Although the L-J and EAM potentials are parameterized te describe Cu and
Au respectively, it is not the primary focus of this study to investigate the eiastic behaviors
of these particular metals. Rather, it is intended that by employing these two very different
potentials, the generic features of the intrinsic instability of f.c.c. metals can be separated
from effects depending on the description of particular interatomic forces.

Another significant difference between these two potentials is that the L-J potential
has a relatively small curvature of the cohesive energy curve comparing to the EAM
potential [Wolf 89 ). Thus the L-J potential gives rise to considerable lower values of the
elastic constants. It will be seen later that this weak volume dependence of the internal
stress makes it difficult to distinguish between the criteria even if it does not change the
course of the instability of the crystals.
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3.2 Models with and without Interfaces

Consistent with the theoretical study we wish to choose models containing cubic
and tetragonal symmetry in their elastic constant matrices. The first choice we can make is
the simple f.c.c. crystal. The elastic properties of this crystal and its instability at zero
temperature have been extensively studied [Hill 77, Milstein 77, 78, 79a, 79b, 80]. F.c.c.
crystal has cubic elastic symmetry. It can also have tetragonal elastic symmetry under some
proper loading environment, such as uniaxial stress or strain.

Another well-defined model we will study is the so-called grain-boundary
superlattice (GBSL) [Yip 89] consisting of a periodic arrangement, - -|AIBIABI - -, of thin
slabs A and B of equal thickness (see Fig. 3.1). This gives tetragonal symmetry. The
slabs A and B consist of the same material (in the present case: Auj and are merely rotated
with respect to each other about the z axis by a angle of 43.60° (between AIB) or - 43.60°
(between BIA), respectively. The interfaces between A and B are called high-angle twist
boundaries. In present case of twist rotation of 43.60°, the grain boundary is commonly
referred as the £29 twist grain boundary. The periodicity of these twist grain boundaries is
given by the supermodulation wavelength A. The GBSL we will use has the
supermodulation wavelength A = 8ag.

The advantage of this model lies in the factor that it possesses not only the
tetragonal symmetry we need but also the inherent inhomogeneity that is the cause of
anomalous elastic behavior (the so-called supermodulus effect). These elastic anomalies
include anisotropic thermal expansion where the thermal expansion of a, is larger than that
of a, in the GBSL's, while a, itself shows a larger thermal expansion in the GBSL than in
the perfect crystal [Jaszczak 92]. The existence of grain boundaries causes a stiffening of
Young's modulus Y, (parallel to the interface-plane normal) and a softening in shear
modulus G,, (for shear parallel to the interface-plane) [Wolf 89]. It was also noted [Wolf
89] that even the inherent inhomugeneity of the interface leads to the supermodulus effect
while there seems not to be a "super elastic-constant effect”. It was also found [Jaszczak
92] that the softening of elastic moduli (or elastic constants) with change of temperature or
volume remains normal. That is, They decrease with increase of temperature or volume
expansion. This well-characterized grain boundary superlattice system offers a very good
model for our present study of instability.
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Fig. 3.1 periodic arrangement of thin slabs, A and B, to form a
"grain-boundary superlattice” (GBSL). A and B are thin slabs of
the same matenal, each of thickness A/2, rotaied about the
GB-plane normal (liz) to form a periodic array of twist boundaries
in the x-y plane. The overall arrangement of atoms is thus
periodic in all three dimenstions.
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3.3 Simulation Methods

With very rapid development of computer systems, computer simulation provides a
new bridge between the analytica! theory and experiment. The use of atomistic-simulation
models consisting of several hundred to a few thousand particles has a vast success in
studying structural, thermodynamic, mechanical and kinetic properties of simple physical
systems in several areas of condensed matter physics and theoretical chemistry. We are
concerned here with the use of molecular dynamics (MD) methed [Allen 87, Parrinello 81,
Ray 84] and Monte Carlo (MC) method of Metropolis [Metropolis 53, Allen 87, Binder 85]
to determine the behavior of an atomic system with and without interfaces in the stressed
and thermal environment.

3.3.1 Molecular dynamics (MD)
In the MD method, the motion of the atoms is determined by Lagrangian dynamics.

MD simulation generates the atomic trajectories by numerically solving the Lagrangian
equations of motion for N atoms in the simulated system

_d_(_a.£ - %.):0 fori=1,.--, N (3.5}
dt\aq;/ \oag;

where the Lagrangian function L(q,q) is defined in terms of kinetic energy and potential
energy

L=K-V (3.6)
and is considered to be a function of the generalized coordinatcs q;and their time derivatives
qi. For an atomic system if we choose the Cartesian coordinates and the usual definiticns
of K and V, then equation (3.5) gives Newton's equation of motion

m; i‘i = fi (3.7)

where m; is the mass of the ith atom and

f,=V,L=-V,V (3.8)
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is the force exerted on the atom i by the remaining atoms in the system. Thus the model
systern evolves according to the atomic forces and to the prescribed border conditions.

In order to study the structural responses of a crystal to any external stress we will
employ the generalized molecular dynamics method that first developed by Parrinello and
Rahman [Parrinello 81] and latter modified by Ray and Rahman [Ray 84). This method
allows changes in both the size and shape of the simulation cell to respend to any imbalance
between the internal stress tensor and an external applied stress. The simulation cell is
completely described by three vectors a, b and ¢ that span the edges of the cell. The
vectors can have different lengths and arbitrary mutual orientations. This specification can
be conveniently expressed in terms of a 3 x 3 matrix h = {a,b,c}, the columns of which
gives the components of each vector.

In this modified Parrinello-Rahman method, in addition to the equations of motion
for N atoms in the simulation cell, there are six equations of motion for h matwrix which
contains the imposed tensor I’

Wh =6h1Q-hI, T =Qhg'thy" (3.9)

where superscripts t and -1 donate the transpose and inverse of a mauix respectively; 2 and
Qg are the volumes of the simulation cell with and without external applied stress; hy is the

h matrix at zero applied stress, G is the instantaneous internal stress tensor, and ¢ is defined
as the tensor of thermodynamic tension which is related to the external applied stress X

(which is equal to the internal stress <G>when in equilibrium) by

Aypt-lpt-l
_ Qhoh é:‘ hy (3.10)

t

As pointed out by Ray and Rahman [Ray 84], Eq. (3.7) and (3.10) will generate a
thermodynamically consistent (HtN) ensemble. In present study we are interested in the
behavior of the model system in a thermal and stressed environment. In order to generate a
(TtN) ensemble [or (TEN) ensemble], we rescale the atomic velocities at every time step so
that the mean kinetic energy corresponding to the given temperature T. Thus by specifying
the temperature T, external stress X and interatomic potential V, we may simulate the
equilibrium properties of N atoms consistent with the chosen border conditions imposed at
the faces of the simulation cell.

The proper border conditions to be specified depend on the system properties to be
studied. For bulk properties in a homogeneous system it is usually appropriate and also
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convenient to impose periodic traction border conditions which have the effect of
embedding the simulation model in an infinite system composed of replicates of the finite
size model in all directions. This border condition is suitable for the models of both f.c.c.
crystal and GBSL we will study.

3.3.2 Monte Cario Method (MC)

The MC method does not generate a true dynamic history of an atomic system, but
rather a Markovian chain of spatial configurations according to stochastic dynamics. In
classical statistical mechanics, the canonical ensemble average of potential energy is given

by

U)= f U(R) f[R) dR (3.11)

where the potential function of the system depends or the configuration
R =(ry,r2,---, rN)of the N atoms, and the probability distribution function for the
configuration is given by

expl- U(R)/kpT]

fiR)= . (3.12)
f exp{- U(R)/kgT] dR

From equations (3.11) and (3.12) one sces that <U> may be calculated by randomly
selecting a huge number of spatial configurations and averaging the energy over these
configurations, weighting with the appropriate Boltzmann factor. This method obviously
is not practical because the number of configurations required to get a reasonable average is
enormous. However, in the MC method which is widely used in present simulation study,
the procedure is to select configurations with a frequency proportional to the Boltzmann
factor exp[- U(R)/kgT] and average over the selected configurations with equal weight.
This ideal was first proposed by Metropolis et al [Metropolis 53]. We will outline the
Metropolis algorithm for an atomic system with potential energy U(R) = i v(rj;) in three
ij>i

dimensions.

Suppose that a system of N atoms is placed in an arbitrary initial configuration in a
volume Q at a fixed temperatuare T, the configurations in this (TQ2N) ensemble are
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generated according to the fellowing rules: (1) select an atom at random; (2) select random
displacements Ax, Ay, Az, each of them can be either positive or negative such that
(Ax)z-e- (Ay)2+ (Az)zs (Arm,)z; (3) calculate the change in potential energy U on
displacing the chosen atom by (Ax, Ay, Az); (4) if 8U is negative accept the new
configuration; (5) otherwise, generate a random number & which is uniformly distributed in
the interval (0,1); (6) if exp(8U/kpT) < &, accept the old configuration; (7) otherwise, the
rew configuration and the new potential energy become the "present” properties of the
system; (8) repeat the steps (1) to (7) again. Usually the early configurations generated in
this way are dropped in the calculations of system properties since they may be not in
equilibrium and will slow down the convergence of the averages. The maximum
displacement Arpayx is chosen to optimize convergence. Typically, Arpmax is chosen such
that approximately half of trials are actually accepted. For given potential function, the
choice of Armax is usually governed by the density N/V and the temperature T of the
system.

An advantage of the MC method is that it can be readily used in the calculation of
averages in any ensemble. Wood [Wood 68a, 68b; 70] first showed that the MC method
could be extended to the isothermal-isobaric ensemble. In the constant pressure MC
simulation, a configuration of N atoms at temperature T and pressure P is represented by
3N coordinates confined within a simulation cell of variable volurne. A rew configuration
is generated by selecting an atom randomly and giving it a random displacement and by
changing the volume of the cell randomly within a prescribed range. The change of volume
requires the scaling of all atomic coordinates by a appropriate factor. If we donate the
potential energy of the old and new configurations by U and U', and the corresponding
volumes of the cell by Q and Q', respectively, the total energy change can be expressed as

W =(U - U')+ P(Q - @) - NksT In(Qv€). (3.13)
If the change of the total energy is negative, the new configuration is accepted, If it is
positive, the new configuration is accepted only with the probability is equal to or greater

than exp(SW/kBT). Repeating this procedure gives rise to a chain of configurations
distributed in phase space with a probability proportional to the classical Boltzmann factor.

3.4 Property Calculation

In order to study the stress-induced structural response of crystals in elastic
unstable region, it is important to know the properties of the model system in equilibrium.
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In this section we will introduce some basic formula for property calculation. The system
properties we are interested in include thermodynamic properties such as internal energy or
enthalpy, mechanical and dynamic properties like internal stress tensor, pressure and mean
square displacement; structural properties such as pair correlation function and structure
factor (or diffraction patterns); and finite strain elastic constants. Since most of these
properties were well defined in the literature [Allen 87, Haile 92], discuss some of them
which are important in our study.

3.4.1 Pair Correlation Function and Structure Factor

The structural properties we will keep tracking along with simulation are the pair
correlation function and the structure factor.
The pair correlation function is simply defined as

g(r)=Nl— Y, &r-1) (3.14)

i,j>i

which gives the probability of finding another atom at a distance r away from the given
atom. For crystalline materials their structural difference can be well characterized and
easily distinguished from the peaks of g(r) and their positions. For example, for a perfect
f.c.c. crystal at zero temperature, g(r) would have a 3-function peak of height 12 at the
nearest-neighbor distance r/ag = v¥2/2, and a peak of height 6 at the second nearest-neighbor
separation of r/ag = 1, and so on.

Another way of people usually getting structure information is from the diffraction
patterns of waves that interacts with atoms and has a wavelength comparable with the
interatomic spacing. From the classic scattering theory [Kittel 56] we have known that the
diffraction amplitude is

A =f dr n(r) explik-r) (3.15)

where n(r) is the electron density function and k is the wave vector difference of the income
and scattered wave, or equivalently the reciprocal lattice vector. To simplify the calculation
we assume that the electron density function has the form
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N
or)= Y r-r (3.16)
i=1
where r; is the position of the ith atom. Substituting (3.16) into (3.15) we have

A=j der: r -r;) exp(ik-r)
o i=l

N
=Y explik-r). (3.17)
i=1
Then the diffraction intensity per atom is proportional to AA* that is

g exp(ik-r*

[=AA"_ 1
N N

N
=1+2<} cos k- (r;- r;)] >. (3.18)

i,j>i

Which is also defined as the static structure factor S(k) [Wolf 90aj.Where < > donates a
configuration average. For a bulk crystal, by varying wave vector k one can calculate the
diffraction patterns of the crystal. Sometimes for convenience we only calculate the
siructure factor for several wave vectors which we know will give maximum diffraction
density. By keeping track of the values of the structure factor, we can monitor the
structural change of the model system. One can also calculate the planar structure factor,
Sp(k). In this case only atoms in a given lattice plane are considered. In the case of a
GBSL, the slabs A and B are rotate relative to one another. A reciprocal lattice vector lying
in a (001) plane in slab A will not be a reciprocal-lattice vector in slab B. Thus two
different wave vectors, k; and k,, are required to monitor planar order in the A and B
region. They are related by the relative rotation of the two kinds of slabs. For a well-
defined lattice plane, for example in slab A, Sy(k;) then fluctuates about a finite value,
somewhat less than unity, while S,(ky) fluctuates about a value that is essentially zero. In
the interface region, due to local disorder, one expect somewhat lower values of the
structure factor. By monitoring Sy(ky) and Sp(ky), every plane may be characterized as (a)
belonging to slab A [if Sp(kl) is near unity and Sp(kz) is near zero], (b) belonging to slab
B [if Sp(kl) is near zero and Sp(ky) is near unity], or (c) disordered or changed to another
crystal structure [if both Sp(kl) and Sp(kz) are near zero).
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3.4.2 Internal Stress Tensor and Strain

The most fundamental mechanical properties in this research are the internal siress
tensor and elastic constants. For a homogeneous system (where, by definition, the stress
or the strain is the same throughout the system) the internal stress is arisen when a strain
deformation is imposed on the system. There are several definitions of strain in the
literature of elasticity theory [Landau 70, Hill 77, Lutsko 91], for convenience of the
simulation, we will choose the definition of Lagrangian strain

£= %(h},'lh'hhbl _1) (3.19)

which is appropriate when all quantities are referred to a fixed set of axes. Here these exes
are well-defined by the h matrix of the simulation cell as interpreted in section 3.3.1.
From the virial theorem of Clausius an expression for the tensor & which describes

the state of stress of the entire system can be derived and is widely used in atomistic
simulation to calculate the system pressure [Allen 87). The stress tensor of an atoemistic
system can also be derived from thermodynamic quantities as the derivatives of the free
energy F with respect to strain

oF
aeap
= -[hoh aq < Dol >[(hoh 1) (3.20)

Qotep = -

where H is the Hamiltonian of the system, < > donates an ensemble average, and operator
D is defined as

0 0 0
D.g =|r1; + 1 - P; - P
BT\ g Porg 0Py PoPg

i

3.21)

where r;y, and r;g are the a.and B components of the position vector r; of atom i, Po and
P;p are respectively the a and 8 components of atom i's momentum. For detailed
derivation of expression (3.20) we refer the reader to [Lutsko 89a,91]. It turns out that the
"stress tensor” of this definition is actually the thermodynamic tension tensor [Ray 84] that
we discussed in section 3.3.1, which is artificially introduced in Ray and Rahman's work
[Ray 84] in order to bring the formula and the simulation results of MD into consistent with
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the theory of finite elastic deformation developed by Thurston [Thurston 64], Murnaghan
[Murnaghan 51] and Wallace [Wallace 70]. The thermodynamic tension tensor t is relaied
to the physical stress of virial theorem

N
lu lﬂ
O,p=1 <2 - El ta— fotiip > (3.22)

by equation (3.10). Here Q is the volume of the system, G is the 08 component of the
stress tensor, rjjo and ry;g are respectively the o and B components of ry;, the relative
position vector between atom i and j, and V is the total potential of the sysiem given by Eq.
@3.1).

For a system of N atoms that interacts via a pairwise potential ¢{r;;) the physical

stress tensor can be computed from the following expression

PioP;

i olri;) Tiialiig > (3.23)
l%l Tij al‘u Heap

GaB = L < Z
In the case of EAM potentials, the stress tensor can extended to include the
contributions from the embedding function
Pg & r N 9F 9pj i
Pia ip Z rl a¢( u) CijaTi - 2 Pij x.ll: .uﬂ (3.24)
1,j>i y al‘u 1,j>i aphl aru Yy

Oap= 2

where all the terms involving the EAM functions have the same meanings as in Eq. (3.3).
These two expressions will be used in our simulation study of L-J potential and EAM
potential model systems.

3.4.3 Finite Strain Elastic Constants

There are several ways to calculate elastic constants. The zero temperature elastic
constants can be evaluated directly using the Born approach [Bomn 56), where the elastic
constants are expressed in terms of the curvature of the potential energy. At finite
temperature the elastic constants can be calculated either using fluctuation formulas or from
a numerical simulation of stress-strain curve experiment. In what follows we will discuss
these last two methods in more detail.
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Before we start our discussion on the methodology of elastic constant calculation,
one thing which is worth emphasizing is that we are really interested in the elastic constant
at finite strain. There was a confusion about the reference state which is characterized by
hg. Purely from the point of view of the definition of the strain

£= %(h},"h‘hh{,‘ _1)

the choice of hy is obviously arbitrary. However, in the expression for the elastic energy
and elastic constants the choice does make a difference. When take hy = <h> as originally
done by Parrinello and Rahman [Parrinello 81] the elastic energy W generated in a
deformation around a state of the system which is not a state of zero stress but the siate
under that stress 6. Thus the reference value from which W is measured is not zero but
the elastic energy in a deformed state. And the strain value is also measured with respect to
this deformed state. When the elastic energy W is defined as W = ) Tr te using the
thermodynamic tension tensor t, the value of hg should be chosen as the average value of h
when the stress is zero, i.e., the stored elastic energy is zero if the system is not acted on
by any external stress. Although these two cheices make difference in the expression of
stored elastic energy and the expression of elastic constant they do not affect the final
results of the quantities. The only care must be taken that they are evaluaied with respect to
the different reference states.

In following we will follow Lutsko [Lutsko 89a, 91] to get the fluctuation formula.
In generai the elastic constant tensor is defined as the derivative of thermodynamic tension
with respect to strain

Ol
Copyo = - —2. (3.25)
dOtyo
Consider a elastic homogeneous system of N atoms with Hamiltonian
. N
H =’211-TZ P2 + V((r;)) (3.26)
i=1

where P; and r; are the momentum and the position vector of the ith ator respectively.
Following Ray and Rahman [Ray 84], we introduce a canonical transformation to a new
coordinate system s; and p;, defined by the following equations
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ri=h-s;
P,=h''p, (3.27)

where h matrix is the same as defined in section 3.3.1. It can be shown [Lutsko 89a] that
on a (ThN) ensemble the thermodynamic tension tensor can be expressed as

Qot =hoh! < DH >(hoh 1) = Qhgh'l < 5> (hohL) (3.28)

where 2y and 2 are the volumes of the system at zero and finite applied stress
respectively, the superscript t donate the transpose of the matrix, and the physical stress
tensor

6=<6>=-1<DH> (3.29)
Q

which is the same as Eq.(3.22). We also can define the instantaneous thermodynamic
tension tensor as

Qot =hoh'! DH (hoh!) = Qhgh! 6 (hoh ). (3.30)

Taking into account the periodic border condition [Lutsko 91] the operator D defined in Eq.
(3.21) can be expressed as

N 0 d d d
D.g = 1L ii - i i . :
“72 I:Z (rjaarijﬂ i pa"ua d aPiB ! Plpapia 3D

i.j>i

Therefore, the instantaneous stress tensor

P, avrar
_1_ 1y P LI fijaTijp
Gop = - LDl = §: 2 _, (3.32)

It should not be confused here that in Eq.(3.32) although the derivative of potential V is
taken with respect to the separation of i and j atoms, it is not the same as saying that the
potential is pairwise potential. Actually all potentials can be written in terms of differences
in atom the coo+dinates of pairs of atoms [Daw 83]. Lutsko [Lutsko 89a] has showed that,
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in general, the derivative of a general function of the atom coordinates K({ri}) = ;{“h ‘8§ ‘)
with respect to strain can be expressed as

d<A>

= hgoh'! ‘<DK> - El,f(<XDﬁ> - <K><Dﬁ>)} {(hoh-!)
B
= hoh! {<Dx> + 2 (<A5>- <x><a>)} (hoh}
B
= <[hoh"D(hoh“)l] A>+ %(«Tﬁ - <K><€>) . (3.33)
B
To make it more clear we write (3.33) in more obvious form

d<A>
0y

(LY.

= [hoh ],y {<Dx'n'x> + 3 (Aogn> - <A><0yn>)

= <[hoh"]xx-Dx-n[(hoh"r]n-nx> + k%‘ (<K.‘xn> - <K><Exn>) ) (3.34)

Using Eq.(3.33) and the definition (3.25) elastic constants can be found as

atuﬁ
Capyn =~ E
y

- g Dyl (o flyniap> - 1%} (<lapin> - <top><ien>) +

1 {{non-! ﬁ,; Sgnl(noh Fyn<iag> + hoh JaaBanl(hoh M ym<ipe>) +
{ oh! pp Opy (hoh )t]quﬂﬂ) +[h0h ](m By (hoh )1L x<‘l3n>’
= %[hoh 1] (hoh ¥ alhoh ol (hoh ¥ ]ap x

{ - <Dx'n'8a'ﬂ'> - % (<8a'ﬂ'8x'n'> - <aa'ﬂ'><ax'n'>) +
| - 5 - - (3.35)
5‘8B'x'<o'a'1|'> + 8a'n'<op'x'> + 8B'x'<oa'n'> + 8a‘x'<oﬂ'“‘>)}

The explicit stress terms appearing in Eq.(3.35) arise from the action of the strain derivative
on the explicit h dependence of the thermodynamic tension tensor [see Eq.(3.28)]. We will
prove that the first term and last term in the bracket of the last line of Eq.(3.35) will give the
so-called Born term and the kinetic term of the elastic constant. Ler us write
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It is easy to show that the first term in Eq.(3.36) gives rise to the kinetic term of the elastic
constants

N P. P.a.
Pin: 9Py J\Q j=1

where n = N/Q is the number density of the system. And the second term of Eq.(3.36)
combing with the last term of Eq.(3.35) gives the Born term

N 3 P Y 9V TaaTup
Cz'ﬂ'x‘n'=<% Z fijx'r"'rijfl_) (‘L 2 a (:kl F)>+
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= SEagyn (3.38)
where
~ N OV rijxTijo
Clay="1Y — 2% (3.39)
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is only the potential contribution to the microscopic stress, and

~ N I .8 Wiy’ av ~ »
Eapyn =L | f“ = + TipTian Vi ko | > + 28gn<C'ay>  (3.40)
Q i,j>i 4 al'ij

here we have introduced the matrix of second derivatives, or force constant matrix, defined
as

3’V
Vin g = ———— (3.41)
fkap or ij“'al‘km-
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and the symmetrizing operator S defined by its action on Cartesian coordinates
Sﬁa'ﬂ'x'n' = %(Ea'ﬂ'x'n' + Eﬂ'a'x'n' + ﬁa'ﬂ'ﬂ'x' + Eﬁ'a'n'x'} (3.42)

For the purpose of our following calculations, we give here the explicit forms of the
general potential functions relating to the evaluation of elastic constants for pairwise
interactions and EAM potential. We will siart with the pairwise potential. Consider a
potential of the form

N
V=Y ¢r) (3.43)

i,j>i
where rj; =Jr; - rj|. Since
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Combining these results and noticing Eq.(3.39), we come up with

p FijaTijp Tijx Tijn'
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The superscript p of X'fj refers to the pairwise potential. Thus the final form of Bomn term

is

N Ciioe' T ol i Tiim®
cB =1 p HjeTijpTijxTijn
wn = < 2 X5 = > (3.46)
1,]>1 ij

and the elastic constants of the pairwise potential are given by

Copn = ;%[hoh'l]xx[(hoh'l)']nn[hoh"]aa[(hoh'l)l]ﬂ'ﬁX { Capn+

- %({&Gg«'&mo - <3a-p-><8x-n->) + 2nkBT(8x-p-8¢-ﬂ- + Sq'ﬂ'a(z'x') } (3.47)

which is the same as that got by Ray et al [Ray 85a, 85b].
We new consider the EAM potential. For EAM potential which has the form

V=2 Flpui)+ 2, &) (3.48)

i,j>i

where the host charge density on atom i, py, is the sum of the charge density due to all
other atoms

Phi = Z pij(rij)v and again Iijj = Iri - l'_'l (349)
j

The first term in the right-hand side of Eq.(3.48) is a purely repulsive central-force pair
potential and its contributions to the Bor term are given by Eq.(3.39). We shall therefore
only consider the contributions to the Born term.

From Eq.(3.24) we have found that the embedding-term contribution to the
microscopic stress is given by

N i (aF(p..i) (apm)fﬁa'fijﬂ'_ (3.50)
Qi \ Opni J\or;) T

i,j#i
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Here the superscript e donates embedding-term contribution. Substituting this results into
Eq.(3.40) and evaluating the derivatives yields the Born contribution to the elastic
constants, which are found to be

N , CoTiatin Tin: N _
Ceg'ﬂ'x'n' =-1-S|:2 (aF(Phl)) x?j FijoTiip Tijy Tijn + z (aF(Pbl)) fia'ﬂ'fix'ﬂ'j| (3.51)
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X =a Pudrij) 1 9Pniriy) (3.52)
1 al% l'ij arij
and
N ..
9pni(ri;) TijorTijp’
fiop = 2, p;_" 2 rijUB' (3.53)
i,j#i [

By adding Eq.(3.51) to Eq.(3.46) and using Eq.(3.24) for the stress we can calculate the
elastic constants of the EAM potential from Eq.(3.47) for finite temperatures and finite
applied external stress. These formula will be used to compute the elastic constants
through out our MD and MC simulation study.

Anocther method we will use to calculate clastic constants, as mentioned above, is
the computer experiment of stress-strain carve method. Based on Eq. (3.22), the strain
tensor to be imposed on a system can be fixed by adjusting the appropriate components in
the system's h matrix. If the simulation is performed under a constant volume ensemble,
or more generally a (ThN) ensemble, the imposed strain will stay constant throughout the
entire simulation. By successively change one component of the strain tensor while hold
the remains constant one can produce stress-strain curves. Then the slope of the siress-
strain curve will give the corresponding elastic constant. As example, we will take the
f.c.c. crystal to show how this naive calculation can be done. For cubic crystal there are
only three independent elastic constants, Cyy, Cy3, and C44, the normal stress and strain of
the system is related by the generalized Hook's law (note we now take the pre-strained state
as the reference state)

o11 = C1€11 + C2€22 + C2833 (3.31)
622 = C12€11 + Cp1€22 + Cy2€33 (3.32)
633 = Cj2611 + C2€22 + Cp1€33. (3.33)

75



By examining these stress-strain relations, it is obvious that MD or MC simulation with
constant strain tensor will be appropriate for the direct evaluation of the elastic constants.
This can be achieved by imposing a strain tensor with only one changeable component such
that only one term will vary with the corresponding strain on the right hand side of these
equations. For example, by leaving €; to be the only variable strain component while hold

from

the others constant, one can evaluate Cy; as Cy = (@ﬂ) and CjpasCyp = (?;’J
€11 /e €l

Eqs.(3.31) and (3.32). This type of stress-strain experiments, or the (ThN) simulations,
are being used to calculate the two elastic constanis of Cy; and Cy of the f.c.c. crystal at

e

various temperatures.
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Chapter 4
Thermoelastic Behavior and Mechanical Melting of F.c.c. Crystal

Intrinsic instability of crystals is closely related to elastic deformation. The effects
of homogeneous deformations can be induced either by the change of temperature in the
case of thermal expansion, or by the exiemnal applied stresses or strain load in the case of
hydrostatic tension or compression. This chapter will donate to the pure temperature effect
on the thermoelastic behavior of the model systems with different potentials under thermal
expansion. Our attention will be focused on the mechanical melting.

The ultimate process of thermal disordering in the solid manifests itself in melting.
It has been clearly demonstrated [Wolf 90b]that one can classifies two kinds of melting:
Thermodynamic melting and mechanical melting. Thermodynamic melting [Lutsko 89b)
basically is determined by the free energies of both the crystalline and liquid states. In this
case, the solids melt through the nucleation and growth mechanism of liquid phase at
extended defects, such as interface, voids, or dislocations; and thus is a slow,
heterogeneous process. In contrast, the mechanical melting is triggered by an elastic
instability causing the sudden collapse of the entire crystalline lattice, and is therefore a fast,
homogeneous process. The mechanical melting temperature T gives the highest
temperature that one can superheating a solid.

Although the mechanism of the thermodynamic melting is quite clear, the
underlying cause of the mechanica! melting is still not well understood. In literature several
theoretical models have been proposed to probe the mechanism of the mechanic melting
(note although these models were originated from attempts to consider the melting in
general, since they regarded melting as a. homogeneous phenomenon and did not take into
account the effect of the extended defects, they are actually relevant to the mechanical
melting). In these theories melting is treated as a lattice instability associated with the
vanishing of the shear modulus (Born's criterion) [Born 39, 56, Wolf 90b], with the
atomic displacement exceeding a threshold value (Lindemann's criterion), or with the
spontaneous generation of a critical concentration of vacancies. [Ubbelohde 78] The
theories all pointed out some aspects of the mechanical melting, while there must be some
unified model which can expiain this phenomenon in relevance to the existing theories. In
section 3 of this chapter we will analyze our simulation results of the mechanical melting
based on the elastic instability we have developed in Chapter 2.
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4.1 Therma! Expansion

The thermal expansion data at zero pressure is very important for the study of
elastic behavior of the system at finite temperature. It carries information that characterizes
the reference state, i.e., the state with respect to which we measure the strain for each
temperature. For cubic crystal the thermal expansion coefficient Bt is defined as

4.1)

1
!

=3ar

for isotropic materials. Where oy is the linear thermal expansion coefficient. In general, 8
is a tensor [Wallace 72] that relates the thermal strain tensor to temperature increment AT.
The symmetric thermal strain tensor is defined as

a‘l']ij)
a=—2 . 4.2)
ﬁj (al c (

Considering a reference state X and a strained state x, the thermal expansion coefficient

N (L)
ﬁr-v(x) AT /g
" vl
since
therefore, in the anisotropic case
-y (M| oy g
Br= ;(a'r ) Z B (4.4)

The simulation data of L-J and EAM potentials are generated by a series constant
zero pressure simulations of an f.c.c. crystal containing 108 atoms. The relations of the
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normalized lattice parameier a/ag (where ag is the zero-temperature lattice parameter) and
temperature for each case are obtained by successively step increment of temperature in
simulations. Typical runs of MD and MC include the first 10000 time steps or moves per
atom of equilibration and another 30000 time steps or moves per atom for property
calculation. Fig. 4.1 (a) shows the internal energy as a function of temperature and Fig.
4.1 (b) the thermal expansion curves of an f.c.c. crystal with L-J. Fig. 4.2 (a) and (b) give
the corresponding curves of EAM potential. From these figures one see that although both
curves of thermal expansion for these two potentials show the similar, pretty much linear,
feature, the magnitudes of them are very different. The EAM potential has much smaller
thermal expansion coefficient, and correspondingly, because of its relatively deeper
potential well, a large amount of energy is needed for the same expansion.

In each case a second order polynomial is fitted to the data points to get analytic
expression of the thermal expansion curve, and the thermal expansion coefficients at
various temperatures are calculated from Eq. (4.2). These data will be used as references
late in the study of stress-induced structural response for individual temperatures. We got
thermal expansion, for L-J potential

a/ag = 1.0000 + 2.7850x10°5T + 7.8941x10-°T2 (4.5)

and for EAM Au

a/ap = 1.0001 + 1.0389x10°3T + 4.4858x10°T2, (4.6)

These two expressions give the room temperature thermal expansion coefficients

BT =9.6271x10" K-! and B3 = 3.9220x10°5 K-!, which are reasonably in agreemen
with the experimental values 5.04x103K ! and 4.23x10-3K ! for Cu and Au [Dalliace 72,
Kirby 63].

4.2 Thermal Softening of Elastic Constants and Moduli*

As is well known, when allowing thermal expansion the elastic constants
dramatic softening with increasing temperature. In fact this softening resuits from a
combining effects of temperature induced structural disordering and the volume
expansion enhanced anharmonicity [Jaszczak 92]. Experiments have also found

* In this and following chapters our model systems are all treated as classical system, no any quantum
mechanical effect is taken into account even at vary low temperatures.
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similar results in the metals of Cu [Overton 62] and Au [Neighbours 58]. This
feature has very important relevance to the instability of the crystals. Our results
also show the same softening behavior in the elastic constants. Since the aim of our
investigation concentrates on the intrinsic instability of crystals, we are not only
interested in the softness of the individual elastic constant, but rather the elastic
moduli which are the combinations of elastic constants.

Fig. 4.3 show the thermal softening of an f.c.c. crystal under thermal expansion
with its atoms interacting with L-J potential. It can be seen that the all three elastic
constants decrease linearly with the increasing temperature [Fig. 4.3 (a)]. When
temperature is increased to T = 1000K, the elastic constants are softened by over 60%
compared to their values at T = OK. The elastic moduli show the similar softening
behavior. As can be seen in Fig. 4.3 (b) and (c), in & wide range of temperature the bulk
modulus and shear moduli also decrease linearly with temperature. Again, for T =1000K a
softening of over 60% in both bulk modulus and shear moduli are observed.

The thermal softening of elastic constants in EAM potential is quite different
comparing to that in L-J potential, as is shown in Fig. 4.4. First of all, for same increment
of temperature the thermal softening for EAM potential is smaller than in L-J potential.
Secondly, in stead of linear decrease in all elastic constants in L-J potential, the elastic
constants in EAM model show a quadratic softening behavior. Although in EAM potential
all elastic constants show qualitatively the similar softening behavior (quadratic decrease),
their softening rate (the slopes) are different.

The similarity in thermal softening behavior between these two potential models is
clear by comparison of Fig. 4.3 and 4.4. When one compare Fig. 4.4 (b) and (c) to Fig.
4.3 (b) and (c) one can find that both the bulk modulus and shear moduli of EAM poteniial
system, the same as in L-J potential, can be well fitted to a linear decreasing function of
temperature in a wide range of temperature. At still higher temperature, the data points of
elastic constants of EAM potential model start to level off and deviate from the fitting
curves, indicating a largely increased softening in this temperature region. In our belief this
must also be true in the case of L-J potential model (actually this is seen in Chapter 5 when
we study the stress induced structural responses of L-J potential model. See, for example,
Fig. 5.1). This anomalous softening feature is the key to understand the spinodal
transition.

The underlying physics of elastic softening will become clear once one recall the
different contributions to the elastic constants. Let us rewrite the fluctuation formula we
have developed in Chapter 3 as
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Cij = <Bij> + <Fij> + <Kij>- (4.7)

There are three contributions which accouat for the behavior of elastic constants: The so
called Born term contribution <B;j>, which is the leading term and given by Eq. (3.38),
comes from the lattice energy (or potential energy). This term is relaiively weakly volume
and temperature dependent until the system is expanded close to the inflection point of the
potential energy, and thus should not change much in a wide range of temperature. The
second term is so called fluctuation term which is calculated from

<Fj>= EQ,I-,(<E><'E> - <§>) and is a direct measure of the stress fluctuation. This term is,
B

except strongly dependent on the temperature and volume, very sensitive to the structural
change, for instance the structural disordering or creation of point defects. It always gives
a negative contribution to the elastic constants. The third term is the kinetic terrn <Kj> [see
Eq. (3.37)] which gives rise to a linear temperature dependence of the elastic constants.

Fig. 4.5 (a) shows, take the EAM potential as an example, the separate
contributions of these individual terms to the elastic constants as a function of temperature.
As clearly seen, all the Born terms show a weak temperature dependence at T < 1200K
(linear decrease as T increases). When temperature is greater than 1200K, <Bj;> and
<B),> show an enhanced softening, while <B44> keeps its linear decreasing behavior till
the highest temperature (T = 1380K) for which we calculated the elastic constants. The
change in fluctuation terms are more interesting. At low temperatures <F;;> shows a
quadratic softening, <F;,> softens in a similar way as <F;;> but with a smaller
magnitude. The softening of <F44> is only a weakly linearly decreasing function of
temperature. When the system is heated to high temperatures the magnitudes of the
fluctuation terms start to increase more rapidly. This increase is more significant in <Fy;>
and <Fj,>. When the temperature gets closer and closer to the melting point the increase in
the magnitude of <Fy;> and <Fj,> become so dramatic that they can eventually make the
elastic constants negative. At critical temperature, or equivalently critical volume, the
magnitude of fluctuation terms <Fj;> and <Fj,> can be as large as, or even several times
larger than the corresponding Born terms <By;> and <By5>. [see Fig. 4.5 (c)]

In order to calculate the internal stress correctly, we have checked the correlation of
the instantaneous stress tensor by calculating the autocorrelation function of the stress. We
found a correlation time of 100 time steps for both L-J potential and EAM potential at T =
S00K. For 20 time steps the autocorrelation function gives the value about 0.1. In our
present stress calculation, to keep the computation efficiency, we take the configurations
after every 20 time steps to calculate the stress and correct the possible correlations in
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estimation of the error bars. The increase in the magnitude of fluctuation terms thus may
imply increasing correlations of the stresses. At very temperature close to the meiting
point, a stress distribution may have been established. From this point of view, the large
fluctuations in normal stresses indicate that, at high temperatures, some large normal stress-
gradient regions may be sponianeously formed in the system. These large normal stress-
gradient regions may be highly localized since the still large fluctuation in <F,> suggests
that the large stress gradient of one component of the normal stress will affect the other
components in lateral directions through the Poisson's effect. At very high temperatures
these stress-condensed regions may destablize the lattice and allow the nucleation of new
phases. On the other hand, the smaller fluctuations in shear stresses suggest that the shear
stresses are more uniform throughout the lattice.

These arguments based on the stress fluctuations can be seen more promisingly in
the combinations of the elastic constants, i.e., the elastic moduli, in Fig. 4.5 (b). There the
contributions of stress fluctuations are more significant in the bulk modulus but largely
weakened in the shear modulus. These effects result from the fact that since the bulk
modulus is calculated using the formula of Bt =(C;; + 2C;2)/3, thus the effect of the stress
fluctuatic . s is largely enhanced. However, in the case of shear modulus, G(1 10)[ 110) is
calculated from the relation (Cy; - C12)/2, the stress-fluctuation contributions in C;; and
Cj2 actually cancel each other, at least partially, and give rise to a overall weak effect of the
fluctuation on shear modulus. These features caused by the stress fluctuations imply that
the transitions triggered by spinodal instability must be characterized by the catastrophic
changes in the system properties and therefore are discontinuous transition (first order).

Fig. 4.5 (c) shows the time evolution of the Born term and fluctuation term of EAM
potential at the mechanical melting temperature T = 1380K. Within the first 500 time steps
the magnitude of the fluctuation terms <F;;> and <F),> become so large that make the
elastic constants Cy;, C;5, and the bulk modulus negative. These large fluctuations in
normal stresses bring about the spinodal instability. This process is finished within a short
time period.

In summary of our observations of thermal softening in both L-J potential and EAM
potential models, we have noted two significant features:

(1) In a wide range of temperature all elastic moduli we calculated show a linear
dependence of temperature. From our calculations one can see that below the melting
temperature, the Bom term is dominant and several times larger in magnitude than that of
the fluctuation term. Since Bom term shows a linear temperature dependent behavior, bulk
modulus also show the similar temperature dependence. For shear moduli, although the
Born term contributions is reduced by subtraction, the fluctuation terms also cancel each
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each other and do not change the linear temperature dependent behavior of shear moduli.
These behaviors are in agreement with the thermalelastic theory of elastic modulus
developed by various authors [Murnaghan 44, Grover 73, Swenson 68, Tallon 79a, 79b,
80].

(2) When the systems are heated to the temperature near to the mechanical melting point
T, an anomalous normal-stress fluctuation is observed. This stress fluctuation results in a
drastic softening ir. vulk modulus but does not show much significant effect on the shear
moduli. This feature is very important in understanding the mechanism of the mechanical
melting which we will discuss in next section.

4.3 Mechanical Melting of An F.c.c. Crystal

It is well known that when a crystal is heated to high temperature it will melt into a
state in which the crystal completely loses its long-range crystalline order. One can
distinguish two kinds of melting transitions: the thermodynamic melting and mechanical
melting. These two transitions refer to the same physical process, but are governed by
completely different mechanisms. Although the mechanism of thermodynamic melting has
been clearly evidenced [Wolf 90b] as a heterogeneous nucleation and growth of the liquid
phase at extended lattice defects, the underlying cause of the mechanical melting is still not
well understood.

In terms of impact on mechanical properties, it is clear that melting is probably the
most significant of all phase changes which show the total loss of shear resistance. Based
on this fact, Born, in his early work {Born 39], defined melting as the complete loss of
shear resistance of the crystal, i.e., G(100{010] = C44 = 0. He interpreted the vanishing
of bulk modulus as a criterion for sublimation because the lattice has no cohesion at all. In
the same work he suggested that when Cy; = C; is satisfied (this criterion, later on, is
named as Bom criterion), the solid will transform into a state in which the stress is
hydrostatic pressure (as in a liquid) but nevertheless an elastic resistance against shearing
survives. He called this state a "gel". In later work on melting [Wolf 90b, Phillpot 90],
Born criterion was also used to define the mechanical melting simply because of the relation
of Bom criterion to the shear modulus G(110f110] = (C,; - C;2)2.

As discussed in Chapter 1 and at the beginning of this chapter, although several
theoretical models have been proposed in attempt to interpret mechanical melting, the
underlying cause of this transition is still very much under debate. In this section we will
show that the mechanical melting is a discontinuous, first-order process, and can be
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It is well known that the experimental difficulties in observing superheating due to
the inevitable presence of free surfaces and, in most materials, a sufficient atomic
concentration of lattice dislocations [Daeges 86). In computer simulations, in contrast,
extrinsic defects can be eliminated simply by using a perfeci-crystal simulation cell with
periodic border conditions in all three dimensions. Thermodynamic melting can thus be
suppressed, allowing an investigatior. of how melting can occurs in a homogencous
system.

We have carried out simulation studies of the mechanical melting on f.c.c. crystals
with their atoms interacting through L-J potential and EAM potential under zero pressure.
Fig. 4.6 show the results of L-J potential. When the system was heated through a step-up
increment of temperature, the internal energy of the system increases gradually [Fig. 4.6
(a)). This respunse continues until a high temperatuie T = 1365K, at which a sudden jump
of internal energy occurs. Correspondingly, a very rapid volume expansion is observed
which is clearly seen in Fig. 4.6 (b), the variation of lattice parameter a as a function of
temperature. Since the system is under constant pressure (P = 0), these sudden jump
behaviors indicate that a latent heat and a latent volume are involved in this transition.
Consequently, the mean-square displacement of the system shows a rapid jump and
persistent increase, indicating the system has melting into a state of liquid. As clearly
evidenced by the static structure factor shown in Fig. 4.6 (d) the system has completely lost
its crystalline order due to this transition. The changes in S(k) also show clearly the rapid
and homogeneous yeature of this transition.

Fig. 4.7 shows the simuiation results of mechanical melting with EAM potential
interaction between the atoms. In stead of making runs on a (TZN) ensemble in the casc of
L-J potential, we simulated a (ThN) ensemble. In each run for certain temperature, the
volume of the system was fixed at the value given by the thermal expansion curve [Fig. 4.2
(b)1, which, if no any phase changes, shouid give zero average pressure. As can be seen
in the figures, all the system properties show the same characteristics of sudden jumps that
one has seen in the case of L-J potential. Note that in Fig. 4.7 (b), instead of plotting the
changes of lattice parameter with temperature, we plot the pressute changes as a function of
temperature.

In above simulations a constraint of cubic symmetry conservation is imposed. This
constraint prevents the Bom instability. To investigate if the mechanical melting can be
induced by Bom instability, we carried out constant pressure (P = 0) and temperatnre MD
simulations of a large f.c.c. lattice of 1372 Au atoms interacting through the EAM potential.
Fig. 4.8 (a) shows the internal energy as a function of temperature. When the system is
heated up the intemnal energy increases gradually until the mechanical melting point, at
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which a sudden jump occurs. Comparing to the previous case of constant strain simulation
[cf. Fig. 4.7 (a)] the magnitude of the internal energy in present case is smaller. This is
understandabie since in present simulation both the internal stress and strain can fluctuate,
thus more strain energy is stored in the system. Fig. 4.8 (b) show the variation of lattice
parameters with the temperature. At low temperatures the thermal expansion of in both
simulations [cf. Fig. 4.7 (c)] are similar. But at the melting point the bchavior of the lattice
parameters are quite different. Although a overall volume expansion is observed in both
cases, the lattice parameters in the constant strain simulation are all increased, by contrast,
an tetragonal distortion of the simulation cell in the constant pressure simuiation, signaled
the occurrence of Born instability, leads to a bifurcation of lattice parameters. The
persistent increase in mean-squared displacement [see Fig. 4.8 (c)] and the sudden drop of
structure factor S(k) to zero [Fig. 4.8 (d)] clearly show that the system has been in a liquid
phase.

In summary of our simulation results, several features of the mechanical melting are
interesting: First of all, the requirement of the latent heat (or the latent volume) for this
transition shows that the mechanical melting is a first-order phase transformation.
Secondly, both spinodal and Born instability can trigger mechanical melting depending on
what geometric constraint is imposed. If there is no any constraint the Born instability will
win the competition, as one may expect. Finally, the volume is obviously not ccnserved in
the mechanical melting transition. According to the theoretical analysis in Chapter 2, the
eigenmode of the Bomn instability conserve the volume, is any contradiction between the
theory and simulation results? The answer is "No." Fig. 4.9 (a) and (b) show the time
evolution of the lattice parameters, system volume, and S(k)'s of the melting run. The
bifurcation starts after 2500 time steps and a second symmetry breaking occurs at 6000
time steps. During this period the system volume is conserved and the system is still in
crystalline order. The volume expansion occurs after the second symmetry breaking that
completely destroys the crystalline order. |

All these evidences lead us to conclude that the mechanical melting is a
discontinuous, first-order process. It happens through the sudden collapse of the entire
crystalline latuce, and is therefore a fast, homogeneous process. This transition can be
induced by either spinodal instability or Bom instability. Aithough the transition takes the
transformed lattice to the same final state, the driving forces of this transition are quite
different. In the case caused by the spinodal instability, the triggering force of the
transition is the large normal stress fluctuation, while in the case caused by the Bom
instability, the complete loss of crystalline order is the consequence of the symmetry
breaking and a shear distortion.
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Fig. 4.1 Thermal expansion of an f.c.c. lattice with L-J potential.
Thermal expansions, shown by the changes in the internal energy

(a), and the average lattice parameter a(T) (b), which is normalized
by the zero temperature value of a0,
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Fig. 4.2 Thermal expansion of an f.c.c. lattice with EAM potential.
The same as Fig. 4.1 except now the quantities are calculated for
EAM potential.
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Cheapter 5
Unstable Structural Response to Spinodal Instability of An F.c.c. Lattice
with L-J Potential

In this Chapter we will study the unstable structural responses of an f.c.c. crystal to
pure dilatation imposed at constant temperatures by Monte Carlo simulation. The purpose
of the study is to test the prediction of lattice instability based on elastic-constant criterion
and to investigate the nature of spinodal transitions at finite temperatures by direct
observation from simulations. Usirg the Lennard-Jones potential to model the interatomic
interaction of Cu atoms, we find that the critical strain at which structural change occurs is
well predicted by the spinodal instability. At low temperatures (T = 242.3K and 581.4K),
anisotropic lattice decohesion occurs at the critical strain and overall the system remains
crystalline (T = 242.3K), and cavitation-like local deformation occurs with indications of
anisotropic disordering (T = 581.4K). At higher temperatures (T = 969.1K, and
1550.5K) the lattice disorders uniformly with all the characteristics of melting. For
reference the thermodynamic melting temperature of this L-J f.c.c. lattice is about 1200K.

5.1 Elastic Properties and Critical Strains

The simulation system is a cubic cell of N particles arranged on an f.c.c. lattice.
The particles interact with each other through the L-J potential which is truncated at a
distance r. and shifted to zero at the cutoff. The cell is periodic in all three directions. In
each simulation run at a certain temperature, the lattice parameter a is held fixed while the
particles are allowed to move by Monte Carlo [Metropolis 53]. The process is then
repeated at an incrementally larger a. Typically the first 10,000 moves per particle are
discarded as equilibration, and another 30,000 moves per particle are made to accumulate
the configurations for property calculations.

Simulation of strain-induced response has been carried out at the temperatures T =
242.3K, 581.4K, 969.1K, and 1550.5K. Most of the runs were made with a cell of 500
particles, but runs using N = 108 and 864 were also performed to give some indications of
system size effects. In all the runs the value of r. is taken to be 1.4900ay, the distance
between the 4th and the Sth nearest neighbors. ag is the lattice parameter at T = 0K.

The isothermal elastic constants of the cubic lattice were determined using the
fluctuation formula. (For details see Chapter 3) Fig. 5.1 shows the elastic constants Cj,
and Cj; at T = OK, and Fig. 5.2 is the elastic constants C, C;2, and Cy4 at finite
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temperatures T = 242.3K (a), 581.4K (b), 969.1K (c), and 1550.5K (d). All the eiastic
constants have the unit of 1012 dyn/cm2. One may notice that at T = 0K, and low
temperatures T = 242.3K and 581.4K, the Cauchy relation C} = C44 holds. But at high
temperatures the obvious deviation of this relation is seen. This indicates that the thermal
fluctuation is coming into play and has a large effect on the elastic behavior of the crystal.

Isothermal bulk modulus B and shear moduli, G(110)[010] and G(1 10){ ITO],
were also calculated using the relations Bt = (Cq; + 2Cy5)/3, G(100)[010] = Ca4, and
G(110)110] = (Cy; - Cy2)/2, respectively. (For these formulae see Chapter 2) Fig. 5.3
and 5.4 show the results. Following the crystal instability criteria of the vanishing of the
bulk modulus for spinodal instability and shear modulus G(110) 110 for Born instability,
we computed the critical strains from above results. The values of the critical strains are
given in Table 5.1.

It can be seen in Fig. 5.2, 5.3, and 5.4 that when the imposed strain increases all
the elastic constants and moduli decrease. For each temperature the variations of the elastic
constants and moduli with imposed strain follow well-fitted curves until some value of
imposed strain, at which the data points start to run away from the curves. This indicates
the onset of the instability. Since our predication of the critical strains are based on the
fitting curves, one can expect a difference between the predicated and observed values of
the citical strains.

Since we are interested in the unstable structural responses of the system under pure
dilatation in the region near the critical strain where the thermal and stress fluctuation may
become anomalously large, we must make sure that our results are not affected by the size
of the model system. In order to check the model size effect on the elastic behavior and
understand the difference in critical strains between the prediction and observation, we
simulated three models containing 108, 500, and 864 atoms at temperature T = 581.4K,
respectively. We calculated all the elastic constants along the entire pure dilatation path
(primary deformation path), before, during, and after the transition. Although during and
after the transition the elastic constants may not have the exact physical meaning as they are
defined (since during and after the transition the system is not homogeneous any more),
they are useful to give some indications of system size effects and fluctuation effects.

Fig. 5.5 shows the three elastic constants with the imposed strain for the three
systems of different sizes. It can be seen that all three elastic constants have decreased (o
quite small values in the region of the critical strain. The elastic constants behave normally
while they are still positive, but once the system has reached the critical strain of the
spinodal instability, subsequent behavior of the elastic constants at still larger strain shows
unphysical oscillations. We have known that in the fluctuation formula [Eq. (3.36)] the
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second term in the braces represents the effects of stress tensor fluciuations. In the critical-
strain region it is large and fluctuates strongly, thus giving rise to appreciable uncertainties
in the calculated elastic constants. As a result we can only say that as Cy; approaches Cia,
both appear to be approaching zero. At the same time, the data suggest ihat C44 also
appreaches zero at the critical strain. Within the estimated statistical error the mechanical
stability limit seems to be consistent with €_..

The size effect is seen in both elastic constants and elastic moduli Fig. 5.6 shows
the variation of elastic moduli, By and G(110) 110}, with imposed strain. A small system
shows a delay=d behavior in response to the uniform expansion. This can be understcod
since the elastic behavior of the system is closely related to the long wave length of the
elastic waves, for the small system the periodic border condition constrains the lattice
vibration of the system in the regime of the short wavelength modes. This limitation
stabilizes the system until even larger deformation. For the large system of N = 500 and
804, the elastic constants and moduli show the anomalous behavior at almost the same
critical strain. The similarity of system behavior is also seen late in the structural responses
of the system (see sec. 5.2). Thus the 500 atom system is a reasonable system which can
give reliable results. We will use 500 atom system in our simulation study in this Chapter
except where it is noticed. '

5.2 Cavitation and Cleavage Fracture at L.w Temperatures

Fig. 5.7 (a) shows the variation at T = 242.3K and 581.4k of the normal stresses,
calculaied using the virial expression [Eq.(3.22)], as the imposed strain is increased
incrementally. Starting at a value of the imposed strain which gives zero normal stress, the
system is seen (o go into positive stresses (or negative pressure) as isotropic strain is
increased. The normal stresses increase monotonically and appear to level off at a
maximum value. With further lattice dilatation the stresses first decrease somewhat and
then drop abruptly to a considerably reduced though still finite value.

Fig. 5.7 (b) shows the potential energies of the system in response to isotropic
imposed strain. As the lattice goes into negative pressure, mcre and more strain encrgy is
stored in the system. This continues until the normal stresses change suddenly [cf. Fig.
5.7 (a)], at which point the potential energies drop correspondingly.

As has been seen in Fig. 5.7, at certain value of imposed strain the system
vndergoes large and swift changes in normal stress and potential energy which cannot
possibly be described as elastic deformations. The critical strain is well defined by sudden
change in normal stress or potential energy. The observed critical strain for T = 242.3K is
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€2 = 0.0867, and €2 = 0.0746 for T = 581.4K, where the superscript o of € is referred to
observation value of the critical strain.

The existence of a critical value of imposed strain, as indicated in Figs. 5.7 (a) and
(b), suggests the onset of a structural transition which we will investigate in the following
by examining directly the atomic configurations produced at each incremental strain. As for
the natwre of the transition, one can ask what is the connection between the behavior
observed in Fig. 5.7 and the instabilities which we have derived for a uniform lattice in
Chapter 2. We have known that along the primary deformation path pure dilatation will
lead to the spinodal instability, at which the isothermal bulk modulus vanishes. The normal
stress-strain relation (or equivalently the pressure-volume relation in present case of
uniform expansion) shows this feature very clearly. The sudden drop of the stress shows
that the transition associated with spinodal instability has the nature of a first order phase
transformation.

We have already noted that at both temperatures the normal stress appears to reach a
maximum value of Oy, at a lattice parameter which we will denote as ajy and that ap is
distinctly smaller than the critical value at which the normal stress drops suddenly which
we will denote by a;. Since we have results for three system sizes at T = 581.4K, wz can
perform a 1/N extrapolation on the value of a, as directly observed in the simulation data.
This gives a critical strain of €2 = 0.0710. To determine ay,, we fit for each N the several
data poinis for the normal stress in the vicinity of 6, to a polynomial, and calculate do/da =
0 from the fit. After a similar 1/N extrapolation we obtain &, =0.0648. The apparent
discrepancy between e, and €€ is believed not to be significant given the large fluctuations
in the system stress in the region of the critical behavior, and the fact that system size
effects may not have been fully eliminated in our 1/n-extrapolation based on limited data.

The onset of a sudden change in normal stress and potential energy is an indication
that an accompanying structural change must have also occurred. The above consideraticn
of crystalline instability, while useful for determining the critical strain at which the change
takes place, tells us nothing about the state into which the system evolves. For this
information it is necessary to examine the atomic configurations at various stages of
imposed strain.

We will characterize the atomic configurations in terms of the radial distribution
function g(r) which provides a measure of local spatial correlation regardless of direction,
and the corresponding quantity, the static structure factor S(k), with k being a wave vector.
Bw computing S(k) for a large number of suitably chesen k, one can generate a diffraction
patizem which provides a measure of direction-dependent structural order in the system.
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Fig. 5.8 shows the g(r) and S(k) results for the T = 581.4K runs with N = 500 at
three values of the imposed strain €, € = €1 = 0.0746 specifies the system strain just before
the normal stress drop (cf. Fig. 5.7), € = €9 = 0.0854 is the value after two strain
increments, and € = €3 =0.1015 is the last dilatation imposed in this series. First we notice
that in all three cases the g(r) results are quite similar, in particular a distinct peak can be
seen atr ~ 1.7, the characteristic second-neighbor shell of the f.c.c. lattice. However,
whereas the diffraction pattern at € is quite symmetric, an asymmetry along k, and ky
about the Bragg position k, =ky, = 1 can be noticed at &, and 3.

More detailed information on the structural change in going from € to €, and €3 is
provided by the density profiles given in Figs. 5.9 - 5.11. One sees that at £, (Fig. 5.9)
the atomic planes along each direction of cubic symmetry are well ordered as in a perfect
(undeformed) lattice. At g (Fig. 5.10), after the normal stress drop, symmetry is clearly
broken in the y-direction; there appears to be an extra atomic plane along this direction, and
the system is no longer uniform along this direction. Another feature that can be seen in
Fig. 5.10 is the distinctly nonzero value of the minima in the density profiles which implies
significant atomic displacements from the original lattice positions. In going from €, to €3
(Fig. 5.11) the density profile along the y-direction shows two extra planes relative to the
x- and z-directions. We interpret this as a tendency to change from cubic to tetragonal
structure. Also the nonuniform density profiles along the x- and y- directions suggest the
nucleation of cavitation, first seen in Fig. 5.10 along the y-direction.

One may ask whether further structural changes will take place if the dilatation were
increased further. In the series of simulations at T = 581.4K using the N = 864 system,
we have taken the system out to larger values of imposed strain as shown in Fig. 5.12. Up
to approximately the same value of € = €3, the observed behavior is similar to the N = 500
data shown in Figs. 5.8 - 5.11. When the imposed strain is increased to g4 = 0.1041 and
€5 = 0.1090, the density profiles, given in Figs. 5.13 and 5.14, show (i) pronounced
cavitation along the direction of broken symmetry (x-direction in this N = 864 series in
contrast to y-direction in N = 500 series), and (ii) increasing loss of well-ordered planar
structure along the cubic directions of the original lattice.

It is interesting that the structural deformations which are clearly indicated by the
density profiles seem not to give rise to any characteristic features in the g(r) and S(k)
results in Fig. 5.12, aside from an indication of asymmeiry in the latter. In fact the well-
defined peaks of the g(r)'s in Fig. 5.12 indicate that the system is still in ordered structure.
The shift of the position of the diffraction spot suggests that the lattice has been largely
distorted. In going from €4 to €5 the system continues to relax and lose its planar order, at
still large strain £ the system is divided into a order region and a cavitation region. The
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cavitation void is located at the comer of the cross of the (001) and (010) planes. The
disordering around the void (see Fig. 5.14) is responsible for the smearing out of the
diffraction spot in Fig. 5.12.

The potential energies drops shown in Fig. 5.7 corresponds to the release of the
system strain energy. The amount of released strain energy is converted into the surface
energy of the cavitation void. This energy conversion mechanism makes an important
distinction between the low temperature spinodal transition and, as will be seen later, the
high temperature spinodal transition.

The structural responses at T = 242.3K generally are similar to those just presented
at T = 581.4K. The onset of cavitation is quite clearly secn, and at the same time, the
system becomes nonuniform by formation of a local region of relatively low density. As
the system is further dilated, spinodal decohesion of lattice planes occurs along one of the
three high symmetric directions and leads to cleavage fracture. Throughout all the process
of dilatation the system maintains well-defined planar order in other two high symmetry
directions, and ends up in a state in which the system completely breaks down into two
pieces with each a perfect f.c.c. crystal. Two surfaces are created.

The mechanism of the spinodal transition at low temperatures is the nucleation of
cavitation, and the underlying cause of this transition is the large stress fluctuation at the
critical strain. To see these let us examine the evolution of the density profiles and the
stress fluctuation at the onset of the transition. Since the nature of the transition in the case
T =242.3K is the same as that at T = 581.4K, we only analyze the data of T = 242.3K.
Fig 5.15 shows evolution of the density profile along the broken-symmetry direction (z-
direction in this case) for the observed critical strain of € = 0.0746. A low density region is
being developed during the first 1600 MC sweeps. Then the density is fluctuating until
5000 MC sweeps. The low density region is well localized about the 20th plane. The
density profile at 6000, 8000, and 10000 MC sweeps show that a stable cavity is created at
the 20th plane within two planes. A question one may ask immediately is that how a
uniform expansion can induce an anisotropic structural response. Actually this resuited
from the large fluctuation of the normal components of the internal stress. As shown in
Fig. 5.16 during the first 1000 MC sweeps the magnitudes of the fluctuation terms are so
large (as we have seen in Chapter 4) that the elastic constants and bulk modulus become
negative. From Fig. 5.16 one can see that the contribution of the stress fluctuation to Cy
and Cy, is significant while not much fluctuation is seen in the shear stress. This situation
is similar to the case of pure heating to melting.
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5.3 Homogeneous Disordering at High Temperatures

The structural responses at T = 969.1K and 1550.5K, on the other hand, are quite
different from that at T = 242.3K and 581.4K. Fig. 5.16 (a) shows the normal stresses
drop at the critical strains, but now the corresponding potential energy changes are an
increase instead of a decrease as in Fig. 5.7. This shows the form of the energy
conversion in the present phase transformation is completely different from that in the low
temperature situations. A latent heat is required to accomplish the transition. Even the
phase transformation is still first order, that a latent heat is involved indicates a different
transition mechanism in the present case. One may notice that for the L-J potential system
the temperature T= 1550.5K is above the melting temperature. The similarity of the system
behavior at these two temperatures suggests that the transitions at high temperature fall into
another category of phase transformation, i.e., the melting transition.

Examination of g(r)'s, S(k)'s and density profiles at the strain after the normal
stress drops confirms this conclusion. Fig. 5.17 shows the density profiles, g(r), and the
diffraction pattern of the system just before the transition (€ = 0.0445) at T = 969.1K. The
well-defined planar o:der in all high symmetry directions and the diffraction spot leave no
doubt that the system is still a perfect f.c.c. crystal. After the stress drops the system
shows dramatic differences in its properties and dynamic behavior. The overall constant
density profiles [see Fig. 5.17 (a), (b), and (c)] indicate that the system has lost its planar
order structures, and the ring-like diffraction pattern shows ciearly the system has become
completely disordered. It is also noteworthy that the mean-squared-displacement function
evaluated at the strain before and after the stress drop, given in Fig. 5.19 (a) and (b),
shows dramatically different mobility behavior over the same number of Monte Carlo
sweeps. The essentially linear variation of the mean-squared-displacement and the
increased magnitude of this quantity observed after the drop are strong indications of a
liquid-like environment.

5.4 Finite Temperature Spinodal Instability of the L-J Crystal

In this work we have determined by Monte Carlo simulation and elastic constant
calculations the spinodal instability of an f.c.c. Lennard-Jones lattice under symmetric
isothermal extension along the three directions of initial cubic symmetry. We have shown
that at several temperatures the critical strains determined by the spinodal instability
criterion involving the elastic constants agree with the direct observations from the MC
simulations. It is seen in Fig. 5.20 that at low temperatures the observed critical strains are
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quite close to that predicted by bulk modulus. At high temperatures the observed critical
strains are smaller than the theoretical values. The reason for this behavior can be traced to
the presence of the large thermal fluctuations at high temperature (see discussion in sec.
6.4). The significance of our simulation results is that aithough the melting at high
temperature and the fracture at low temperature have very different final structural states of
the transitions, the underlying cause of them is essentially the same.

The behavior of the crystal in the region of critical strain is well predicted by
spinodal instability. The values of these critical strains define an instability curve in the
temperature-density phase diagram as shown in Fig. 5.21. It has been suggested that the
freezing curve which, like the melting curve, is defined only for temperatures above the
triple point T, is effectively also the mechanical instability curve in the sense of heating a
crystal rapidly up to the limit of superheating. [Wolf 90b] It can be seen in Fig. 5.21 that
the critical strains observed in the present work delineate the extension of the mechanical
instability curve to temperatures below T,. It has been conjectured that in crossing this
instability curve the lattice will become disordered, thus providing a simple thermodynamic
connection between melting and solid-state amorphization. [Wolf 90b] (For more detailed
discussion about this topic see Chapter 8) What we have found is that in crossing such a
curve the latticz does become mechanically unstable as manifested by sudden juraps in the
hydrostatic pressure and the potential energy; however, the atomic configuration into which
it evolves depends on the temperature. At low temperatures, the spinodal instability is
accompanied by symmetry breaking as shown by the density profiles along the three cubic
directions. At the same time, the system becomes nonuniform by the formation of a local
region of relatively low density. We interpret this crystal response as cavitation which at T
=242.3K (about 0.20 T,) leads to cleavage fracture upon further lattice dilatation. At T =
581.4K (about 0.48 T}), in addition to cavitation-like behavior, significant local disordering
occurs as the system is strained beyond the instability. At high temperature T = 969.1K
(0.81 T,) the system response at the instability is homogeneous and complete disordering
as in a melting transition. At a still higher temperature T =1550.5K (1.29 Ty) the system,
of course, melts even under compression.

The different final states of spinodal transition at low and high temperatures suggest
that the mechanisms of the transitions are somewhat different. While a homogeneous
volume expansion is imposed on the f.c.c. lattice, the crystal responds anisotropically in
the form of inhomogeneous nucleation of cavitation in the low temperatures, and at high
temperatures, a homogeneous nucleation of disordered phase destroys the crystalline order
completely. Itis also interesting to check the causes of the transitions at different
temperatures. In Table 5.2 we summarize the Born and fluctuation term contributions to
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" the elastic constants at the onset of the transitions for different temperatures. We note that
although the spinodal transitions take different forms depending on the temperature, their
underlying cause, i.e., the large fluctuations in the normal components of the stress. is
essentially the same.

Along with the critical strain curves of spinodal instability in Fig. 5.20 we also plot
the critical strains of Born instability predicted by the vanishing of the shear modulus
G(11)1T0). It can be seen that at low temperatures the Bom instability curve lies
undemeath the spinodal curve, as the temperature is increased they cross each other, and at
high temperatures the critical strains of Born instability are larger than that of spinodal
instability. According to our theoretical analysis pure dilatation will depress the Born
instability. This seems to be true in our observation. But since the values of the critical
strains of both the Born and spinodal instabilities are close to each other there is some
ambiguity. Part of the ambiguity stems from the relatively shallow well-depth of the
potential as compared to an EAM-type potential [Daw 84, Wolf 89a] for metals. Thus the
Lennard-Jones potential gives considerably lower values for the elastic constants which
makes it difficult to distinguish between critical strains of the spinodal and Born
instabilities. To study these two instabilities distinguishably we have also performed MD
simulations using an EAM potential for f.c.c. metal. The results of the study will be
presented in the next Chapter.
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Table 5.1 Critical strains of spinodal (e£) and Born (€B) instabilities at different

T (K) & ¢

0 0.1000 0.0741
242.3 0.0804 0.0726
581.4 0.0724 0.0713
969.1 0.0444 0.0545
1365* 0.0085 0.0179
1550.5 e 20,0256

* s = 1365K is the mechanical melting temperature of this L-J crystal. (See Chapte )
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Table 5.2 The Born and fluctuation term contributions ¢o the elastic constants [<Cij> =
<Bji> + <Fj;> + <Kjj>, see Eq. (4.7)] at the onset of the spinodal instability at different

232.4 0.0834 C11 -25.4027 | -26.3500 | ©.9430
Cy -26.0149 | -26.9756 | 0.9564
Cy3 -38.3406 | -39.2138 | 0.8689
Ciz -25.8818 | -26.2018 | 0.3199
Ci3 -31.4191 | -31.8873 | 0.4685
Cx -31.5836 | -32.0441 | 0.4605
Caa -0.2305 | -0.5525 | 03199
Css -2.0688 | -2.5392 | 0.4685
Ces -0.3837 | -0.8563 | 0.4605
581.4 0.0746 Cyy -1.4443 | -2.3585 | 0.9037
Cy 09836 | -1.9982 | 1.0044
Cs3 -1.4008 | -2.3986 | 09874
(o -0.9700 | -1.4600 | 0.4900
C3 -1.1600 | -1.6538 | 0.4938
Cp -1.4503 | -1.8016 | 0.3514
Cu 0.1047 | -0.3904 | 0.4900
Css -0.5649 | -1.6639 | 0.4938
Ces 02520 | -0.6085 | 03514
696.1 0.0445 Cn | -0.1040 | -0.8796 | 0.7578
Cpy -0.0869 | -0.8632 | 0.7584
(o -0.0752 | -0.8509 | 0.7578
Cyy -0.1220 | -0.5143 | 0.3911
Cy3 -0.1234 | -0.5166 | 0.3932
Cx -0.1031 | -0.4971 | 0.3940
Caq 0.1118 | -0.2894 | 0.3911
Css 0.1190 | -0.2831 | 0.3932
Ces 0.1192 | -0.2837 | 0.3940
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Fig. 5.2 Variations of the elastic constants, C11, C12, and
C44, with imposed strain at finite temperatures.

Strain dependence of the elastic constants at different
temperatures T = 242.3K (a), 581.4K (b), 969.1K (c), and
1550K (d) (the triple point temperature is approximately Tm =
1200K for this potential).
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Fig. 5.3 Bulk modulus BT as a function of imposed strain at

finite temperatures.

As the imposed strain increases the bulk modulus decreases.

For each temperature there is a strain at which the data points
starts to run away from the curve, this indicates the onset of

the instability.
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Fig. 5.5 Size effect on elastic constants at T = 581.4K.
Presented are the variations of the elastic constants, C11 (a),
C12 (b), C44 (c), with the imposed strain at T = 581.4K. To
check the size effect three system sizes N = 108, 500, 864 were
simulated. There is a size dependence of eiastic constants. Since
the elastic constants is closely related to the long wavelength of
the elastic waves, small system size cuts off the wave length
and postpones the transition. The systems of N = 500 and 864
give very close values of elastic constants. We used 500 atom
system in our simulation since this system is good enough for
the purpose of this study and the computation convenience.
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Fig. 5.6 Size effect on bulk modulus and shear moduli at T =
581.4K.

Same as in Fig. 5.5 except shown here are bulk modulus and
shear modulus. The same size effect is seen.
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Fig. 5.7 Variations of normal stresses and potential energies
with strain at T = 242.3K and 581.4K.

System responses, normal stresses s in unit of 1012 dyn/cm?
(a), and potential energies PE in unit of eV/atom (b). The
suddenly drops in normal stresses and potential energies point
to the onset of the spinodal instability. Sharp changes in
stresses indicate that the transition is first order phase
transformation. System releases its strain by creating new
surfaces in the form of cleavage fraction or cavitation.
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Fig. 5.8 System responses, g(r) and diffraction pattern S(k) at T = 581.4K, N=500,
and three values of strains, €1 = 0.0746 (a), £; = 0.0854 (b), and €3 =0.1015 (¢).

S(k) is shown in the inset as projection on kx (horizontal axis) and ky (vertical axis).
In case (a) system is in the static just before the transition. The peaks of g(r) are low

and broad, the spot of the diffraction pattern indicates that the system is in crystalline.

Case (b) and (c) show the behavior of the system after the transition. As seen that the
peaks of g(r) become sharper while there is no changes in S(k).
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Fig. 5.9 Density profiles corresponding to Fig. 5.8 (a).

The density profiles show that the atomic planes along each
directions of cubic symmetry are well ordered as in the perfect
(undeformed) f.c.c. lattice.
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Fig. 5.10 Density profiles corresponding to Fig. 5.8 (b).

As shown in the density profile along y direction, after the pressure jump, the
symmetry of the system is clearly broken in the y-direction. There appears an

extra atomic plane along this direction. The system is no longer uniform along
this direction. The distinctly nonzero value of the minima in the density profile
implies significant atomic displacements from the original lattice positions.
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Fig. 5.11 Density profiles corresponding to Fig. 5.8 (c).

In going from €210 €3 he density profile along y-direction
shows two extra planes relative to x- and z-directions. The
nonuniform density profiles in x- and y-directions suggest the
nucleation of cavitation, first seen in Fig. 5.10 along

y-direction.
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Fig. 5.12 Same as Fig. 5.8 except N = 864 and the two strain
values €4 =0.1041 (a), and &5 = 0.1090 (b).

Shown here are the g(r)'s of the system after the pressure
drops down and at even larger strain than that in the case of
N=500 (Fig. 5.8). The well-defined peaks of the g(r)'s
indicate system still in order, but the shift of the position of the

diffraction spot suggests that the lattice has been largely
distorted.
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Fig. 5.13 Density profiles corresponding to Fig. 5.12 (a).
The density profiles show the pronounced cavitation along the
direction of broken symmetry (x-direction instead of
y-directicn in N = 500 series).
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Fig. 5.14 Density profiles corresponding to Fig. 5.12 (b).

At still larger strain the

system has been divided into a order

region and a cavitation region
around the cavitation void).
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Fig. 5.15 Evolution of density profile along the symmetry-breaking direction at T = 242.3K.

Shown here are only the density profile of the system along the symmerry-broken direction.
They show clearly the processes of the nucleation of cavitation.
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Fig. 5.17 Variation of the normal stresses and potential energies with imposed strain at T =
969.1K and 1550.5K (above melting temperature).

The drop down of normal stresses (a) at the critical strains shows that the transitions are still the
first order, but now, in contrast to low temperature cases, the potential energies jump up. This
shows that there is a latent heat involved in this transition (instead of the release of strain energy
by creating new surfaces at low temperature cases). The similar behavior of the system at these
two temperatures suggest that the transitions at high temperatures fall into another category of
phase transformation, i.e., the melting transition.
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Fig. 5.18 Structural responses, density profiles (a), (b), and
(c), g(r) and S(k) (d), of the system before the stress drop.
Presented are the density profiles, g(r), and S(k) at € =
0.0443, one MC run just before the transition. It is clear that
the system is in well-defined f.c.c. order.
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Fig. 5.19 Structural disordering at still larger imposed strain €
=0.0494.

The density profiles (a), (b), and (c), g(r), and S(k) show
dramatically different behavior in response to the normal stress
drop. The ring of the diffraction pattern (d) indicates that the
system has been completely disordered. The uniform density
profiles about the mean-density show that, instead of breaking
symmetry, the transition now takes the system to a
homogeneous disordered state.
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Fig. 5.20 Variation of mean-squared displacement function
with MC sweeps at two system strain states.

The huge difference in the magnitude of MSD shows
dramatically mobility behavior of the system just before (a) and
just after (b) the normal stress drop. The persistent increasing
of the MSD are strongly indications of a liquid-like
environment.
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Fig. 5.21 Comparison of the critical strains at different
temperatures.

Shown are the critical strain predicted by spinodal instability
and Bom instability, and by direct observations. It is seen that
at low temperatures the observed critical strains are quite close
to that predicted by buik modulus, but at high temperatures
they are smaller the theoretical values.
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Chapter 6
Unstable Responses to Spinodal and Born Instability of An F.c.c. Lattice
with EAM Potential

In chapter 2 we have established an elastic-mechanics-based description of the
instability of a crystal. We have shown that the elastic instability of the crystal is closely
related to the inflection point of the strain energy of a crystal laitice. We have also showed
that only the instability criteria themselves are not enough to characterize all the elastic
instabilities because they do not carry any information about how the system can become
unstable. The eigenstates of the elastic constant matrix suggest that each of the instability is
associated with a specific set of deformation states. These eigenstates define the particular
failure mode of the instability. Each mode terminates a stable region of deformation and
then defines a deformation path which takes the crystal to an unstable region. Each
instability is able to show up when and only when the system is in its eigenstates.

The eigenstates of spinodal instability have the characteristics of symmetry
conservation and pure volumetric deformation. Born instability requires a breaking of the
original symmetry and then is associated with a shear distortion. Therefore, one can define
the eigen-deformation path which belongs to a certain instability. Following Milstein
[Milstein 77] and making it clearer we define the primary deformation path (primary path)
as a series of deformations which conserve the original elastic symm.ctry of the deformed
crystal; bifurcation point as a point on the primary path at wk.icn system breaks its
symmetry (Born instability criterion is satisfied); and a secondary deformation path
(secondary path) as a path along which the system maintains the broken symmetry.

In Chapter 4 we have seen that temperature plays an important role in softening
elastic constants and driving the system to elastic instability. In Chapter 5 we have studied
the spinodal instability of an L-J f.c.c. lattice under pure dilatation. It seems clear that the
strain deformation is able to bring about the spinodal instability, while the constant stress
environment allows the Born instability to compete with the spinodal instability. Thus
computer simulation is a suitable method to study these elastic instabilities separately. In
Chapter 4 we have studied the pure temperature effect at zero applied stress. In Chapter 5
we have focused on the instability under finite applied stress environment. But since the
property of softness in L-J potential, this potential gives considerably lower values of
elastic constants when the lattice is deformed. This makes it difficult to distinguish one
instability from another. As far as the final state of the structural phase transformation is
concerned, this difficulty also causes uncertainty in specifying the correspondence between
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the instability and the structure phase transformation. The EAM potential is a desirable
potential for the study of the elastic instabilities under both finite strain and stress
deformation.

The objective of this chapier is to confirm the theoretical prediction about the
instabilities. The focuses will be, first, the eigenmode of the deformation which can
expose certain instability and hide the others and, second, the final structura! states into
which the system will evolve under both finite strain and stress deformations.

6.1 Elastic Constants and Critical Strains

The isothermal elastic constants are determined for f.c.c. crystal as a function of the
strain in pure dilatation using both fluctuation formula (FF) and stress-strain curve (SSC)
method (see 3.4.3) at temperature T = S00K. In the caiculation using fluctuation formula,
a (ThN) ensemble MD simulation was used, where h is the matrix we introduced in
Chapter 3. A model system of 108 atoms at a fixed volume was first equilibrated for
20000 to 3000C time steps, then the elastic constants were calculated and averaged over
100000 time steps. With a successive increment of the volume a series such MD
simulations were performed and the elastic constants were calculated for each increment of
strain. Fig. 6.1 gives the results of fluctuation formula.

In stress-strain curve method, the stress-strain curves were computed via MD
simulations by applying a series of fixed uniaxial strains, with A¢ range from -0.006 to
0.006 for each fixed strain, to the simulation cell, then the resulting stresses were
evaluated. The stresses were averaged over 100000 time steps after an equilibiation of
20000 to 30000 time steps under the applied strain. Then the negative slopes [Ray 88] of
the stress-strain curve give the corresponding elastic constants. In present calculations only
the normal strains were imposed so the elastic constants we could get were Cyy and Cy;.
The elastic consiants of the model system were calculated for three different temperatures ofr
T = 500K, 800K and 1000K using this method. For each temperature three stress-strain
curves were generated and three values of each elastic constant were obtained for three
imposed strains. These data were fitted to a straight line or quadratic curve of the strain to
get the critical strains of the spinodal and Born instabilities. Fig. 6.2 shows a typical
stress-strain curve at T = S00K. Table 6.1 gives the fitting resuits of elastic constants as a
function of the strain at T = S00K, 800K and 1000K.

The critical strains of the instabilities for each temperature are shown in Table 6.2.
The critical strains were calculated from the simulation data using the instability conditions:
C11(€B) = C, A€B) for Bom instability, and C (&) + 2C,4€f) = O for spinodal instability
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respectively, where the superscripts B and S indicate the Born and spinodal instability
respectively. We have noticed that the critical strains of Born instability are always smaller
than that of spinodal instability. One may think, by intuition, that this fact suggests that
Bom instability should always show up at lower strain, because spinodal instability
requires at least one of elastic constants being negative or both of them being zero, but
Bormn instability could be satisfied even both elastic constants are positive finite. In
literature, both instabilities were reported [Macmillan 72, Milstein 71, 73, 80, Scitortino
92]). We will demonstrate in the following sections that the temperature-induced thermal
effect and the stress-induced mechanical effect both contribuie to the driving force for the
instability. The key for the Bomn instability to occur is a stress-free condition.

6.2 Dilatational Decohesion under Hydrostatic Stress and Volume
Expansion

For a pure dilatation the strain of the cubic crystal only has one independent
component. So the strain state of the system can be well defined by one parameter €.

From Table 6.2 one sees that at different temperatures the critical stiains of Born instability
are always smaller than that of the spinodal instability. At first glance one might expect that
along the primary deformation path (in this case the pure dilatation) when the strain is
greater than €8 the system would become unstable against Born instability. In chapter 4 we
already saw that this is rue. Our explanation there was that by constraining the external
stress to be zero the stress does not contribute to driving the system to instability. The
temperature-induced thermal fluctuation plays a dominant role in triggering the spontaneous
breaking of the symmetry and enabling the system to depart on the secondary path of
deformation. The temperature induced structural disordering, at large, determines the final
structure state of the transition.

In what follows we will demonstrate by MD simulations that one can purposefully
see the spinodal instabilities by simply confining the strain fluctuation. In simulation this is
easy to achieve by constant strain (or constant volume) simulation, or in the case of
hydrostatic pressure simulation, by constraining all the diagonal elements of the strain
tensor fluctuating in the same manner. Since the volume expansion is along the primary
path of deformation the dilatation only leads the system to spinodal instability at which a
violation of bulk modulus (Bt < 0) occurs.
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6.2.1 Spinodal Failure on the Primary Deformation Path

The isothermal volume expansion at fixed temperature T = SO0K was simulated by
a series of MD simulations performed on (ThN) and (TEN) ensembles with successive
change in the lengths of the simulation cell and the imposed hydrostatic stress respectively.
The model system consists of 504 atoms which contains three unit cells in both x and y
directions and fourteen unit cells in z direction. This geometric arrangement was made to
include as many long wavelength phonons as possible since the elastic constants of a
crystal is closely related to the elastic waves of long wavelength in lattice vibration. In each
individual run the system was first equilibrated several thousand to ten thousand time steps,
then another fifty thousand time steps were used to generaie the trajectories for property
calculation. Throughout the simuiation the internal energy U/N or enthalpy H/N, internal
stresses 0, mean-squared displacement and the static structural factor S(k) were monitored

In the hydrostatic stress (£ = £y = Lyj = I34) simulation at T = 500K, when the
value of the imposed hydrostatic stress increases all the three components of the normal
internal stress respond properly in the same way and are eventually equal to the value of the
external stress after equilibrium (Fig. 6.3). Meanwhile, the internal strain and the enthalpy
of the system increase monotonically with the increment of external siress, as shown in
Fig. 6.4 (a) and (b). This equilibrium is maintained even the internal strain passes the
critical value of Born instability (indicated by the arrow in Fig. 6.4(a)]. A sudden drop of
the intemal stress occurs at an even higher value £ = 0.1162 1012 dyn/cm2 of the
hydrostatic load. The comesponding strain is 0.0513. The sharp decrease in the enthalpy
and increase in strain point to the onset of spinodal instability. The rapid change in system
properties characterizes the transition associated with this instability. One noies that the
observed critical strain €, = 0.0513 is smaller than that predicted by elastic constants.

As seen in Fig. 6.5, contemporaneously with the rapid changes in ¢, € and H/N,
the static structure factor S(k) decreases from ~ 0.7 to ~ O, shows that the crystalline order
of the system was completely destroyed after 50000 time steps. Since the system has lost
its resistance to further volume expansion the hydrostatic stress causes a persistent
expansion in the volume. The system eventually falls apart into pieces. Fig. 6.6 shows
projections of an intermediate atomic configuration after t = 5000 At. A very similar
behavior of an Lennard-Jones fluid in fragmentation near its spinodal line was reported by
Holian et al. [Holian 88].

Since we have known that in the (TEN) ensemble MD simulation both the internal
stress and strain can fluctuate, it is difficult to reach the maximum value of strain with a
small size (N = 500) system. In order to fix the gap of the difference in critical strain
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between the observed and predicted value, we performed an MD simulation on a (TkN)
ensemble. In this case one can prevent the shape fluctuation of the simulation cell. A
similar behavior of the system at the critical strain similar to (TEN) ensemble simulation
was observed. The internal stress and energy in response to the imposed strain [see Fig.
6.7 (a) and (b)] show all features of spinodal transition. The transition occurs at the critical
stain € = 0.0493 which is still 17% smaller than the value of 0.0595 predicted by elastic
constants. This result strongly suggests that there must be some physics underlying the
difference. We will discuss this in more detail in sec. 6.4.

The static structure factor at the end of the € = 0.0493 run is shown in Fig. 6.8. In
spite of the large drop in stress, the S(k)'s still stay finite and do not show clear evidence of
a new structure. However, the decrease in internal energy indicates that the sysiem has
ransformed into a lower energy state. And the drop in internal stress is also a
manifestation of a release of elastic energy during the transition. Fig. 6.9 shows the
projections of an instantaneous atomic configuration after the transition. This figure
displays clearly that a cleavage fracture occurs parallel to the two small dimensions of the
simulation cell. Two new surfaces are created. The creation of new surfaces converts the
strain energy of the system into the surface energy, and thus is responsible for the decrease
of the internal energy and the relaxation of the internal stress of the system.

We have demonstrated that in both (TIN) and (ThN) ensemble simulation, pure
dilatation, along the primary path, takes the system all the way down to spinodal instability.
At the critical strain all three normal components of the internal stress drop down. In the
(TEN) ensemble simulation, before failure, the internal stress of the system always
balances with the external stress. Thus the system equilibrates at certain volume. When
the expansion of the system approaches the critical strain, the internal stress decreases very
rapidly. The imbalance between the imposed and internal stress suddenly results in a huge
expansion strain rate and acceleration. This feature is very much like the method for the
generation of shock waves. This sudden shock produces a large velocity gradient among
the atoms in the system even when we keep rescaling the atomic velocities. This rapid
volume expansion leads the system to a fragmentation [Holian 88]. In the case of (ThN)
ensemble simulation, when the imposed strain is beyond the critical strain the system
cannot stand for this expansion any more. Since the elastic instability is closely related to
the elastic wave of long wavelength one can expect that the failure will start along the long
dimensions of the simulation cell. This failure ends up as a decohesive cleavage fracture
and lowers the energy of the system by creating new surfaces.
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6.2.2 Reversibility along the Primary Deformation Path

In previous simulation studies we have seen that the system seemed to be stable
against volume expansion in the Bomn instability region where Cy; - Cj2 <0. One question
one may ask is, since the critical strain observed by simulation experiment is still smaller
than that predicted by spinodal instability condition, if it is possible that the transition we
have observed is the consequence of a "delayed” Bomn instability. Obviously if this is so
something must have happened before the system fails. Otherwise the system must be
stable with respect to volume expansion.

A series of inverse simulations, that is compression, were performed on a (ThN)
ensemble along the same path as in the previous expansion simulation in an attempt to
check the stability in the "Bom instability region". We started from the configuration with
its strain just below the value of the observed critical strain, then reduced the imposed strain
from 0.0470 to 0.0251 by several intermediate stages. in each stage the volume of the
simulation cell was fixed at the strain we wanted, the system was equilibrated for 500 time
steps and the properties such as the internal energy, stress, mean-squared displacement and
the static structure factor were computed. We found that in every intermediate stage the
properties of the system show the same values as that in the previous expansion
simulations. Fig. 6.10 shows the results of the internal stress and energy for both
expansion and compression simulations. Where the open circles denote the property for
expansion and the solid circles for compression. As is clearly seen from Fig. 6.10 all the
properties of the system are completely reversible. The reversibility of the system along the
primary path shows that the system is very stable even in the strain region where Born
instability is satisfied.

This conclusion can also be s¢en from the generalized Hooke's law. For pure
dilatation the stress-strain relation can be expressed as

80'=(C“+ 2C12)8€. {6.1)

Even for C;; - Cy3 <0, there is a storing force dc arisen which tends to move the system
back to previous equilibrium state and thus prevents Bomn instability.

We conclude that along the primary path of deformation, in this case pure dilatation,
the system is stable against Born instability. As wiil be shown in the next subsection this is
so even under a small shear perturbation.
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6.2.3 Shear Perturbation on the Primary Deformation Path

It has been shown that in elastic wave propagation the Born instability gives rise to
a growing ransverse wave propagating along [110] direction. [Kettle 56] This is a
transverse wave in which a local shear distortion in (110) plane of a cubic crystal is
required. When Bom instability is satisfied, that is Cyj - Cy5 = 0, the velocity of the
propagating wave becomes zero. When Cy - Cy, <0 this velocity becomes complex and
the amplitude of the shear vibration will grow exponentially with time t. Therefore, the
shear distortion in [110] direction will become larger and larger, and eventually causes the
failure of the system. In this subsection we will study that given the constraint of equal
diagonal elements of the strain tensor and a hydrostatic stress which tends to hold the cubic
symmetry (so called compliant boundary condition), can an impulsive shear perturbation in
(100) along [110] still bring the system to Born instability. This will be a crucial check to
the theoretic prediction that the deformation along the primary path will forbid the
occurrence of Born instability.

The MD simulation was carried out on a (TEN) ensemble. The model system
contains 108 atoms with interatomic interaction described by EAM potential. A hydrostatic
stress was imposed on the cubic simulation cell to expand the system to a prescribed strain
of £g = 0.0356. The system is now in the Born instability region. A smail shear distortion
in (110) along [110] direction was imposed on the system. The system was first
equilibrated for 5000 At at this fixed strain, then the shear perturbation was released. The
simulation was switched on the (TZN) ensemble and the evolution of the system was
monitored for another 30000 time steps. Fig. 6.11 shows three projections of a time
averaged atomic configuration after 30000 At, where the x-y plane is the (001) and (110) is
along the diagonal of the x-y plane. As is seen clearly in Fig. 6.11 the system completely
recovers from the shear distortion to the original f.c.c. crystal. The full coverage of the
system from the small shear distortion demonstrates that keeping the system in cubic
symmetry (here by imposed hydrostatic stress) prevents Bom instability.

In summary of all our results in this section we come to the following conclusions:
(1) As long as the deformation forces the system to go along the primary path the only
instability that can occur is the spinodal instability. The underlying physics of this
instability is that when the bulk modulus vanishes, all the three normal components of the
internal stress become zero. The system has no more resistance to further volume
expansion. (2) Although the instability conditions themselves reveal the underlying
physics that make the system unstable, they do not carry information about how the system
becomes unstable. A compiete description of instability must include the instability
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criterion as well as the eigen-deformation mode. (3) For an f.c.c. crystal Bom instability is
forbidden by the pure stress-induced dilatation because along the entire Geformation path
the uniform expansion conserve the original cubic symmetry of the crystal. (4) Spinodal
instability leads to a structural phase transformation, but the final structural state of the
transition depends on the physical condition which drives the system to instability. In the
case of imposed stress the transition tzkes the form of fragmentation, while in the case of
imposed strain the system ends up either as cavitation or decohesive cleavage fracture.

6.3 Martensitic Transition under Anisotropic Stress

Martensitic transition is a type of structural phase transformation which does not
involve long range diffusion of atoms. The transition is accomplished t.  ‘gh a collective
motion of all the atoms. Consequently, the parent and daughter phases show certain
orientational relations. Since historically the martensite was obtained during the quenching
of steels, martensitic transition referred to the concentration modulation induced by
temperature variaticn. However, studies by various group [Bolling 69, 70a, 70b, 71,
Delaey 74] have shown that the enthalpies of the parent and daughter phases have strong
dependence on the variations in stress as well as in temperature. In particular, Najafabadi
and Yip [Najafabadi 83] carried out Monte Carlo study of stress induced reversible b.c.c.
to f.c.c. transition. Chueng and Yip [Chueng 92] have studied the f.c.c. to h.c.p.
structural transition in a-iron under uniaxial loading. In present study we are niot only
interested in martensitic transition but rather in making connection between the Born
instability and martensitic transition.

We have already known that Born instability requires a breaking of elastic
symmetry. This means that the transition associated with Born instability will bring the
system to lower elastic symmetry and increase the number of independent elastic constants.
In Chapter 2 we have showed that for a crystal with tetragonal symmetry there exists a
strain state at which all components of the internal stress become stationary. An exiension
and contraction along the two low symmetry directions can spontaneously occur, a new
path in stress-strain relation becomes possible along which the tetragonal symmeiry is
broken. Milstein and Farber [Milstein 80} considered an f.c.c. crystal of Ni under tensile
load in [100] direction. They have showed that along this new path, with decreasing load,
the system starts to expand in one of the two lateral directions and eventually its extension
in that lateral direction catches up with the [100] extension. The system ends up, at zero
load, again in an f.c.t. structure. Parrinello and Rahman [Parrinello 81] also studied the
same system. They concluded that at finite temperature the bifurcation predicted by static
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calculations [Milstein 80] does not occur. Instead very close to the bifurcation point the
system actually fails. In this section we will simulate an f.c.c. crystal of Au under uniaxial
tensile stress load and demonstrate that at Born instability bifurcation does occur, but the
nature of the transition on the secondary path depends on the extension rate cr the
symmetry constraints.

6.3.1 Strain Bifurcation and Martensitic Transition

The model system in this simulation study was a 108-particle system of Au atoms
on a perfect f.c.c. lattice. Atoms of the model system are interacting within a (TEN)
ensemble under periodic border condition. To simulate uniaxial loading, an anisotropic
external stress was being applied through the symmetry tensor X which controls the
trajectories of the simulation cell border. When an external stress is applied to the system
in the [100] direction through the symmetric tensor X, one would expect the system to
elongate in the loading direction and contract in the transverse direction due to the
Poisson's effect.

Two series of simulations were performed on the model system to simulate the
tensile load at T = S500K. The first one started from a stress-free cube on which a uniaxial
stress was applied along [100] direction. This was done by assigning Z,; a nonzero
positive value, all other Z; being zero. Under the action of such a load the matrix h starts
to change in a well-defined manner, i.e., the MD simulation cell starts to distort away from
its original cubic shape. Then one can look for the phase transition by monitoring the
evolution of the various components of the h matrix as the imposed stress is being
increased.

Fig. 6.12 shows the variation of the lateral lattice parameters ay and a, with applied
uniaxial stress. When the tensile stress is increased from low values up to Z;; = 0.0180
x 10'2dyn/cm?2, the normal contraction in the transverse directions is observed in
accordance with Poisson's effect. Very interesting results were found when the uniaxial
stress increases to the value of ;1 =0.0229 x 10'2dyn/cm2. As shown in Fig. 6.13 the
evolution of system properties, two successive processes of symmetry breaking weie
observed [see Fig. 6.13 (d)]. First, a split of ay and a, from their previous values (they
were the same at the beginning) occurs. The obvious increase in ay and decrease in a,
show clearly that the bifurcation has happened. In the meanwhile there was no change
being observed in other properties. This indicates that the system is in the eigenstates of
Bom instability as predicted by the theoretical analysis. In this stage the bifurcation is
symmetric [see Fig. 6.13(d)] and the off-diagoral elements of h matrix <hij> are
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essentially zero to within + 0.005, showing that the system has an orthorhombic structure.
About 7500 time steps after the bifurcation, the second symmetry breaking occurs. And
correspondingly, an impulsive change in internal energy and stress and a step change in the
x component of MSD were observed. Consequently, a further split of ay and a, appeared,
and a sudden extension in a, was observed. A nonzero off-diagonai element was found
with the value <h,> =-0.2954 + 0.0036. Fig. 6.14 shows projections of the
instantaneous atomic configuration at t = 30000 At (after the second symmetry breaking).
As seen in the x-y projection there is a residual [T190] shear distortion in the (110) plane (the
diagonal of the x-y plane). The system has transformed into a distorted b.c.t. structure
with new lattice parameters a, = (0.9283 + 0.0051)ag, ay =(0.6655 + 0.0060)aq, and

a, =(0.7966 + 0.0013)ag.

Another simulation study was carried out on a pre-siressed f.c.c. crystal. In this
study all the simulation procedures were the same as the first one but now with a pre-
imposed hydrostatic stress Ly = 0.0900x 10'2dyn/cm?. The initial configuration was at
strain €y = 0.0365. Then a uniaxial tensile stress is applied along [100] during simulation.
Again a bifurcation appears even before the small tensile stress Ins=
0.0106x 10'2dyn/cm? was applied. As is seen in Fig. 6.15 a further separation in the
lateral lattice parameters occurs at a larger tensile stress. Fig. 6.16 shows the time
evolution of system properties at £;; = 0.0151x 10'2dyn/cm2. One sees two processes of
symmetry breaking. The first has already happened since the previous run and the other
occurs around 2500 time steps. The same characteristics of the impulsive change in
internal energy and stress, and the step change in x component of MSD as in previous
stress-free case show that, even the crystal is initially in pre-stressed states, the uniaxial
stress-induced structural phase transition has the same nature and is through the same
mechanism. In present case the nonzero off-diagonal element is <hy4> = 0.1605 which |
shows that the shear distortion is now in (101) plane along [101] direction (the diagonal of
x-z plane). The system ends up as, again, a b.c.t. structure (see Fig. 6.17) with lattice new
parameters a, = (0.7162 + 0.0011)ag, a) =(0.8481 £ 0.0010)aq, and
2, =(0.9190 + 0.0003}a,,

In summary, one has seen that at small uniaxial stress the system shows a normal
elastic behavior. That is, it elongates in the loading direction and contracts in the transverse
directions according to Poisson's effect. When the system is further stressed to pass the
point where Cy; = C;3 (bifurcation point), Born instability takes the system to the
bifurcation path along which the tetragonal symmetry is broken. A orthorhombic
symmetry is established. Since along this secondary path all the components of the internal
stress are stationary, the system is unstable. The orthorhombic state is just a transient state.
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As the difference between the lateral lattice parameters grows a restoring force is eventually
developed which tends to move the system further away from this transient state.

According to the generalized Hooke's law this distorting force can be expressed as,
at the bifurcation point, 8€,, =0

50'“ = Clzaeyy + C[38€u
scyy = sz&yy + C238€zz. (6.2)
8021 = C238£yy + C338€u

Since along the bifurcation path we have 8¢, = - 8¢y, then the distorting force is

86xx =(C12 - Cl3)5€yy
6ffzz =- (C33 - C23)5£yy

For the orthorhombic symmeiry one can expect Cy; - C13 > 0, Cy; - C23 >0, and
Cs3 - C23 > 0. Furthermore, since the separation between ay and a, is small one can also
expect Ca3 - Ca3 ~ C33 - C23. Thus Eq.(6.3) represents the driving force for the second
syinmetry breaking. This driving force eventually triegers the orthorhombic to b.c.t.
transition and recovers the system back to a higher order of elastic symmetry.

In general the relative stability of the f.c.c. and b.c.c. (or b.c.t. in present case) at
finite temperature is a difficult question to answer. To answer this question requires a
detailed and accurate computation of the free energy difference. From our calculations we
have noticed that before and after the transitions there were no changes in the internal
energy and stress. This indicates that the structural phase transition is a continuous process
during which there is no energy change involved. We can infer that the local free energy
minima in configuration space for distorted f.c.c. and b.c.c. lattice seem to be equal, the
transient state with symmetry breaking helps the system to overcome the energy barrier
between these two states.

6.3.2 Stress Bifurcation and Spinodal Failure with Symmetry Constraint
In Chapter 2 we have shown that from the view of elastic wave propagation Born

instability is a shear instability. It also has been shown [Grimvall 86] that based on the

assumption of elastic continuum the shear modulus in the (110) plane along the [110]

direction can be expressed as G(110)[110] = (Cyq - C12)/2. In sec. 6.2 we have
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demonstrated that, in the case of pure dilatation, if the shear distortion is forbidden, Born
instability can also be hidden. We will show by simulations that this is so in uniaxial
loading. Then we systematically demonstrate that Born instability is actually a shear
instability even at small length scale, i.e., the level of micro-crystals (containing few
hundred to thousand atoms).

The simulation model and procedure in this study were the same as in the last
subsection. But now the uniaxial tensile stress was loaded along the [001] direction with
the constraint of equal edges in transverse directions to prevent strain bifurcation. This was
achieved by the following procedures: When solving the equation of motion for h matrix
we first solved for ky then the constraint of no strain bifurcation was forced by setting h,,

=hj;. The system was still allowed to expand in the loading direction and contract in the

wE O

lateral directions according to Poisson's effect.

The two model systems, a stress-free and a pre-stressed f.c.c. lattice, were used as
the initial configurations in the present simulation study. The purpose of the first
simulation is to show that the only constraint of no strain bifurcation dees not prevent Born -
instability. In this case the Bom instability manifests itself in the form of stress bifurcation
instead of strain bifurcation. The second will demonstraie that once the constraint of
conserving the original tetragonal symmetry is imposed, Born instability will be hidden.

The first simulation was started from a stress-free cube, the uniaxial tensile stress
was imposed along [001] direction. We found that when this stress was raised to the value
;1 = 0.0229x 10'2dyn/cm? (the critical stress in previous strain bifurcation simulation)
using two intermediate runs at X;; = 0.0100x 10'?dyn/cm2 and 0.0185x 10'2dyn/cm?,
the sample system is still very stable. That is, it elongates in the direction of applied stress
and contracts in the transverse directions as expected in equilibrium. When the stress was
raised to even higher value of £ = 0.0276x 10'2dyn/cm2, some obvious changes in the

-

system properties are observed. Fig. 6.18 shows the time evolution of system propertics.
The internal energy increases rapidly at the beginning of simulation in response to the
increace of apnlied unizxial stress, and saturates to certain value after about 2500 time
steps, then it fluctuates about the equilibrium value as seen in Fig. 6.18 (a). A usual elastic
behavior of elongation in loading direction and contraction in the lateral directions is shown
in Fig. 6.18 (d).

Remarkably different behaviors of the system are shown in the stress and the MSD
changes with the passage of time. As clearly seen in Fig. 6.18 (b), instead of strain
bifurcation, a stress bifurcation appears after about 2500 time steps. In fact, when the
equilibrium was reached the average values of the components of the internal stress are
<0y1> = (0.0029 + 0.0003)x 10'2dyn/cm?2, <G5> = (- 0.0027 £ 0.0002)x 10'2dyn/cm?,
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<0633> = (- 0.0276 £ 0.0003)x 10'2dyn/cm2, <615> = (0.0210 £ 0.0001)x 10'2dyn/cm?,
and <613> = <023> = 0. A finite shear stress <61,> was developed. The appearance of
this shear stress clearly shows that the system has passed the bifurcation point. These
developed internal stresses confirm our previous interpretation of the second symmetry

breaking. The stepwise increases of the x and y components of the MSD, as shown in Fig.
6.18 (c), indicate that all the atoms in the laitice have an obvious movement in the
transverse directions. Consequently, a shear distortion of the system about the (110) plane
(diagonal of the x-y plane) occurs (see in Fig. 6.19 the x-y projection of an instantaneous
atomic configuration after t = 30000 At). This shear distortion gives rise to an in-plane
displacement of atoms and accounts for the step change in the x and y componeats of
MSD. The projections of the atomic positions shows that the structure of the lattice has
changed to a distorted b.c.t.

The second simulation was to show that the constraint of conserving original
tetragonal symmetry prevents Born instability and therefore changes the course of ihe phase
transition. In this simulation study, the same initial configuration of the pre-expanded
f.c.c. crystal, as employed in the second simulation of Iast subsection, was used. The
initial uniform strain was &y = 0.0356 induced by a pre-imposed hydrostatic stress Zg =
0.0900x 10'2dyn/cm2. This hydrostatic stress was maintained during all following runs of
uniaxial tensile stress load. In this simulation, Born instability was forbidden by the
constraint of tetragonal symmetry. The system fails at the tensile stress Zg =
0.0160x 10'2dyn/cm?2 . Fig. 6.20 shows the time evolution of system properties at this
load. The changes in internal energy, internal siress, and MSD show all features of
spinodal transition. That the static structure factor S(k) drops down to zero indic ~ that
the system has lost its original f.c.c. order.

We have demonstrated in sec. 6.3.2 that in the case of pure dilatation the only
instability that can show up on the primary deformation path is the spinodal instability.
Here we show that, for uniaxial loading, one can also suppress Bom instability by ruling
out the possible shear distortion. All these facts show that Born instability is actually a
shear instability. Based on these direct observations from simulations, we can go a step
further and make our previous conclusion more general: As along as the shear distortion is
forbidden, one can also suppress Bom stability. The only instability cui coour is the
spinodal instability. Thus one can define the primary path more clearly as a normal
distortion path.

In practice the constraint of conserving the original symmetry can be achieved by
increasing the deformation rate. In simuiation this can be done by either following the
kinetics of deformation process or increasing the increment of the tensile stress in each
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constant stress run. We performed a (TZN) ensemble MD simulation on the pre-expanded
model with large increment of tensile load. We found that even without the constraint of
symmetry conserving the large normal deformation rate can also suppress the Bom
instability.

6.4 Temperature Effect on the Stress-Induced Structural Response

In sec. 6.2 we have already seen that for pure dilatation the observed critical strain
of spinodal instability is smaller than the value predicted by elastic constants. This
difference exceeds the error of our computation. Since the critical strain determined by
elastic constants is based on the extrapolations of the elastic constants at small strains,
while the simulated critical strain is a direct observation on a "real” dynamic system, this
discrepancy between the theory and observation implies that there must be some underlying
physics. On the other hand, the temperature effect on the crystalline instabilities 1s also a
very interesting problem that needs to be studied.

In Chapter 4 one has seen that thermal softening has a larger effect on bulk modulus
than on shear modulus. Consequently, one can expect that thermally induced softening
will also have a larger effect on the critical strain of spinodal instability. Since we have
seen that the shear modulus is only a weak function of temperature, there would be only
small change in the critical strain of Born instability. In order to see this, a series of
simulations of uniform volume expansion of f.c.c. crystal at different temperatures were
carried out on both (ThN) and (TZN) ensembles. The detailed procedures of the
simulation were the same as in the case of T = SO0K. The temperatures simulated here
were T = 800K, 1000K and 1200K.

We found that at temperatures below T = 1000K, the only instability observed in
our simulations was spinodal instability. The system always fell apart first in the form of
planar decohesion, then broke down into pieces. Fig. 6.21 and 22 show two projections
of instantaneous atomic configurations during spinodal transitions at T = 800K and 1000K.
The planar decohesion is clearly seen in the projections on x-y and x-z planes. The
corresponding critical strains observed were £.(T=800K) = 0.0369 and €,(T=1000K) =
0.0275. To check the possible size effect and ensure the final structure state of the
transition, we performed (ThN) ensemble simulation runs of dilatation on a larger system
with 1372 atoms at T = 800K. In this simulation the system failed at the same critical strain
€.(T=800K) = 0.0369, but the final structure was somewhat different from the small
system. The failure of the system was in the form of local decohesion with some
disordering around the decohesion zone as shown in Fig. 6.23.
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At temperature T = 1200K it was difficult to maintain the system in the crystalline
order even at small tensile stress. The system failed at the critical strain £.(T=1200K) =
0.01156. The behavior of the system showed all the characteristics of spinodal transition.
Fig. 6.24 shows the results of a (ThN) ensemble run. As has been seen before in melting
transition (Chapter 4), the internal energy increases as a consequence of entropy increase
[see Fig. 6.24 (a) and (b)]. Furthermore, the drop of the static structure factor to zero and
the persistent increase of the MSD [Fig. 6.24 (c) and (d)] indicate that the system has lost
its crystalline order, and the transition shows all the features of melting. The projections of
an instantaneous atomic configuration (Fig. 6.25) confirms that the system has been
completely disordered.

For the spinodal transition, so far we have seen that the (ThN) ensemble MD
simulation reveals a remarkable difference in the behavior of the intemnal energy at high and
low temperatures. At low temperature, the consequence of the spincdal instability is an
internal energy drop. In this case the spinodal transition is truly a mechanical failure, i.e.,
either fracture or local decohesion. The creation of new surface accounts for the release of
the strain energy. While at high iemperature, the internal energy shows a jump when
spinodal instability is reached. The spinodal transition takes the system to a
homogeneously disordered structure. In this case the system lowers its free energy by
gaining entropy. Thus the transition is not purely mechanical failure any more. It is the
result of the combination of thermodynamic and mechanical effect. Therefore as far as the
final state of the transition is concemned, one can distinguish two spincdal transitions: A
high temperature spinodal transition by which the system ends up in a homogeneous
disordered structure, and a low temperature spinodal transition, through which the system
evolves into a lower energy state in the form of either fracture or decohesion.

Fig. 6.26 compares the observed critical strains and the theoretic predictions for
both Born instability and spinodal instability. For spinodal instability finite differences in
critical strains between predictions and observations are seen at low temperatures. The
physical meaning of spinodal instability states that when the bulk modulus vanishes, the
system has no cohesion at all and becomes completely unstable. This gives the upper
bound of stability of crystal lattice. This is exactly the case of zero temperature where the
only contribution to the elastic constants is the Born term. But at finite temperature, the
fluctuation term may contribute to destablize the lattice even before the absolute decohesion
point is achieved. At low temperature this term is usually small, but when the system is
expanded close to the critical strain, the large stress gradient region (as indicated by the
inhomogeneous nucleation of cavitation) may be instantaneously formed and make the
stress fluctuation very significant. This is not surprising that the critical strain observed is
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smaller than that obtained by extrapolation of the small strain value of elastic constanis.
When temperature is increased the stress fluctuation also becomes larger and larger even
away from the critical strain. This thermal activation has a significant contribution to the
homogeneous nucleation of the disordered phase. Another feature of this figure is that at
high temperature the spinodal curve of the critical strain crosses the Bom curve. This
indicates that at high temperatures these two instabilities will compete with each other. This
is the situation we have seen in Chapter 4 in the case of pure heating to melting.

It is of interest to consider the temperature effect on shear modulus which give rise
to Born and shear instability. In Chapter 4 we have known that as the temperature increase
both the G(100)[010] = C44 and G(110)[110] = (Cy| - C3)/2 decrease. If we take the
stress-free configuration at T = 500K as our reference state, measure the strain with respect
to the reference state, and plot the thermal softening curves of shear moduli, G(100)[010}
and G(110)[110], and the results at T = 500K together, a very interest result comes out.
Fig. 6.27 shows that the data of the thermal softening and the expansion softening at T =
500K fall on the same curves. This strongly suggest that the shear modulus is only a weak
function of temperature. Or as a good approximation one can think that the shear modulus
is only a function of volume. Jaszczak and Wolf [Jaszczak 92] have showed that for a
Lennard-Jones f.c.c. crystal the thermal stiffening in Cy; and Cy44 were only about 8% and
in C9 about 1% even at T = 1000K, while at the same temperature the expansion softening
for all these three elastic constants are about 60%. These results support our observation.
With this in mind it is not surprising that the critical strain of Born instability does not
change much when temperature increases, but the bulk modulus is significantly affected by
lemperature.
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Table 6.1A Elastic constants of an f.c.c. crystal in unit of 1012 dyn/cm2. Values are
calculated using both fluctuation formula and stress-strain curve method. For the
perfect crystal, the x, y, and z axes are aligned with (001) symmetry axes. The data
point at different temperatures are found to be well fitted by either a linear function
or a second-order polynomial Cj; = a + be +ce2. Listed in the table are the fitting

oefficients for different temperatures,
T (K) Elastic a b c
Constant
0 Cu 1.8068 -32.331 210.14
Ciz2 1.5706 -20.493 117.108
Cas 0.43973 -11.258 72957
500 Cn 1.5495 -30.791 147.39
Ci2 1.3776 -20.192 59.025
Cas 0.36652 -10.207 71.022
1000 Cn 1.2207 A -25.881 -354.04

Table 6.1B Bulk modulus Bt and shear modulus G(1 10)[110] of the same system
as functions of strain. Listed are the fitting parameters of the expression a + be +
ce? at different temperatures.

T (K) Elastic a b v

Modulus
0 Bt 1.6089 -18.884 83.806
G(110)[ 0.11809 -6.0590 52.667
110}
500 Bt 1.4360 -24.149 0
G(100)[ 0.08684 -4.7807 0
110}
1000 Bt 1.2694 -35.293 0
G(100)[ 0.05332 -4.5611 0
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Table 6.2 Critical strains predicted by spinodal and Bom instability criteria:

P
Cuile$) + 2CyAe8) =0 or- v (g—) = 0 (spinodal), and C}(eB) - C,o(eB) =0
Vit
(Born). They are corresponding to the vanishes of bulk modulus B and shear
modulus G(110) 110}, )
T (K) Spinodal instability

cvel.

Born instability €2

&
0 0.0244 0.0656
500 0.0182 0.0595
800 - 0.0468
1000 0.0117 0.0360
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Fig. 6.1 Isothermal elastic constants as a function of strain at T = S00K.
Isothermal elastic constants calculated using fluctuation formula. The
normal strain is imposed uniformly in all three directions along cubic
axes. Shown are data points of C11 and C12 in éa). and C44 in (b). All
the elastic constants are in units of 1012 dyn/cm# The cross point of C11
and C12 gives the critical strain for Bom instability.
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Fig. 6.2 A typical isothermal stress-strain curve at T = S00K.
A uniform strain gy = 0.0091 is pre-imposed on an f.c.c.
crystal. The thermodynamic tension tyy 2nd t,, are calculated
as a function of strain in x direction at fixed Eyy = £z = €p-
The thermodynamic tension is in unit same as elastic constant.
The negative slopes of these curves represent the C11 and C12
elastic constants respectively.
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Fig. 6.3 Response of the intemal stress o to the imposed hydrostatic stress X.

When system is in mechanical equilibrium the internal stress is equal to the imposed stress.
Ata tensile load of X, =0.1i62 x 1012 dyn/cm2 the sudden drop of & indicates that the
system fails.
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Fig. 6.4 Variations of the internal strain e and the enthalpy H/N with imposed
hydrostatic stress.

The pronounced jump in enthalpy and strain show that pure dilatation along the
primary path takes the system to spinodal instability. The rapid change of
system properties characterize the transition associated with this instability. The
observed critical strain ec is smaller than the value predicted by elastic
constants. This difference is due to thermal fluctuation (see sec. 6.4 for detail).
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Fig. 6.5 Variation of static structure factor S(k) with the
imposed stress.

In the stable region along the primary path the static structure
factor steps down slightly and then shows rapid decrease to
zero. The sudden drop of S(k) points to the onset of spinodal
instability. The vanishing of S(k) indicates that the system has
completely lost its original f.c.c. order.

150

0.04



1 ° .&° %5 % o%ao °'Eb°@
- %%@%365@%?9§
! °%’°&aﬂ°%é§
o3
B

| e &re? zg%n
.I-J Q;boo& ‘%Q 8
o 5£<983§ oo& Qo 0

-2.5 -1.5 -0.5 0.5 1.5 2.5

%e%&@e Wﬂ

~ - ‘&@fﬂoﬁ? 95 SBAEE, o
o 59, o o
1 0%%89%9%00 ° (-]
B, & SogFRy,
o0 % %ﬂ:sb
2 l
-10 0 10
4
2
P 2o o @ Cmpy 0%
0o eo (o)
L %ga%eegsg;@: Sautiop o8
FPpIP TP GfRs, o
(o)
> 0~ %B@?E:Q’Boodﬁmo" oo
o o ° o
| Wﬁeoz“%:oow 20, of
. Waq © LX)
%0%39%:&3’ By e oY
) BB 008 “6° o 00°%°%6%
-10 ' (; 10

Fig. 6.6 Projections of an instantaneous atomic configuration after transition.
In (TZN) simulation once the system fails, the intemnal and external stresses do
not balance any more (see Fig. 6.3). The volume of the system keeps
increasing and, eventually, the system breaks down into pieces. Shown here
are three projections of an instantaneous atom positions after about 5000 Dt.
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Fig. 6.7 Internal stress and internal energy in response to the imposed strain.
Mechanical failure of an f.c.c. crystal under pure dilatation, simulated on a
(ThN) ensemble. Instead imposed stress, a uniform strain is imposed on the
system in this simulation. Sudden drops in internal stress and internal energy
at ec = 0.0339 indicate the onset of spinodal instability. The dzcrease in
internal energy shows that the system has transformed into a lower energy

state.
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Fig. 6.8 Variation of static structure factor with imposed
strain.

The static structure factor steps down slightly in a similar way
as in the (TZN) simulation (see Fig. 6.5), but it does not go to
zero at the observed critical strain. This indicates that the
system still stays in ordered state after the transition.
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Fig. 6.9 Projections of an instantaneous atomic configuration after transition.
Projections of the aiomic pesitions o x-z and y-z planes show clearly that a
planar decohesion occurred. The decchesis cleavage fracture is
perpendicular to the long dimension (z) of the simuiation cell. The initial
geometric arrangement of the simulation cell is in such a way that it contains
(3,3,14) unit cells of f.c.c. crystal in x, y, and z directions.
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Fig. 6.10 Reversibility of an f.c.c. crystal in the "unstable
region” predicted by Bom instability.

Plotted here are the internal stress (a) and the internal energy
(b) in response to the volumetric deformation. The open circles
show the results for pure dilatation and the solid circles
represent the response to the compression. The reversibility of
the sysiem along the primary path shows that the system is
very stable even in the region where Bom instability condition
is satisfied.
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Fig. 6.12 Bifurcation of a stress-free f.c.c. crystal under
uniaxial tensile stress load.

A uniaxial stress is loaded on an initially stress-free f.c.c.
crystal along x direction. A clear bifurcation in stress-latiice
parameter relation in lateral plane is observed after certain
uniaxial tensile stress loading.
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Fig. 6.13 Time evolution of system properties under uniaxial tensile stress load.
Behavior of the internal energy U/N (a), internal stress (b), MSD (c), and the lattice
parameters (d). Where the star, the cross and the open circle donate the x, y and z
component of the property. Two successive processes of symmetry breaking are
observed along the trajectory. The first one starts at the bifurcation point and takes
the system inito an orthorhombic structure. In this stage the bifurcation is symmeiric
and does not cause any change in other properties. The second one occurs around
7500 Dt after a further rapid change in ay and az. An impulsive change in internal
energy and stress is observed. The step change in the x component of MSD indicates
that there is an atomic shuffling [Chueng 92] in x direction.
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Fig. 6.14 Three projections of the instantaneous atomic configuration at t = 30000
dt (after the second symmetry breaking).

As shown clearly by the network in x-y projection the system has transformed into a
distorted b.c.t. structure with ax'=(0.9283+0.0051)a0, ay'=(0.665510.0060)a0,

and az'=(0.79661:0.0013)a0.
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Fig. 6.15 Bifurcation of a pre-stressed f.c.c. crystal under uniaxial tensile stress load.
Same as Fig. 6.12 but with pre-imposed hydrostatic stress Iy =0.0900 x 1012 dyn/cm?2,
initial configuration is at uniform strain g9 = 0.0356. Giving this impose uniaxial stress
along x direction during simulation. Again bifurcation occurs but at somewhat small value
of uniaxial stress £; =0.0106 x 1012 dyn/cm2.
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Fig. 6.16 Time evolution of system properties.
Same as Fig. 6.13. Again one sees two symmetry breaking but
the impulsive changes in internal energy and internal stresses

are smaller.
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Fig. 6.17 Projections of an instantaneous atomic configuration
after the second symmetry breaking.

The projection in x-z plane shows that there is a residual shear
distortion in (101) along [101](the diagonal of x-z plane). The
structure of the final state after transition is a distorted b.c.t.
with some degree of disorder.
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Fig. 6.18 Stress bifurcation under the symmetry constraint in transverse direction.
Same as Fig. 6.13. Uniaxial stress is along z axis with the constraint of equal edge
in transverse directions (by setting h11 = h22) to prevent strain bifurcation. The
internal energy, x and y components of MSD show a step change [see (a) and (b)],
which is due to a shear distortion. A intemal stress bifurcation is observed. In the
meanwhile the system expands further in loading direction (z) and contracts in the
lateral directions according to Poisson's effect.
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Fig. 6.19 Projections of an instantaneous atomic configuration after stress bifurcation.
Similar to the case of strain bifurcation, a shear distortion about (110) plane is observed
which indicates that the bifurcation point has been passed. The projections of the atomic
positions show that the system has changed to a distorted b.c.t. structurte.
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Fig. 6.20 Spinodal failure of an f.c.t. crystal under uniaxial stress.

Same as Fig. 6.18 but with a pre-imposed hydrostatic stress £y = 0.0900 x 1012 dyn/cm2
and constraint of conserving the original tetragonal symmetry. In this simulation we do not
see any more strain bifurcation. System fails at the stress Xy, = 0.0160 x 1012 dyn/cm2.
The transition show all features of spinodal instability (compared to Fig. 6.4 and 6.5).
Agein we demonstrate that along the primary path one cannot sz Born instability.
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Fig. 6.24 Structural disordering after spinodal transition at T = 1200K.

Time evolution of internal energy (a), internal stresses (b), MSD (c), and static structure
factor (d). This simulation is carried out on a (ThN) ensemble to maintain as higher
value of imposed-strain as possible. The large increase in internal energy and release of
the internal stresses point to the onset of spinodal. The rise in the intemal energy is due
to the entropy increase since the volume of the system is fixed during simulation. Static
structure factor shows that after 7500 Dt system completely losses its crystalline order.

The persistent increase in mean-squared displacement shows that system behaves very
much like melting during the trzasition.
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Fig. 6.25 Instantaneous atomic configuration after the spinodal transition at T = 1200K.

The three projections of the instantaneous atomic configuration show that the system has
been completely disordered.
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Chapter 7
Unstable Structural Responses of Brain-Boundary Superlattice
with EAM Potential

7.1 Introduction

In previous chapters we have demonstrated by direct observations from MC and
MD simulations that the failure behavior of a perfect crystal under applied stress or strain
load can be well described by elastic instability criteria and the corresponding
eigendeformation paths. These eigendeformation paths are extremely important in the
sense that they uniquely define the deformations which can lead to specific failure mode of
certain instability and suppress the others. The instability criteria themselves are very
general and independent on the elastic symmetry and atomic interaction of the crystai, while
the eigendeformation states of the instabilities are different for different symmetries. We
have studied the structural responses of an f.c.c. crystal, which we treated as a
homogeneous system, to various elastic deformations. However, if the crystal is
inhomogeneous, such as including grain boundaries cor interfaces, its elastic behavior may
be dramatically affected by the presence of the planar defects (Schuller 90, Phillpot 90]. It
is of interest to ask if there is any effect of the crystalline inhomogeneity on the instability
of the crystal and the transition associated with the instability.

A simple and well-studied model system which enables us to deal with this issue is
the so-called grain-boundary superlattice (GBSL). [Wolf 89a, 89b, 90a, 90b, Jaszczak 90,
91] In this chapter, for simplicity, we will focus on the spinodal instability of a grain-
boundary superlattice model under applied hydrostatic stress and uniaxial strain, since in
these cases the defcrmations induced by the imposed stress or stain coincided with the
primary path of deformation associated with the spinodal instability. The question we will
address is: Given the deformation along the primary path which leads to spinodal instability
in perfect crystal, does it lead to the same instability in GBSL? We have already known
from Chapters 2 and 3 that this system has tetragonal elastic symmetry, and the dilatation
should be able to lead to spinodal instability. Therefore, the direct simulation of a GBSL
system will be a crucial test of this theoretical prediction. Another question we are
interested in is the final state that the GBSL system will evolve into after the instability has
set in.

The interface systems are intrinsically inhomogeneous. This inhomogeneity may
cause dramatic difference in structural and elastic properties at or near an interface and in
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the nearby bulk material. Since the presence of incoherence of the two parts of crystalline
lattices beside the interface (we only consider pure element system), a narrow structurally
disordered region and a volume expansion appears at the interface even at zero temperature.
These structural disordering and volume expansion have similar effects on the elastic
properties as in the case of thermal expansion [Jaszczak 92], i.e., the structural-disordering
stiffening and volume-expansion softening. However, because of their localization near
the interface, these types of structure disorder and volume expansion are inhomogeneous.
In our so cailed model of £29 GBSL (see Chapter 3), a overall extension of 3.5% in GB
normal ([001]) and a contraction of -1.2% by Poisson's effect in the lateral directions [100)
and [010] are observed at zero temperature, which give a overall volume expansion of
0.9%.

The elastic response of maierials is known to be particularly strongly affected by
small changes in volume, or in the interatomic distances [Phillpot 90]. For instance, the
thermal expansion of most materials, typically only a few percent different from zero
témpcrature to melting, causes an elastic softening in elastic constants typically by about
50%. By comparison, the changes in interatomic distances due to the presence of
interfaces may be considerably larger, suggesting that the elastic response near an interface
may differ largely from that of the nearby bulk perfect-crystal material. Calculations of
local elastic constants of GBSL [Kluge 89] have shown that this is indeed the case.

It has been shown [Wolf 89a, Phillpot 90, Jaszczak 92] that the interplay of the
structural disorder and the volume expansion at the interface is mainly responsible for the
so-called supermodulus effect * (i.e., a strengthening of certain elastic moduli and a
softening of others) of superlattice materials. Figs. 7.1 (a), (b), (c), and (d) show some
properties of a £5 GBSL as a function of the modulation wavelength A ai T = 0K,
calculated by Wolf and Lutsko [Wolf 89a]. Since in their paper all the results of elastic
moduli they presented are normalized by the average values of these quantities in the
A — oo limit, we also quote their results of A — eo here in Table 7.1. Their calculations
showed that the anomalous elastic behavior, including dramatically reduced shear modulus
and significantly enhanced Young's and biaxial moduli, is primarily an interface effect
whose magnitude is controlled by the result of the competition between the local structural
disordering and volume expansion due to the presence of interfaces in the system.
According to Fig. 7.1 (a) the increase in the young's and biaxial moduli, Y, and Yy, is
coupled with a drastic decrease in G,,=Cy4 [see Fig. 7.1 (b)] As can be seen from Fig.
7.1 (c) this behavior in the elastic moduli is accompanied by an expansion in the z-direction
which, despite the resulting Poisson contraction in the x-y interface plane, gives rise to an

* For a recent review, see MRS Bull. XV(9) (1990); XV(10) (1990).
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overall expansion of the system volume which indicates an increasing amount of structural
disordering with decreasing of the modulation wavelength A (or the number of the atomic
planes between two GB's).

It is interesting that the behavior of the elastic constants do not show anomalies
except for C33. As shown in Fig. 7.1 (d), all other elastic constants decrease
monotomically as A decreases, or equivalently as the overall volume increases. Although

C33 shows only a small overall enhancement over the related bulk value (A —AD), the
Young's modulus Y, is enhanced significantly. These two results are not in conflict given
that the Young's modulus is a combination of the elastic constants:

Y, = C33 - 2C334C1;1 + C12). Assuming C3; to be independent of A, an increase in Y, can
be caused by a decrease in C33/(Cy; + Cj2)as A decreases. A fast decrease in C25 than in
Ci1 + Cya, as is the case in Fig. 7.1 (d), gives rise to such an increase in Y, as A gets
smaller. The shear modulus, by contrast, is related to only a single elastic constant (G, =
Gy, =C44). Its decrease therefore cannot be a result of a balance among different elastic
constants but the "normal” behavior of the elastic constant as system volume is increased.
Thus the "supermodulus effect” may be aptly named, in that a "super elastic-constant
effect”" may not exist.

The GB energy, Egp, represents a more quantitative measure for the effect that the
GB's in the superlattice exert on each other. The GB energy, defined as the difference in
energy between the GBSL and an undistorted perfect-crystal reference system with the
same number of atoms but no interfaces, provides a direct measurement of the degree of
structural disorder per interface in the system. According to Fig. 7.1 (a), for larger values
of A Egp is practically independent of A. For A < 5a, however, a sharp decrease in Egp
occurs. Noting that the force which the GB's exert on each other is governed by dEgg/dA,
it is obvious from the results in Fig. 7.1 (a) that for the shorter distances the GB's attract
one another. As evidenced by the GB energy for A < 5a, the sharp decrease signals a
decreasing amount of structural disorder per interface as the elastic strain fields of different
GB's start to overlap, with the consequence of smaller elastic anomalies. [Wolf 89b, 90c,
90d].

Another interesting result they found is that the Poisson's effect tends to enhance
the elastic anomaly. With the mechanism of structure-disordering stiffening and volume-
expansion softening in mind, it is not surprising that the Poisson contraction tends to
decrease the volume fraction, and thus to enhance the elastic anomalies.

Based on these insights gained form these studies and its 3d periodicity, one would
expect that the GBSL may be a very desirable model for present study of crystal instability.
Since the elastic properties of the GBSL are governed by the superinodulation wavelength
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A, one can obtain a suitable model by purposely choosing A which allows one to maintain
the inhomogeneity of the system but dees not lose too mush crystalline order. The model
we will use has the value of A = 8a, which contains 8 atom planes between two GB's. As
discussed in Chapter 3, the simulation cell contains two GB's and 16 atom planes each
with 29 atoms.

7.2 Thermal Expansion of GBSL

In order to build up the reference states for the study of the applied stress later on,
we first look at the thermal expansion of the stress-free systemn. The system is heated up
from T = 0K with a temperature increment of AT = 200K. For each temperature, the
GBSL system was first equilibrated for 10,000 time steps under zero applied stress, and
another 50,000 time steps were made to generate the atomic trajectories for property
calculations. The anisotropic thermal expansion of the GBSL system is illustrated in Fig.
7.2 (a), which shows the changes in the average lattice parameters normal (a,) and parallel
(ay,y) to the interface. As one might expect from the enhanced anharmonicity associated
with the extension in z-direction and the contraction in x- and y-directions (see above),
which give rise to a local volume expansion at GB's even at zero temperature, the thermal
expansion of a, is larger than that of a, y.

Fig. 7.2 (b) shows system internal energy as a function of temperature. It increases
gradually as the system expands until temperature T = 800K, at which a decrease in internal
energy is observed. At this point an anomalous expansion in x- and y-directions and a
contraction in z-direction occurs. The overall result is a volume decrease indicating the
disappearing of the disordered region in the GBSL. A recrystalization occurs. The system
recovers from the twisted state and goes back to an f.c.c. lattice with the lattice parameters
(a/ag)y,y = 1.0124 and (a/ag), = 1.0101, respectively. These values are very close io a/ag =
1.0113 of the perfect f.c.c. crystal at this temperature. The static structure factor shows
clear evidence of the recrystalization process. As can seen in Fig. 7.2 (c), as iemperature
increases the structure factors S(kj) and S(kj) both decrease gradually. At T = 800K,
S(k;) drops all the way down to zero while the S(ky) still stays at a finite value. Since our
k; and k; are chosen such that for a perfect GBSL they give the values S(k;) = 1 and
S(k;) = 1 for region A and B, respectively. At T = 800K the vanishing of S(k;) indicates
the disappearance of region A and points to the recrystalization.
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7.3 Elastic Properties and Instabilities of GBSL under Applied Hydrostatic
Stress

In principle the fluctuation formula is not strictly applicable to inhomogeneous
system [Wallace 84]. Jaszczak and Wolf [Jaszczak 92] have showed, by comparison of
the elastic constants computed using this formula and by stress-strain computer experiment,
that the elastic constants Cy, for i, j < 3, can be reliably calculated by the fluctuation
formula to 1% or better. Other elastic constants, in particular the shear elastic constants, '
could not be reliably calculated for the superlaitice via fluctuation formula. The reasons for
this are yet unknown. It may presumably be related to inhomogeneous strain. Fortunately,
we can still calculate the elastic constants C;; of GBSL, at least for i, j < 3. This is enough
for us to estimate the critical strain for the instabilities we will study. In the following, the
spinodal instability criterion is calculated from (Cy; + C12)Ca3 - 2C35, and the Born
instability criterion is given by Cy; - C12. The Young's moduli are calculated using Eqs.
(2.18a) and (2.18b).

We calculated the elastic-constant tensors of the (001) GBSL's for two
temperatures, T = OK and 300K. At zero temperature, the average elastic-constant tensor
were computed through a lattice-dynamics method that included the "relaxation term”
arising from the intrinsic inhomogeneities of the superlattice®. [Lutsko 89, Wolf 89a] Fig.
7.3 (a) shows the results of elastic constants as a function of lattice parameter (a/ao)x'y.
They show the quantitatively similar behavior as compared to that shown in Fig. 7.1 (b).
The spinodal criterion and Born criterion were calculated and plotted in Fig. 7.3 (b).
Where (C}; + C12)Cs3 - 2C33 =0 and Cy; - C15 =0 give the critical lattice parameters of
the spinodal and Born instabilities, with values of (alao)ﬁ,y = 1.0369 and (a.’ao),'?,y = 1.0550.
It is interesting to note that, in contrast to the case in perfect f.c.c. crystal, the elastic
constants predict a smaller critical strain for spinodal instability in GBSL.

According to our theoretical analysis (see Chapter 2), at spinodal instability all
Young's moduli should vanish. As shown in Fig. 7.3 (c) the actually computed Young's
moduli predict very similar critical lattice parameters as the criterion does, which give
values of (a/aoﬁ,y = 1.0373 for Y, y, =0, and (a/20),y = 1.0369 for Y, = 0, respectively.
We have noted that the Young's modulus Y, is smaller than Y, (= Yy). This can be
understood based on the elastic constants shown in Fig. 7.3 (a). The ratio of Y, and Y, is
given by Y, /Y, =(C§l - 2C2|3MC11C33 - Cﬂ). from Fig. 7.3 (a) one can see that Cy; is
very ciose to C33 but obviously Cy5 is greater than Cy,. This gives
(€3, - 2¢2,{C11C33 - €3;) > 0, therefore, Y, is greater than Y,. Physically this can be

* These dat are got from Dr. S. R. Phillpot at Argonne National Laboratory.
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understood in the following way: Although the structural disordering at the GB tends to
stifien the GBSL, since in a full relaxed state the GBSL shows a large extension in GB
normal direction and a Poisson contraction parallel to GB, the larger volume fraction in GB
normal will decrease the Young's modulus in this direction.

In order to get the instability picture of GBSL at finite temperature, we also
calculated the elastic properties of the same system at T = 300K. As one might expect, the
system behavior at this low temperature should not deviate much from the zero
temperature. Fig. 7.4 (a) shows the elastic constants of the GBSL varying with lattice
parameter. At small stress the system behaves very similarly to the case of T = OK. Until
large applied stress all the elastic constants decrease more rapidly indicating larger softening
of the system. Fig. 7.4 (b) shows the instability criteria at this temperature, which give the
critical lattice parameter {a/ag)3,y = 1.0339 for spinodal instability and (a/ao),*("y = 1.0426 for
Bom instability, respectively. Correspondingly, the Young's moduli Y, and Y, give the
critical lattice parameter of spinodal instability as (a/2g)3,y(Y x=0) = 1.0374 and
(a/ao)iy(Yz:O) = 1.0354 as shown in Fig. 7.4 (c). Again we note that the Young's
modulus Y, is smaller than Y,, which indicates that under hydrostatic stress system may
fail first in z-direction.

7.4 Grain-Boundary Fracture at T = 300K

As mentioned at the beginning of this Chapter, the question we will address in the
present study of GBSL is that given that the pure dilatation of an f.c.c. crystal leads to
spinodal instability, does it also lead to the same instability in GBSL? In previous sections
we have built up the pictures of the elastic behavior of the GBSL under hydrostatic stress.
Based on these results the GBSL, indeed, will fail at the critical lattice parameters (or
strains) predicted by spinodal instability.

The simulations of the GBSL under hydrostatic stress were carried out by means of
a modified Parrinello-Rahman MD method [Ray 84] on a (TZN) ensemble. At every
applied stress the system was first equilibrated for 5,000 to 10,000 time steps. Then
another 10,000 to 20,000 time steps were performed to calculate the system properties.
Comparing the simulations of the perfect crystal and GBSL, the latter is more complicated.
We found that although according to an applied stress the system has an certain average
volume in response to this stress, since now the two lattice parameters a, , and a, can vary
independently, there can be large instantaneous fluctuations and correlative vibrations in
these lattice parameters around the average volume. This large fluctuation can give rise to
one to several order of magnitude increase in the mean-squared displacement compared to
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that of a perfect crystal at same temperature. These fluctuation may be important in
triggering the failure of the system in the region near the critical strain. So for the iarge
strain deformations runs of 50,000 time steps were made to get reliable average properties
of the GBSL.

Fig. 7.5 (a) shows the average intemnal stress in response to the applied hydrostatic
stress. At small applied stress the intemnal stresses respend isotropically. The three
components of the normal stress are essentially the same and very close to the value of the
applied stress. This force balance continues until the internal stress suddenly drops down
at 2 maximum value of applied stress I, = 0.0951 x 10'2 dyn/cm2. This rapid drop
behavior, as we have seen in the case of perfect crystal (see Chapter 6), points to the onset
of spinodal transition. At this critical applied stress an anisotropy in the internal stress
tensor appears, which indicates the inhomogeneous nature of the transition. This sudden
drop behavior is also seen in the system enthalpy [see Fig. 7.5 (b)]. As before, the
decrease in system enthalpy suggests that the transition corresponds to a mechanical failure
of the system, and thus is a low temperature spinodal transition.

Although a huinogeneous stress was imposed on the system, the structural
responses of the GBSL in lattice parameters are anisotropic. As can be seen in Fig. 7.6
(a), there appears a smaller expansion of a, in the GB normal direction than a, , in x- and
y-directions. At first glance, one may think that this is contradictory to the fact that the
Young's modulus Y, is smaller than Y, (= Yy). Thnis can be understood once one notices
the following factors: First of all, the system is subjected to a hydrostatic stress, the overall
response of the system to this stress is the consequence of the complex interplay between
various elastic moduli. Second, although a small Young's modulus Y, suggests a large
expansion in z-direction, the large Poisson's ratio v, (see Table 7.1) indicates a large
centraction also in this direction in response to the extensions in x- and y-directions. The
overall effect of the combination of these factors may lead to a small expansion in z-
direction.

Fig. 7.6 (b) shows the variation of the static structure factors S(ky) and S(k,) of
the GBSL with the applied hydrostatic stress. The slight change and sudden drop to zero
in S(k)'s as the applied stress increases show that the system stays in ordered structure
until the transition occurs. After the transition the system may have lost its structural order
or have transformed into another ordered state.

In order to address the question about the final state that the system ends up and the
details of the transition, we have carried out more careful analysis of the results of the
simulation runs at the critical applied stress. Fig. 7.7 (a), (b), (c) and (d) show the time
evolution of system properties during the transition. As clearly shown in Fig. 7.7 (a), after
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7,500 time steps the intemnal energy of the system undergoes a large and swift change
which indicates the onset of the transition, then it starts to saturate to a certain value. This
is obviously a manifestation of an abrupt release of elastic energy in the relatively short time
interval of about a few hundred time steps (or around 0.9 psec). After this change ancther
rapid increase in internal energy is seen starting around t = 15,000 time steps. This divides
the transition into two stages.

Corresponding to the first change in internal energy, the internal stresses also drop
down very rapidly while show some anisotropic behavior.[see Fig. 7.7 (b)] in response to
the change in system structure. That the z-component of the normal stress is completely
relaxed within a hundred time steps indicates a fully planar decohesion occurs
perpendicular to the z-direction. The partial relaxation of the internal stresses in x- and y-
component shows that the system has not completely broken down in these directions.
Since the sudden release of the internal stresses, the force balance between the internal and
external stresses were destroyed. The large stress gradient at the border of the simulation
cell induces a shock perturbation and causes a large expansion rate. The system eventually
fails also in other directions.

The structural responses of the system also show the brittle nature of this transition.
In response to the sudden loss of the balance between the internal and external stress, a
large acceleration of expansion appears [see Fig. 7.7 (c)]. The rapid increase in lattice
parameters can no longer be interpreted as clastic deformations. Consequently, the static
structure factor S(k)'s rapidly drop down to zero, indicating the destruction of the system
structure order. Visual examination of atomic positions projected on the three coordinate
planes in Fig. 7.8 (an instantaneous atomic configuration at t = 20,000 time steps) shows
that the system fractures along the grain boundary, and finally becomes disordersd.
Carefully examining several intermediate configurations during the transition clearly
showed that the transition begins with a nucleation of cavitation (or may be a creation of
small crack) at the GB and immediately starts to propagate along the GB. In the second
stage of the transition, the system further fails in other two directions and breaks down into
pieces.

It should be pointed out that the disorder seen in Fig. 7.8 may not be truly an
evidence of the structural disordering transition. Since when the GB fracture occurs the
sudden release of the internal stress leads to a rapid change in the expansion rate of the
lattice parameters from zero to a large value within a very short period of time. This is
~ equivalent to putting the system under an extreme condition of shock. Thus the
configuration shown in Fig. 7.8 is obviously not a true equilibrium state.
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Since we are more interested in the first stage of the transition, we carried cut a
recovery study of the system from the first stage of failure in an attempt to capture the
equilibrium state of the system afier the first stage. This structural recovery was simulated,
with the configuration of Fig. 7.8 as the initial input atomic positions, by compressing the
system gradually back to its original lattice parameters (a/ag) y = 1.0387 and
(a/ag), = 1.0270 at the beginning of the transition. After about 3,500 time sieps of constant
volume run at these lattice parameters it was found that the crystal order was reestablished;
the structure had fallen back to the undistorted f.c.c. state with a planar defect. Fig. 7.9
shows the projections of an instantaneous atomic configuration after 10,000 time sieps.
The crystalline region and the trace of the GB fraction region are clearly seen in this figure.

It was found [Wolf 89b] that the Poisson's effect plays an important role in
enhancement of the elastic anomalies in a GBSL, particularly of the Young's moduli.
Based on this observation one may ask if this has any effect on the instability or affect the
transition. To check this a series of (ThN) ensemble MD simulations of elongation
deformation was performed, which ailows us to express the in-plane Poisson contraction
of the GBSL completely. The simulation started from a stress-free configuration of the
same GBSL model as used before. The elongation was simulated by a uniaxial tensile
loading along the z-direction (GB normal) while fixing the lateral lattice parameter (a/ao)x‘y
at the stress-free value in all runs. Figs. 7.10 show the system properties in responses to
the elongation. Similar to the case of hydrostatic stress loading the internal energy and
stresses show a sudden drop when the GB fracture occurs [see Fig. 7.10 (a) and (b)). The
static structure factors in Fig. 7.10 (c) cleaiy show that the transition does not change the
structure order of the GBSL. As obviously seen in Fig. 11, the projections of an
instantaneous atomic configuration at (a/ap), = 1.0900 (the point in Fig. 7.10 (a) at which
the stresses drop down), a cavitation is nucleated at one GB, and with further stretch it
starts to grow aiong the GB. The system eventually fails in the form of GB fracture too.

In summary of our simulation results, we conclude that, at low temperature, along
the primary path the GBSL is unstable when the hydrostatic loading takes it ciose to the
critical region predicted by the spinodal instabiliry criterion. The system fails in the form of
GB fracture and shows all the features of spinodal transition.

7.5 Grain-Boundary migration and Fracture at T = 500K

As mentioned earlier that a fundamental characteristic of all interface systems is their
intrinsic inhomogeneities. The presence of an interface signifies that the immediate region
surrcunding the interface can have properties which could be quite different from those of
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the bulk region away from the interface. It has been known [Yip 89] that the basic
understanding of the properties of interface materials largely relies on the detailed
knowledge of local properties, such as local volume expansion, elastic constants and so on,
in the interface region. It is a little surprising that the instability criterion based on the
global elastic constants of the GBSL still well predicts the mechanical failure behavior of
the interface system. Maybe this gives an example that once the model system with
interfaces is properly prepared its mechanical behavior still can be reasonably described by
the global properties which are easily calculated using the known formulae.

Stimulated by the success in predicting the elastic behavior of a GBSL system at
low temperatire we attempted to study the instability of the same at high temperature.
Based on the thermal expansion study of this system we have known that this system starts
to recrystalize at 800K. Unfortunately this gives a upper limit of temperature which we
cannot go beyond.

We chose the temperature T = SO0K and followed the same simulation procedures
described in last sectiorn to simulate the GBSL under hydrostatic stress. Figs. 12 (a) and
(b) show the internal stress and enthalpy in responses to the applied stress. At small
applied stress the system responds normally as we have seen in Fig. 7.5 for the low
temperature. When the applied stress increases to the values of
In = 0.0743 x 10'2dyn/cm?2, the system enthalpy and the intemal stress appear to level off
from the original curves. With further increase in the applied stress the enthalpy and
internal stress first increase somewhat then rapidly drop down, indicating a transition.

The consequent responses in structure are shown in Figs. 13. At the applied stress
X, there is not much changes in lattice parameters being observed [see Fig. 13 (a)], but
large changes in the static structure factor occur. As seen in Fig. 7.13 (b) one of the static
structure factor S(k,) decreases a lot, from 0.6 in last applied stress to 0.3, and the other
recovers a little. These changes in S(k)'s indicate disappearance of region A of the GBSL
and the migration of the GB's.

In order to exanine GB migration, we calculated the planar static structure factor
Sp(k). Figs. 7.14 show the results for Zy = 0.0743 x 10'2dyn/cm? at t = 4,500 time steps
[Fig. 7.14 (a)] and 50,000 tin.e steps [Fig. 7.14 (b)]. The cross of S(k) and S(k;)
localizes the GB region. Atend of this run one GB had moved towards the left-hand side.
Fig. 7.15 shows the projections of the atomic configuration after t = 50,000 time steps. As
can be seen clearly in this figure, there are only two well-ordered atomic planes of the
region left as the result of the GB migration. Careful analysis showed that the migration
mechanism cf the GB is through the planar twist of the GB layer. Since the structure
disordering at the interface largely enhances the anhcarmonicity at the GB, which
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consequently leads to a high atomic mobility of the atoms in this region. This planar
twisting decreases one region of the GBSL and leads to the growth of the other. As we
have seen, when the GB's get close to each other, they start to attract one another. This
will decrease the GB energy and is responsible for the enthalpy decrease observed in Fig.
7.12.

At still larger applied stress, the system fails in the same way as in GB fracture as
we have seen at T = 300K. As clearly evidenced from Fig. 7.16, the rapid increase in
internal energy and sudden release of the internal stress give rise to a lower enthalpy state.
The complete release of the z-component of the stress indicates the very brittle fracture
along the GB. Consequently the system starts anomalous expansion.
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Table 7.1 Average elastic moduli and constants in the A — oo limit for the (001) 36.87°
(Z5) twist boundary (in unit of 1012 dyn/cm2). Y, G, Yy, and v are, respectively, Young's
modulus, the shear and biaxial modulus, and Poisson's ratio; B is the bulk modulus. For
example, v, is the value of v for stress in the x- and contraction in the z-direction. The GB

energy (in mJ/m2) has also been included. [Wol{ 89a]

Quantities EAM (Au)
Ci=Ci2,Cs3 1.955, 1.807
C12,C13=Cas 1.422, 1.571

Yx = Yy' Yz 0.567, 0.346
Gxz = Gyz, Gzy 0.440, 0.284
B 1.600
Yoz 0.647

Vyx = Vxy 0.109

Vax = Vzy 0.775

Vxz = Vyz 0.465
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Fig. 7.1 Variations of elastic properties, lattice parameter and
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Fig. 7.7 Time evolutions of system properties under applied hydrosiatic stress.

Behaviors of the internal energy (a), internal stresses (b), lattice parameters (c), and static
structure factors (d) during the transition. The sudden jumps in the internal energy and the
internal stresses show that the transition has all the features of spinodal transition like the
fce crystal in Chapter 6. The changes in internal energy and stresses indicate clearly that
there two stages of the transition. In the first stage, as indicated by the internal stresses, the
stress in z-direction is completely relaxed while that in x- and y-directions still staying in
finite, the system fractures along the grain boundary. Since after the first stage of transition
the system losses the stress balance it keep expanding and eventuaily fails in the form of

fregmentation. In this stage the crystalline order of the system is completely lost as seen in
Sk)'s.

191




> 04 oo%%% &ioo d)%b ogo ?908
14 om% 000% %@m fp &0

oom‘bg%acopg g 009;

2 } 0 0% O&Og%c%of o

-3.5 -2.5 -1.5 -0.5 05 1.5 2.5 3.5

Fig. 7.8 Projections of an instantaneous atomic configuration at the end of the first
stage of the ransition.

As shown in the prjections on x-z and y-z planes the system fractures along the grain
boundary and becomes structurally disordered.
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Fig. 7.11 Projections of an instantaneous atomic configuration after the internal energy drop.

As clearly seen in the x-z and y-z projections a caviation is nucleated at one grain boundary,
and with the further stretching it starts to grows along the GB, the system eventually fails in

the form of GR ftracture
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Fig. 7.12 System enthalpy and intemal stresses in responses to the
applied hydrostatic stress at T = 500K_

At small applied stress the and internal stress enthalpy respond
normally as in Fig. 7.4. When the applied stress increases 1o the
value of S =0.7412 (eV/atom) a GB migration is observed, but no
any anormalous changes in other properties are observed. At still
higher applied stress, system fails in the same way, as seenat T =
300K, of GB fracture.
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Fig. 7.13 Lattice parameter and structure factor in response to
applied hydrostatic stress at T = 500K.

Shown here are the lattice parameter-stress relation (a), and
static structure factor. At imposed stress S = 0.7412, the GB
starts to migrate. Consequently there is a larger expansion seen
in z-direction, and correspondingly a decrease in one of the
static structure factor S(k1). The overall effect of this GB
migration is enhanced degree of disorder in the system since
the GB's move close together.
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Chapter 8
Conclusions and Recommendations for Future Work

8.1 Conclusions

The different conditions of elastic instability of an infinite crystal under stress or
strain boundary conditicns, the cerresponding mechanisms of unstable structural
responses, and the final states of the transformed lattice have been studied through
examination of finite-strain elastic constants and moduli of an f.c.c. crystal under dilatation,
uniaxial stress, and uniaxial strain. This investigation has been carried out using an
integrated approach combining continuum elasticity through the principle of virtual work
and the solutions of eigenvalue of elastic constant matrices with the direct Monte Carlo and
molecular dynamics simulations of the unstable structural responses of the crystals. This
integrated approach has led to the following conclusions:

(1). There exist three kinds of instabilities in crystalline solids. They are: Spinodal
(dilatational) instability which is determined by the vanishing of the bulk modulus; Born
(normal distortional) instability which is given by Cy; = Cy,, or the vanisking of the shear
modulus G(1 10[ 110] = 0; and shear distortional instability which corresponds to the
complete loss of the shear resistance of the (100) planes along the [010] direction of the
crystal.

(2). Each instability is associated with a certain set of eigenstates of strain which defines a
particular deformation path (failure mode). For spinodal instability the mode is pure
dilatation and simply a continuation of volumetric deformation of the primary path. Bom
instability is a symmetry breaking instability, its failure mode consists of normal distortions
(secondary path of deformation) and yields a volume conservation along the secondary path
of deformation.

(3). As aconsequence of conclusion 2, the crystal instabilities manifest themselves only
when the crystal is in the eigenstates. Which instability can be seen depends on how the
crystal is deformed. Under the stress boundary condition (imposing stress with no
constraint on the strain response) the Bom instability is always dominant, while under the
strain deformation or the compliant boundary condition (imposing stress with scme
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constraints on the strain response) one can maintain the crystal in stable condition until a
critical strain.

(4). Compared to thermodynamic criterion of first order phase transformation which
determine the transition through the equality of the free energies of two phases, elastic
instability criteria, on the other hand, predict the instability by the elastic constants or
moduli of the initial phase and do not provide direct information about the final state of the
transformed lattice.

(5). From the direct observations through atomistic simulations, all the unstable structural
responses associated with spinodal instability have the feature of catastrophic failure, and
are discontinuous, first-order processes. The final states of the transitions are temperature
dependent. At low temperatures the transitions take the form of decohesive cleavage
fracture. At high temperatures the unstable structural response of the f.c.c lattice at the
instability is homogeneous disordering with al! features of mechanical melting. The
mechanism of the spinodal transition is an inhomogeneous nucleation of cavitation at low
temperatures, while at high temperatures, a homogeneous nucleation of disordered phase
with the assistance of enhanced thermal fluctuation. Although these transitions can take
different forms depending on temperature, their underlying cause, i.e., large stress
fluctuations at the critical strain, is essentially the same.

(6). Under applied stress, the structural phase transitions triggered by Born instability
show the features of martensitic transition but are continuous, second-order processes.
When the system is uniaxially stressed close to the limit of Born instability, it can undergo
shear strain with practically no cost in energy, the system transforms from f.c.c. lattice to
distorted b.c.c.. In the case of pure heating (P = 0), Bom instability initiates a
homogeneous, fist-order melting transition. Compared to the spinodal transitions, these
transitions take place through a completely different mechanism of symmetry breaking or
bifurcation. This bifurcation, in the case of finite applied stress, provides a link in
configuration space between f.c.c. and b.c.c. lattice, while in the case of pure heating to
melting, triggers a homogeneous disordering. The orthorhombic distortion predictec by
analytical analysis plays only an intermediate role in triggering a further shear distortion
observed in simulation.

(7). Spinodal instability also shows itself in inhomogeneous crystalline system, for
instance the interface material we have studied. The transition show the same mechanism
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as we have seen in the f.c.c lattice but, in the present case, it takes the form of grain-
boundary fracture.

The results summarized above will now be discussed in more detail. By applying
the principle of virtual work to a stressed crystal, we showed that the three elastic instability
criteria of the crystal under stress boundary condition naturally appear as a consequence of
the requirement which determines the inflection point of the strain energy. This procedure
attributes the instability of crystals to an eigenvalue problem of the matrix of current
(deformed) elastic constants. By solving the conditions which give the zero eigenvalue of
the elastic constant matrix, one can not only show that these conditions are just the three
instability criteria, but also by taking one step further, one can solve for the eigenvectors
which basically define the eigen-deformation paths or the failure modes. There exist eigen-
deformation paths which point out clearly that the instability of the crystal cannot show up
anyway. Whether one sees the instability depends on how one deforms the system. With
this treatment we recover all the resuits about crystal instabilities obtained by Milstein and
Hill [Hill 77, Milstein 79a] using a different approach.

Guided by theoretical analyses, the series of simulations presented in this thesis
constitute the first attempt to study systematically crystal instability and the unstable
responses of the lattice at finite temperature. By purposely controlling the loading
environments we have studied the instability of two potential models of f.c.c. crystals of
Cu and Au, and the behavior of these two systems under differeni loading conditions.

We have determined by Monte Carlo simulation and elastic constant calculations the
spinodal instability of an {.c.c. Lennard-Jones Cu lattice under symmetric isothermal
extension along the three directions of initial cubic symmetry. We have shown that at
several temperatures the critical strains determined for the spinodal instability criterion are
in agreement with the direct observations of the instability from the MC simulations. At
low temperatures the observed critical strains are quite close to those predicted by bulk
modulus. At high temperatures the observed critical strains are smaller than the theoretical
values. The reason for this behavior can be traced to the presence of the large thermal
fluctuations at high temperatures. A significant contrast brought cut by our simulation
results is that although melting at high temperature and fracture at low temperature have
very different final structural states of transitions, the underlying cause is essentially the
same, namely, large stress fluctuations at the critical strain.

The behavior of the crystal in the region of critical strain is well predicted by
spinodal instability. The values of these critical strains define an instability curve in the
temperature-density phase diagram as shown in Fig. 5.22. It has been suggested that the
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freezing curve which, like the melting curve, is defined only for temperatures above the
triple point T,, is effectively also the mechanical instability curve in the sense of heating a
crystal rapidly up to the limit of superheating. [Wolf 90b] It can be seen in Fig. 5.22 that
the critical strains observed in the present work delineate the extension of the mechanical
instability curve to temperatures below T,. It has been conjectured that in crossing this
instability curve the lattice will become disordered, thus providing a simple thermodynamic
connection between melting and solid-state amorphization. [Wolf 90b] What we have
found is that in crossing such a curve the lattice does become mechanically unstable as
manifested by sudden jumps in the hydrostatic pressure and the potential energy; however,
the atomic configuration into which it evolves depends on the temperature. At low
temperatures, the spinodal instability is accompanied by symmetry breaking as shown
clearly by the density profiles along the three cubic directions. At the same time, the
system becomes nonuniform by the formation of a local region of relatively low density.
We interpret this crystal response as cavitation which at T = 242.3K (about 0.20 T,) leads
to cleavage fracture upon further lattice dilatation. At T = 581.4K (about 0.48 T)), in
addition to cavitation-like behavior, significant local disordering occurs as the system is
strained beyond the point of instability. At high temperature T =969.1K (0.81 T,) the
system response at the onset of instability is homogeneous and complete disordering as in a
melting transition. At still higher temperature T =1550.5K (1.29 T) the system melts even
in compression.

Along with the critical strain curves of spinodal instability in Fig. 5.21 we also plot
the critical strains of Bomn instability predicted by the vanishing of the shear modulus
G(1 10)[1T0]. It can be seen that at low temperatures the Born instability curve lies below
the spinodal curve; as the temperature is increased they cross each other, and at high
temperatures the critical strains of Bomn instability are larger than that of spinodal
instability. According to continuum elasticity analysis, pure dilatation will suppress the
Born instability. This seems to be true in our observation from simulations. But since the
values of the critical strains of both the Born and spinodal instabilities are close to cach
other there is some ambiguity in drawing definite conclusions about this issue. Part of the
ambiguity stems from the relatively shallow well-depth of the potential as compared to an
EAM-type potential [Daw 84, Wolf 89a] for metals. Thus the Lennard-Jones potential
gives considerably lower values for the elastic constants which make it difficult to
distinguish between critical strains of the spinodal and Born instabilities.

To distinguish these two instabilitics we have also performed MD simulations using
an EAM potential for f.c.c. Aumetal. In this case the spinodal and Born instabilities
predicted by elastic moduli are clearly separated. For spinodal instability the pure
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dilatation-induced transitions show all the features of spinodal transitions we have seen in
L-J potential model. That is, cleavage fracture is observed up to T = 1001K, and
homogeneous disordering occurs at higher temperature T = 1200K (still below the
mechanical relting temperature T = 1380K). In these simulations the Born instability is
successfully suppressed with the constraint of pure dilatation even though it predicts
smaller critical volume expansion. On the other hand, several series of MD simulations
have been performed to simulate the uniaxial tensile stress loading (the load is in x-direction
in both simulations). In this way we leave the system free in the lateral directions y and z.
The system thus can to fail either at the Born instability or at the spinodal instability. Since
Bom instability has a smaller critical extension, the system does fail at the bifurcation point
predicted by Born instability up to the highest temperature T = 1200K simulated. The
transition conserves the volume and thus shows the continuous feature of martensitic
transition. This behavior is well in agreement with that predicted by our theoretical
analysis.

In general, a crystal structure can be described by two sets of parameters, one
defines the lattice and the other defines the structure within the primitive lattice cell. Our
simulations show that when the deformed system is stable, both of these parameters are
static (have certain average value). When the spinodal phase transitions take place, both the
lattice parameters and structure parameters change from static to dynamic variables,
whereas the transitions associated with Born instability involve a similar change in lattice
parameters but not in the structure variables. In the case of spinodal transition, the driving
force is the large stress fluctuations which result from the loss of the correlation of the near
neighbor atoms, while in the case of martensitic transition, although the lattice parameters
change with time, the neighbor atoms do not lose their spatial correlation and move in a
collective manner, the lattice can spontaneously undergoes a shear.

Considering the mechanical melting transition, there are still some ambiguities in
determining the underlying cause {Phillpot 90]. We have shown explicitly that both
spinodal and Born instability can initiate this transition, but with completely different
mechanisms. In the former case, pure dilatation leads to the sudden jump in the internal
energies and lattice parameters as shown in Figs. 4.6 (a), (b), and 4.7 (a) and (c). The
mechanical melting requires a latent heat and volume, therefore, is a discontinuous, first-
order phase transformation. The mechanical melting temperatures are well predicted by the
critical strain curves. As can be seen in Figs. 5.21 and 6.26, the extrapolation of critical-
strain curves of the spinodal instability, which is an extrapolation from the finite applied
stress load to zero load, gives the melting temperature TS = 1357.2K for L-J model of Cu
and T3 = 1368K for the EAM model of Au. These temperatures are very close to the
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observed mechanical melting points for these two models, i.e., Tg = 1365K for L-J model
of Cu and T = 1360K for EAM potential model of gold.

In the literature, the Born criterion is usually used as the criterion for mechanical
melting [Tallon 792, Boyer 85, Wolf 90b, Okamoto 50], but no direct observation reported
shows clearly the connection of the Bomn instability and mechanical melting. When
extrapolating our critical strain data for the Born instability to zero load {cf. Figs. 5.21 and
6.26], one gets the mechanical melting temperature for L-J model of Cu is T8 = 1444.3K,
and TB = 1454.8K for EAM potential model of Au. In simulation when the system is
heated up under zero applied stress, since there is no constraint on the strain response the
system is free to follow any one of the three instability conditions which gives the smailest
critical expansion. The bifurcation occurs at T = 1350K which is 30K lower than observed
in the case of spinodal instability.

8.2 Recommendations for Future Work

In this thesis we have studied the elastic instabilities of a crystal lattice with cubic
and tetragonal symmetry through a combined approach of continuum elasticity analysis and
atomistic simulations. For the theoretical part of analysis, it could be useful to extend the
present work to othier elastic symmetries. This should be quite straightforward by using
the equation of instability developed in Chapter 2. The current linearized elasticity analysis
is applicable not only to a homogeneoaus system but also it may provide information on the
possible local fail modes in an infinite system with imperfections. For the simulation part,
the present work can be readily extended to other systems of different structures, for
example, the molecular systems of ice, benzene, the covalent bonding system like Si, and
binary alloy systems where elastic instability may be achieved by local distortion. The
work that has not been done in this thesis is a systematic investigation of the system size
effect on elastic instability and the final state of the unstable system. Based on the results
of the largest system of N=1372 we have studied, we believe that for very large systems
the instability criterion may be satisfied locally by thermal activation so th-* the failure of
the system may take the form of creation of defects.

Both melting and solid-state amorphization (SSA) are the processes during which
the system undergo structural disordering. It has recently been proposed that
considerations of thermodynamic parallels between conventional melting by heating and
solid-state amorphization suggest a unified picture of how crystals undergo structural
disordering. [Johnson 86, Cahn 86, Richet 88, Woif 90a, Green 90, ] Following the
observations that structural disordering is always accompanied by a volume expansion, it
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has been suggested that volume expansion should play a central role in SSA in an
analogous manner to the melting iransition. The implication is that at temperatures below
the triple point, essentially the melting point at zero pressure Ty, a sudden volume
expansion may bring about structural disordering.

Regarding this volume-expansion induced crystal-to-amorphous transition, it
appears that the present results do not generally support this hypothesis. In both potential
models we studied, structural disordering only occurs at the high temperatures just below
the melting peint under volumetric deformation. In the case of superheating a crystal to
melting, the Born instability triggers the structural disordering only at the mechanical
melting temcperature. It is interesting to note that the destruction of long-range order occurs
only in the high temperature region where thermal disordering is large. We feel that in
view of the SSA as a mechanical catastrophe alias elastic instability like mechanical melting,
the local structural distortion is important in triggering SSA. Several recent works have
given evidence of this effect [Hsieh 89, Sabochick 91]. Li et al. [Li 92] reported that in a
simple L-J model of two species, a shear distortion of the simulation cell is found at the
onset of amorphization. At the same time, sharp decreases in the bulk and shear moduli are
also observed. A study of the propagation of a crack tip [Becquart 92] has shown that
under shock stress large local distortions, either local expansion or contraction, are induced
in a pure Al metal system, and the system is amorphized at 300K. It seems clear that a
combined approach of elastic instability analysis with either experiment or computer
simulation can bring insight into the mechanism of SSA.

Another closely related area that the elastic instability ana'ysis may be applied is the
study of fracture. Much work in this area is concerned with the propagation of the crack tip
assuming that the crack tips already exist in the system. Some recent results have appeared
in attempts to correlate the elastic instability with direct simulation to understand the
nucleation of microcracks [Blumberg Selinger 90] and the microscopic origin of hydrogen
embrittdement in Pd-H system [Zhong 92]. Several studies of two-dimensional systems
which fails mechanically under different deformations have shown insightful results
[Ashurts 76, Dodson 84, Sahimi 86]. Further study should emphasize on the direct
correlation between the elastic instability and the failure behavior.
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