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ABSTRACT

Energy dissipation, which is also called AC loss, of a composite multifilamentary
superconducting wire is one of the most fundamental concerns in building a stable
superconducting magnet. Characterization and reduction of AC losses are especially
important in designing a superconducting magnet for generating transient magnetic fields.
The goal of this thesis is to improve the understanding of AC-loss properties of
superconducting wires developed for high-current ramp-field magnet applicatuons. The
major tasks include: (1) building an advanced AC-loss measurement system, (2) measuring
AC losses of superconducting wires under simulated pulse magnet operations, (3)
developing an analytical model for explaining the new AC-loss properties found in the
experiment, and (4) developing a computational methodology for comparing AC losses of a
superconducting wire with those of a cable for a superconducting pulse magnet.

A new experimental system using an isothermal calorimetric method was designed and
constructed to measure the absolute AC losses in a composite superconductor. This
unique experimental setup is capable of measuring AC losses of a brittle Nb3Sn wire
carrying high AC current in-phase with a large-amplitude pulse magnetic field.
Improvements of the accuracy and the efficiency of this method are discussed.

Three different types of composite wire have been measured: a Nb3Sn modified jelly-
roll (MJR) internal-tin wire used in a prototype ohmic heating coil, a Nb3Sn internal-tin
wire developed for a fusion reactor ohmic heating coil, and a NbTi wire developed for the
magnets in a particle accelerator. The cross sectional constructions of these wires represent
typical commercial wires manufactured for pulse magnet applications.

Two types of field variation were of interest to this research: (1) a large peak-to-peak
triangular cyclic field, and (2) a small sinusoidal wave-form (ripple) field superimposed on
various large DC bias fields. The first field condition was used to simulate the ramp field
operation of a pulse magnet. Superconducting wires were tested with and without
transport current. The ripple field condition was adopted for approaching the ideal,
constant critical current condition assumed in the existing AC-loss models. Only current-
free wires were tested in this field condition.

In both test conditions, the AC losses must be calculated with a field-dependent critical
current density profile which has not been explicitly included in the existing AC-loss
models. The formulae of the existing hysteresis-loss and coupling-loss analyses were
extended for the field conditions and the test wire cross sectional structures used in this
work.



Single-strand AC loss test results were compared with analytical results using these
modified loss models. Most calculated results agreed with the experimental data in two of
the test wires. Existing AC-loss models were insufficient to explain the occurrence of a
local maximum loss in a very low frequency regime in the ramp-rate dependent loss profile
of the Nb3Sn MJR wire.

An inter-bundle coupling loss model has been developed as the first analytical AC-loss
model attempting to understand the loss mechanism of this newly found phenomenon. The
proposed model has succeeded in explaining the occurrence of the local maximum loss at a
slow ramp rate and simulating the trend of the loss profile as a function of the ramp rate.
This was achieved by accounting for the collective coupling current effects caused by non-
uniform cross sectional construction of the MJR wire.

The measured AC losses of single-strand carrying transport current are not consistent
with the predictions by existing loss models, even when a field-dependent critical current
density is applied in the calculation. The experimental results show that when a DC or an
AC current is applied to a composite superconductor under ramp field condition, the
additional AC losses caused by transport current are similar if Ipc = IAC,max. The test
results also reveal that the total loss of a composite wire carrying large transport current
may have a higher loss in a slowly ramped field than that in a fast one. This conclusion is
just opposite to the general concept that high time-rate of field variation generates high AC
losses. These new AC-loss properties of a current-carrying composite wire have been
experimentally identified in all three types of test wire. These general phenomena may lead
to a new area for future analytical work.

The United State Demonstration Poloidal Coil (US-DPC) is a prototype ohmic heating
coil designed as a development step in pulsed superconducting magnet technology. One of
the major goals of the US-DPC experiment was evaluating AC losses of the coil at ramp
field operation up to 10 T at 10 T/s. AC losses measured in the large-scale US-DPC test
were compared with those of constituent US-DPC wires tested in the laboratory-scale
experiment. Due to the distinctly different field conditions of these two experiments, the
comparison was mainly performed on the calculated AC-loss parameters. Good agreement
in these AC-loss parameters was found. A prediction method for AC losses in a full-size
cable has been developed out of the loss comparison process. The practical scheme uses
the formulae applied in this work combined with the required parameters evaluated from the
laboratory-scale single-strand experiments. This prediction method is one of the most
important application of this thesis work.
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CHAPTER 1
INTRODUCTION

1.1 BACKGROUND
I.1.1 Introduction

The application of superconductors in building large-scale high-current and high-field
superconducting magnets has gained increasing prominence in various areas such as
magnetic-confined nuclear fusion (Refs. 1.1 to 1.6), particle acceleration (Refs. 1.7 to
1.11), magnetic levitation (Refs. 1.12 to 1.16), etc. AC loss is one of the most
fundamental concerns in superconducting magnet design (Refs. 1.5, 1.6, 1.11, and 1.17).
AC loss relates to the heat dissipation in a superconducting wire subject to a time-varying
(AC) field (Refs. 1.1 to 1.11, 1.17, and 1.24). AC losses, although a very small fraction
of the total stored energy in the magnet, are not desirable especially at liquid helium
temperature. The reason for this is that any heat added to the superconductor tends to
increase its temperature and degrade its superconducting properties (Refs. 1.17 and 1.24).
If the heat is not properly removed, the stability of the superconducting magnet will be
jeopardized. From an economic viewpoint, the energy required to remove one unit of heat
from a cryogenic system at 4 K can be hundreds to a thousand times as large (Refs. 1.2
and 1.17). A carefully designed, low AC-loss, superconducting magnet can greatly reduce
the required operating power for the entire magnet system. Since any superconducting
magnet must experience a transient charging stage, AC losses occur in both AC and DC
superconducting magnets. Pre-estimation of the AC losses during the design stage are
important to any type of superconducting magnet (Ref. 1.5).

In order to provide a background for discussing the subject of this thesis, a general
introductory survey of bulk superconductor, composite superconducting wire, and their
important macroscopic properties including some simple qualitative description of the AC-
loss mechanisms is briefly presented in this section.
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I.1.2 Type-I and Type-II Superconductors

The superconducting properties of mercury at liquid helium temperature was first
discovered by Heike Kamerlingh Onnes and his colleagues in the Netherlands in 1911
(Ref. 1.18). In their experiment, the electric resistivity of a high-purity mercury thread was
measured in a liquid helium bath. As shown in Fig. 1.1, when the temperature was
reduced to ~4.2 K, a sudden drop of the electric resistance of mercury by a factor of
~10,000 was found within a temperature variation of 0.02 K. After repeating the
experiment many times with different mercury samples, Kamerlingh Onnes reported that
“Mercury has passed into a new state, which on account of its extraordinary electrical
properties may be called the superconducting state.” (Ref. 1.18). The threshold
temperature at which the electric resistance of a conductor drops suddenly is now known as
the ‘critical temperature’, T¢. In early 1913, the threshold values of the current densities of
a mercury thread at temperatures below 4.18 K were reported to be dependent on the
temperature by Kamerlingh Onnes (Ref. 1.18). The threshold current density is now called
the ‘critical current density’, J¢(T), which is the most important superconducting property
in the area of applied superconductivity. In the same year, the superconducting states of
pure tin and lead were found by the same laboratory at critical temperatures of 3.8 K and 6
K, respectively (Ref. 1.18). The resistances of tin and lead were measured in different
magnetic fields, and threshold values of the fields were reported to be temperature
dependent by Kamerlingh Onnes in 1914 (Ref. 1.18). This threshold field is now known
as the ‘crtical field’, He(T). Thus, by 1914, Kamerlingh Onnes’ laboratory had not only
discovered the superconducting state of the materials, but also found the most important
characteristics of a superconductor: critical temperatures, critical current densities, and
critical fields.

During the early stage of searching for superconductors, major efforts were
concentrated on testing superconducting properties of highly-purified metals. The only
alloy that had been used was the amalgam of tin and mercury which was found to have
superconducting properties similar to pure mercury. No further attention to alloys had been
paid before 1920 (Ref. 1.18). Between 1920 and 1930, researchers studied various metals
and alloys for the purpose of seeking superconducting materials with higher critical
temperatures for high field and high current applications (Ref. 1.18). NbTi was discovered
during that period and remains one of the most important superconductors for
electromagnet applications due to its favorable metallurgy (Ref. 1.17). The family of
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superconductors with the A15 crystal structure, such as V3Si, V3Ga, Nb3Sn, Nb3Ge, etc.,
were found in the 1950’s (Ref. 1.19). As illustrated in Fig. 1.2, the intermetallic A3B
compound with A15 structure is formed by a body-centered cubic arrangement of B atoms
with two A atoms centered in every face yielding orthogonal chain structures running
through the crystal (Refs. 1.19 and 20). The A15 crystal structure is responsible for not
only the higher critical temperatures (~ 16 - 23 K), but also the inherently brittle and strain-
sensitive natures of these compounds. The family of high-T, superconductors (T = 25 K)
discovered in late 1986 and early 1987 also has a similar crystal structure (Ref. 1.19).

The single property of zero DC electric resistance is not sufficient to describe a
superconductor since a perfect conductor possesses the same characteristics. In 1933,
Meissner and Ochsenfeld found that in low external magnetic fields (< Hc), the magnetic
flux density inside a large single crystal of tin was zero (Ref. 1.18). The finding shows
that the superconductor expels the magnetic flux instead of conserving the flux as the
perfect conductor does. This perfect diamagnetic property of a superconductor is known as
Meissner effect (Refs. 1.17, and 1.21 to 1.27). The zero DC electrical resistance and
perfect diamagnetism are the two indispensable phenomenon characterizing a
superconductor (Refs. 1.18, 1.21 to 1.23, 1.26 and 1.27). After the phenomenon of the
superconductor were characterized, theoretical works attempting to explain the source of
superconductivity were developed extensively, which are not within the scope of the
present research. Important review articles can be found in Refs. 1.21 to 1.27.

According to their magnetic properties, superconductors are categorized into type-I and
type-II conductors, which can be distinguished from the H-T phase diagrams as shown in
Fig. 1.3 (Refs. 1.26 and 1.27). As seen in Fig. 1.3(a), at a temperature below Tg, a type-I
superconductor has a single critical field, Hc. The superconductor is in the Meissner state
when the applied field strengths are less than Hc(T), and becomes a resistive conductor (or
a normal conductor, in contrast to the superconductor) when the Hc(T) is exceeded. Fig.
1.3(b) shows that a type-II superconductor has two critical fields, the lower critical field,
H¢1(T), and the upper critical field, Hep(T). With an applied field strength below H¢1(T),
the type-II superconductor is in the Meissner state similar to the type-I superconductor.
The type-II superconductor becomes normal as the applied field strength exceeds Hco(T).
When the applied field strength is between the lower and upper critical fields, a type-II
superconductor is able to carry some current without resistance but is no longer perfectly
diamagnetic. The phenomenon is known as the mixed state (Refs. 1.26 and 1.27). The
existence of the mixed state can be roughly pictured as follows.
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When a small external field strength (< Hc) is applied to a type-II superconductor, a
circulating current is induced on the surface of the superconductor (Ref. 1.26). The
surface current generates a field opposing the external field, and the bulk of the
superconductor is perfectly diamagnetic which is the same as the type-I superconductor. In
the mixed state, when the applied field strength exceeds the lower critical field of a type-II
superconductor, Fig. 1.4 shows that the diamagnetic surface current remains circulating,
but the material is threaded by resistive (or normal) cores. The superconductor is
magnetized when a part of the volume is penetrated by the normal cores. The normal cores
along with the vortices form at the surface and move into the material which are in parallel
to the applied field. Each normal core contains a single flux quantum in the same direction
as the applied field, which is shielded by a vortex of supercurrent. The normal cores have
small radii which can be imagined as an array of filaments embedded in a bulk
superconductor. When an external current (< I¢) is applied to a superconductor containing
normal cores, the currents are flowing without resistance in some continuous
superconducting paths in the bulk material. The bulk superconductor is now considered as
a mixture of superconducting state and normal state, or briefly, in a mixed state. As the
applied field strength increases, an increasing region is covered by the normal cores. When
the normal cores are overlapped, the so called upper critical field is reached, and the whole
superconductor becomes normal (Ref. 1.26).

I.1.3 Flux Pinning and Hard Superconductors

In general, the ranges of the critical fields for type-I superconductors or the lower
critical field of the type-II superconductors are on the order of a few hundred Gauss (Ref.
1.27). The order of magnitude of the upper critical field is about 10 T. The usable field
range of a type-II superconductor in the mixed state is much larger than that in the Meissner
state. However, when a current is applied to a type-II superconductor, the vortices tend to
be moved by the Lorentz force. In a perfect type-II superconductor, the movement of the
vortices causes an electric resistance called flux flow resistance which is proportional to the
normal state resistance of the superconductor (Ref. 1.23). The interaction of the current
and the flux flow resistance results in energy dissipation. Fig. 1.5 shows that only a small
amount of currents are allowed to flow without resistance in a perfect type-II
superconductor in the mixed state. Fortunately, it is found that in the mixed state, the
movement of the vortices can be stopped (or pinned) by introducing imperfections and
impurities to the type-II conductor (Refs. 1.23, 1.24, and 1.26). As seen in Fig. 1.5, the
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critical currents of an imperfect superconductor are considerably improved both above and
below H¢j. It is important to note that the critical current of a type-II conductor is the
current which creates just enough Lorentz force to detach the vortices from the pinning
centers (Ref. 1.23).

The magnetization of a perfect type-II superconductor is reversible. However, an
imperfect type-II conductor shows some irreversibility in its magnetic properties because of
the pinning of the vortices in the conductor (Ref. 1.26). As the external field increases and
passes the Hc1, the normal cores generated on the surface of the material can not move
freely into the interior. Similarly, as the external field drops from above Hcj, some of the
vortices are pinned in the material and part of the flux is trapped. Thus, if the
magnetizaton of an imperfect type-II superconductor is plotted against the external field, a
hysteresis loop as seen in Fig. 1.6 will be found. The area covered by the hysteresis loop
is the unrecoverable energy loss during each field cycle, which increases with the pinning
force in the material.

In general, a perfect type-II superconductor is difficult to produce unless great care is
taken during fabrication. A type-II superconductor with imperfections and impurities,
known as a dirty type-II superconductor or hard superconductor, is of great importance in
the construction of superconducting electromagnets (Ref. 1.23). The hard superconductor
1s the superconducting material of interest to the present research, since such a conductor is
capable of carrying high DC currents in its mixed state in a wide usable field range. Except
for Nb, most hard superconductors are in alloys or compounds, among which NbTi and
Nb3Sn are the most well-known commercialized superconducting materials (Ref. 1.17).

I.1.4 Technical Superconducting Wires

A practical superconducting wire for high field superconducting electromagnet
applications must be capable of carrying a high current flowing without resistance in a high
field. This can only be accomplished with low-T type-II superconductors at the present
time. The superconductors in a magnet may be degraded due to various factors such as
inappropriate manufacturing process, external disturbance, etc. (Ref. 1.17). The worst
case of the degradation is caused by a sudden heating of the superconductor which exceeds
the local heat removal capability. Under such conditions, the superconductor may become
resistive which will result in further temperature increase due to self-heating. If the power
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supply to the magnet is not properly shut off in a short time, a local heating process may
propagate to a larger region. Eventually, the energy stored in the magnet may be released
in the superconductor in the form of heat. The above process is called a quench (Ref.
1.17). A useful superconducting magnet must be designed to operate in a quench-free
condition.

In order to prevent the occurrence of large scale quench and provide quench protection
to the superconductor, it is necessary to reduce the possibility of sudden heating of the
superconductor and improve the efficiency of heat removal. In most cases, the heating of
the superconductor comes from the effect of the Lorentz fdrce, both internal and external,
to the conductor. Externally, Lorentz forces cause wire movement. The energy is
converted into heat due to friction. This type of heat source is not a subject of this
research. Internally, as the applied field increases, the critical current density of the
superconductor decreases, which implies that the Lorentz force dominates the pinning
force. As more flux is able to enter the superconductor from the surface, the flux starts to
move and dissipate energy. If the dissipated energy is not properly removed, the pinning
centers will be thermally activated, and the critical current density will be further decreased.
The cascade effect of flux motion and energy dissipation is called a flux jump (Ref. 1.17).
In order to eliminate the flux jump, one may reduce the distance available for flux moton
and reduce the temperature effect on the critical current density by efficiently conducting the
dissipated energy from the superconductor. Both methods in preventing a flux jump
require fine division of the superconductor (Refs. 1.17 and 1.24).

When the hard superconductor becomes resistive (or normal), the electric resistivity is
much higher than that of a good normal conductor such as Cu or Al. In order to reduce the
self-heating of a normal superconductor, the fine superconductor filaments are embedded in
a resistive matrix material with high thermal and electric conductivities. The matrix
material, also called a stabilizer, not only increases the heat removal efficiency but also
provides an electric bypass of lower Joule heating for the superconductor in the event of a
quench. Therefore, the stabilizer serves to prevent a quench and to protect the
superconductor during a quench. This composite structure of many filaments in a matrix
material is called a multifilamentary zone. In order to enhance the function of the stabilizer,
an additional normal material cladding is usually added around the multifilamentary zone
(Ref. 1.17).
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With the improvement of the stability of superconducting wire, the superconductor
filaments are electrically connected by the matrix material. Some currents flowing in the
superconductor filaments may link through the normal matrix due to the electric field
induced by an AC or transient magnetic field (Refs. 1.17 and 1.24). Based on
consideration of AC losses, which will be explained in the next subsection, the composite
wire is twisted at the final stage of wire drawing. Fig. 1.7 illustrates the cut-away view of
the structure of a practical superconducting wire which is pictured as a twisted composite
wire with a multifilamentary zone and a normal cladding. The appearance of a twisted
superconducting wire is similar to a solder-filled small-scale twisted electric cable,
therefore, a superconducting wire is sometimes also called a superconducting strand.

I.1.5 AC Losses in Technical Superconducting Wires

The major mechanisms of AC losses are: (1) hysteresis losses, (2) coupling current
losses, (3) penetration losses, (4) transport-current losses, and (5) self-field losses.

Hysteresis loss is the most fundamental loss mechanism in a hard superconductor
affected by a time-varying field (Refs. 1.17, 1.24, and 1.27). Hysteresis loss is initiated
once the superconductor is in the mixed state. This type of loss results from irreversible
magnetic flux motion in the imperfect type-1I superconductor driven by the external
changing field at any frequency. Since hysteresis loss corresponds to flux pinning and flux
motion, one can imagine that it is related to the critical current density as well as the size of
the superconductor.

As mentioned above, the superconductor filaments in a composite wire are electrically
connected by the resistive matrix material. The electric potential, induced by the time-
varying magnetic field, drives the currents flowing among superconducting filaments. The
induced currents flowing across the resistive material, link the shielding currents in the
filaments and form closed current loops transverse to the applied field (Refs. 1.28 to 1.31).
The electric potential is proportional to the area, enclosed by these current loops, transverse
to the changing field. These special kinds of eddy currents are called coupling currents. At
some higher frequency, the coupling current may link all the superconductor filaments
together. When this occurs the whole multifilamentary zone behaves like a bulk
superconductor. The consequence of this is that a flux jump in a single filament may result
in a flux jump in all filaments, which is highly undesirable. Twisting a multifilamentary
wire is equivalent to segmenting the area available for induced potential. Due to the twist,
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Fig. 1.7 Cut-away view of a twisted multifilamentary superconducting wire.
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the electric field between filaments generated by the changing field reverses every half twist
pitch. If the twist pitch is short enough, the electric field and thus the coupling currents are
kept low, and the filaments are effectively de-coupled. Therefore, a technical
superconducting wire is always twisted. The joule heating due to the induced coupling
currents flowing in the resistive matrix materials is called coupling (current) loss.

The net electric field in the matrix and the cladding drives the coupling currents to the
outer boundary of the multifilament zone. When the current density in the outer-most
filament is larger than the critical value of the superconductor, the outer-most filament layer
is saturated. The coupling currents will be collected by the next outer-most layer, and so
forth. At a certain high frequency, depending on the characteristics of the wire, the whole
multifilamentary zone can be saturated (Refs. 1.28, 1.30, 1.32, and 1.33). Theses
. currents flowing in the saturated layer create a secondary magnetic field trying to screening
the whole composite wire from the external field variation. A composite conductor with a
saturated layer is like a bulk superconductor penetrated by external field. The loss due to
the magnetization caused by the coupling currents flowing in the superconducting filaments
in the saturated region is sometimes called penetration loss (Ref. 1.30).

When the current flowing in the superconductor is driven by an external power supply,
1t is conventionally called transport current as opposed to the induced shielding current.
Due to flux pinning, the current flows in the inner region of each superconductor filament,
which changes the symmetry of the spatial distribution of the shielding current in the
superconducting filament (Refs. 1.17, 1.24, and 1.33). As the external field increases, the
area required for the shielding current to flow is also increased, and the region allowable
for transport current is reduced. When the transport current density becomes higher than
what the superconductor can take in the inner region, the transport current starts to fill in
the outer region where the shielding current flows in the opposite direction. The filament is
saturated when all the currents are flowing in the same direction. Additional hysteresis type
losses due to transport currents is small before the filament is fully penetrated by the
external field, but is not negligible after full penetration.

Self-field losses are caused by the interaction of the transport currents and the transverse
field induced by the transport currents themselves (Ref. 1.17). For a strand in a
superconducting magnet environment, the self-field is usually much smaller than the total
applied field generated by all other conductors. Unless the self-field is as significant as the
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applied field, the self-field loss of a single strand is usually negligible compared with other
types of losses.

Of the loss mechanisms discussed above, hysteresis and transport current losses occur
in the superconducting filaments, while coupling current losses take place in the resistive
material. The penetration losses are related to the interaction of the coupling currents and
the superconductor filaments. The importance of the interactions between different types of
losses depend on the external field, the applied current, and the property of the wire (Refs.
1.17, 1.31, 1.33). Since the properties of the wire are affected by the wire design,
manufacturing processes, etc., some of the parameters important to the prediction of the
AC loss can not be obtained analytically. This is especially true when the wire construction
becomes complicated.

1.2 PROBLEM STATEMENT
1.2.1 Introduction

The subject of this thesis was developed out of research on the United State
Demonstration Poloidal Coil (US-DPC) (Ref. 1.34). The US-DPC is a prototype ohmic
heating coil designed as a development step in pulsed superconducting magnet technology.
It was designed and built by the Superconducting Magnet Development Group at MIT and
tested at the Japan Atomic Energy Research Institute (JAERI) in late 1990. One of the
major goals of the US-DPC experiment was evaluating the AC losses in this large-scale coil
at ramp field operation up to 10 T at 10 T/s (Ref. 1.34).

During the design stage, existing AC-loss models were used to pre-estimate the loss
behavior of the US-DPC cable. It was found that the existing AC-loss models were mostly
developed for analyzing the loss of a composite superconductor affected by a time-
changing field with a small field variation. Existing loss models are not totally adequate for
simulating large field variation conditions such as those to be generated by an ohmic
heating coil in a fusion reactor. It was necessary to extend the existing models to all the
expected operating conditions of a pulse coil to provide adequate AC-loss information for
designing a stable magnet system. ‘
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A single composite superconducting wire may contain thousands of fine
superconducting filaments embedded in a matrix. The filaments may be uniformly
distributed or clustered in several local regions. The distribution of the electric resistivity of
the matrix material may be uniform or may vary by orders of magnitude in different
regions. Two key parameters affecting the accuracy of AC-loss calculations are the
effective values of the filament size and the resistivity of the matrix along the paths of the
coupling current loops. These two parameters depend heavily on the wire design and
manufacturing process, and, in practice, may be dramatically different from the design
value. The most reliable knowledge of these two key parameters must be obtained
experimentally. Single-strand AC-loss measurement is thus indispensable in characterizing
AC losses in a single strand as well as a full-size cable.

During the investigation of the existing experimental methods, it was determined that
absolute values of the AC losses are required to evaluate those two AC-loss parameters as
well as justify the calculated AC losses. Calorimetric measurement is the primary method
satisfying such requirements (Ref. 1.35). However, calorimetric measurements have never
been performed on a current-carrying Nb3Sn wire for the current and field conditions
relevant to the operation of a ramp field magnet such as the US-DPC. A new apparatus
based on the isothermal calorimetric method must be developed by taking into account the
Lorentz force effect on the brittle Nb3Sn single strand. A preliminary experimental
apparatus was originally constructed by Takayasu, et al. (Ref. 1.36) who improved the
efficiency of this method by coupling an electronic feedback control circuit to the
calorimetric system. From the experiences of using this apparatus, it was found that the
efficiency of the measurement could be enhanced by improving the stability of the feedback
control circuit. Furthermore, the accuracy of AC-loss measurement of a current-free test
wire was challenged by field-dependent noise as well as significant noise-to-signal ratio.
This thesis work thus includes re-design and construction of a reliable experimental system
for characterizing AC losses of current-carrying wires under the current and field
conditions simulating the operation of the US-DPC experiment.

An additional two types of wire designed for ramp field applications were also examined
using this new apparatus under similar current and field conditions. The cross sectional
constructions of these three different composite superconductors are general enough to
represent most typical commercial superconducting wires manufactured for ramp field
magnet applications. Thus, this thesis research was generalized to investigate the AC
losses of composite superconductors for high-current ramp-field applications.
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I.2.2 Thesis Scope and Goals

The goal of this thesis is to improve the understanding of AC losses in superconducting
magnets for ramp field applications such as the ohmic heating coils in a nuclear fusion
reactor and the dipole magnets in a particle accelerator. More specific goals are to develop
an experimental method for measuring AC losses under simulated operating conditions, to
understand single-strand AC-loss characteristics, and to apply single-strand test results to
the cable for a large-scale ramp field superconducting magnet. In order to accomplish these
goals, this thesis contains five major tasks:

(1) extension of existing hysteresis-loss and coupling-loss models,

(2) design and construction of an AC-loss measurement system,

(3) measurement of AC losses of composite superconducting strands,

(4) development of analytical models for newly found loss behavior, and

(5) development of a computational methodology for comparing the AC losses of a single-
strand with those of a cable for a pulse magnet.

Chapter II contains a general review of existing analytical AC-loss models relevant to
this thesis work, which provides a background for further discussions of AC-loss
analyses. The review includes hysteresis loss, coupling current loss, penetration loss, and
additional losses due to both DC and AC transport currents. In Chapter II the formulae
calculating coupling current loss of a single-strand with a multi-layer cross sectional
construction are extended to adopt the configurations of all three wires tested.

Two types of field variation are of interest to the present research: (1) a large peak-to-
peak triangular cyclic field, and (2) a small sinusoidal wave-form (ripple) field
superimposed on various large DC bias fields. The first field condition is used to simulate
the ramp field operation of a pulse magnet. The ripple field condition is adopted to
approach the ideal condition applied in the existing AC-loss models. In both cases, the AC
losses must be calculated with a field-dependent critical current density profile which has
not been explicitly included in the existing hysteresis models. In Chapter III, the field-
dependent semi-empirical critical current density expressions are first examined, followed
by a revision of the existing 2-D hysteresis-loss analysis.

One of the most fundamental contribution of this thesis work is the development of an
experimental method for laboratory-scale single-strand AC-loss measurement with the field
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and current conditions simulating ramp field operation of a superconducting pulse magnet.
The new experimental system developed in this thesis work, is based on an improved
isothermal calorimetric method. This was the first experimental setup which evaluates
absolute AC losses of a current-carrying Nb3Sn single-strand under simulated pulse
magnet operating conditions. Without any modification, this apparatus can be used not
only to estimate different types of single-strand AC loss but also to reliably measure the
critical currents of the AC-loss test wire. Such a multi-functional AC-loss measurement
system has never been described in the literature. Chapter IV includes a brief review of
existing AC-loss experimental techniques, followed by a detailed discussion of the design
and fabrication of this improved isothermal calorimetric measurement system.

Chapter V contains AC-loss test results of three different types of wire developed for
ramp field magnet applications. Analytical AC losses, calculated with the coupling-loss
and the hysteresis-loss models modified in Chapters II and III, are compared with the
experimental results. Good agreement between the analytical AC losses and the test results
was found in two types of wire without carrying transport current. The US-DPC wire
shows a local maximum loss in the ramp rate dependent loss profile in a very low
frequency regime, which has never been experimentally observed or analytically predicted.
The measured additional AC losses in all three current-carrying wires affected by an AC
field are also compared with the model predictions.

A new model is proposed in Chapter VI to provide a possible explanation for the local
maximum loss in the low ramp rate regime which was found experimentally in the US-
DPC wire. This chapter presents the full derivation of this new model which accounts for
the collective coupling current effects in a wire construction similar to that of a US-DPC
wire. The proposed model is the first analytical model attempting to understand the special
AC-loss characteristics in a US-DPC wire.

A large amount of laboratory-scale single-strand AC-loss measurements have been
performed within the US-DPC program. In Chapter VII a methodology for comparing the
AC losses of US-DPC wire with US-DPC cable is given. A prediction scheme for the AC
losses in a full-size cable is developed out of the loss comparison process. The practical
scheme uses the formulae applied in this thesis. AC-loss parameters, required in the
calculation, can be evaluated from the laboratory-scale single-strand measurements as
demonstrated in the experimental work. The prediction scheme for the AC losses of a full-
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size cable, similar to that of US-DPC, is one of the most important applications of this
thesis work.

In Chapter VIII a general review of this thesis work is made and conclusions are given.
Possible future developments on the basis of the present work are recommended.
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CHAPTER 11

EXISTING AC-LOSS MODELS FOR TWISTED
MULTIFILAMENTARY SUPERCONDUCTING WIRES

II.1 INTRODUCTION

Hysteresis loss, coupling current loss, penetration loss, and additional loss due to
transport currents are the four major types of AC losses to be considered for a twisted
multifilamentary superconducting wire in an environment simulating the field and current
conditions of a high-current high-field pulse magnet. Existing analytical models regarding
these AC losses are reviewed in this chapter. The existing analyses of the hysteresis and
penetration losses which are important to the development of new models in the present
work, are examined in better detail. The existing coupling loss model is slightly modified
to include the constructions of all the composite wire of interest to the present work.

I1.2 HYSTERESIS LOSSES
I1.2.1 Introduction

Analyses of magnetization and hysteresis loss in a type-II superconductor were not
available until the development of an important model by Bean and London in early 1960
(Refs. 2.1 to 2.3) which is conventionally called Bean model. The Bean model is a
macroscopic model which describes the magnetization of a type-II superconductor using
spatially averaged electromagnetic properties of the superconductor. The spatial
distribution of the current density in a superconductor is assumed to be either of the critical
value or zero in this model. Therefore, the Bean model is also called the critical state model
(Refs. 2.4 and 2.5). The Bean model in 1-D slab geometry, although highly simplifying
the microscopic superconductivity theories, was surprisingly accurate in predicting the
experimental results. Since the Bean model was developed, hysteresis-loss analyses have
been performed extensively, both analytically and numerically, in 1-D slab and 2-D
cylindrical geometries by many other authors (Ref. 2.6 to 2.14).
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In this section, the assumptions and the limitatons in making the Bean model are first
reviewed, followed by the 1-D and 2-D analytical hysteresis-loss expressions developed by
other authors based on this model. All the equations are expressed in the MKS unit
system.

I1.2.2 Critical State Models

The critical state model developed by C.P. Bean, is the most important analysis of the
hysteresis loss in a type-II superconductor (Ref. 2.1 to 2.3). The phenomenological model
describes a succession of quasi-static vortex motion in the superconductor by using a
macroscopic internal magnetic field intensity, B;, which is characterized by a bulk critical
current density, Jc. When the transport current is zero, the assumptions and limitations
applied in the critdcal state model are (Ref. 2.4)

(1) The magnetic property of the superconductor can be described by a bulk J;

(2) The superconductor in the applied changing field is in the mixed state;

(3) The superconductor has no flux jump during the applied field variation;

(4) The 1c remains constant in the region of field penetration;

(5) The superconductor is in isothermal condition, and no temperature change affects J;
(6) The dynamic and static critical current densities are the same;

(7) The responding time of the current and field re-distribution to a changing field is short.

In a swrongly pinned type-II superconductor, as the external changing field is increased,
an induced current will flow in a thin sheath on the surface of the material at a current
density higher than the lJ¢l. The sheath current will decay resistively and the magnetic field
will start to penetrate the interior of the material. As the current density reduces to IJ¢l, the
penetration will stop and the current density remains constant. The region which has not
been penetrated by the flux has zero current. Thus, a superconductor is said to be in the
critical state if the current density is either J¢ or zero in any region of the material (Ref.
2.7). In the Bean model, the assumption of a sharp boundary between neighboring regions
of different current densities, also called sharp penetration front, is one of the key step in
simplifying the magnetization and hysteresis loss calculation (Ref. 2.4). For simplicity,
Bean further assumed that the critical current density remains constant during the change of
the external field, i.e. J¢ is not a function of B. Combining the above assumptions with the
volume-averaged macroscopic Ampere’s law, the Bean’s critical state model for a type-II
superconductor without carrying a transport current is simply written as (Ref. 2.4)
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VxBj = poJ, withJl=J;or 0 (2.1)

where Bj is the internal field of the superconductor. The critical current density is a known
constant once the applied field is fixed, which is the only empirical parameter in the model.
The magnetization and the hysteresis loss can be calculated when the internal field in Eq.
(2.1) is solved. Although the properties of the superconductor was highly simplified in the
Bean model, the calculated magnetization was consistent with the experimental results of
V3Ga in a lower field region (< 1 T) (Ref. 2.3).

Two important comments on the assumption of a sharp penetration front were discussed
in Ref. 2.3. The first concern was about the instantaneous spatial distribution of the
current densities. The sharp boundary assumption of the current density distribution, that
is Jl = J¢ in the flux penetrated region and J = 0 in the non-penetrated region, is never
completely valid (Ref. 2.3). Since the current density decays exponentially into the non-
penetrated region, the decaying distance which is also called the London penetration depth,
was estimated on the order of 0.1 um (Refs. 2.3 and 2.5). However, as long as the size of
the superconductor is much greater than the decaying distance, this assumption is
approximately true. The second comment was about the temporal variation of the
penetration front. Since the flux pinning may be thermally weakened, the flux may cross
the sharp boundaries which introduces a discrepancy in the critical state model (Ref. 2.3).
However, from experimental evidence, the modification of the sharp boundary due to the
temporal decay of the critical current density has been found to be negligible (Ref. 2.6).

The Bean model was generalized by Kim et al. (Ref. 2.6) who modified the above
mentioned assumptions (1) and (4) in Bean’s approach. In the Bean model the critical
current in the superconductor is the prime factor in determining the magnetization. Kim et
al. assumed that every macroscopic region of a type-II superconductor in the mixed state
carries a critical current determined by the local magnetic field in that region. Thus, the
critical current density in Kim’s model varies both spatially in the superconductor and
temporally by the external changing field. Also, from their measurement, an empirical
field-dependent critical current density fitting equation was postulated as (Ref. 2.6)

Jo - Bo
Bo + B. (2.2)

J«(Be) =
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with two fitting parameters Jo and Bg obtained from experiment, where the Jg is the
extrapolated J¢(0), and By is the magnitude of the field at which J¢(Bg) = 0.5 Jp. Eq. (2.2)
has been widely applied to approximate the critical current density and field relation of
various superconductors due to its simplicity. However, it has also been found that Eq.
(2.2) can not simultaneously fit both low and high field critical current densities for some
technical superconducting wires such as Nb3Sn and NbTi (Ref. 2.16). A better expression
for the Jo(Be) will be discussed later.

I1.2.3 1-D Slab Geometry

As seen in Fig. 2.1, when a uniform external field Be is in parallel to the surface of an
infinite superconducting slab with a thickness of 2a, by 1-D Ampere’s law the critical state
model simply states that (Ref. 2.12)

ax - Pl (2.3)

where B; is the internal field in a superconductor. With the boundary condition of B; =B
at x = a, where the applied field, B, is the field applied directly to the surface of the
superconductor, the internal field is solved as

Bi = B+pgc(x-2a), forx>0. 2.4)

For a bulk superconductor in an external field Be, the applied field is simply B = Be.
However, in a composite superconducting wire, the ‘applied field’ can be quite different
from the ‘external field’ (Ref. 2.11), which will be reviewed in better detailed in Section
I1.3.2.

The relation between the changes of the internal field and the current density
distributions in a slab are shown in Fig. 2.2 (Refs. 2.12 and 2.16). As seen in Fig. 2.2(a),
starting from the virgin (flux-free) state, the slab is first partially penetrated by the applied
field. The boundary of flux penetration before it reaches the center of the slab can be
located by setting B; = 0 in Eq. (2.4). Thus,

B
Holc » (2.5)

Xp=a-
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Fig. 2.1 An infinite superconducting slab with a thickness of 2a in a uniform
changing field Be
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The slab is said to be fully penetrated as the penetration boundary reaches the center of the
slab as shown in Fig. 2.2(b), and is filled with critical currents everywhere. Thus, a
penetration field for virgin state, Bpo, is defined as the applied field at which the first full
penetration occurs, which is obtained from Eq. (2.5) by letting xp = 0 (Ref. 2.12). Then

Bpo = Wolca (2.6)
Fig 2.2(f) shows that when the applied field returns to zero from its maximum, Bpax, part
of the flux is trapped in the superconductor. Figs. 2.2(f) to 2.2(1) represent a second field

cycle with B starting from zero and the superconductor in a non-virgin state. As shown in
Fig. 2.2(h), the flux does not penetrate the slab until the external field reaches ABpg which

is the first penetration field for the non-virgin state starting from the zero field. In the
critical state model, J¢ = constant and ABpy is simply equal to 2Bpg (Ref. 2.7), i.e.

ABpo = 2p,Jc a 2.7)

In a cyclic changing field with a given Bpax kept constant, the field and current variations
after the first cycle are the same as those in the second cycle.

The magnetization of the superconductor ugM(B) is expressed as (Ref. 2.12)

- M(B) = B %j B, dV
\% (2.8)

where V is the volume of the superconductor. In an infinite slab, the magnetization is
given by (Ref. 2.12)

- L M(B) = B %f B(x) dx
0 (2.9)

The hysteresis loss per unit volume per cycle, Qp, is simply the area covered by the
magnetization curve, that is (Ref. 2.12)
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Qh = f M(B) dB
cycle (2-10)

When the applied field is smaller than ABpo, the magnetization of each half cycle is
expressed as (Ref. 2.7)

- ,J'OM = B-L_B_Z_
4 Bpo for B<ABpp, B>0  (2.11)
and
“uM = B - {LB'B"‘“ 1 Bz}
2 Bpo  4Bpo for B<ABpo, B<0  (2.12)

If the applied field is cycled between O and Bmpax, with the range of the field variation
AB = Bpax less than ABpy, the loss integration for each half cycle are expressed as

i 3
B
Q1 = LBk, - B .
Ho | pO for Bpax <ABpo, B>0 (2.13)
and '
i 3
Q¢=L-%Biu+%3—]§uﬂ] .
Ho | p0 for Bmax <ABpp, B<0 (2.14)

The hysteresis loss per cycle per unit volume is the sum of the integrations in two half
cycles which is given as (Refs. 2.7, 2.12, and 2.16)

Q = Bmar Buax

The hysteresis loss Qn po at Bmax = ABpg becomes
2
ABpO
2ug (2.16)

Qh.pO = %

When the applied field is larger than the penetration field, the magnetization is simply
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for B 2 ABpo (2.17)

The positive sign is used when the applied field is increased. The hysteresis loss is the
sum of the loss integration beyond the ABpg in an up-sweep and that below the Bpax -
ABpm in a2 down-sweep. Therefore,

Bonax 0
AQy = - f M(B)dB - f M(B) dB
AByo B - ABpm (2.18)

where ABpn is the first penetration field as the field reduced from Bpax. Since J¢ =
constant in the Bean model, ABpm is the same as ABpg. From Egs. (2.17) and (2.18), the

loss expression in this region is reduced to
Brnax
AQ = -2 f M(B)dB = - AByo (Bes - AByo)
ABro (2.19)

Similarly, the hysteresis loss in the region of 0 to ABpg during the up-sweep and in the
region of Bmax t0 Bmax - ABpp during the down-sweep can be reduced to

ABpO an - ABF'I\
- I M(B)dB - f MB)dB = Qh,po
0 B (2.20)
where Qp po is the penetration field at Bpax = ABpg as evaluated in Eq. (2.16).

The hysteresis loss per cycle per unit volume is thus the sum of AQp, and Qp, po which is
also written as (Refs. 2.7, 2.12, and 2.16)

2 | ’|
Qy = Bhw (48w (4B
2“-0 Bmax 3

Bmax for Bmax = ABpg (2.21)
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As a summary, when a field is applied in parallel to the surface of an infinite
superconductor slab, with the applied field cycled between 0 and Bpax, the hysteresis
losses per cycle per unit volume, based on Bean model, are given as

2
Q4 = Brax 1 Bmax

2Ho 3 ABy for Bmax < ABpg (2.15)
and
2 | aB,o|’|
Qh = Binax [ABpo Z( PO)
2Ho \Bmax 3 \Bpax for Bmax 2 ABpo (2.21)

Both expressions are in the units of Joule / cycle / m3 - superconductor.

I1.2.4 2-D Cylindrical Geometry
I1.2.4.1 Introduction

Two dimensional AC-loss analysis of a cylindrical superconductor in a transverse
changing field has been done by a few authors (Refs. 2.7 to 2.12). In general, most of the
models or computations were developed on the basis of Bean model with J¢ = constant,
and all required numerical calculations. Due to the complexity of the numerical processes
which is not of interest to this thesis work, only the principle of the analysis will be
roughly reviewed. Simple analytical formulae deduced from either the numerical or the
experimental results in the references are summarized in this section as the foundation for
more general expressions derived in Chapter III.

The major difficulty in 2-D modeling is found in determining the location and the shape
of the flux penetration front (Refs. 2.8, 2.9, 2.11 to 2.13). Mathematically, this is a two
dimensional quasi-static moving boundary problem which can not be solved analytically.
All the authors used a preset function such as ellipse, polynomial, or a set of polygonal
functions with undetermined parameters or coefficients for the contour (Refs. 2.7 to 2.12).
The region outside the contour is filled with critical screening currents induced by the
ransverse changing field. The external field inside the contour should be cancelled by the
field due to the screening current. The parameters for the contour of flux penetration front
were then determined numerically by optimizing the position and the shape of the contour
till the field generated by the screening current matches the external field at some locations.
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The optimization schemes and the number of matching points depended on the individual
preferences.

Good comparisons among the calculated contours or between the calculated and
measured magnetization curves have been reported in Refs. 2.7 to 2.12. It is interesting to
identify the sensitivity of the calculated hysteresis losses to different contour shapes.
Wilson (Ref. 2.7) used a rather crude elliptical contour with a single optimization
parameter: ratio of the major axis to minor axis. The field matching condition was simply
selected at the center of the cylinder (Ref. 2.7). Both Ashkin and Zenkevitch, et al. used
more complex polygonal functions with undetermined coefficients to calculate the contour.
The contour was determined when the screening current generated field on the contour
becomes constant (Refs. 2.8 and 2.11). For AB < ABpy, loss expression in integral form
was given by Wilson. Fig. 2.3 shows normalized hysteresis losses based on these two
very different contour representations for this lower field region. The largest deviation is
estimated about 6.5% at AB / ABpg = 1. In the region of AB > ABpo, the difference
between the crude and complex approaches decreases as the AB becomes larger. The
comparison indicates that the hysteresis loss is not sensitive to the contour representations
for the flux penetration boundaries.

Zenkevitch, et al. (Ref. 2.11) deduced very simple magnetization formulae for
transverse field conditions from their numerical calculations. The calculated results from
these formulae have been verified by their measurements (Ref. 2.13). Pang, et al. (Ref.
2.10) derived a set of semi-empirical formulae from the magnetization measurements.
These semi-empirical formulae are applicable to both NbZr and NbTi samples tested in their
experiments. The formulae by Zenkevitch, et al. and by Pang, et al. are in the same forms.
The magnetization and hysteresis-loss formulae given by Zenkevitch, et al., based on the
Bean model, are summarized here.

I1.2.4.2 Existing Expressions Based on Bean Model

When a cylindrical superconductor of radius ¢ is affected by a transverse time-varying
applied field B, the magnetization and hysteresis-loss equations given by Zenkevitch et al.
in Ref. 2.11 are transformed and summarized in the followings.

(i) For an initial rising field:
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The penetration field in an initial virgin state is

By = %l-'-o Je 1 (2.22)

and the empirical magnetization equations are expressed as
3 2
HoM = [- %B—2+ ZB—- ZB} - sign(B);
B, 7 for B <Bp (2.23)
M = -2 B, - sign(B)

Ho p ' SIBIES for B > B, (2.24)

(ii) For a cyclic field

The penetration field of a superconductor in a cyclic applied field is given as ABp = 2Bp, or

ABp = %MO Jorf

(2.25)

With By, representing the field at the end of the preceding cycle which can be Bpax or
Bmin, the magnetizations in cyclic field conditions are

3 2
Ho(M-My) = |-28-Bul  ,B-Bal 55 g )l sign(B- By

3 4g? 2B
for IB-Bl < AB,, (2.26)
- = _4 B . -B..)
Ho(M-Mn) = -3 Bp - sign(B - Bu, for IB-Bml 2 AB, (2.27)

The expressions for the irreversible magnetization, LoMp, are distinguished by comparing
the peak-to-peak field change, AB = Bmax - Bmin, With the ABp. Thus,

3
Ho My, = in[l +| A2 1)] - sign(B - B;
3 2By, for AB < ABp (2.28)
= ; - sl -Bn)k
MoMm = 5 Bp - sign(B - Bm); for AB > AB, (2.29)
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After integrating the magnetization over the applied field as was done in the 1-D case, the
hysteresis losses of a cylindrical superconductor wire in a transverse cyclic field are given

as
Q = AB [i_AB_-%(_ALﬂ
2o |3 AB, 3\AB, for AB < ABp (2.30)
0 AB;
and
2
Q = 2AB, [& ) 1_]
30 |AB, 2 for AB > AB, (2.32)

Again, all the hysteresis losses are in the units of Joule / cycle / m3 - superconductor.

II.3 COUPLING-CURRENT LOSSES
I1.3.1 Introduction

Analysis of coupling-current losses in a multifilamentary zone with uniformly
distributed filaments has been studied by several authors using different approaches (Refs.
2.14 to 2.23). All the models give very similar results and have been compared with
experimental results. In general, the dissipated power due to the coupling currents
correspond to the twist pitch and the overall transverse conductivity of the composite. For
the purpose of improving the stability of a composite superconducting wire, the
multifilamentary zone as seen in Fig. 2.4, is usually enclosed with a high thermally and
electrically conductive material which provides an additional resistive path for the coupling
currents (Ref. 2.19). The coupling current loss is thus increased. From the manufacturing
viewpoint, it is advantageous to include a ductile normal core as shown in Fig. 2.4, to
reduce the frequency of wire breakage during the wire extrusion and drawing processes.
Similar to the outer cladding, the normal core increases the coupling current loss.
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‘Multifilamentary zone

Fig. 2.4 Schematic of the cross sectional view of a multifilamentary superconducting
strand with cladding and normal core. The multifilamentary zone contains
superconductor filaments and resistive matrix material. Both cladding and
normal core are usually made of high conductive material.
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In Section II1.3.2, the existing analyses of the coupling-current losses will be briefly
reviewed beginning with the cause of the coupling currents and the reduction of the loss
due to twisting of a uniformly distributed multifilamentary zone. Figs. 2.4 and 2.5 show
the typical constructions of a NbTi and two Nb3Sn wires, respectively. It is common for a
wire to have a multi-layer structure in the cross sectional direction. Coupling loss analysis
considering multi-layer construction in a composite wire provides more information than
those calculated with averaged matrix material properties. In order to calculate the coupling
loss of the wire constructions applied in this work, the existing 4-layer model (Refs. 2.37
to 2.39) is generalized into a 5-layer model in Section I1.3.3.

I1.3.2 Uniform Multifilamentary Zone

I1.3.2.1 Coupling Current and Time Constant

Fig. 2.6(a) shows a transverse changing field applied to a non-twisted multifilamentary
zone with a length of L. By Faraday’s law the induced electric field, transverse to the
applied magnetic field, tends to drive the currents across the inter-filamentary matrix -
material. Due to the cancellation effect in the middle part of the wire, the transverse current
loop crosses the filaments at the ends of the wire. As seen in Fig. 2.6(a), when a pair of
filaments are separated by a distance of d on the projected plane perpendicular to the applied
field, the induced electric potential is simply V = - (D = -BLd. With the induced
transverse electric field E; = BL, the induced transverse current density is (Refs. 2.16 and
2.21)

J[='E—[ B

Pt Pt (2.33)
and the dissipated power density 1s given as

2
p, = B - g2L2
Pt Pt (2.34)

where p; is the effective transverse resistivity of the wire including the effects due to the
superconductor filaments which will be described later. As seen in the above equations,
the induced current density flowing in both the filaments and the matrix is proportional to
the length of the wire, and the loss of a non-twisted wire is proportional to the square of the
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Multifilamentary zone
including 18 filament
bundles

Bronze core

Individual tin
diffusion barrier

(a)

Pure Cu cladding

Pure Cu normal core

Inter-bundle matrix: Cu

(b)

Multifilamentary zone
""" S including 19 filament
bundles

Bronze core

Global tin diffusion
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Pure Cu cladding

g > Inter-bundle matrix: bronze

Fig. 2.5 Schematic of the cross sectional view of two typical types of internal-tin Nb3Sn
wires; (a) internal-tin modified jelly roll wire with individual tin diffusion barrier;
(b) internal-tin wire with global tin diffusion barrier.
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Fig. 2.6 Cqupling currents in (a) a non-twisted and (b) a twisted superconducting wire in a
uniform transverse changing field. Filaments in the inner region of the wire are
not shown. The locations of currents flowing in the matrix materials are indicated

on the projected (shaded) planes.
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wire length. A long non-twisted wire may have coupling current density as high as the
superconductor critical current density even with a very small B.

As shown in Fig. 2.6(b), upon periodically twisting the multifilamentary zone at a twist
pitch of Lp, the coupling currents flow across the matrix material between a pair of
filaments at every cross-over point on the projected plane. As seen by the coupling
currents, twisting the wire is equivalent to electrically segmenting the wire into small
pieces, each with a length of Lp/2 (Refs. 2.16 and 2.21). Thus, the coupling current
density and the loss are determined by the twist pitch instead of the length of the wire.

Analysis of the coupling current losses of a twisted cylindrical filamentary zone can be
found in Refs. 2.14 to 2.23. The analysis was performed on the basis of the following
assumptions: (1) uniformly distributed filaments, (2) thin or no cladding to the
multifilamentary zone, and (3) long twist pitch compared with the circumference of the
multifilamentary zone, i.e. Lp » 2TRME, where RvF 1s the radius of the multifilamentary
zone. By Faraday’s law,

fE-dl = -fB-ds
S

C (2.35)

Considering the contour PQR shown in Fig. 2.7(a), because of the twisting the E fields are
generated in the -X and -Z directions. By the assumption of Ly » 2RMF, the path along

the twisted filament is nearly parallel to the axis of the cylinder which implies that
E;=Ey=0

where Ej; is the electric field parallel to the superconductor filament, which is zero since the
currents are flowing without resistance in the filament. Therefore, the contribution to the
contour integration of the E field is only from QR which is the path passing through the
matrix material. As seen in Fig. 2.7(b), the differential area projected on the XY-plane and
encircled by the contour is ds = dy dz = RMF sinf dz. Letting B = B ex and E4 = E, Eq.
(2.35) becomes (Ref. 2.16)
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= ]

Fig. 2.7 Coupling currents of a pair of superconductor filaments in a twisted composite
wire affected by a uniform transverse changing field. The filaments are
uniformly distributed over the whole cross sectional area, and the inner filaments
are not shown. The coupling currents flowing in the filaments are projected to a
plane transverse to the field and the returning currents pass through the matrix at

each cross over point.
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R Q
f Edl =f B Rpr sinf dz

Q P (2.36)
As shown in Figs. 2.7(a) and (c), dl = -dx and

_ Lyde
dz = — (2.37)

Then the induced electric field is calculated as (Refs. 2.7, 2.16, and 2.19)

- .alp
E= an (2.38)

which is independent from RyE and the distance between the filaments. With effective
transverse resistivity of the multifilamentary zone p,, the transverse coupling current

density is given as

J[ = ‘B&L
2 p, (2.39)

The transverse currents in the multifilamentary zone are collected by the outer-most layer
of the filaments, and turning into supercurrents to shield the filaments in the inner region
from the applied transverse AC field. Assuming that the field changing rate is low enough
that the shielding currents are flowing in a thin filament sheath, the relationship between the
linear shield current density, K(6), and the transverse current density, J,, is

dK(8)
dz

= J, cosf
Solving the differential equation by applying Egs. (2.37) and (2.39),
2
K(0) = L(i) B sin®
pu 2T (2.40)

where Kq(6) has the units of current per peripheral length. If K(8) in the outer-most layer
of the multifilamentary zone (with a thickness of 2ry) is greater than fgc i MFJ¢, a region
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of the multifilamentary zone will be saturated by the shielding currents, where fsc in MF is
the local volume fraction of the superconductor in a multifilamentary zone. This region is
called the saturated region, which will be reviewed in Section I1.4. For now, only the thin

sheath is considered.

From Ampere’s law, the shielding currents produce a secondary uniform field against
the external field, which has a magnitude of (Ref. 2.19)

Bs = %— Ks‘%) (2.41)

with u” =g ((1 - fsc in M) / (1 + fsc in MF)) for B = 0, and K’ = g for B large. In the
present work, during a large fraction of the cycling time the applied AC field is much
greater than the penetration field, the U’ = o will be used as a good approximation
throughout the work. The coefficient of 1/2 in Eq. (2.41) results from the demagnetization
factor of a cylinder (Ref. 2.19). The applied field which is the difference between the
external field and the field induced by the shielding currents, is written as

B = B,-B,
- _E(th'

= B.-1B (2.42)

where the natural decay time constant of the coupling current (or simply coupling time
constant) of a cylindrical conductor, 1, is defined as (Ref. 2.19)

r = 2o (Lof
T 2p, 2¢

(2.43)

which is the most important parameter in the coupling-loss analysis. As seen in Eq.
(2.43), the T is determined by the twist pitch and the transverse resistivity. The transverse
resistivity is determined by the matrix materials, the volume fraction of the superconductor,
and the clustering of the filaments if they are not uniformly distributed. Thus, the coupling
time constant contains all the information besides the superconductor of a twisted
multifilamentary zone. In Section I1.3.3, the effective transverse resistivity will be further
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extended to include the information of the normal core and the cladding of a practical
composite wire.

I1.3.2.2 Effective Transverse Resistivity

For a multifilamentary zone in a transverse AC field, Eq. (2.38) shows that the induced
electric field is uniformly distributed and opposite to the applied field. Thus, calculation of
the effective transverse resistivity p; depends heavily on the cross sectional structure of the
wire. If more than one matrix material exists in the filamentary zone (Fig. 2.5(a), for
example), the effective electric resistivity pe of this region would be the homogenized
resistivity averaged over the coupling current paths. In general, the multifilamentary zone
can be categorized into the filament clustering region (or filament bundle) and the inter-
bundle matrix region which does not contain superconductor.

In the filament bundle, defining fSC in bundie as the local volume fraction of the
superconductor, the effective resistivity pe for the case of no contact resistance between the

superconductor and the matrix material, can be estimated as (Ref. 2.25)

p, = ! - f5¢ in bundle 0
e
1 +fge in bundle (2.442)

and, if the contact resistance between filament and the matrix is high,

= 1+ f5¢ in bundie P
1 - £5¢ in bundle : (2.44b)

e

For Nb3Sn composite wire, the matrix material is considered to be tightly joined with the
superconductor, and the superconductor is equivalent to a short circuit to the matrix (Refs.
2.17 and 2.24). The effective resistivity becomes smaller as shown in Eq. (2.44a).
During manufacturing of a composite NbTi wire, a high resistance layer at the interface of
NbTi and matrix material (copper) is formed, and Eq. (2.44b) is applied to estimate the
effective transverse resistivity in the multifilamentary zone (Refs. 2.17 and 2.24).

By electric circuit theory, in a heterogeneous multifilamentary zone, the resistivity along

each current path is the length-weighted sum of the resistivities in regions with different
materials including the clustering of the superconducting filaments. Since all the transverse
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current paths are in parallel, the effective transverse resistivity p is the inverse sum of the

resistivities of all the current paths.

Turck (Ref. 2.24) sliced the cross sectional area of a single hexagonal multifilamentary
bundle within a double-stacked wire into 11 parallel strips. The effective transverse
resistivity was calculated as the averaged resistivity of these parallel strips. The calculated
effective transverse resistivity had the same order of magnitude as the measurement.
Nevertheless, this principle can hardly be applied to a real wire which contains a highly
distorted internal structure caused by the wire drawing. Another difficulty in evaluating the
effective transverse resistivity comes from the uncertainty in the spatial distribution of the
matrix resistivity in the multifilamentary zone. This is especially true for a composite
Nb3Sn wire made of tn diffusion process.

The resistivity of the matrix material is affected by the purity of the material, the
operation temperature and the applied magnetic field. For the present work, the resistivities
of Cu and CuSn alloy matrix at 4.2 K are of major interest. For a better stability margin,
sometimes a pure Cu is selected as the matrix material at the price of increasing the coupling
loss. When a pure copper is used at 4.2 K in an AC field, two material properties can
affect the wire performance: residual resistivity ratio and magnetoresistivity. Both are
affected by the purity of the Cu which is discussed below.

I1.3.2.2.1 Low Temperature Resistivity and Residual Resistivity Ratio

The purity of the matrix material can be judged from the residual resistivity ratdo (RRR),
which is defined as (Ref. 2.27)

— Resistance at 300 K
RRR = Resistance at 4.2 K (2.45)

The RRR is obtained by measuring the resistances of the same wire at both 300 K and 4.2
K without a background field. However, the above definition is good only for a solid
resistive wire. For a composite superconducting wire, the RRR has to be tested at the final
stage of the wire fabrication (including heat treatment in the case of Nb3Sn). Unlike the
type-I superconductor which has a sharp step-down of the resistance at a well-defined
critical temperature, the type-II superconductor has a wider temperature range in the
normal-to-superconductive transition. In the case of a composite wire, as the temperature
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is reduced to an upper current sharing temperature TS upper, part of the current in the
matrix starts to flow without resistance in the superconductor. Thus, from the experience
in this thesis work, the cryogenic resistance of the matrix in a composite wire should be
taken at a temperature slightly higher than the Tcs, upper. and the RRR becomes

RRR = Resistance at 300 K
Resistance at T = Tcs, upper Of the composite wire (2.46)

The Tcs,upper’s of most low-T type-II superconductors are lower than 20 K. As seen in
Fig. 2.8 (Ref. 2.26), the difference in the resistances between 4.2 K and 20 K can be large
for an annealed high-purity Cu with an RRR > 1000. Considering all the possible cold
work during the magnet windings (NbTi composites) or contamination to the Cu due to the
heat treatment (Nb3Sn composites), the RRR of Cu matrix in a commercial composite wire
is about 300 or less. Eq. (2.46) can be used as a reasonable approximation to Eq. (2.45).

In a Nb3Sn composite wire, a large fraction of the cross sectional area is covered by
CuSn bronze. As mentioned before, the Sn content in the filamentary zone is not uniform,
which is especially true for internal-tin process. The resistivity of CuSn, which varies with
the Sn alloying and the background temperature, is important in the coupling-loss
calculation. The top curve in Fig. 2.8 is the temperature dependence of resistivity of a
bronze with 5 at.% of Sn. At a temperature below 20 K, the alloyed Cu has a resistivity
more than two orders of magnitude higher than a pure Cu, and a much smaller RRR
compared with pure Cu. Fig. 2.9 shows the variations of the resistivity and the RRR of
CuSn plotted against the atomic fraction of Sn in Cu (Ref. 2.26). When the Sn content in
the Cu is above about 3 at.%, the resistivity tends to saturate at 10-7 Q-m, and the RRR
approaches unity. The resistivities and the RRR’s of the CuSn alloys at room temperature
and 4.2 K are summarized in Table 2.1 (Refs. 2.26 and 2.27) for future use. Considering
the relatively small contribution to the coupling loss due to the high resistivity of the CuSn
bronze and other possible errors in the loss estimation, the RRR of all the CuSn will be
taken as unity for simplicity.

For an internal-tin composite wire, the resistive materials commonly used as tin
diffusion barrier are V, Nb, and Ta. All these materials are superconductors at 4.2 K in
zero background field and become resistive at a field above ~ 0.5 T. The resistive property
1s more relevant to the coupling loss analysis. Only very limited information on the electric
resistivities of these materials, especially at low temperature, is available. The resistivities
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Fig. 2.8 Electrical resistivity versus temperature for annealed copper and CuSn alloy (Ref. 2.26).
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of these tin diffusion barrier materials are listed in Table 2.2 (Refs. 2.26, 2.28 and 2.29).
Some of them are roughly estimated from the figures in the references. Since the
volumetric fraction of the diffusion barrier in a composite wire is small, the uncertainty of
the low temperature resistivities of these materials has a small effect to the overall coupling
loss estimation.

Table 2.1 Resistivity and RRR of CuSn alloy (Refs. 2.26 and 2.27)

Atomnic% Sn P300 K (£2 m) p4.2 K (£2 m) RRR
Stock Cu 1.77 x 10-8 0.0133 x 10-8 133

0.1% Sn 2.06 x 10-8 0.30 x 10-8 6.94
0.5% Sn 3.17 x 10-8 1.39 x 10-8 2.28
1.1% Sn 5.10 x 10-8 3.04 x 10-8 1.68
1.5% Sn 5.95 x 10-8 4.05 x 10-8 1.47
3.0% Sn 10.12 x 10-8 7.91 x 10-8 1.28
5.0% Sn 10.48 x 10-8 8.59 x 10-8 N.A.

Table 2.2 Resistivity of tin diffusion barrier material (Refs. 2.26, 2.28, and 2.29)

Material p300 K (2 m) Peryogenic (€2 m)

\% 19.68 x 10-8 N.A.

Nb ~26x 108 ~3x 108 (77K)

Ta 13.15 x 10-8 ~0.34 x 108 (4.2 K, > 10 mT)

I1.3.2.2.2 Magnetoresistivity

Similar to the residual resistivity ratio, the magnetoresistivity depends on the purity of
the material. The magnetoresistivity of Cu wire at 4.2 K in an externally applied field has
been evaluated experimentally by several authors (Refs. 2.29 to 2.36). A general
expression is given as

p(B=0,T=300K) .
RRR +BuB (@ m) (2.47)

p(B) =

where p(B=0, T=300K) = 2.0 x 10-8 (Q m) for room temperature resistivity of Cu and the
multiplication factor By = 4.8 x 10-11 (Q m/T) for magnetoresistivity effect will be used in
this work.
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The magnetoresistivity of the tin diffusion barrier material can hardly be found. Only Ta
has been measured by Ando, et al. (Ref. 2.29). The experimental results showed that the
resistivity of Ta at 4.2 K saturated at 0.34 x 10-8 (Q m) for a background field greater than
about 10 mT. For a high field condition which is of interest to the present research, it
would be a reasonable approximation to use a constant value for the resistivity of the Ta (as
listed in Table 2.2) in various background fields.

11.3.2.3 Critical Field Changing-rate

As discussed in section 11.3.2.1, Eq. (2.40) shows that at a large field ramp rate the
outer layer of the multifilamentary zone will be saturated by the induced transverse coupling
currents. By Eq. (2.42), the magnetization caused by the coupling currents (Eq. 2.41)
shields the multifilamentary zone from the external field by T1B. Eq. (2.42) is valid only
when the slow field variation requirement, or equivalently the thin saturation layer
condition is satisfied. In this subsection, quantification of the applicable range of Eq.
(2.42) will be examined.

Analogous to a solid superconductor, the difference between the external field and the
field in the center of a multifilamentary zone is not greater than the magnitude of the
penetration field of the multifilamentary zone Bp MF, which is expressed as

Be-B < BpMmF (2.48)

=2
Bp.MHBe) = £ Ho Jo MF(Be) Rur (2.49)

where Jc MF(Be) and RMF are the critical current density and the radius of the
multifilamentary zone, respectively. If a large external field Be >> Bp MF is applied, B =

Be. For a uniformly distributed multifilamentary zone,

Je MF(Be) = fsc in MF Jc,sc(Be) (2.50)
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where fsc in MF is the local volume fraction of superconductor. From Eq. (2.42) the
difference between the external field and the field in the center of the multifilamentary zone
is

Be-B = 1B (2.51)

The thin saturation layer condition is satisfied as long as the changing-rate of the applied
field is slow enough such that T B << Bp MF(Be). Also, if the field changing-rate is slow

or if the external field has a constant field changing-rate, the phase-shift between Be and B
would be small or zero, then B = Be. Eq. (2.51) is linearized as

Be- B = 1B, if 1Be << Bp MF(Be) << Be  (2.52)

Eq. (2.52) gives a more quantitative condition for a slowly changing-field at which the field
shielding effect due to the magnetization by the saturation layer can be neglected.

A similar argument can be reached from the analysis of the critical twist pitch or critical
field changing-rate of a twisted composite wire in an early article by Morgan (Ref. 2.15).
The author showed that a multifilamentary zone with a radius of Rmr, a twist pitch of Ly,
and an effective transverse resistivity of p, can carry a maximum circulating current of

Imax at a critical transverse changing field B, which is given as (Ref. 2.15)

2
LB

I = ‘— =< 2R

max 271:) P MF (2.53)

where Imax can not exceed the critical current I¢ of a multifilamentary zone. If the field
changing rate is higher than B., the transverse coupling currents tend to cross the filaments
at a current density of Jc sc. At an even higher field changing rate, the multifilamentary
zone behaves like a bulk superconductor with a size the same as that of the multifilamentary
zone. The above description can also be interpreted as that at a critical field changing rate
B, the whole multifilamentary zone is saturated with Ic. With the definition of Jo MF in Eg.
(2.50), Imax = © RMF? Jc MF» Eq. (2.53) can be re-written as

Bomr = 1B, = 1B
P 2 ¢ (2.54)
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at which the critical shielding field B¢ is as large as the penetration field of the
multifilamentary zone. The multifilamentary zone 1s now similar to a fully penetrated bulk
superconductor. The condition of thin saturated layer is valid only if Be << B¢ or 1B, <<

Bp MF is satisfied, which re-confirms the criteria applied in Eq. (2.52).

The following coupling current loss expressions are valid under the assumption of slow
field changing-rate. At a higher field changing-rate, the so-called penetration loss caused
by the saturation layer becomes dominant which will be reviewed in Section 11.4.

11.3.2.4 Coupling Current Loss

The dissipated power density due to the transverse coupling currents flowing in the
resistive matrix material in the multifilamentary zone is similar to that in Eq. (2.34) or
alternatively P = JiE. The expressions of E and J; have been given in Eqgs. (2.38) and
(2.39), respectively. Thus, at slow field changing-rate the power density of coupling
current loss in the multifilamentary zone becomes

P. = ( (W / m3 of matrix in multfilamentary zone)
p.(Be)

In this equation, external field instead of applied field is used for both field changing-rate
and the field-dependent effective transverse resistivity. Applying the coupling time
constant defined in Eq. (2.43), the coupling loss power density is simplified as

-2
2 4B.)Be (W / m3 matrix in multifilamentary zone)

P, =
Ho (2.55)

where the field-dependent coupling time constant of the multifilamentary zone is thus

B = 0 [Lf

2p{Be) 121 (2.56)

In a cyclic transverse field, the coupling current loss per unit volume of wire per cycle is
obtained by integrating Eq. (2.55) over a period of field variation. Different from the
hysteresis losses, the final expressions of the coupling losses depends heavily on the wave-
form of the applied field. A good summary of the coupling-loss equations for different
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transverse AC fields can be found in Ref. 2.7. However, only field-independent matrix
resistivities are applied in those formulae. Magnetoresistivity effect to the coupling loss,
which is important in pure metal matrix, is not included.

I1.3.3 Composite Strand With Multi-layer Construction

For various reasons as mentioned above, it has become very usual to have multiple
layers of resistive materials in addition to the multifilamentary zone in a practical
superconducting strand. The coupling current loss equations for different multi-layer cross
sectional constructions have been derived by Turck (Refs. 2.37 and 2.38). Ito, et al. (Ref.
2.39) generalized Turck’s expressions for a composite multifilamentary strand containing
both resistive center-core and two resistive outer layers, and verified these expressions
experimentally. In this sub-section, the principle in making Turck’s model will be briefly
reviewed. The expressions given by Ito, et al. will be extended to include three outer

layers with various resistivities.

Considering a composite multifilamentary strand with multiple layers of cladding
affected by a transverse time-varying field, in addition to the coupling currents flowing in
the multifilamentary zone parallel but opposite to the external field direction, the azimuthal
coupling currents are flowing in these outer layers. If a normal center-core is enclosed by
the multifilamentary zone, the coupling loss of the core region should be calculated
independently due to its different effective resistivity.

Fig. 2.10 shows a composite wire containing a normal center-core with a radius of
RMFi enclosed by a concentric multifilamentary zone with an OD of RMFq, and three
concentric resistive outer layers with the outer radii of R, Ry, and R3. The corresponding
resistivities of these multiple layers are pj, P, P1. P2, and p3, respectively. In the
cylindrical coordinates (r, ¢, z), the Laplace equation for the voltage induced by the AC

field in each of the resistive layer i is written as (Refs. 2.37 and 2.38)

2 .
aV'+aV/+L232V2'=0
or2 ror T 9o fori=1to3 (2.57)

where the induced voltage is assumed to be zero in the axial direction since the axial
component of the E field is neglected under the assumption that Lp >> 2R M.
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Fig. 2.10 Schematic of the cross sectional construction of a composite strand containing
five concentric layers.
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The voltages at the inner and outer boundaries are obtained by integrating the induced
electric field in the multifilamentary zone (Eq. 2.38), which are expressed as (Refs. 2.37
and 2.38)

B
V(RMFi, @) = _LP‘RMFi cosQ

2n (2.58)

and
BL,
V(RMFo, @) = TS RMmFo COS(P, (2.59)

The third boundary condition is simply the zero electric field in the radial direction at the

outermost surface of the composite wire, which is given as

E;3(R3) = 0. (2.60)

The interface conditions are the continuity of the azimuthal component of the electric
field and the continuity of the radial component of the current density at each interface of
two neighboring resistive layers which are written as (Refs. 2.37 and 2.38)

Eq),i(Ri) = E(p,(i+1){Ri), fori=1 and 2, (2.61)

E; {R)) _ E. i+1)Ri)
Pi Pir1 | fori=1and 2. (2.62)

The electric fields in the resistive layers can be calculated once Eq. (2.57) is solved for each
layer by using the boundary and interface conditions expressed in Egs. (2.58) to (2.62).
When the applied field is changed slowly such that B = Be, the coupling current loss of this

5-zone composite wire is given as
. 2 2

= B. LP

.= —2+
(2ny

RMFo 2’ k + I + lT‘Be) + n(Be) + S(Be)

R_3 \p (W / m3 wire)

{(Be)  pi(Be)  Pi(B.)  poB.)  pa(B,) (2.63)

where the expression of field-dependent resistivity takes the magnetoresistivity into
account, and
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2 2 2 2 p2
k = RMEo - Rvpi 1 = Ry m = i Ruke (R%ro + 8 R}) a?

2
R2MFO , RMFo, R%dFo s
R R 2 2 R2 - R2 2 2
n = ~2-"1(R? 4+ yR2) a2 s = —3° 22 (R2 1 R2) a3
R? , R3 ,
with
2 2
1
a, = — RMFo ay = R2(5+ 2) a3 = a2R2(Y+ 1)
R¥p, + OR?, R} +YRj R +R}
and

_ piBJ(R3+RY) + paBI(R3-RE) o _ palB(YR3+R}) + pu(Bo)(vR-RY)
"~ p3(Bo)(R3 + R3) - paBJ)(R3-R3) p2(Be) (YR} + R}) - pi(Be)(yR3 - R?)

The effective transverse resistivity of a composite wire with multi-layer construction can
be defined as

1 - RMFOZ’ k [ n‘(Be) n(B.) S(Be)l :
puiBJ | o5y b o) B i R

Similar to the 1 for the multfilamentary zone defined in Eq. (2.43), the instantaneous field-
dependent coupling time constant of the composite wire Ty, is given as

B.)
™ ) pwl(Be) ( (2.65)

The AC-loss power density Eq. (2.63) becomes

.2
Tw{Be) B (W / m3 resitive material in the wire}

P. =2
Ho (2.66)

which has a similar form as Eq. (2.55).
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I1.4 PENETRATION LOSSES
I11.4.1 Introduction

As discussed in Section I1.3, the net electric field in the matrix and the cladding drives
the coupling currents to the outer boundary of the multifilament zone. If the coupling
current is larger than the critical current of the filaments in the outer-most layer of the
multifilamentary zone. The outer-most filaments are saturated, and the coupling currents
will be collected by the next outer-most layer, and so forth. A secondary field induced by
the sawrated layer tends to against the applied field which creates a field shielding effect to
the filaments in the inner region. Thus, the multifilamentary zone behaves like a solid
superconductor penetrated by the magnetic field. The loss due to this type of magnetization
caused by the coupling currents flowing in the saturated region is sometimes called
penetration loss (Ref. 2.19).

Ries (Ref. 2.19) calculated the penetration loss in the saturated layer of a
multifilamentary zone in a manner analogous to the hysteresis loss in a single bulk
cylindrical superconductor for the reason that both have an outer layer flowing at critical
current density with a similar elliptical or cosine current distribution and both have E =0 at
the penetration front. Analysis of penetration loss can also be found in several other
articles (Refs. 2.11, 2.40 to 2.45).

For the purpose of the present research, all the applied field changing-rates are so low
that TyBe << Bp MF; the conventional penetration loss can be neglected without introducing
significant error to the analytical results. This will be verified in Section V.3. However, as
will be shown in Chapter VI, the penetration loss due to the saturation layer may occur at a
very low field changing-rate for some types of superconducting strand. Only the 1-D slab
geometry is used to prove this phenomenon in the new model. The article by Ogasawara,
et al. (Ref. 2.42) will be reviewed here as the basis for the future model development. The
procedure of their analysis is more important than the final loss expression.

I1.4.2 1-D Multifilamentary Slab

I1.4.2.1 Penetration Depth
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Considering an infinite multifilamentary slab affected by a time-varying external field
applied in the direction parallel to the slab surface, at a slow field variation the relation
between the external field Be and the applied field B has been given in Eq. (2.51) as

Be-B = 1B

where the coupling time constant for the multifilamentary slab with twist pitch of Ly, and
effective transverse resistivity of p;, is expressed as

¢ = 2o (Lef
pr 21 (2.67)
The penetration field for the multifilamentary slab is
BoMF = Ho Jc MF amF C(2.68)
where apF is the half width of the multifilamentary slab, and
Je MF = fsC in MF Jc,sC | (2.50)

For simplicity, the Bean model and the field-independent effective transverse resistivity are
used here.

At a higher field changing-rate, the outer region of the multifilamentary slab is saturated
by the transverse coupling currents which are generated in the non-saturated region with a
current density of

] = L(ﬁ) B
t 2%
P, (2.69)

The coupling currents are collected by the outer layer of filaments at a thickness of & and

become a shielding current with a linear current density (current per peripheral length) of
Ks. By continuity of current,

K =(i)1 1.8 ) B8
s 2/ 7N Ay Tl aMF
0 2.70)
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Since by definition Kg = 8 J¢ MF. the penetration thickness is obtained from Eq. (2.70) as

-1

5 _ _tB (1+ 1B

a
MF  Bomrl  Bowmr

(2.71)

I1.4.2.2 Linearized Shielding Field

As discussed in I1.2.2.1, the shielding current generates a shielding field Bg such that
Be - B = Bg = 1o K. Substituting K with Eq. (2.70),

B,-B = tB(l-ag—F

2.72)
Applying Eq. (2.71) in Eq. (2.72),
: 7B \!
B,-B =1B (1 + B ) ‘
p.MF (2.73)

Since Eq. (2.73) can not be solved analytically, Ogasawara, et al. linearized the equation by
taking the slow and fast field changing-rates as

Be-B = 1Be, for1Be <<BpMmF (2.74a)
Be -B Bp,MF, fort Be >> Bp‘MF (2.74b)

n

which were further relaxed to

Be-B
Be - B

ll

1Be, for1Be <BpMF (2.75a)
BpMF, fortBe>BpMF (2.75b)

l!

11.4.2.3 Penetration Losses

Analogous to the hysteresis loss analysis for a superconductor slab, the magnetization
of the multifilamentary slab due to the shielding field was given as (Ref. 2.42)
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(T Be)z fort Be < Bp,MF

; 1
- WM = TBe-—= ,
¢ © 2BpMrF (2.76a)

- [.I.()Mcz =1 Bp,Mp, for 1 Be > Bp.MF

2 (2.76b)

Ogasawara, et al. considered a trapezoidal field with the same rise-time and down-time
of T, and a constant B¢ = ABe/Typ. The solution to Eq. (2.52) gives

B = Be[t-t(1-et/7)], forO<t<T,, 2.77)
and
B = Be(1-¢%/17), for0<t<Tp (2.78)

The fast or slow field changing-rate was distinguished by
1B = Bp,MF (2.79)

Substitute Eq. (2.78) into Eq. (2.79), a t = t; was solved at which the field changing-rate
switches from slow to fast as the field is raised from O to a maximum. The penetration loss
integration is written as

T Tm
Qs = -2 f MCIBed[+I N[t:ZB'edt
0 T (2.80)

where T is the smaller of t} and Tp,.
I1.4.3 Total AC Loss

In addition to the penetration losses in the saturated region, the hysteresis loss of the
superconductor filaments and the coupling current loss of the matrix material in the non-
saturated region, as have been reviewed in this chapter, must also be taken into account for
the total loss (Ref. 2.42). In a uniformly distributed multifilamentary zone, the saturation
layer is always initiated from the outer-most region. At a low field changing rate, the
fraction of the inner non-saturated region is approximated as
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B
f = 1-(L = 1.8
aMF By MF (2.81)

for a multifilamentary slab. The volume fraction of the non-saturated region must be used
to weigh the hysteresis-loss and coupling-loss integrations. The total loss of a current-free
conductor is estimated as the weighted sum of the above three types of loss.

IL.S ADDITIONAL LOSS DUE TO TRANSPORT CURRENTS

When a composite type-II superconducting wire is used to build a high current AC
magnet, it is important to identify the change of the AC losses due to the externally applied
ransport currents. Although a few articles regarding the additional loss due to transport
current have been published (Refs. 2.7, 2.12, and 2.40 to 2.57), all the analysis were
based on the Bean model with the assumption of J; = constant. Analytical loss formulae
are only available in 1-D slab geometry. In this section, attention is focused on the
transport current effect on the AC losses of a composite slab.

IL.5.1 DC Transport Current in a Multifilamentary Slab

I1.5.1.1 Magnetization

Similar to what has been described in section I1.2.3, an infinite multifilamentary
superconducting slab with a thickness of 2a is assumed to be affected by a cyclic uniform
external field Be in the parallel direction. As seen in Fig. 2.11(a), the filaments in the slab
are further assumed to be in the critical state: both halves of the slab are filled with critical
currents in the opposite directions. When a DC transport current I; is applied to the slab,
the shift of the electric center line is determined as

I[ I[ Ic

AXx =
2] MF

= 1aMF

where 1 = 1;/ I, aMF is the half width of the multifilamentary slab, and I = 2apmpJc MF is

evaluated at Bmean = (Bmax + Bmin) / 2. Fig. 2.11(b) shows that in the critical state model,
the penetration field at some bias field is modified from Bp MF = HoJc MF amF ( Eq.

(2.68)) into
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Fig. 2.11 Current and flux distribution of a composite superconducting slab in a
parallel field; (a) without transport current, (b) with DC transport current. i =1t/ I¢.
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B'pMF = HoJeMFamF (1-1) = Bpmr (1 - 1), (2.82)
and the penetration field for a cyclic changing field becomes

AB'pMF = 2 HoJcMFaMF (1-1) = ABpME (1 - 1), (2.83)
Similar expressions can be found in Refs. 2.7 and 2.12.

In the case of a composite wire in a transverse changing field, the transport current is
carried by the inner non-saturated region of thickness 2 (amr - 8), where 8 is the thickness
of the saturation layer as described in Eq. (2.71). The reduced transport current is
expressed as (Ref. 2.42)

J* I, I; aMF

1 = = = aMF
2(amp-8)Jomp 2 2MF JeMF (ay - 3)

aMF__ _
c (aMF - 8) (aMF - 5) (2.84)

Ih—i
—

o

Substituting Eq. (2.71) for & into Eq. (2.84) to have

1
(1 . T_Be)
By MF

. - i
(1 .IB
Bp MF

(2.85)

Due to the increment of the Be, the inner region at a given I; becomes saturated when i* =
1. From Eq. (2.85), one obtains the saturation criteria for a composite carrying transport

current as
B _ 1B _ . ati’ = 1, composite slab saturated
BpMF  BpMF (2.86)

Similar to what has been reviewed in subsection I1.4.2, when the multifilamentary slab
carries a transport current, the relationships between the external field and the applied field
are extended from Eq. (2.75) as

Be-B = 1B, for T Be < BpMF (1 -1) (2.87a)
Be-B = Bpmr(1-1), fort Be > BpMF (1-1) (2.87b)

i
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When the variation of the applied field AB. is smaller than the AB ‘p.MF, the composite
slab 1s partially penetrated (Fig. 2.12(a) and (b)). Since the field affects only the saturated
region, the hysteresis loss pattern is the same as that with I; = 0 (Ref. 2.7). The
magnetization of the multifilamentary slab due to the shielding currents is the same as that
of Eq. (2.76a),

-quClztB-e-%B ’ . .
p.MF fortBe <Bpmr(1-1)  (2.762)

At a very slow field variation, the thickness of the saturation layer and thus the penetration
loss approaches zero,

Q1 =0 for 1 Be << Bpmr(1-i) (2.88)

Assuming that the variation of the external field is much larger than the penetration field
of the filament ABp, the hysteresis magnetization of the filaments is

“uoMm = LB, (1 -i‘z)(l-‘Be), .
2 Bp fortBe<Bpmr(l-i)  (2.89)

In a slowly changing field, with J. independent from the external field variation, the
hysteresis loss is approximated as

2
th = & &(1 - ]2)
2M0 AB, for t Be << Bpmp (1-1)  (2.90)

If at any instant the field variation from the mean value is beyond the Bp MF (1 -1), as
seen in Figs. 2.12(c), and (d), the magnetization of the multifilamentary slab due to the
shielding currents is affected by the transport current as

-noMez = L B me(1 - 12)

2 fortBe>Bpmr(1-1)  (2.91)

Based on the Bean model, J; = constant, the penetration loss becomes
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Fig. 2.12 (a) A superconducting slab carrying DC transport current in a parallel AC field;
(b) ABe < ABp, MF; (c) ABe= ABpMF ; (d) ABe> AB'p,MF-

80



2
Q., = ABe ABpMF () i)

2Ho  AB, fortBe>Bpme(1-1)  (2.92)

In a fast changing field, all the filaments in the multifilamentary slab are saturated by either
the transport currents or the coupling currents, the magnetization current in the filaments
against the external field variation can no longer exist. Thus,

- HoMp2 = 0 fortBe>Bpmp(1-1)  (2.93)
and

Q=0 for 1 Be > BpMmF (1 - 1) (2.94)

I1.5.1.2 Dynamic Resistivity

According to Ogasawara, et al. (Refs. 2.41 to 2.44 and 2.48), when a current-carrying
composite superconducting wire is affected by a changing field, the current source delivers
a real power to the superconducting filaments and a resistive voltage appears across the
wire. By Faraday’s law, a voltage builds up due to the change of the total flux enclosed in
the non-saturated region. For a superconducting filament with a radius of rfin a
multifilamentary slab with a half width of amF, the loss voltage per length of the filament
can be expressed as

.I[

Bo-t2rr = L+ Bei2r

v, =4 (1B, Ax] = =
YT dt (2 € ) I 2 ford -0 (2.95)

1
2
where & is the thickness of the saturation layer in the multifilamentary zone. As the field
changing rate increases, the growth of the saturation layer tends to decrease the area that the

transport currents can flow without additional loss. Therefore, the loss voltage V. is
modified by substituting i with i*. From Eq. (2.85),

V, = -l—B'ei. 2rf = lBlef——i,—
-
By MF

|8}

fortBe<Bpmr(1-1)  (2.96)

The dynamic loss per unit volume of the multifilamentary zone is simply

g1



t
Q = ﬁ f VI, dt
0 (2.97)

where AMF is the cross sectional area of the multifilamentary zone. At a low field changing
rate, the loss is approximated as

Q4 = AB% ABp,MF 2
Ho AB, for 1 Be << Bpmr (1-1) (2.98)
When the whole composite 1s fully saturated in a high field changing-rate, the inner
region is saturated by the transport current, that is i* = 1. By Eq. (2.96), the loss voltage
in the inner region is simplified to

vl.inner = %Be 2rf (299)

Due to the twisting, the saturated region shields the inner region by poKgs = Be - B. The
field penetrating the saturated region is thus Be - B. In the outer saturated region, the loss
voltage is

Viouter = %(Be - B) 12amF (2.100)

From Eq. (2.86), the changing-rate of the applied field is related to the external field and
the transport current by

B = (1-)2BMF _ ;) 2eMF
T B, (2.101)

Substituting Eq. (2.101) into Eq. (2.100),

Viower = 3 Bei2amp(1-(1-1)

TB.

Bp.MF)
(2.102)
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The total loss voltage at a higher field changing-rate is the summation of Egs. (2.99) and
(2.102) which is given as

V, = lBezrf+lBei2aMF(1 -1 -i)M)
2 2 TBe

fortBe>BpMp (1-i) (2.103)

Since Be - B = Bp MF at a high field changing-rate, the loss due to the dynamic resistivity is
approximated as

Ho  AB. fortBe>Bpmr (1-1)  (2.104)

I1.5.1.3 Additional Loss Due to DC Transport Current

The total loss of a composite superconducting slab is taken as the linear sum of the
coupling loss, the hysteresis loss, and the loss due to dynamic resistivity as a DC transport
current is applied. As summarized by Ogasawara, et al. (Ref. 2.42), for slow field
variation, T Be << Bp MF (1 - 1):

Q1 =0 (2.88)
2
AB. ABpMF (1-12)

Qn
2M0  AB, (2.90)

Qq = ABZ ABpMF .
Ho AB. (2.98)

the total loss is given as

20 AB, (2.105)

At I; =0, the total loss contains only the hysteresis loss of the filaments in the composite.
The form of Q(0) is consistent with that of Eq. (2.21) if Bmax >> ABpo MF is applied.

The relationship of the losses between with and without a DC transport current is simply
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Qi) = Qu0) (1 +i?) (2.106)

The additional loss due to the DC transport current s i2Q,(0). The same conclusion can be
found in other previous publications (Refs. 2.12, 2.41 to 2.45).

For high field changing-rate, T Be > BpmF (1 - i):

Q2 = 5—
2l AB, (2.92)
Q2 =0 (2.94)

Ho AB. (2.104)

. (2.107)

The similar conclusion of Qi(i) = Q(0) (1 + i2) is reached.
I1.5.2 AC Transport Current in a Multifilamentary Slab

The same formulations for the magnetization and the loss voltage of dynamic resistivity
applied in Section I1.5.1 were used to analyze the loss of a multifilamentary slab carrying a
time-varying (AC) transport current by Ogasawara, et al. (Ref. 2.44). In their analysis, the
critical current was fixed as a constant and was evaluated at Bmean = (Bmax + Bmin) / 2.
The AC transport current was assumed to be in-phase with the external AC field and varied

between 0 and Ip. By including the time-dependent transport current in the loss
integrations, with im = Im/L, the relation of

o 12
Qi) = QO) (1 + i) (2.108)
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was concluded for a composite slab carrying AC transport current in both slow and fast
field variations. The same conclusion was reached for the case of slow field variation in
another article (Ref. 2.53).

II.6 SUMMARY

Hysteresis loss analyses for 1-D slab and 2-D cylindrical geometries, based on the Bean
critical state model, have been reviewed. Hysteresis loss is the most fundamental loss of a
superconductor in a time-varying field, which occurs at any time-rate of field variation.
Critical current density and the filament size are the most important parameters in
calculating hysteresis loss.

Coupling loss is strongly affected by the coupling time constant which contains all the
physical properties of a twisted composite wire other than the superconducting filaments.
The coupling loss is an increasing function of the field changing rate. Depending on the
coupling time constant, when the frequency of the AC field increases, the coupling loss
may become larger than the hysteresis loss. In this chapter, the existing coupling loss
model for a composite wire with 4-layer structure has been generalized into a 5-layer
structure to inciude all the wire constructions encountered in the present work.

At a high field changing rate, the coupling currents saturate the outer-most layer of the
superconductor filaments. The thickness of the saturation layer grows as the frequency
increases. The penetration loss due to the magnetization of the saturated layer becomes
important. Meanwhile, the fraction of filaments producing hysteresis loss as well as
coupling loss is reduced. At a critical field changing rate, the total loss reaches a maximum
value then decreases monotonically with the increase of the frequency of the field variation.
For the field conditions applied in the present work, the saturation layer in a single strand is
always negligible. The mechanism of penetration loss is more important than the final loss
expressions in the existing analysis, which will be applied to develop a new AC-loss model
in Chapter VI.

When a transport current is applied to a composite superconductor, the hysteresis loss is
reduced due to the saturation of the filaments by the transport current. However, the
increase of the loss due to the dynamic resistance is more than the decrease of the hysteresis
loss. The net loss of a current-carrying composite superconductor is always larger than
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that of a current-free conductor. In the existing analysis based on the Bean critical state
model, the additional loss caused by the transport current is of hysteresis type of loss
which is independent from the field changing rate. The loss becomes significant when the
applied DC or synchronized AC current approaches the critical current at a given field.

The existing hysteresis-loss models were developed on the basis of critical state model
which assumes 1J¢| = constant. These models are best applied for a superconductor affected
by a small changing field superposed on a large DC bias field. In this thesis work, two
types of field variation are of interest: (1) a small sinusoidal wave-form field superimposed
on various large DC bias fields, and (2) a large peak-to-peak unidirectional triangular cyclic
field. The first field condition is a good approach to the critical state model. However, the
critical current changes with the DC bias field. In the second field condition, the critical
current in the superconductor changes instantaneously with the large amplitude AC field.
The variation of the critical current with the applied field is large enough that the Bean
model is no longer valid. Modifications of the existing hysteresis-loss model in 2-D
cylindrical geometry for the field conditions of interest to this thesis work will be
performed in Chapter III.

I1.7 REFERENCES

2.1 Bean, C.P., ‘Magnetization of Hard Superconductors,” Phys. Rev. Letters, Vol. §,
1962, p. 250.

2.2 Bean, C.P. and Doyle, M.V., ‘Superconductors as Permanent Magnets,” J. Appl.
Phys., Vol 33, 1962, p. 3334; and Vol 34, 1963, p. 1364.

2.3 Bean, C.P., ‘The Magnetization of High Field Superconductors,” Revs. of Mod.
Phys., Vol 36, 1964, p. 31.

2.4 Bean,C.P., et al. ‘A Research Investigation of the Factors That Affect the
Superconducting Properties of Materials,” AFML-TR-65-431, 1966.

2.5 Orlando, T.P., and Delin, K.A., Foundations of Applied Superconductiviry,
Addison-Wesley, 1991.

2.6 Kim, Y.B., Hempstead, C.F., and Strand, A.R., ‘Magnetization and Critical
Supercurrents,” Phys. Rev., Vol. 129, 1963, p. 528.

2.7 Wilson, M.N.,, Superconducting Magnets, Oxford Science Publications, 1983.

86



2.8 Kato, Y., Hanawaka, M., and Yamafuji, K., ‘Flux Penetration into a Wire of a
Nonideal Type II Superconductor in a Transverse Magnetic Field,” Jpn. J. Appl.
Phys., Vol. 15, No. 4, 1976,

2.9 Ashkin, M., ‘Flux distribution and hysteresis loss in a round superconducting wire
for the complete range of flux penetration,” J. Appl. Phys., Vol. 50, No. 11, 1979,
p. 7060.

2.10 Pang, C.Y., McLaren, P.G., Campbell, A.M., ‘Losses in Superconducting
Cylinders in Transverse Fields,” Proceedings of the 1980 International Cryogenic
Engineering conference, Genova, Italy, 1980, p. 739.

2.11 Zenkevitch, V.B., Romanyuk, A.S., Zheltov, V.V, ‘Losses in composite
Superconductors at high levels of magnetic field excitation: part 1,” Cryogenics,
1980, p. 703.

2.12 Minervini, J.V., “Analysis of Loss Mechanisms in Superconducting Windings for
Rotating Electric Generators,” MIT thesis, 1981.

2.13 Zenkevitch, V.B., Romanyuk, A.S., Zheltov, V.V., ‘Losses in composite
Superconductors at high levels of magnetic field excitation: part 2,” Cryogenics,
1981, p. 13.

2.14 Rutherford Laboratory, ‘Experimental and theoretical studies of filamentary
superconducting composites,” J. Physics D, Vol. 3, 1970, p. 1517.

2.15 Morgan, G.H., ‘Theoretical behavior of twisted multicore superconducting wire in a
time-varying uniform magnetic field,” J. Appl. Phys., Vol. 41, No. 9, 1970, p.
3673.

2.16 Brechna, H., Superconducting Magner Systems, Springer-Verlag, 1973.

2.17 Carr, W.J., ‘AC loss in a twisted filamentary superconducting wire, 1,” J. Appl
Phys., Vol. 45, No. 2, 1974, p. 929.

2.18 Kwasnitza, K., and Horvath, 1., ‘AC loses of superconducting composites with 8

pm NbTi filaments in a DC magnetic field with a superimposed AC component at 1 <
f < 500 Hz,” Cryogenics Vol 15, 1975, p. 723.

2.19 Ries, G., ‘AC-losses in multifilamentary superconductors at technical frequencies,’
IEEE Trans. Magnetics, Vol. MAG-13, No. 1, 1977, p. 524.

2.20 Kwasnitza, K., ‘Scaling law for the AC losses of multifilaments superconductors,’
Cryogenics, 1977, p. 616.

2.21 Wilson, M.N., Superconducting Magnets, Oxford Science Publications, 1983.
2.22 Zenkevitch V.B., Romaniuk, A.S., ‘Losses in multifilamentary superconductors at

low levels of excitation,” IEEE Trans. Magnetics, Vol. MAG-13, No. 1, 1977, p.
567.

87



2.23 Zenkevitch V.B., Romaniuk, A.S., ‘The effect of magnetic properties of a composite
superconductor on the losses in variable magnetic field: part 1 theory,” Cryogenics
Vol. 19, 1979, p. 725.

2.24 Turck, B., ‘Effective transverse resistivity in multifilamentary superconducting
composite,” ICEC 9 - ICMC, Kobe, Japan, May 11-14, 1982.

2.25 Carr, W.1Jr., IEEE Trans. Magnetics, Vol. 13, No. 1, 1977, p. 192.

2.26 Handbook on Materials for Superconducting Machinery, MCIC-HB-04, 1977,
updated March 1985.

2.27 Fickett, F.R., ‘Electric and magnetic properties of CuSn and CuNi alloys at 4 K,’
Cryogenics, 1982, p 135.

2.28 CRC Handbook of Chemistry and Physics, 70th Ed., 1989-1990.

2.29 Ando, T., Takahashi, Y., Nishi, M., and Shimamoto, S., ‘AC losses in a Ta barrier
Nb3(Snln) strand in demo poloidal coil,” Adv. Cryo. Eng., Vol. 34, 1988, p. 879.

2.30 Hall, L.A., ‘Survey of electrical resistivity measurements on 16 pure metals in the
temperature range from 0 to 273 K,” NBS Technical Note 365, 1968.

2.31 Benz, M.G., ‘Magnetoresistance of copper at 4.2 K in transverse fields up to 100
KG,’ J. Appl. Phys., Vol. 40, No. 5, 1969, p. 2003.

2.32 Fickett, F.R., ‘A preliminary investigation of the behavior of high purity copper in
high magnetic fields,” International Copper Research Report, No. 186, 1972.

2.33 Nick, W., and Schnidt, C., ‘Thermal magnetoresistance of copper matrix in
compound superconductors, a new measuring method,” IEEE Trans. on Magnetics,
MAG-17, No. 1, 1981, p. 217.

2.34 Fickett, F.R, ‘The effect of mill temper on the mechanical and magnetoresistive
properties of oxygen-free copper in liquid helium,” Adv. Cryo. Eng., Vol. 30, 1984,
p. 453.

2.35 Fickett, F.R., and Capobianco, T.E, ‘ Relationship between mechanical and
magnetoelectric properties of oxygen-free copper at 4 K,” Adv. Cryo. Eng., Vol. 32,
1986, p. 421.

2.36 Fickett, F.R., ‘Transverse magnetoresistance of oxygen-free copper,” IEEE Trans.
on Magnetics, Vol. 24, No. 1, 1988, p. 1156. ,

2.37 Turck, B., ‘Coupling losses in various outer normal layers surrounding the filament
bundle of a superconducting composite,” J. Appl. Phys., Vol. 50, No. 8, 1979, p.
5397.

2.38 Turck, B., ‘Effect of the respective positions of filament bundles and stabilizing

copper on coupling losses in superconducting composites,” Cryogenics, 1982, p.
466

88



2.39 Ito, D., Koisumi, M., Hamajima, T, Nakane, F., ‘The influence of filament bundle
location on coupling losses in superconducting composites. Part I: mixed matrix
conductor,” Cryogenics, 1983, p. 643,

2.40 Soubeyrand, J.P., and Truck, B., ‘Losses in superconducting composites under high
rate pulsed transverse field,” IEEE Trans. on Magnetics, MAG-15, No. 1, 1979, p.
248.

2.41 Ogasawara, T., et al., ‘Alternating field losses in superconducting wires carrying dc
transport currents: part 1 single core conductors,” cryogenics, 1979, p. 736.

2.42 Ogasawara, T., et al, ‘Transient field losses in multifilamentary composite
conductors carrying dc transport currents,” Cryogenics, 1980, p. 216.

2.43 Ogasawara, T., et al., ‘Alternating field losses in superconducting wires carrying dc
transport currents: part 2: multifilamentary composite conductors,’ Cryogenics, 1981,
p- 97.

2.44 Ogasawara, T., et al., ‘Transient field losses in multifilamentary composite
conductors carrying ransport currents,’ IEEE Trans. on Magnetics, MAG-17, No. 1,
1981, p. 967.

2.45 Campbell, A.M., “The effect of transport current and saturation on the losses of
multifilamentary superconducting wires,’ Cryogenics, 1981, p. 107.

2.46 London, H., ‘Alternating current losses in superconductors of the second kind,’
Phys. Letters, Vol. 6, No. 2, 1963, p. 162.

2.47 Hancox, R., ‘Calculation of a.c. losses in a type II superconductor,’ Proc. IEE, Vol.
113, No. 7, 1966, p. 1221,

2.48 Ogasawara, T, et al., “Effective resistance of superconducting winding in oscillating
magnetic fields,” IEEE Trans. on Magnetics, MAG-11, No. 2, 1975, p. 362.

2.49 Duchateau, J.L., Turck, B., Krempasky, L., and Polak, M., “The self-field effect in
twisted superconducting composites’, Cryogenics, 1976, p. 97.

2.50 Turck, B., Krempasky, L., and Polak, M., * Self field and external field effects on
the current distribution in superconducting wires,” MT-6, Aug. 1977, Bratislava,
Czechoslovakia.

2.51 Murphy, J.H., ‘Skin effect alternating current losses in multifilamentary
superconductors,” IEEE Trans. on Magnetics, MAG-13, No. 1, 1977, p. 564.

2.52 Shen, S.S., and Schwall, R.E., ‘Interaction of transport current and transient
external field in composite conductors,” IEEE Trans. on Magnetics, MAG-15, No. 1,
1979, p. 232.

2.53 Carr, W.J., ‘AC loss from the combined action of transport current and applied
field,” IEEE Trans. on Magnetics, MAG-15, No. 1, 1979, p. 240.

89



2.54 Sumiyoshi, F., Hori, H., Irie, F., and Kawashima, T., ‘Using magnetic field pulses
with a slow sweep rate to produce uniform current distribution in multifilamentary
superconducting wire,” Cryogenics, 1983, p. 373.

2.55 Sumiyoshi, F., et al.,, ‘On the distribution of a transport current inside a
multifilamentary superconducting wire in a rapidly changing transverse magnetic
field,” Cryogenics, 1983, p. 619.

2.56 Kawashima, T., Sumiyoshi, F., Irie, F.,, and Yamafuji, K., ‘Losses in a
multifilamentary superconducting wire caused by a simultaneous sweep of current
and magnetic field,” Cryogenics, 1984, p. 313.

2.57 Kanbara, K., ‘Hysteresis loss of a round superconductor carrying a d.c. transport
current in an alternating transverse field,” Cryogenics, 1987, Vol. 27, p. 621.

90



CHAPTER III

HYSTERESIS LOSSES WITH FIELD-DEPENDENT
CRITICAL CURRENT DENSITY

III.1 INTRODUCTION

The existing hysteresis-loss models, as have been reviewed in Chapter II, were
developed on the basis of critical state model which assumes IJ.I = constant. These models
are best applied for a superconductor affected by a small changing field superimposed on a
large DC bias field. In this thesis work, two types of field variation are of interest: (1) a
small sinusoidal wave-form field superimposed on various large DC bias fields, and (2) a
large peak-to-peak unidirectional triangular cyclic field. The first field condition is a good
approach to the critical state model. However, the critical current changes with the DC bias
field. The existing 2-D analytical approximations based on the Bean model will be
modified by expressing the critical current density as a functon of the DC bias field. The .
second field condition is applied to simulate the field condition of a superconducting
magnet for ramp-field application. The critical current in the superconductor changes
instantaneously with the large amplitude AC field. The variation of critical current with
field is large enough that the Bean model is no longer valid. Modifications of the existing
hysteresis-loss model in 2-D cylindrical geometry for the field conditions mentioned above
will be performed in this chapter. Assumptions and simplifications in modifying the
existing hysteresis-loss models will be discussed. The expression of the effective filament
diameter, which is an important index to the extent of the filament bridging, will be shown.

As shown in Chapter II, the hysteresis loss depends heavily on the critical current
density. The field-dependent critical current density profile is an important parameter
affecting the hysteresis loss of a superconductor in a large field variation. Expressions of
the field-dependent critical current profiles for Nb3Sn and NbTi superconductor will be
discussed before modifying existing hysteresis loss models.
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II1.2 CRITICAL CURRENT DENSITIES
I11.2.1 Multifilamentary Composite

In some superconducting magnet application such as the ohmic heating coil in a fusion
reactor, the range of the field variation can be as large as + 14 T. When calculating the
hysteresis losses of a superconductor in a transverse field with such a large variation, it is
necessary to have a good estimation of the profile of the axial critical current density
throughout the range of the field variation. The first field dependent critical current density
applied to the hysteresis-loss analysis was the one shown in Eq. (2.2) which was
postulated by Kim, et al. (Ref. 2.6). The expression was obtained empirically from the
measured critical current density of superconductor tubes.

The critical current density of a bulk superconductor is determined by the flux pinning
force in the conductor, which can be modified by grain-boundary pinning, alloying
additives, radiation damage, etc. (Refs. 3.1 to 3.5). All the methods tend to increase the
room temperature resistivity of the superconducting material. Since a technical
superconductor is always in multifilamentary composite form, the critical current density is
thus determined by not only the flux pinning behavior of the superconductor itself but also
the additional factors, such as longitudinal compressive stress imposed by the stabilizer
(Refs. 3.1, 3.6, and 3.7), the completeness of the heat treatment for A15 compounds, etc.
For high current and high field applications, the superconducting wires are further twisted
into cables and may be enclosed in conduit material (Refs. 3.8 and 3.9). Depending on the
need, the superconducting cable may be operated at a te<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>