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Abstract

The threat of viral pandemics demands a comprehensive understanding of evolution at the

host–pathogen interface. Here, we show that the accessibility of adaptive mutations in influ-

enza nucleoprotein at fever-like temperatures is mediated by host chaperones. Particularly

noteworthy, we observe that the Pro283 nucleoprotein variant, which (1) is conserved

across human influenza strains, (2) confers resistance to the Myxovirus resistance protein A

(MxA) restriction factor, and (3) critically contributed to adaptation to humans in the 1918

pandemic influenza strain, is rendered unfit by heat shock factor 1 inhibition–mediated host

chaperone depletion at febrile temperatures. This fitness loss is due to biophysical defects

that chaperones are unavailable to address when heat shock factor 1 is inhibited. Thus,

influenza subverts host chaperones to uncouple the biophysically deleterious conse-

quences of viral protein variants from the benefits of immune escape. In summary, host pro-

teostasis plays a central role in shaping influenza adaptation, with implications for the

evolution of other viruses, for viral host switching, and for antiviral drug development.

Author summary

Viruses, such as influenza, evade the host immune response by mutating frequently. How-

ever, these adaptive amino acid substitutions are often biophysically deleterious and can

thus increase the propensity for viral proteins to misfold and hamper viral replication.

Host protein folding factors called chaperones interact extensively with viral proteins, like

influenza nucleoprotein, and are thus poised to potentiate the fitness of biophysically

defective, adaptive variants. Here, we directly test this hypothesis by quantitatively profil-

ing the mutational tolerance of influenza nucleoprotein in host cells with reduced chaper-

one levels. We find that chaperones indeed increase the accessibility of destabilized
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adaptive nucleoprotein variants, with an especially strong effect at fever-like temperatures.

We observe that the destabilized Pro283 nucleoprotein variant, which is universally con-

served across human influenza strains and enables evasion of the Myxovirus resistance

protein A (MxA) innate immunity restriction factor, is rendered unfit in a chaperone-

depleted host environment. Together, these data show that host chaperones critically

impact viral adaptation and may serve as targets for antiviral therapeutic adjuvants.

Introduction

RNA viruses are exceptionally efficient pathogens that leverage host machineries to replicate

their genetic material, synthesize their proteins, and assemble new virions. Perhaps their most

remarkable feature, however, is the capacity to rapidly evolve in the face of environmental and

immune system pressures. Such rapid evolution is largely mediated by a high mutation rate

[1].

Despite its adaptive benefits, rapid genetic change comes at a significant cost for evolving

proteins. The majority of amino acid substitutions (especially functionally relevant substitu-

tions that alter or create protein activities) are biophysically deleterious, negatively affecting

either protein folding or stability [2–6].

A striking illustration of this phenomenon in RNA viruses is influenza nucleoprotein (NP).

NP is a globular protein that oligomerizes to encapsulate influenza genomic material and

mediate its import into the host nucleus, a process that is required for transcription and repli-

cation of the viral genome [7]. NP is strongly conserved relative to the highly variable influenza

surface proteins targeted by antibodies [8]. However, NP does experience significant selection

pressure from the host immune system, including from innate immune restriction factors [9,

10]. In particular, the human restriction factor Myxovirus resistance protein A (MxA) can pre-

vent influenza ribonucleoprotein import [11–13], cutting short the viral replication cycle.

Adaptive mutations in NP that allow escape from human MxA are critical for the efficient

replication of new influenza strains in humans following zoonotic transmission. In just the last

century, nonhuman influenza NP was introduced into circulating human influenza strains in

2009 and probably in 1918 [14, 15], leading to the acquisition of MxA resistance and ultimately

to global pandemics [16, 17]. While NP evolution is driven by immune escape, it is nonetheless

clear that a delicate balance exists between immune system resistance and NP stability and

folding. Several NP substitutions known to engender immune escape are destabilizing [9, 10],

impairing viral growth in the absence of immune pressure [16]. Apparently, the evolving virus

must balance the costs of a NP folding defect with the benefits of escaping host immunity.

In theory, any mechanism that allows influenza (or other viruses) to uncouple protein fold-

ing versus immune escape selection pressures would have tremendous benefits for the patho-

gen. Recent work by us and others suggests that the host’s heat shock protein 90 (Hsp90)

chaperone can modulate the evolutionary paths traversed by viruses [18, 19]. Neither the

mechanism of Hsp90’s effect on viral evolution nor its relevance to actual viral strains is clear.

A provocative possibility, not yet experimentally explored, is that hijacked host chaperones,

whether Hsp90 or any of the other dozens of chaperones beyond Hsp90 that interact exten-

sively with influenza [20, 21], potentiate viral evolution directly by assisting the folding of bio-

physically defective NP variants that would otherwise be insufficiently fit to persist in the

population. If this hypothesis is correct, it would suggest that subversion of host protein fold-

ing chaperones by viruses can make otherwise inaccessible mutational trajectories leading to

immune system escape possible, specifically by promoting the folding of escape variants. Such
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a mechanism for host adaptation would have broad implications for the evolution of not only

influenza NP but also other influenza proteins and other viruses.

Rigorously testing this hypothesis requires a method to systematically and quantitatively

evaluate whether and how host proteostasis modulates viral protein mutational tolerance.

Here, we achieve that objective using deep mutational scanning [22] of influenza NP. We

apply deep mutational scanning in the context of chemical genetic inhibition of the host’s heat

shock factor 1 (HSF1 [23]) to create biophysically challenging, chaperone-depleted cellular

protein folding environments. This high-throughput approach revealed a number of amino

acid positions in influenza NP whose mutational tolerance is strongly reduced in chaperone-

depleted host cells. We confirmed the strong effects of host chaperones on NP mutational tol-

erance at a number of these sites using head-to-head competition experiments. Most strik-

ingly, the strongly conserved proline (Pro) residue at site 283 in NP is rendered highly unfit by

HSF1 inhibition at febrile temperatures. Pro283 in NP is known to facilitate escape from the

human innate immune system restriction factor MxA [9, 16], a feature that critically enhanced

the pathogenicity and fitness of the 1918 pandemic influenza strain. We further show that

Pro283 disrupts a key structural element in NP, rendering it unstable and aggregation-prone.

Host chaperones resolve this folding problem, allowing Pro283 to persist in the viral popula-

tion and thereby promoting MxA escape.

Collectively, our data demonstrate that viral hijacking of host chaperones addresses critical

biophysical defects that would otherwise sensitize the virus to host restriction factors. This

phenomenon thus has tremendous impact on the capacity of viruses to adapt to their environ-

ments, emphasizing the central importance of a hitherto underappreciated element of the

host–pathogen interaction and potentially providing new targets for antiviral intervention.

Results

Quantifying NP variant fitness in distinctive host cell folding environments

We used a deep mutational scanning strategy to systematically and experimentally quantify

the fitness of nearly all viable single amino acid substitutions in influenza NP in both basal and

biophysically challenging host cell environments. To this end, we employed previously

reported duplicate NP mutant libraries based on the human-adapted A/Aichi/2/1968 (H3N2)

influenza strain [24] and competed each viral library in Madin Darby canine kidney (MDCK)

cells. The MxA orthologs in MDCK cells are inactive against all influenza strains tested to date

[25] and permit robust influenza growth. To create a chaperone-depleted host cell environ-

ment for viral propagation, we employed a highly specific, chemically inducible dominant neg-

ative form of HSF1 [23], which is the master regulator of cytosolic and nuclear chaperone

levels [26]. At both permissive (37˚C) and biophysically restrictive, fever-like (39˚C) tempera-

tures, chemical induction of the HSF1 inhibitor reduces cytosolic chaperone transcript and

protein levels in both the absence (S1 and S2A Figs; S1 and S2 Data) and presence (S2A and

S2B Fig; S2 Data) of influenza. Notably, the condition in which HSF1 was inhibited (HSF1i)

did not significantly alter the replication of wild-type influenza or host cell metabolic fitness

over the course of our experiment (S2C and S2D Fig; S2 Data). We anticipated that the fever-

like temperature would prove moderately more challenging for NP folding, potentially restrict-

ing the accessible mutational landscape, while the depletion of cytosolic chaperones at each

temperature would assess the potential function of host chaperones in regulating NP variant

fitness.

To maintain library diversity (approximately 10,000 single amino acid substitutions) whilst

minimizing coinfection, we infected 107 cells in each host environment (Fig 1A) with 106

infectious virions from our biological duplicate viral NP libraries. In addition to performing
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deep mutational scanning in biological duplicate, we also performed technical duplicates with

one of the replicate libraries (S3A Fig). Following a 48-hour infection, we utilized a previously

reported barcoded subamplicon sequencing strategy [27] to accurately quantify the abundance

of NP variants after replication at both 37˚C and 39˚C with and without host chaperone deple-

tion (S3B–S3D Fig). The change in variant frequency upon selection was then normalized to

that of the wild-type residue, such that the resulting differential selection [28] value provides a

quantitative measure of the relative fitness of each NP variant in the conditions tested. The

Fig 1. Deep mutational scanning reveals positively selected sites upon chaperone depletion at a biophysically restrictive

temperature. (A) Deep mutational scanning selection scheme: each mutant NP influenza library was subjected to selection at

37˚C and 39˚C in both basal and chaperone-depleted (HSF1i) cells at an MOI of 0.1 virions/cell. Libraries were deep

sequenced following replication to quantify the selection on each mutant in the library. Mutation differential selection

corresponds to the differential selection of a specific NP mutant, relative to wt NP. Site differential selection corresponds to

the sum of the mutation differential selection values for all variants at a given NP site. (B) Box plots showing the distributions

of net site differential selection in both basal and chaperone-depleted (HSF1i) cells at 37˚C and 39˚C. Each selection was

performed in biological triplicate; box plots are shown for each replicate. The whiskers show 5th and 95th percentiles, boxes

show 25th and 75th percentiles, line shows median value, and points show outliers. The significance of deviation of the mean

from zero (no selection) was evaluated by a one-sample t test; � and ��� indicate FDRs< 0.05 and< 0.0001, respectively.

Nested ANOVA accounting for replicates and treatment conditions was performed for all selection conditions normalized to

Basal 37˚C (p = 0.0031). For pairwise statistical comparisons, p-values are provided in the statistics section of the Methods.

Site differential selection values are provided in S3 Data. (C) Representative sequence logo plots showing amino acid variants

at select sites differentially selected upon relative to wt. The size of the amino acid letters corresponds to the magnitude of the

mutational differential selection, which is on the same scale for each selection. Amino acids above the black line are more fit

in the selection condition compared to the mock-selection condition, amino acids below are less fit, and the black line

represents behavior of the wt amino acid in the selection condition. ANOVA, analysis of variance; FDR, false discovery rate;

HSF1i, condition in which heat shock factor 1 was inhibited; MOI, multiplicity of infection; NP, nucleoprotein; ns, not

significant; wt, wild type.

https://doi.org/10.1371/journal.pbio.3000008.g001
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results of this analysis can be visualized on sequence logo plots (see S4–S7 Figs for complete

NP logo plots and S3 and S4 Data for complete differential selection data).

As expected, we found that the fever-like temperature is restrictive, generally reducing the

fitness of NP variants relative to the wild-type sequence (see net site differential selection plots

in Fig 1B and also the logo plot in S6 Fig—Basal 39˚C versus Basal 37˚C). Host chaperone

depletion caused by inhibition of HSF1 modestly reduces NP variant fitness on average (Fig

1B and S5 and S7 Figs—HSF1i 39˚C versus Basal 39˚C and HSF1i 37˚C versus Basal 37˚C),

whereas chaperone depletion at the restrictive, fever-like temperature substantially reduces the

fitness of NP variants (Fig 1B and S4 Fig—HSF1i 39˚C versus Basal 37˚C; statistical analyses in

Materials and methods). Most strikingly, chaperone depletion at an elevated temperature

results in very high levels of differential selection at several specific sites in NP, including sites

283, 334, 353, and 377 (Fig 1C and S4 Fig—HSF1i 39˚C versus Basal 37˚C). At each of these

sites, multiple amino acids confer strongly enhanced fitness relative to the wild-type residue.

This phenotype is specifically revealed upon host chaperone depletion at 39˚C, as we do not

observe significant positive differential selection at these sites upon depleting chaperones at

37˚C (Fig 1C and S7 Fig—HSF1i 37˚C versus Basal 37˚C) and observe only modest positive

differential selection upon increasing the temperature in an environment with basal levels of

chaperones (Fig 1C and S6 Fig—Basal 39˚C versus Basal 37˚C).

Competitions between thousands of variants are often inherently noisy, largely owing to

differences in variant composition between replicate libraries [27]. However, we observed

strong correlation for selection on NP sites between biological (R2 = 0.71) and technical (R2 =

0.79) replicates of our deep mutational scanning experiments (S3E Fig and S3 and S4 Data).

Thus, the selection strength imparted by host chaperone depletion at a restrictive, fever-like

temperature substantially exceeds the experimental noise. Moreover, these deep mutational

scanning results were recapitulated in all pairwise competitions we performed between indi-

vidual highly selected variants and virus carrying the wild-type NP (Fig 2 and S8 Fig), and no

significant fitness change was observed for a synonymous variant used as a control (Fig 2B,

false discovery rate [FDR] = 0.4). Cumulatively, these findings confirm the validity of the deep

mutational scanning data and indicate that depleting chaperones at a moderately elevated tem-

perature creates a stringent host environment that strongly selects against wild-type residues

in NP at certain sequence positions.

Biophysical costs of individual NP variants

The strong differential selection we observed in chaperone-depleted host cells at a restrictive

temperature suggested to us that specific wild-type NP residues in the Aichi influenza strain,

the strain our libraries are based on, may entail a biophysical cost that is nonetheless tolerated

under permissive conditions, perhaps owing to competing selection forces. This hypothesis is

particularly compelling for the previously characterized stabilizing NP variants [10] N334H

(Fig 1C and S4 Fig) and M136I (S4 Fig), which were positively selected in biophysically chal-

lenging conditions. These variants exhibited modestly enhanced fitness upon increased tem-

perature and significantly enhanced fitness upon chaperone depletion at increased

temperature. The unmasking of the deleterious fitness effects of the wild-type sequence at

these positions upon host chaperone depletion supports the hypothesis that chaperones can

indeed rescue biophysically deleterious NP variants.

We observed a similar and even more striking trend at site 283, where numerous amino

acid substitutions—including serine (Ser), leucine (Leu), threonine, and glycine (Gly)—were

validated in our pairwise competition experiments to be significantly more fit than the wild-

type Pro residue when host chaperones were depleted at a restrictive temperature (Fig 1C and
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Fig 2B—HSF1i 39˚C versus Basal 37˚C). The identity of the amino acid at NP site 283 is

known to critically modulate influenza sensitivity to the human antiviral restriction factor

MxA, with Pro at that position contributing greatly to MxA escape [9, 16]. Although a struc-

ture of the MxA:NP complex is not currently available, site 283 is likely located at the MxA–

NP interface [29]. Moreover, Pro283 is nearly universally conserved in human influenza NP

but rarely occurs in avian influenza NP. This characteristic difference between human and

avian influenza strains is attributed to the necessity of Pro283 to escape human MxA, whereas

the avian MxA ortholog lacks known antiviral activity [30]. Indeed, the Leu283Pro substitution

enabled the 1918 pandemic influenza strain to escape MxA following zoonotic transmission

[16]. Pro283 in NP has thus greatly impacted the fitness of modern human influenza strains.

The observation that an adaptive amino acid substitution as important as Pro283 can be

rendered unfit by biophysically challenging, host chaperone–depleted conditions motivated us

to elucidate the underlying molecular basis of this phenomenon. Our hypothesis was that the

depletion of host chaperones exacerbates a biophysical defect in NP folding that is caused by

installation of a Pro at position 283. Prior work has shown that NP is engaged by numerous

cytosolic chaperones, including chaperones like heat shock protein 40 (Hsp40) and heat shock

protein 70 (Hsp70) that are depleted in our HSF1-inhibited host cell environment [31–35] (S1

and S2 Figs). For example, Hsp40 (DNAJB1) directly interacts with NP and facilitates its

nuclear import [34], while Hsp70 is implicated in modulating NP nuclear export [35]. The

heat shock proteins can also regulate antiviral responses indirectly through their interactions

with NP [31–33]. Thus, the disruption of critical NP–host chaperone interactions by HSF1

inhibition-mediated chaperone depletion may indeed be the source of significant differential

selection at site 283, especially at a biophysically restrictive temperature.

This possibility raises the question of whether the Pro283 NP variant is, in fact, biophysi-

cally defective relative to other variants at site 283. Although there is currently no high-resolu-

tion structure of a NP variant containing Pro283, crystal structures of avian influenza NP

variants with Ser or Leu at position 283 are available [36, 37]. In these structures, site 283 is in

Fig 2. Pairwise competitions between highly selected variants and wt NP recapitulate the bulk competition results.

(A) Pairwise viral competition scheme: wt NP influenza was mixed with mutant NP influenza in an approximately 1:1

ratio and was then subjected to selection during replication at 37 ˚C and 39 ˚C in both basal and chaperone-depleted

(HSF1i) cells at an MOI of 0.1 virions/cell. The differential selection for each NP mutant was assessed by deep

sequencing the viral competition mixture following selection. Mutation differential selection was evaluated as the

logarithm of the enrichment of the corresponding variant. (B) Differential selection of NP variants upon chaperone

depletion at 39 ˚C relative to basal chaperone levels at 37 ˚C during pairwise competitions. Error bars indicate the

standard error from biological replicates (N = 3). The significance of deviation from zero (no selection) was evaluated

by a one-sample t test followed by FDR adjustment of corresponding p-values; � indicates an FDR< 0.05. Differential

selection values for pairwise competitions are provided in S5 Data. FDR, false discovery rate; HSF1i, condition in which

heat shock factor 1 was inhibited; MOI, multiplicity of infection; NP, nucleoprotein; ns, not significant; syn,

synonymous; wt, wild type.

https://doi.org/10.1371/journal.pbio.3000008.g002

Destabilized innate immune escape influenza variants are potentiated by host chaperones

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000008 September 17, 2018 6 / 23

https://doi.org/10.1371/journal.pbio.3000008.g002
https://doi.org/10.1371/journal.pbio.3000008


the middle of an α-helix (Fig 3A). Pro is classically regarded as a “helix-breaker,” owing in part

to its inability to form an i + 4 hydrogen bond important for α-helix stability [38]. Therefore, it

seemed reasonable to anticipate that the replacement of Ser (or Leu) with a Pro at position

283, as is observed in human influenza strains, would indeed be biophysically problematic.

To assess this hypothesis, we first performed molecular dynamics (MD) simulations in

explicit water to evaluate whether Pro283 affects either the overall structure of NP or the struc-

ture of the α-helix centered at position 283. Although the overall NP structure was not grossly

perturbed by Pro283, as would be expected given that this variant is still capable of supporting

influenza replication, our simulations revealed that a Pro283 NP variant is significantly less α-

helical at residues 282–284 than is a Ser283-containing variant (Fig 3B, S1 and S2 Videos and

S6 Data).

The significant structural consequences of Pro283 observed in these simulations prompted

us to experimentally investigate whether Pro283 affects NP stability. Following a previously

reported protocol [10], we recombinantly expressed and purified a monomeric form of NP

with either Pro, Ser, Leu, or alanine (Ala) at position 283 (S9A–S9C Fig). Circular dichroism

spectra indicated that all four variants had grossly similar secondary structures (S9B Fig), con-

sistent with our simulations. Thermal denaturation of NP is irreversible, leading to rapid

aggregation and precipitation of the protein. Nonetheless, fitting these irreversible thermal

melts to a two-state model revealed that Pro283 NP does indeed precipitate at a significantly

lower temperature than all three of the non-Pro variants studied (Fig 3C, S9C Fig and S7 Data)

and is therefore less stable and more aggregation prone.

The observation that Pro283 NP has a higher propensity to aggregate than other variants is

consistent with either a kinetic or thermodynamic defect caused by substitution with Pro283.

Given that Gly is, like Pro, known as an α-helix breaker and that Gly283 is positively selected

relative to Pro283 (see Fig 1C—HSF1i 39˚C versus Basal 37˚C) upon chaperone depletion at

febrile temperatures, we favor a substantial contribution from a kinetic defect that may be

associated with the propensity of Pro to form both cis- and trans-amide bonds [38]. The sub-

stantive biophysical defect endowed by Pro283 on NP likely explains the enhanced depen-

dence of this variant on host chaperones and explains why other variants are significantly

more fit in the absence of those key chaperones. Moreover, these results may help to explain

why Pro283 is not observed in avian influenza strains [16]. Birds typically have body tempera-

tures ranging from 39–43˚C [39], the upper end of which may be too extreme to permit chap-

erone-mediated rescue of the biophysically defective Pro283 NP variant.

Evaluating competing selection pressures of MxA escape and host

chaperone depletion

Cumulatively, these results suggest that NP variants critical for innate immune system escape,

most especially Pro283, can be folding-defective and display compromised fitness in biophysi-

cally challenging host environments (Fig 4A, left). This finding motivated us to evaluate

whether Pro283 fitness remains compromised under biophysically challenging conditions

even upon the addition of an MxA selection pressure that normally selects strongly in favor of

the Pro283 variant (Fig 4A, right). To this end, we performed pairwise viral competitions

between the biophysically stable Ser283 variant and the MxA-resistant Pro283 variant in each

of our host environments in the presence of either active or inactive MxA (Fig 4B and S2E

Fig). In permissive folding environments (Basal and HSF1i at 37˚C), Pro283 was enriched

compared to Ser283, thereby enabling MxA escape (Fig 4C). In contrast, in biophysically chal-

lenging environments (Basal and HSF1i at 39˚C), the stability defects of Pro283 were exacer-

bated, and Ser283 was enriched compared to Pro283. Ser283 was enriched even in the
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presence of MxA selection pressure when chaperones are depleted at 39˚C, thereby hindering

immune escape.

Altogether, these data reveal that HSF1-regulated chaperones can define the fitness of bio-

physically destabilized immune escape variants in influenza. This observation suggests a

model in which enhanced fitness conferred by immune escape is often counterbalanced over

the course of influenza evolution by biophysical defects that have a substantive fitness cost (Fig

5, left). Remarkably, at least in the case of influenza NP, our data show that the virus is able to

hijack host chaperones to resolve these biophysical defects (Fig 5, right). By this mechanism,

the virus manages to uncouple protein folding fitness costs from the advantageous conse-

quences of immune escape, expanding the accessible mutational landscape to access essential

viral protein variants capable of both folding and immune escape.

Discussion

This work provides, to the best of our knowledge, the first direct experimental evidence that

host chaperones mediate the accessibility of biophysically deleterious, adaptive viral protein

variants. This feature of the host–pathogen interaction is apparent in multiple sites across the

NP gene. Particularly noteworthy, we find that the destabilized Pro283 NP variant is not toler-

ated in a chaperone-depleted host environment at a restrictive temperature, as NP is unable to

Fig 3. Pro283 disrupts nucleoprotein α-helical content and is destabilizing relative to other variants at site 283.

(A) Nucleoprotein crystal structure reveals site 283 is in the center of an α-helix (PDB ID: 2IQH [36]). (B) Molecular

dynamics simulations show that Pro283 disrupts nucleoprotein α-helical content compared to Ser283. A Student t test

indicates significant differences at sites 282–284. Replicate α-helicity percentages are provided in S6 Data. (C)

Apparent (irreversible) melting temperatures (Tagg) of wild-type and site 283 nucleoprotein variants evaluated by

circular dichroism. Student t test indicates the significance of deviation from wild-type apparent melting temperature.

Replicate apparent melting temperatures are provided in S7 Data. Ala, alanine; Leu, leucine; PDB, Protein Data Bank;

Pro, proline; Ser, serine.

https://doi.org/10.1371/journal.pbio.3000008.g003
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engage host chaperones to address the Pro283-induced biophysical defect. Remarkably, we

observe that even in the presence of selection pressure imposed by MxA that strongly favors

Pro283 [9], the fitness of Pro283 NP is still contingent on the host’s chaperone levels and bio-

physical environment.

Based on these results, we expect that host chaperones can impact the accessibility of adap-

tive viral protein variants far beyond NP and influenza, as amino acid substitutions are largely

destabilizing [6], and many viral proteins are known to engage host chaperones [34, 40, 41].

Moreover, previous work has revealed (1) that viral evolution is fundamentally constrained by

protein stability [4, 10] and (2) the role of the Hsp90 chaperone in viral replication across

Fig 4. Host chaperones define the immune escape capacity of the Pro283 NP variant. (A) Deep mutational scanning reveals opposing selection forces

from chaperone depletion versus MxA-mediated immune selection. Left: chaperone depletion at 39˚C shown relative to the basal environment at 37˚C, as

in Fig 1C. Right: MxA selection from previously published deep mutational scanning data [9]. The size of the amino acid letters corresponds to the

magnitude of the mutational differential selection, which is on the same scale for each selection. Amino acids above the black line are more fit than wt

Pro283 in the selection condition, and amino acids below are less fit. (B) Pairwise viral competition scheme: wt NP influenza was mixed with mutant NP

influenza in a 1:1 ratio. The mixture was then subjected to selection at 37˚C and 39˚C in both basal and chaperone-depleted (HSF1i) cells at an MOI of 0.1

virions/cell in the presence of either active or inactive MxA. (C) Change in mutant frequency upon selection is plotted on the y-axis, with the origin

representing the mutant frequency in the input (inoculum). Error bars indicate the standard error from biological replicates (N = 3). The significance of

deviation from input (no selection) was evaluated for each selection condition by a one-sample t test; � and �� above individual bars indicate FDR< 0.05

and< 0.01, respectively. Nested ANOVA accounting for replicates and treatment conditions was performed for all selections (p = 1.16 × 10−9). The

significance of the difference in mutant frequency in the presence of active versus inactive MxA was evaluated for each selection condition by post hoc

pairwise comparisons; �, ��, and ��� between the bars indicate p-values< 0.05,< 0.01, and< 0.001, respectively. All p-values from post hoc pairwise

comparisons are provided in S9 Data. Replicate mutant frequencies are reported in S8 Data. ANOVA, analysis of variance; FDR, false discovery rate;

HSF1i, condition in which heat shock factor 1 was inhibited; MOI, multiplicity of infection; MxA, Myxovirus resistance protein A; NP, nucleoprotein; ns,

not significant; wt, wild type.

https://doi.org/10.1371/journal.pbio.3000008.g004

Fig 5. Host chaperones mediate the accessibility of biophysically destabilized adaptive mutations. (Left) Model for

a chaperone-depleted environment, in which immune escape and acceptable protein biophysical properties present

strongly competing selection pressures. (Right) Model for a chaperone-rich host environment, in which, at least for

some viral protein variants, these pressures can be uncoupled as chaperones enable viral proteins to maintain

acceptable folding and structural properties while still endowing escape from the immune system.

https://doi.org/10.1371/journal.pbio.3000008.g005
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numerous viral families [41–44]. Thus, the evolutionary trajectories of diverse viral proteins

are likely to be influenced by numerous host chaperones [18, 19].

Since our work suggests that host chaperones preferentially rescue biophysically defective

viral protein variants, as more data accumulate in this field, we may eventually be able to pre-

dict how chaperones will impact fitness in a rational manner based on protein variant biophys-

ical properties. Further, our infections in the presence of the MxA restriction factor

demonstrate that host chaperones can mediate the accessibility of escape variants irrespective

of competing selection pressures. These data raise the possibility of antiviral therapeutic adju-

vants targeting host chaperones that inhibit the development of antiviral resistance by con-

straining the accessible mutational landscape. We further observe that temperature critically

influences the fitness of viral variants, with most variants suffering fitness costs at elevated tem-

peratures that mimic fever conditions and/or the body temperatures of birds and small mam-

mals [39]. Thus, fever and host-switching events may impose selection on viral variants that

hampers adaptation. Based on our findings here, the nature of such selection is likely to be

strongly influenced by host-specific differences in chaperone network compositions.

We anticipate that these phenomena extend far beyond the host–pathogen interface and

apply to protein evolution more broadly. Previous work by Lindquist and others suggested

that the Hsp90 chaperone can potentiate and buffer genetic variation in endogenous proteins

[45–49]. Here, the impact of the host chaperone environment on NP variant fitness is driven

predominantly not by Hsp90 (see S10 Fig), even though NP does engage this chaperone [50],

but instead by inhibition of HSF1 modulating the composition of a complex network of multi-

ple protein folding and quality control factors. Moreover, our work shows experimentally that

chaperones have the largest effect on the fitness of biophysically defective protein variants, a

result that may help to explain extensive prior work with Hsp90 in which the potential bio-

physical mechanism of effects on protein evolution have not been experimentally evaluated.

HSF1-regulated host proteostasis network components may modulate NP evolution

directly—for example, by impacting NP–chaperone interactions—or indirectly, perhaps by

perturbing levels of endogenous chaperone client proteins with antiviral properties. Our data

support the former case, as we find that destabilized NP variants are particularly sensitive to

chaperone depletion. Nonetheless, we would not rule out possible contributions from second-

ary effects. Deciphering between primary and secondary effects will first require identifying

the individual components of the intricate protein folding network that are primarily responsi-

ble for modulating NP fitness, followed by systematic elimination of potential downstream

effectors. Whether primary or secondary, the evolutionary implications of the protein folding

network clearly extend well beyond Hsp90 and also play critical roles in evolution at the host–

pathogen interface.

Finally, this work provides experimental evidence for the longstanding hypothesis that

chaperones buffer the fitness cost of biophysically destabilized protein variants [45, 51, 52].

Experimental validation of this concept in metazoan cells for the first time, to the best of our

knowledge, has significant consequences for understanding the constraints on protein evolu-

tion, which have so far focused on inherent biophysical properties of proteins [2, 10]. For spe-

cific destabilized adaptive variants, fitness has been attributed to compensatory stabilizing

mutations elsewhere in the protein structure [10, 53]. Cases of this idiosyncratic epistasis

mediating pathogen adaptation have motivated efforts to determine the pervasiveness of com-

pensatory mutations [10]. Our data reveal that the constraints on protein evolution are still

more complex, establishing that protein variant fitness is constrained not just by inherent sta-

bility but also by the cellular environment in which the protein folds.
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Materials and methods

Plasmids

The following plasmids were used to generate the A/Aichi/2/1968 influenza virus: pHWAi-

chi68-NP [54], pHWNan95-PB2 [54], pHWNan95-PB1 [54], pHWNan95-PA [54],

pHW184-HA [55], pHW186-NA [55], pHW187-M [55], and pHW188-NS [55]. For NP

recombinant expression and biophysical studies, a pET28b(+) expression vector encoding

monomeric A/Aichi/2/1968 NP with an R416A mutation (which prevents RNA binding), dele-

tion of residues 2–7, and a C-terminal 6×-His tag was used [10]. A lentiviral vector containing

a FLAG-tagged human MxA or inactive MxA(T103A) sequence under a CMV promoter with

a GSG linker (DYKDDDDKGSG) at the C-terminus was used for generation of the MxA-

expressing MDCK cell line [9]. Downstream of MxA, the plasmid contained an internal ribo-

some entry site (IRES) followed by an mCherry reporter gene to assist the selection of stable

single-colony cell lines.

Antibodies

Antibodies used were as follows: rat monoclonal anti-FLAG (Agilent; 200474), mouse mono-

clonal anti-β-actin (Sigma; A1978), rabbit polyclonal anti-Hsp90, rat monoclonal anti-Hsp70,

and rabbit monoclonal anti-Hsp40 from Cell Signaling (4877, 4873, and 4871, respectively).

IRDyes 800CW goat anti-rat, 680LT goat anti-mouse, and 800CW goat anti-rabbit secondary

antibodies were obtained from LI-COR (926–32219, 926–68020, and 926–32211, respectively).

Cell lines

For the MDCKdn-cHSF1 cell line construction, MDCK cells were originally purchased from the

American Type Culture Collection (Manassas, VA, United States) and validated as MDCKs by

STR profiling (Science Exchange). Cells were cultured at 37˚C in a 5% CO2(g) atmosphere in

DMEM (CellGro) supplemented with 10% fetal bovine serum (FBS; CellGro) and 1% penicil-

lin/streptomycin/glutamine (CellGro). The parental MDCK cells were transduced first with

lentivirus encoding a blasticidin-resistant tetracycline repressor and then with lentivirus

encoding a zeocin-resistant, tetracycline-inducible dn-cHSF1 construct [23]. Heterostable

cells expressing the tetracycline repressor and the dn-cHSF1 construct were then selected

using 8 μg/mL zeocin and 4 μg/mL blasticidin. Single colonies were generated by serial dilu-

tion in 96-well plates, expanded, and then selected based on functional testing of HSF1 inhibi-

tion [23] using qPCR (S2B Fig), as previously described.

For MDCKdn-cHSF1-MxA and MDCKdn-cHSF1-MxA(T103A) cell line construction, MDCKdn-

cHSF1 cells were engineered to constitutively express human MxA or the inactive MxA-T103A

mutant [9] by transducing with lentivirus encoding FLAG-tagged MxA variants. At 72 h post

transduction, single colonies were generated by serial dilution in 96-well plates. Wells with

clonal transduced cells were identified as single clusters of cells expressing mCherry, expanded,

and then characterized as described below.

Characterization of cellular environments for influenza competitions

Quantitative RT-PCR. MDCKdn-cHSF1 cells were plated in 12-well plates at a density of

100,000 cells/well and pretreated with 0.1% DMSO or doxycycline at a final concentration of

1 μg/mL upon seeding. After 18 h, the cells were infected with wild-type influenza A/Aichi/2/

1968 at an MOI of 1 virion/cell. Infectious media were replaced with fresh WSN media (Opti-

MEM-I from Thermo Fisher Scientific supplemented with 0.5% heat-inactivated FBS, 0.3%

BSA from Invitrogen, 1% of penicillin/streptomycin from Bio Whittaker, and 100 μg/mL of
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CaCl2 from Sigma) supplemented with 0.1% DMSO or 1 μg/mL doxycycline 2 h post infection.

Infected cells were treated with 100 μM sodium arsenite (Alfa Aesar) for 90 min prior to har-

vesting for a heat shock activation control and harvested 8 h post infection. Cellular RNA was

extracted using Total RNA Kit I with Homogenizer columns (Omega). RNA (1 μg) was reverse

transcribed into cDNA using the Applied Biosystems High-Capacity Reverse Transcription

kit. The reverse transcription reaction (20 μL) was diluted to 80 μL with molecular biology–

grade water, and 2 μL of each sample was used for qPCR with the 2× Sybr Green Reaction Mix

(Roche) and primers for canis RPLP2 (housekeeping gene), HSP90AA1 (Hsp90), HSPA1A
(Hsp70), DNAJB1 (Hsp40), and influenza matrix protein (primer sequences are provided in S1

Table). Transcript levels of heat shock proteins were normalized to RPLP2, and normalized

transcript levels for each treated condition were quantified relative to the basal environment at

37˚C (S2B Fig). For a positive control of productive infection, matrix protein transcript levels

were compared with a prepared standard curve using the pHW187-M plasmid.

RNA extraction and sequencing. MDCKdn-cHSF1 cells were seeded at 100,000 cells/well in

a 12-well plate and treated with 0.1% DMSO or 1 μg/mL doxycycline for 48 h. Each treatment

was performed in biological triplicate. Cellular RNA was harvested using the RNeasy Plus

Mini Kit with QIAshredder homogenization columns (Qiagen). RNA-seq libraries were pre-

pared using the Kapa mRNA HyperPrep RNA-seq library construction kit (Kapa/Roche), with

fragmentation times of 7 and 6 min at 94˚C for the 37˚C and 39˚C samples, respectively, and

final amplifications of 15 and 12 PCR cycles, respectively. The resulting libraries were

sequenced on an Illumina HiSeq using 40-bp single-end reads. RNA-seq quality control and

differential expression analysis was performed as previously described [18]. Briefly, reads were

aligned against the Canis familiaris genome assembly canFam3 with an ensembl annotation

using STAR v. 2.5.3a. Gene expression was quantified using RSEM v. 1.3.0. Differential expres-

sion analysis to compare conditions (S1 Fig and S1 Data) was performed using DESeq2 version

1.10.1 running under R version 3.2.3.

Resazurin cell growth assays. MDCKdn-cHSF1 cells were seeded at 100,000 cells/well in

12-well plates and pretreated with 0.1% DMSO or 1 μg/mL doxycycline. To mimic the infec-

tion conditions, we replaced the cellular growth media with WSN media and supplemented

with 0.1% DMSO or 1 μg/mL doxycycline 18 h after seeding. At 48 h after the mock infection,

the media were replaced with WSN media containing 50 μM resazurin sodium salt (Sigma).

After 4 h of incubation, 100 μL of media was used to quantify resorufin fluorescence (excita-

tion 530 nm; emission 590 nm) using a Take-3 plate reader (BioTeK) (S2D Fig).

Immunoblot analyses. MDCKdn-cHSF1 cells were seeded at 200,000 cells/well in 6-well

plates and treated with 1 μg/mL doxycycline or left untreated for 48 h. At 8 h prior to harvest-

ing, cells were treated with 100 μM sodium arsenite for 2 h and then allowed to recover in

fresh media for 6 h. For protein levels examined during influenza infection, MDCKdn-cHSF1

cells were seeded at 200,000 cells/well in 6-well plates, pretreated with 0.1% DMSO or 1 μg/mL

doxycycline for 24 h, and then infected with wild-type influenza A/Aichi/2/1968 at an MOI of

1 for 8 h. Cells were then harvested, washed 3× with PBS, and lysed (1% Triton, 200 mM

NaCl, 50 mM Tris at pH 7.5, 1 mM EDTA, 1.5 mM MgCl2, and protease inhibitor tablet

from Thermo Fisher Scientific). After clearing the lysate by centrifugation at 21,100 × g for

15 min at 4˚C, 100 μg of total protein lysate was separated on a 12% SDS-PAGE gel and

transferred to a nitrocellulose membrane using the Trans-Blot Turbo system (Bio-Rad).

Membranes were then probed for Hsp90, Hsp70, Hsp40, and β-actin, as indicated, and

imaged using an Odyssey Infrared Imaging System (Li-Cor) (S2A Fig). To verify that

MDCKdn-cHSF1-MxA and MDCKdn-cHSF1-MxA(T103A) cell lines expressed FLAG-MxA and

FLAG-MxA(T103A), respectively, lysate from biological duplicate samples was separated
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on a 12% SDS-PAGE gel as described above and immunoblotted for the FLAG epitope and

β-actin (S2E Fig; representative blot shown).

Deep mutational scanning

Two independent plasmid mutant libraries previously generated [24] from the pHWAi-

chi68-NP template plasmid were used to create mutant viral libraries by transfecting a cocul-

ture of 25,000 MDCK-SIAT1 and 300,000 HEK 293T cells, as previously described [24]. For

each library, cocultures in eight 6-well plates were transfected to maintain library diversity,

and transfection supernatants were combined to generate the input mutant viral libraries.

Viruses were generated and grown in WSN media. Infectious titers of viral libraries were

determined by a tissue culture infectious dose (TCID50) assay. Briefly, 10-fold serial dilutions

of viruses (in technical triplicates) were prepared in 96-well plates and incubated with 5 × 103

MDCK-SIAT1 cells/well for 72 h at 37˚C. The wells were then scored for cytopathic effects,

and viral titers were calculated using a Reed-Muench Calculator, available at https://github.

com/jbloomlab/reedmuenchcalculator.

Two plasmid libraries were used to generate two biological replicate viral libraries, one of

which was used twice to perform 2 technical replicates of the deep mutational scanning (S3A

Fig). MDCKdn-cHSF1 cells were plated in 15-cm plates at a density of 6 × 106 cells/dish and

treated with 0.1% DMSO or 1 μg/ml doxycycline for 24 h at either 37˚C or 39˚C. Deep muta-

tional scanning was also performed in cells treated with an Hsp90 inhibitor (100 nM 17-AAG;

90 min pretreatment). Then, 5 × 106 infectious virions (as determined by a TCID50 assay)

from each viral library were used to infect four 15-cm plates from each condition at an MOI of

0.1 virions/cell (the cells expanded to approximately 12.5 × 106 cells per plate by the time of

infection). In addition, one 15-cm plate at both 37˚C and 39˚C was either mock-infected (neg-

ative control) or infected with wild-type virus. For infection, the cellular growth media were

replaced with WSN media containing a mutant virus library, wild-type virus, or no virus for

mock infection. After 2 h, the inoculum was replaced with fresh WSN media containing 0.1%

DMSO, 1 μg/mL doxycycline, or 100 nM 17-AAG. At 48 h post infection, the viral supernatant

was harvested, centrifuged at 1,000 × g for 5 min to remove cell debris, and stored at −80˚C.

Viral RNA was extracted from the infectious supernatant using a Viral RNA Mini Kit (Qiagen)

and reverse transcribed using the AccuScript High Fidelity 1st Strand cDNA Synthesis Kit

(Agilent) using 50-BsmBI-Aichi68-NP and 30-BsmBI-Aichi68-NP primers (primer sequences

in S1 Table). At least 106 NP molecules were PCR-amplified for preparation of the sequencing

libraries, as previously described [27] (S3B Fig). The resulting amplicons were sequenced on

an Illumina HiSeq 2500 in rapid run mode with 250-bp paired-end reads (S3C and S3D Fig).

dms_tools (http://jbloomlab.github.io/dms_tools/) [56] was used to align reads to the Aichi

NP reference sequence, count amino acid variants across NP, and calculate the differential

selection for each variant between 2 selection conditions, as previously described [9, 28] (S3

and S4 Data).

Pairwise viral competitions

NP variants that reproducibly exhibited the most positive or negative differential selection in

the deep mutational scan were selected for pairwise competitions (P283M, P283A, P283G,

P283L, P283S, P283T, S353L, S353F, N334H, D34N, H82N, and a synonymous control

P283P). The NP mutants were generated by introducing point mutations into the pHWAi-

chi68-NP plasmid using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent). Tech-

nical difficulties with specific site-directed mutagenesis reactions prevented generation of the

P283M, P283A, and S353L mutant plasmids. The remaining 9 mutant plasmids were
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generated successfully and used to produce the corresponding mutant viruses by transfecting a

coculture of 25,000 MDCK-SIAT1 and 300,000 HEK 293T cells, as previously described [55].

The resultant viruses were titered using a TCID50 assay. For each competition, 100,000 cells/

well of MDCKdn-cHSF1, MDCKdn-cHSF1-FLAG-MxA, or MDCKdn-cHSF1-FLAG-MxA(T103A) cells were

plated in 12-well dishes and treated with 0.1% DMSO or 1 μg/mL doxycycline for 18 h at either

37˚C or 39˚C. Cells were infected with a 1:1 mixture of wild-type and mutant viruses at an

MOI of 0.1 virions/cell in triplicate under conditions identical to that of the deep mutational

scanning experiment. After 2 h, the inoculum was replaced with fresh WSN media containing

either 0.1% DMSO or 1 μg/mL doxycycline. At 48 h post infection, infectious supernatants

were harvested, centrifuged at 1000 × g for 5 min to remove cell debris, and stored at −80˚C.

Viral RNA was extracted from the infectious supernatant using the QIAamp Viral RNA Mini

Kit, and at least 106 NP molecules were reverse transcribed using the SuperScript III Reverse

Transcriptase (Thermo Fisher Scientific) with 50-BsmBI-Aichi68-NP and 30-BsmBI-Ai-

chi68-NP primers (S1 Table). The amplicons were visualized on a 1% analytical agarose gel to

verify amplification of the NP gene (1.5 kb). The dsDNA was purified using 1.5× AMPure XP

beads (Beckman Coulter) and quantified using a Quant-iT PicoGreen Assay (Life Technolo-

gies). Illumina NexteraXT sequencing libraries were prepared using a Mosquito HTS Liquid

Handler (TTP Labtech) and sequenced on an Illumina MiSeqv2 in 2 runs of either 40-bp sin-

gle-end or 150-bp paired-end reads. To call sequence variants, reads were aligned to the Aichi

NP reference sequence using bwa mem (v. 0.7.12-r1039) (arXiv:1303.3997v2) with flag–t 16,

and sorted and indexed bam files were generated using samtools (v 1.3) [57]. These bam files

were processed using samtools mpileup with flags–excl-flags 2052, -d 30000000, and the same

Aichi NP reference sequence used for mapping [58]. For pairwise competitions in the absence

of MxA, mutant allele frequencies were normalized to wild-type allele frequencies for each

sample, and the resulting values were used to calculate the differential selection [28] (Fig 2, S8

Fig, and S5 Data). For pairwise competitions in the presence of wild-type or inactive MxA, the

change in mutant allele frequencies is reported (Fig 4C and S8 Data).

MD simulations

Two sets of simulations were performed for NPs with the sequence of the human H3N2 vari-

ant (Fig 3A and 3B). In one set, NP residue 283 was Pro (this system is termed Pro283 hereaf-

ter). In the other set, residue 283 was Ser (this system is termed Ser283 hereafter). The initial

structures of both systems were prepared using the comparative modeling software RosettaCM

[59], with the structures of H1N1 influenza A virus NP (PDB ID: 2IQH [36]) and H5N1 NP

(PDB ID: 2Q06 [37]) used as templates with equal weights. The first 20 amino acids in the N-

terminal region, whose 3D coordinates are missing in the template structures, were considered

flexible and also of minimal impact to the region near residue 283. Therefore, they were

removed in the following simulation.

In the threading procedure, the target NP sequence was aligned with the templates [60] and

assigned coordinates from the template PDB structures (2IQH and 2Q06). The helix formed

by residues 278–286 of 2IQH and 2Q06 was removed to allow RosettaCM to construct this

region without influence from the templates. This region (residues 278–286), along with all the

other regions missing in the template PDBs, was patched in the hybridization step. During

hybridization, RosettaCM generated hybridized structures that contained pieces from each of

the threaded structures, providing more accurate comparative models that were energetically

favorable. Additionally, RosettaCM used fragments and minor ab initio folding to fill in resi-

dues not previously aligned with any template sequences during the threading process. A total
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of 1,000 models for each NP system were created, and the best-scoring model without a disul-

fide bond was used as the initial structure for further MD simulations.

Five runs of MD simulations for each NP system were carried out using GROMACS with

the oplsaa/tip4p force field [61, 62]. The N-terminus of the initial structure of the MD simula-

tion was capped with an acetyl group, while the C-terminus was free (ending with COO–).

This structure was energy minimized in a vacuum and then immersed in the center of a cubic

box containing preequilibrated water molecules with an edge of 12 nm. The system was elec-

trostatically neutralized by adding 11 Cl−ions. The solvated system was further energy mini-

mized to remove any bad contacts. The solvated NP then underwent 2 stages of equilibrations.

The first stage of equilibration consisted of a 50-ps isochoric–isothermal (NVT) simulation at

300 K and a subsequent 50-ps isobaric–isothermal (NPT) simulation at 300 K and 1 bar. Dur-

ing the first stage of equilibration, the NP-heavy atoms were restrained by a harmonic poten-

tial with a force constant of 1,000 kJ mol–1 nm–2 to equilibrate the solvent molecules and

adjust the density. The second stage of equilibration consisted of an additional 100-ps NVT

simulation at 300 K without any restraints to equilibrate the whole system, followed by a

100-ns NPT production simulation at 300 K and 1 bar. The V-rescale thermostat was coupled

to both the NP and solvent separately, with coupling time constants of 0.1 ps. The pressure was

maintained using the Parrinello-Rahman barostat with a coupling time constant of 2.0 ps and

isothermal compressibility of 4.5 × 10−5 bar-1. The leapfrog algorithm with a time step of 2 fs

was used for dynamics evolution. All bonds involving hydrogen were constrained using the

LINCS algorithm. All neighbor searching, electrostatic interactions, and van der Waals inter-

actions were truncated at 1.0 nm. Electrostatics were treated using the particle mesh Ewald

(PME) summation with a Fourier spacing of 0.12 nm and an order of 4. A long-range disper-

sion correction for energy and pressure was applied to account for the 1.0-nm cutoff of Len-

nard-Jones interactions. Five 100-ns trajectories were produced for the Pro283 and Ser283

systems, respectively. The trajectories between 50 ns and 100 ns were used for analysis (S6

Data).

Recombinant expression and biophysical characterization of NP variants

The P283S, P283A, and P283L amino acid substitutions were introduced into the wild-type

influenza A/Aichi/2/1968 NP in a pET28b(+) expression vector using the QuikChange II XL

Site-Directed Mutagenesis Kit (Agilent). This NP construct contained an R416A mutation and

deletion of residues 2–7 to obtain nonaggregated, RNA-free NP in a CD-compatible buffer, as

previously described [10]. Mutagenized plasmid DNA was isolated using the E.Z.N.A. Plasmid

Mini Kit I (Omega). For bacterial expression, BL21(DE3) chemically competent cells were

transformed with 1 μL of purified plasmid and incubated overnight on LB-kanamycin agar

plates. Colonies were used to inoculate 50-mL LB-kanamycin cultures overnight. Then, 10 mL

of starter cultures were used to inoculate 1 L LB-kanamycin cultures, which were shaken at

37˚C until reaching an OD600 of 0.3–0.6. Cultures were then chilled on ice and induced with

500 μM IPTG (Sigma) overnight at 20˚C. Cells were then pelleted, Dounce homogenized, and

lysed by sonication in 50 mL of lysis buffer (50 mM sodium phosphate at pH 8.0, 500 mM

NaCl, 0.5% Triton X-100, 10 mM imidazole, 1 mM PMSF, and 0.1 mg/mL MgCl2). Cells were

sonicated for 2 min (30% amplitude, 10 s on, 10 s off; Branson Digital Sonifier). Lysates were

then clarified for 30 min at 10,000 × g at 4˚C. Clarified lysates were passed through 0.45-μm fil-

ters. His-tagged NP variants were then incubated on Ni-NTA (Millipore) columns for 60 min

at 4 ˚C and washed with Ni-NTA Wash Buffer (50 mM sodium phosphate at pH 8.0, 300 mM

NaCl, and 20 mM imidazole). Proteins were eluted using Ni-NTA Elution Buffer (50 mM

sodium phosphate at pH 8.0, 300 mM NaCl, and 250 mM imidazole). Eluates were dialyzed
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overnight into analysis buffer (20 mM sodium phosphate at pH 7.0 with 300 mM NaF) using

3.5-kDa molecular mass cutoff SnakeSkin dialysis tubing (Fisher Thermo Scientific). Dialyzed

proteins were concentrated using Amicon Ultra 3K MWCO filters (Millipore) and further

purified over a size exclusion column (Bio-Rad ENrich SEC 650) (S9A Fig).

For circular dichroism analysis (S9B Fig), proteins were diluted to 5 μM in analysis buffer

(quantified by A280 with a BioTek-Take3 micro-volume plate using a molar extinction coeffi-

cient of 56,600 M–1 cm–1). Thermal melts (S9C Fig) were performed at a scan rate of 2 ˚C per

min, maintaining each temperature for 5 min before measurement of ellipticity at 209 nm.

Tagg values were obtained, as the thermal denaturation of NP was irreversible and resulted in

aggregation and precipitation (Fig 3C and S9C Fig; S7 Data). All circular dichroism analyses

were performed on a Jasco J-1500 Circular Dichroism Spectrophotometer with a 1-mm QS

quartz cuvette (Hellma).

Statistical analyses

Deep mutational scanning was performed in biological duplicate with 2 technical replicates of

one of the biological replicates (S3A Fig). MxA and MxA(T103A) protein expression in

MDCKdn-cHSF1-FLAG-MxA and MDCKdn-cHSF1-FLAG-MxA(T103A) cells, respectively, were evalu-

ated in biological duplicate (S2E Fig). All other experiments were performed in biological trip-

licate, with replicates being independent experimental entireties (i.e., from plating the cells to

acquiring the data). Correlation between deep mutational scanning replicates was determined

by linear regression using GraphPad Prism software, reporting R2 (S3E Fig). Site differential

selection values from deep mutational scanning (Fig 1B) were tested for significance of devia-

tion from zero (wild-type behavior) using a one-sample t test in GraphPad Prism. The raw p-

values were adjusted for multiple comparison using the Benjamini-Hochberg procedure [63],

setting an acceptable FDR at 0.05 (p.adjust function in R). Analysis of variance (ANOVA) was

performed on all differential selection values across selections normalized to the Basal 37 ˚C

condition using a nested ANOVA framework (accounting for replicates), modeling treatment/

temperature as a fixed effect and the replicate as a random effect (lme function/RMLE in the R

statistical environment, followed by ANOVA computation anova.lme with sequential adjust-

ment). Post hoc pairwise comparisons were performed by general linear hypotheses testing

using Tukey’s method (as implemented in glht, in the multcomp R package) comparing all the

means with single-step adjustment for multiple comparison. The p-values for pairwise com-

parisons against HSF1i 37˚C versus Basal 37˚C were 6.148 × 10−6 for Basal 39˚C versus Basal

37˚C and 9.196 × 10−8 for HSF1i 39˚C versus Basal 37˚C and 0.71 for comparison between

HSF1i 39˚C versus Basal 37˚C and Basal 39˚C versus Basal 37˚C (Fig 1B). Differential selection

values from pairwise competitions (Fig 2B and S8 Fig) were tested for significance of deviation

from zero (wild-type behavior) using a one-sample t test in GraphPad Prism with FDR correc-

tion (S8 Fig). For pairwise competitions in the presence of MxA, the significance of deviation

from the input Ser283 frequency was determined using a one-sample t test in GraphPad Prism

followed by FDR correction; Basal 37 ˚C Inactive MxA (t = 5.916, df = 2); Basal 37˚C Active

MxA (t = 29.01, df = 2); HSF1i 37˚C Inactive MxA (t = 18.24, df = 2); HSF1i 37 ˚C Active MxA

(t = 17.91, df = 2); Basal 39˚C Inactive MxA (t = 4.924, df = 2); Basal 39 ˚C Active MxA

(t = 0.5877, df = 2); HSF1i 39˚C Inactive MxA (t = 18.98, df = 2); HSF1i 39 ˚C Active MxA

(t = 12.29, df = 2). ANOVA was performed for competitions in presence of MxA as described

above; individual p-values for all pairwise comparisons using Tukey all-pair comparisons

method are provided in S9 Data. For RNA-seq, log2 fold changes, p-values, and Benjamini-

Hochberg-adjusted p-values (ADP) are reported for all expressed protein-coding genes in S1

Data. For MD simulations, each of the five 100-ns simulations was considered an independent
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replicate, and the %-time spent in an α-helical conformation was transformed using ln(P/(1–

P)) before t tests were conducted to satisfy the prerequisite assumptions of normality (Fig 3B);

278 (t = 0.95655, df = 7); 279 (t = 0.52331, df = 6); 280 (t = −0.46542, df = 6); 281 (t = −1.21825,

df = 6); 282 (t = −3.64906, df = 7); 283 (t = −2.83812, df = 8); 284 (t = −2.83606, df = 8); 285

(t = 0.17240, df = 7); 286 (t = 0.34125, df = 8). For apparent melting temperatures determined

by circular dichroism, melt curves were performed in biological triplicate, the average and

SEM are reported, and the significance of deviation from wild type was evaluated by a Student

t test; Ser (t = 19.59, df = 4); Ala (t = 23.94, df = 4); Leu (t = 5.644, df = 4).

Supporting information

S1 Fig. Transcriptional profiles of modulated host environments. (A) Volcano plot of

RNA-seq data for HSF1 inhibition at 37 ˚C. (B) Volcano plot of RNA-seq data for HSF1 inhi-

bition at 39 ˚C. (C) Volcano plot of RNA-seq data for 39 ˚C relative to 37 ˚C in basal environ-

ment. (D) Volcano plot of RNA-seq data for HSF1-inhibited environment at 39 ˚C relative to

a basal environment at 37 ˚C. For A–D, transcripts with>2-fold change and p-values< 10−5

are shown in red, with outliers labeled. The complete RNA-seq differential expression analysis

is provided in S1 Data. HSF1, heat shock factor 1; RNA-seq, RNA sequencing.

(TIF)

S2 Fig. HSF1 inhibition is effective during influenza infection and does not significantly

perturb influenza propagation or host cell metabolic activity. (A) Protein levels of heat

shock protein chaperones in basal and chaperone-depleted host cells at 37˚C and 39˚C, in the

absence or presence of influenza. Representative western blots on the left; quantitation of bio-

logical triplicates on the right. Arsenite (As(III)) is a chemical stressor that induces the heat

shock response. (B) Transcript expression in selection conditions during influenza infection.

(C) Infectious titers determined by TCID50 for wild-type A/Aichi/2/1968 (H3N2) in selection

conditions. (D) Metabolic activity of MDCKdn-cHSF1 cells in each selection condition, as char-

acterized by resazurin assays at 48 hours post treatment. (E) Protein levels of FLAG-MxA and

FLAG-MxA(T103A) in MDCKdn-cHSF1-MxA and MDCKdn-cHSF1-MxA(T103A) cells, respectively.

MDCKdn-cHSF1 is shown as a negative control. Representative blot is shown (N = 2). For A–D,

replicate data are provided in S2 Data. HSF1, heat shock factor 1; MDCK, Madin Darby canine

kidney; TCID50, tissue culture infectious dose.

(TIF)

S3 Fig. Subamplicon sequencing enables quantification of variant frequency. (A) Schematic

of replicate structure. (B) Subamplicon sequencing strategy workflow [27]. (C) Number of

reads per barcode. (D) Number of barcodes per subamplicon. (E) Correlation plots of the

absolute site differential selection [28] between biological and technical replicates for HSF1

inhibition at 39˚C compared to a basal environment at 37˚C. Best-fit line is plotted, with corre-

lation coefficient and the p-value for significance of the slope deviating from zero shown on

each plot. Complete sequencing data analysis is provided in S1 File. HSF1, heat shock factor 1.

(TIF)

S4 Fig. Representative full sequence logo plot for nucleoprotein: HSF1-inhibited environ-

ment at 39˚C relative to a basal environment at 37˚C. Wild-type influenza A/Aichi/2/1968

nucleoprotein sequence and residue numbers are shown below logo plot. The size of the

amino acid letters corresponds to the magnitude of the mutational differential selection, which

is on the same scale for S4–S7 Figs and S10 Fig. Amino acids above the black line are more fit

in the HSF1-inhibited environment at 39˚C compared to a basal environment at 37˚C, amino

acids below are less fit, and the black line represents the behavior of the wild-type amino acid
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in the selection condition. Differential selection values are provided in S3 and S4 Data. HSF1,

heat shock factor 1.

(TIF)

S5 Fig. Representative full sequence logo plot for nucleoprotein: HSF1-inhibited environ-

ment at 39˚C relative to a basal environment at 39˚C. Wild-type influenza A/Aichi/2/1968

nucleoprotein sequence and residue numbers are shown below the logo plot. The size of the

amino acid letters corresponds to the magnitude of the mutational differential selection, which

is on the same scale for S4–S7 Figs and S10 Fig. Amino acids above the black line are more fit

in an HSF1-inhibited environment at 39˚C compared to a basal environment at 39˚C, amino

acids below are less fit, and the black line represents behavior of the wild-type amino acid in

the selection condition. Differential selection values are provided in S3 and S4 Data. HSF1,

heat shock factor 1.

(TIF)

S6 Fig. Representative full sequence logo plot for nucleoprotein: 39˚C relative to 37˚C in

basal environment. Wild-type influenza A/Aichi/2/1968 nucleoprotein sequence and residue

numbers are shown below the logo plot. The size of the amino acid letters corresponds to the

magnitude of the mutational differential selection, which is on the same scale for S4–S7 Figs

and S10 Fig. Amino acids above the black line are more fit at 39˚C compared to 37˚C, amino

acids below are less fit, and the black line represents the behavior of the wild-type amino acid

in the selection condition. Differential selection values are provided in S3 and S4 Data.

(TIF)

S7 Fig. Representative full sequence logo plot for nucleoprotein: HSF1-inhibited environ-

ment at 37˚C relative to a basal environment at 37˚C. Wild-type influenza A/Aichi/2/1968

nucleoprotein sequence and residue numbers are shown below the logo plot. The size of the

amino acid letters corresponds to the magnitude of the mutational differential selection, which

is on the same scale for S4–S7 Figs and S10 Fig. Amino acids above the black line are more fit

in an HSF1-inhibited environment at 37˚C compared to a basal environment at 37˚C, amino

acids below are less fit, and the black line represents the behavior of the wild-type amino acid

in the selection condition. Differential selection values are provided in S3 and S4 Data. HSF1,

heat shock factor 1.

(TIF)

S8 Fig. Pairwise competitions recapitulate deep mutational scanning batch competition.

(A) Error bars indicate the standard error from biological replicates (N = 3). The significance

of the deviation from zero (no selection) was evaluated by a one-sample t test followed by Ben-

jamini-Hochberg adjustment for multiple comparison; � and �� indicate FDR< 0.05

and< 0.01, respectively. Replicate differential selection values are provided in S5 Data. FDR,

false discovery rate.

(TIF)

S9 Fig. Purification and thermal denaturation of recombinant nucleoprotein variants. (A)

Purified nucleoprotein (56 kDa) by Ni-NTA column chromatography and size exclusion chro-

matography. (B) Circular dichroism wavelength scans at 20˚C for nucleoprotein variants. All

variants exhibited similar circular dichroism spectra characteristic of an α-helical protein.

Scans for each variant were performed in triplicate. (C) Thermal denaturation curves for

nucleoprotein. Apparent (irreversible) melting temperatures (Tagg) were obtained from sig-

moidal fits over 20–60˚C. Thermal denaturation of each variant was performed in triplicate
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(see S7 Data).

(TIF)

S10 Fig. Representative full sequence logo plot for nucleoprotein: Hsp90-inhibited envi-

ronment at 39˚C relative to basal environment at 39˚C. Wild-type influenza A/Aichi/2/1968

nucleoprotein sequence and residue numbers are shown below the logo plot. Deep mutational

scanning was also performed in an Hsp90-inhibited environment to determine whether

Hsp90 caused the fitness effects observed in the HSF1i environment; see Discussion. The size

of the amino acid letters corresponds to the magnitude of the mutational differential selection,

which is on the same scale for S4–S7 Figs and S10 Fig. Amino acids above the black line are

more fit upon Hsp90 inhibition at 39˚C compared to a basal environment at 39˚C, amino

acids below are less fit, and the black line represents the behavior of the wild-type amino acid

in the selection condition. Differential selection values are provided in S3 and S4 Data. HSF1i,

condition in which heat shock factor 1 was inhibited; Hsp90, heat shock protein 90.

(TIF)

S1 Data. RNA-seq differential expression analysis. RNA-seq, RNA sequencing.

(XLSX)

S2 Data. Characterization of HSF1 inhibition. HSF1, heat shock factor 1.

(XLSX)

S3 Data. Site differential selection values for each site in nucleoprotein.

(XLSX)

S4 Data. Mutation differential selection values for each mutation in nucleoprotein.

(XLSX)

S5 Data. Pairwise competition differential selection values.

(XLSX)

S6 Data. Molecular dynamics α-helicity percentages.

(XLSX)

S7 Data. Aggregation temperatures of recombinant nucleoprotein variants.

(XLSX)

S8 Data. Pairwise competition in the presence of MxA: Ser283 frequencies. MxA, Myxovi-

rus resistance protein A.

(XLSX)

S9 Data. Post hoc comparisons of Ser283 frequency changes in pairwise competitions in

the presence of MxA. MxA, Myxovirus resistance protein A.

(XLSX)

S1 Table. Primer sequences for qPCR and sequencing. qPCR, quantitative PCR.

(XLSX)

S1 Video. Molecular dynamics simulation of the Pro283 nucleoprotein variant. For clarity,

structural evolution of only the region from amino acids 279–288 in a single representative

simulation trajectory is shown. Purple = α-helical conformation; blue = 3,10-helical conforma-

tion.

(AVI)

S2 Video. Molecular dynamics simulation of the Ser283 nucleoprotein variant. For clarity,

structural evolution of only the region from amino acids 279–288 in a single representative
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simulation trajectory is shown. Purple = α-helical conformation; blue = 3,10-helical conforma-

tion.

(AVI)

S1 File. Computer code and deep mutational scanning analysis data. This zip file contains

the computer code and required input files for the deep mutational scanning data analysis

reported in this manuscript.

(ZIP)
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