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Spin liquids and pseudogap metals in the SU(4) Hubbard model in a moiré superlattice

Ya-Hui Zhang and Dan Mao
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
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Motivated by the realization of spin-valley Hubbard model on a triangular moiré superlattice in ABC trilayer
graphene aligned with hexagon boron nitride (hBN) and possibly also in twisted transition metal dichalcogenide
homobilayers, we study possible Mott insulating phases and pseudogap metals based on symmetry constraint
and parton mean field theories. First, we show that the Luttinger constraint allows two distinct symmetric and
featureless Fermi liquids when there is an intervalley Hund’s term breaking SU(4) spin rotation. Especially, there
exists a symmetric and featureless “pseudogap metal” with small Fermi surfaces. Then, we suggest to search for
such an unconventional metallic state by doping the Mott insulator at νT = 2. For this purpose, we study the
νT = 2 Mott insulator using the SO(6) Schwinger boson or Schwinger fermion parton. At the SU(4)-symmetric
point, we find two symmetric Z2 spin liquids. With a large anti-intervalley Hund’s term, a featureless Mott
insulator is natural. Next, we show that doping the featureless Mott insulator or a Z2 spin liquid can lead to
featureless or orthogonal “pseudogap metal” with small Fermi surfaces proportional to the doping. Besides, we
also provide one scenario for the evolution from pseudogap metal to the conventional Fermi liquid through an
intermediate exotic “deconfined metal” phase. Last, we give brief comments on the possibility of U(1) spinon
Fermi surface state or Z4 spin liquid at νT = 1.

DOI: 10.1103/PhysRevB.101.035122

I. INTRODUCTION

Recently, moiré superlattices from Van der Waals het-
erostructures emerge to be a wonderful platform to study
strongly correlated physics. These include correlated insulator
[1], superconductivity [2–4], and anomalous Hall effect [5] in
twisted bilayer graphene, spin-polarized correlated insulators
[6–8], and superconductivity [6,7] in twisted bilayer-bilayer
graphene. In addition, ABC trilayer graphene aligned with a
hexagonal boron nitride (TLG-hBN) has been demonstrated
to host gate-tunable correlated insulator [9], superconductor
[10], and Chern insulator [11].

Theoretically, it has been shown that both bandwidth and
band topology can be tuned by the displacement field in the
TLG-hBN system [12,13]. For one sign of displacement field,
the valence bands from the two valleys have nonzero and op-
posite Chern numbers. Similar narrow Chern bands have also
been predicted in twisted bilayer graphene aligned with hBN
[14,15] and in twisted bilayer-bilayer graphene [12,16–20].
These systems therefore may realize interesting “quantum
Hall” physics. Indeed, anomalous Hall effect [5] and Chern
insulator with σxy = 2 e2

h [11] have already been reported. In
contrast, for the other sign of displacement field in TLG-hBN,
the valence band is trivial and there is no obstruction to build
lattice models from constructing Wannier orbitals [21]. Such
a spin-valley Hubbard model on triangular lattice is derived
in Ref. [22]. t

U in this Hubbard model can be tuned by the
magnitude of the displacement field. Therefore, the trivial side
of TLG-hBN offers an amazing platform to study Hubbard
model physics [22–26], which may be similar to that of the
cuprates. The observation of a superconductor in the trivial
side [10] is encouraging. In cuprates, the pseudogap metal and
the strange metal remain as an unsolved mystery in addition
to the high-Tc superconductor. Then, a natural question is as

follows: Can TLG-hBN also host similar “pseudogap metal”
and “strange metal” phases? In this paper, we try to give
a positive answer to this question by explicitly constructing
several simple pseudogap metal Ansätze in the spin-valley
Hubbard model. A SU(4) Hubbard model on triangular lattice
may also be realized in twisted transition metal dichalco-
genide (TMD) homobilayer [27]. Therefore, our discussions
can also be relevant to future experiments in twisted TMD
bilayers.

In cuprates, a sensible theoretical scenario is that the
strange metal is associated with a quantum critical point be-
tween the pseudogap metal and the conventional Fermi liquid
(FL). However, the critical point, even if exists, is covered by
the superconducting phase. When the superconductor is sup-
pressed by strong magnetic field, in the underdoped region ex-
periments observe signatures of small Fermi surfaces through
quantum oscillation [28] and Hall measurement [29]. The area
of the small Fermi pocket inferred from the experiment is
proportional to the doped additional holes instead of all of
the electrons. It is still under debate whether this high-field
pseudogap metal is from some density wave orders [30,31]
or is from a symmetric metal like fractionalized Fermi Liquid
(FL*) phase [32,33]. As a matter of principle, density wave
order parameter is not necessary to gap out Fermi surface and
there should exist a symmetry pseudogap metal with small
Fermi surfaces once fractionalization is allowed. However,
we do not know any simple model so far to realize these
symmetric metals with small Fermi surfaces. In this paper
we will show that the spin-valley Hubbard model is very
promising in this direction. More specifically, we show that at
filling νT = 2 − x, there are naturally symmetric pseudogap
metals with Hall number ηH = −x. Depending on the value
of intervalley Hund’s coupling, the pseudogap metal is either
a featureless Fermi liquid or an orthogonal metal [34].
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We can understand the existence of pseudogap metals
from two different perspectives. First, with an interval-
ley Hund’s term, the U(4) symmetry is broken down to
[U(1) × U(1)valley × SU(2)spin]/Z2. Then, the Lieb-Schultz-
Mattis (LSM) constraint allows two distinct symmetric and
featureless Fermi liquids with Fermi-surface areas AFS = 2−x

4
or AFS = − x

4 . In the second perspective, symmetric pseudo-
gap metals can be constructed from doping-symmetric Mott
insulators. Therefore, we turn to study the possible symmetric
Mott insulators at νT = 2. Depending on the value of inter-
valley Hund’s coupling JH , we find a featureless insulator and
two symmetric Z2 spin liquids using SO(6) Schwinger boson
or Schwinger fermion parton construction. Then, within a
SO(6) slave-boson parton theory, doping the Mott insulator
leads to a featureless Fermi liquid or an orthogonal metal.
Both of them have small Fermi surfaces with area equal to
x
4 , resembling experimental results of underdoped cuprates
under strong magnetic field. Compared to phenomenology in
cuprates, the ansatz we propose here is much simpler: it is
a ground state at zero magnetic field without breaking any
symmetry. The simplicity of the proposed pseudogap metal
may make it much easier to study its evolution toward the
large Fermi-surface Fermi liquid and possible “strange metal”
phase sandwiched in the intermediate region. We suggest one
possible route through an intermediate “deconfined metal”
with an internal U(1) gauge field. It remains a question
whether a direct transition is possible or the property of the
intermediate phase (or critical region) can mimic that of the
strange metal in the cuprates.

In this paper, we focus on the limit that the anisotropic term
breaking SU(4) spin rotation symmetry is small compared to
the Heisenberg coupling. If the intervalley Hund’s coupling
is large, then the νT = 2 Mott insulator has 120◦ Neel order
[35] formed by spin-one moment. Physics from doping such a
spin-one Neel order may also be interesting, but is beyond the
scope of this paper.

Although, most of the paper is focused on filling close
to νT = 2. We also give a brief discussion on the Mott
insulator at νT = 1. At νT = 1, we only find two symmet-
ric spin liquids: a U(1) spinon Fermi-surface state or a Z4

spin liquid. A plaquette order may be a strong competing
candidate. With only nearest-neighbor coupling, magnetic
order may be suppressed by strong quantum fluctuations.
Therefore, we expect the νT = 1 Mott insulator to preserve
the approximation SU(4) spin rotation symmetry. Then, a
charge-4e superconductor may emerge from doping such a
SU(4)-symmetric Mott insulator. It is interesting to study the
possibility that the observed superconductor in TLG-hBN [10]
is a charge-4e paired state.

II. HAMILTONIAN AND SYMMETRY

A lattice model for TLG-hBN has been derived in
Ref. [22]. To leading order it is a spin-valley model on
triangular lattice:

H = −t
∑

a

∑
〈i j〉

eiϕa
i j c†

a;ica; j + H.c.

+ U

2
n2

i + JH

∑
i

S+;i · S−;i, (1)

where a = +,− is the valley index. We have suppressed
the spin index. U is the Hubbard interaction and JH is an
onsite intervalley spin-spin coupling. ϕ+

i j = −ϕ−
i j provides the

valley-contrasting staggered flux pattern.
At ϕa

i j = 0 and JH = 0 limits, we have U(4) symme-
try. Adding the valley-contrasting flux breaks the symmetry
down to U(2)+ × U(2)−, which is further broken down to
SU(2)s × U(1)c × U(1)v/Z2 by the intervalley spin-spin cou-
pling, where Z2 stands for the common element of SU(2)s,
U(1)c, and U(1)v . The Coulomb interaction indicates that
JH < 0. However, electron phonon coupling from phonon at
K and K ′ can mediate positive JH [36]. The final sign of JH is
decided by the competition between these two effects. In this
paper, we will view JH as a phenomenological parameter to
be fit from the experiment.

Next, we discuss the effective low-energy model in the
U � t limit with a restricted Hilbert space. νT � 2 can be
mapped to νT � 2 by a particle-hole transformation and thus
we only focus on νT � 2.

A. Mott insulator

At integer νT = 1, 2, the charge is localized and the low
energy is described by an effective spin model. The dimension
of the Hilbert space at each site is 4 and 6 (6 = 4 choose 2),
respectively, for νT = 1 and 2. In the SU(4)-symmetric limit,
we have

HS = J
∑
〈i j〉

∑
p

Sp
i Sp

j (2)

with J = t2

2U . Sp
i , with p = 1, 2, . . . , 15, is a spin operator on

each site. These 15 spin operators can be organized as Sμν =
τμσ ν with μ, ν = 0, 1, 2, 3 except μ = ν = 0. Each of them
is a fermion bilinear:

Sμν
i =

∑
a1,a2

∑
σ1σ2

c†
a1σ1;iτ

μ
a1a2

σ ν
σ1,σ2

ca2,σ2;i. (3)

Projecting to the four- and six-dimensional Hilbert space at
each site for νT = 1, 2, Sμν = τμσ ν should be viewed as 4 ×
4 and 6 × 6 matrices for νT = 1 and 2.

The spin Hamiltonian has PSU(4) = SU(4)/Z4 symmetry.
Here, Z4 means the global U(1) transformation ei 2π

4 n with
n as an integer. At νT = 2, each site is in the 6d-irrep
of SU(4), which transforms like SO(6) fundamental under
SU(4) [SO(6) ∼= SU(4)/Z2].

For the TLG-hBN system, there is a valley-contrasting
phase in the hopping term [22]. Two valleys have opposite
staggered flux patterns. This valley-dependent flux on the
hopping term is inherited in the t2/U expansion and gives an
anisotropy term

H ′
S = J

∑
〈i j〉

(cos 2ϕi j − 1)
(
τ x

i τ x
j + τ

y
i τ

y
j

)
(1 + �σi · �σ j )

+ J
∑
〈i j〉

sin 2ϕi j
(
τ x

i τ
y
j − τ

y
i τ x

j

)
(1 + �σi · �σ j ), (4)

where ϕi j is the phase in the hopping for the valley + on
bond 〈i j〉 (correspondingly, the valley − has phase −ϕi j for
the hopping on the same bond).
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FIG. 1. Two distinct t-J models in four-flavor spin-valley Hub-
bard model. νT < 2 and νT > 2 are related by particle-hole transfor-
mation. νT < 1 and 1 < νT < 2 realize two essentially different t-J
models.

The above symmetry breaks the PSU(4) spin rotation
down to SO(3)+ × SO(3)− × U(1)v . For νT = 2 the corre-
sponding spin rotation symmetry can be viewed as U(1)v ×
SO(4)/Z2

∼= SO(3)+ × SO(3)− × U(1)v , where SO(4) acts
on the 4d space formed by three valley singlet, spin triplet
and one valley triplet, spin singlet.

For νT = 2, there is an additional onsite intervalley spin-
spin coupling:

H ′′
S = JH

∑
i

�S+
i · �S−

i . (5)

We define the valley-specified spin operator

�Sa
i = 1

2

∑
σ1,σ2=↑,↓

c†
i;a;σ1

�σσ1σ2 ci;a;σ2 (6)

for a = +,−. H ′′
S vanishes for νT = 1. For νT = 2, it fur-

ther breaks the spin rotation symmetry down to U(1)valley ×
SO(3)spin.

B. Finite doping: Type I and II t-J models

In spin- 1
2 Hubbard model, the physics at finite doping away

from the Mott insulator is believed to be governed by a t-J
model at the U � t limit. Here we want to show that for
the spin-valley Hubbard model, the region 1 < νT < 2 has
different physics from the traditional t-J model in the region
0 < νT < 1. Therefore, the four-flavor Hubbard model can
actually realize two distinct t-J models, which is illustrated
in Fig. 1.

1. νT = 1 − x: Type I t-J model

At filling νT = 1 − x with 0 < x < 1, the low energy is
described by a similar t-J model as in the spin- 1

2 case:

H = −t
∑
〈i j〉

P1c†
i c jP1 + J

∑
〈i j〉

Sp
i Sp

j + H ′
S, (7)

where P1 is the projection operator which forbids states with
n � 2 on each site.

For νT = 1 − x, the onsite intervalley spin-spin coupling
JH term vanishes in the leading order of t/U because of the
restriction of the Hilbert space. It enters in the second order
of t/U by changing the spin coupling from t2

U to t2

U±JH
. The

change of the spin coupling is δJ ∼ JH
U J � J and can be

ignored given the estimation that JH ∼ 0.01U [22]. Therefore,
there is an approximating U(2)+ × U(2)− symmetry at the
U � t limit even if JH �= 0.

FIG. 2. Label of several different states according to the number
of particle ni at the site. Holon is an empty site. Singlon and doublon
are in the fundamental rep and the SO(6) rep of the SU(4) group,
respectively. The Hilbert space dimensions of the holon, singlon,
doublon states are 1, 3, and 6, respectively.

In this type I t-J model, each site is either empty or singly
occupied, similar to that of hole-doped cuprate [37]. For
convenience, in this paper we call the empty site as holon and
the singly occupied site as singlon (see Fig. 2). The Hilbert
space dimension of each site is 1 + 4 = 5. The t-J model has
unusual property that the singlon density is conserved to be
1 − x while the holon density is conserved to be x. The t term
in Eq. (7) is not a traditional hopping term. Instead, it involves
the exchange between a holon at site i with a singlon at site j.

2. νT = 2 − x: Type II t-J model

At filling νT = 2 − x with 0 < x < 1, we have either a
singlon or a doublon state at each site in the U � t limit.
Thus, the Hilbert space dimension at each site is 4 + 6 =
10. In addition, the singlon and the doublon carry different
representations of SU(4) spin. Hence, there are three different
spin couplings (see Fig. 3). We define Ps and Pd as the
projection operators to the singlon and the doublon states,
respectively. Then, it is natural to have spin operators for the
singlon and doublon: Sμν

i;s = PsS
μν
i Ps and Sμν

i;d = Pd Sμν
i Pd . We

have the type II t-J model as

H = −t
∑
〈i j〉

(Ps + Pd )c†
i c j (Ps + Pd ) + J

∑
〈i j〉

Sp
i;sS

p
j;s

+ 1

2
J ′ ∑

〈i j〉

(
Sp

i;sS
p
j;d + Sp

i;d Sp
j;s

)

+ Jd

∑
〈i j〉

Sp
i;d Sp

j;d + H ′
S + H ′′

S , (8)

where J ′ = 1
2 J and Jd = J . In the superexchange process

involving a singlon and a doublon nearby, the only process

FIG. 3. Illustration of the type I and II t-J models. In type II
model, there are three different spin-spin couplings.

035122-3



YA-HUI ZHANG AND DAN MAO PHYSICAL REVIEW B 101, 035122 (2020)

we should keep is to hop the particle from the singlon to the
doublon, which costs energy 2U instead of U . This is how the
two factors 1

2 arise. Because of the H ′′
S term, generically we

only have U(2) × U(1)valley spin rotation symmetry.
The two t-J models in Eqs. (7) and (8) are apparently quite

different. In the type II t-J model, there is no empty site
in the Hilbert space. Instead, the singlon and doublon both
carry spin. The kinetic term now becomes the exchange of the
singlon and doublon. Recently, a similar type II t-J model has
been proposed [38] to describe the nickelate superconductor
[39]. There there is only SU(2) spin rotation symmetry and
the singlon and doublon carry S = 1

2 and 1, respectively.
This t-J model can be derived from the SU(4)-symmetric t-J
model in this paper by adding anisotropic terms. Therefore,
our analysis in this paper may also provide insights to the
solid-state realization of type II t-J model using the two eg

orbitals.
In the familiar t-J model, at least for large doping, the

most natural ground state is a conventional Fermi liquid.
This state can be constructed within the simple slave-boson
mean field theory [37] which respects the constraint P1. The
simple way to understand this Fermi-liquid state is that the
holons condense and the singlons form Fermi surfaces. This
picture can be easily generalized to the case νT = 1 − x for
the spin-valley Hubbard model. However, for νT = 2 − x,
neither the singlons nor the doublons can form Fermi surfaces
whose areas match a conventional Fermi liquid. In this case,
description of a conventional Fermi liquid is very hard if we
insist to respect the constraint Ps + Pd . As we show later, a
generalized slave-boson mean field theory naturally predicts
pseudogap metals with Fermi-surface areas proportional to
x instead of νT . We can still describe a conventional Fermi-
liquid phase, but it requires a more exotic parton construction
if we want to respect the constraint P2.

III. SYMMETRY CONSTRAINT: LUTTINGER THEOREM

Before we move to discussions of specific fillings, we give
a general symmetry analysis in this section. We will consider
LSM type of constraints based on the simple Oshikawa-flux
threading argument [40]. The argument and the constraint
works for both integer and incommensurate filling. Besides,
the symmetry analysis in this section is independent of models
and also applies to the case with topological bands.

The symmetries that we consider here are translation, spin
rotation, charge conservation, and time reversal. Depending
on whether we include the intervalley spin-spin coupling, we
consider U(2)+ × U(2)− spin rotation symmetry and U(1)c ×
U(1)v × SO(3)s separately. In all cases we assume there is a
time-reversal symmetry which exchanges the two valleys.

A. Symmetry U(4) or U(2)+ × U(2)−

The constraint is the same for U(4) and U(2)+ × U(2)−.
For simplicity, we will only use U(2)+ × U(2)−. Note that
time reversal exchanges two valleys so the density for each fla-
vor is guaranteed to be ν = νT

4 . Meanwhile, we have U(1)4 ⊂
U(2)+ × U(2)−, which means we have U(1) symmetry for
each flavor. Then, we can do flux insertion for one valley-spin
species out of four. Using Oshikawa’s argument [40], one can

reach the conclusion that any symmetric and featureless phase
needs to have Fermi-surface area AFS = ν modn = νT

4 modn,
where n is an integer.

For νT = 1, 2, the above constraint means there must be a
Fermi surface with area 1

4 or 1
2 for each flavor. Therefore, a

symmetric and featureless Mott insulator is not possible for
symmetry U(2)+ × U(2)−.

B. Symmetry [U(1)c × U(1)v × SU(2)S]/Z2: Two distinct
symmetric and featureless states

When there is a nonzero JH , the global symmetry is
[U(1)c × U(1)v × SU(2)S]/Z2. There is no separate spin ro-
tation symmetry for each valley. Only the total spin rotation
is conserved in this case. There are only three independent
U(1) global symmetries (corresponding to N , Sz, and τz) that
belong to [U(1)c × U(1)v × SU(2)S]/Z2. [Recall that there
are four U(1) charges in the previous subsection.] Gauging
these three U(1) symmetries yields three independent flux
insertions. We cannot do flux insertion for each valley-spin
species. The best we can do is to include at least two
valley-spin species in the flux insertion process in order to
respect the global symmetry. Since we still have time-reversal
and total spin rotation symmetry, the filling per valley per
spin is still fixed to be ν = νT

4 , νT being the total filling.
If the ground state is a symmetric Fermi liquid, the Fermi-
surface area for every flavor must be equal to each other.
Let us perform an adiabatic U(1) flux insertion for both
spins of the + valley. The constraint one can get using
Oshikawa’s argument is AFS,+↑ + AFS,+↓ = 2AFS = ν+↑ +
ν+↓( mod n) = νT

2 ( mod n), where n is an integer. This yields
AFS = νT

4 (mod m) or AFS = ( νT
4 − 1

2 )(mod m), where m is an
integer.

Interestingly, we find that there are two distinct symmetric
and featureless Fermi liquids. One of them is connected to
the free-fermion model while the other one has smaller Fermi
surfaces and may be viewed as a “pseudogap metal.” The
essential point of the argument is that there are only three
U(1) charges while there are four flavors. Meanwhile, the
symmetry is sufficient to forbid bilinear term with interflavor
coupling and guarantee four equal Fermi surfaces. The above
two conditions can not be satisfied simultaneously in the
traditional spin- 1

2 system. This is a special feature of spin-
valley model realized in moiré superlattices.

At νT = 2, we are allowed to have AFS = 1
2 or AFS = 0,

which implies the existence of a symmetric and featureless
Mott insulator. We need to emphasize that U(1)v and time-
reversal symmetry is important to guarantee the existence of
the two distinct classes. Without time reversal, we can have
a “band insulator” at νT = 2 by polarizing valley. This band
insulator can smoothly connect to the conventional Fermi
liquid by reducing the τz polarization. Once we have time-
reversal symmetry, the density of each flavor is fixed to be
1
2 at νT = 2. In this case, the featureless Mott insulator can
not smoothly cross over to the conventional Fermi liquid and
can not be described by mean field theory with any order
parameter.

We will construct both the featureless insulator at νT = 2
and the featureless pseudogap metal in Secs. V and VII for
the spin-valley Hubbard model. The essential physics behind
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them is singlet formation. At νT = 2, there are N electrons in
the valley + and N electrons in the valley −, where N is the
number of moiré unit cells. These electrons can be gapped out
by forming intervalley singlets. If we further dope electrons
or holes with density x, these additional doped carriers just
form small Fermi surfaces with area AFS = x

4 on top of the
featureless Mott insulator.

Although the picture of the featureless insulator and the
featureless pseudogap metal is very simple, they can not
be described by the conventional mean field theory with
symmetry-breaking order parameters. In the cuprate context,
symmetric pseudogap metals with small Fermi surfaces have
been proposed before [32,33]. In the so called FL* phase,
additional holes form small Fermi surfaces on top of a Z2 spin
liquid. The physics behind is still singlet formation: N number
of electrons form resonating valence bond (RVB) singlets and
the additional holes move on top of the RVB singlets. The
difference in our case is that we can have onsite intervalley
singlets and do not need to invoke fractionalization. In this
sense, the featureless pseudogap metal we propose here is the
simplest version of a symmetric pseudogap metal.

This simple symmetric pseudogap metal is beyond any
conventional mean field theories with symmetry breaking
because the singlet formation does not break any symmetry.
So, how do we describe the singlet formation? It turns out that
the singlet formation can be captured in a simple six-flavor
slave-boson parton mean field theory. We will introduce the
parton construction for the νT = 2 Mott insulator first and
then generalize it to the doped case to describe the featureless
pseudogap metal. This slave-boson parton also allows us to
describe another orthogonal pseudogap metal in the SU(4)-
symmetric limit.

IV. PROJECTIVE SYMMETRY GROUP ANALYSIS
AT νT = 2

A. Hilbert space

At νT = 2, the Hilbert space is six dimensional at each
site. There are six bases: |α〉 = ∑

ab Aα
abc†

ac†
b |0〉 with α =

1, 2, 3, 4, 5, 6. Aα is a 4 × 4 antisymmetric matrix. We define
the SU(4) flavor as 1 : + ↑, 2 : + ↓, 3 : − ↑, 4− ↓. Each
basis α is created by an operator 
†

α . We can define the
following six bases:

ψ1 = 1

2
√

2
cT τzσyc = i√

2
(−�12 + �34),

ψ2 = 1

2
√

2
cT iσyc = 1√

2
(�12 + �34),

ψ3 = 1

2
√

2
cT τxσyc = i√

2
(−�14 + �23),

ψ4 = 1

2
√

2
cT iτyσxc = 1√

2
(�14 + �23),

ψ5 = 1

2
√

2
cT iτyσzc = 1√

2
(�13 − �24),

ψ6 = 1

2
√

2
cT τyc = − i√

2
(�13 + �24), (9)

TABLE I. The correspondence between the generator of the
SO(6) and the generators of the SU(4). For example, the SU(4)
transformation U = eiτz

θ
2 corresponds to a rotation between ψ1 and

ψ2 with angle θ .

τx τy τz σx σy σz τxσx τxσy τxσz τyσx τyσy τyσz τzσx τzσy τzσz

S32 S31 S12 S64 S45 S65 S15 S16 S41 S52 S62 S24 S53 S63 S34

where �ab = 1
2 (cacb − cbca). These six states are organized to

have clear physical meaning: the first three are valley triplet
and spin singlet, while the latter three are valley singlet and
spin triplet.

Let us define 
T = (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6). It can be
proved that the transformation is 
 ′ = O
 under the micro-
scopic SU(4) transformation. O is a SO(6) matrix. There are
15 generators for the SO(6). We list them in Table I. The
physical spin operator Sμν defined in Eq. (3) can be written as
a 6 × 6 matrix in the above basis. It is convenient to express
it as Sμν = 
†Aμν
. It turns out that the 6 × 6 matrix Aμν

only has two nonzero matrix elements. More specifically, each
spin operator Sμν corresponds to a (α, β ) pair as listed in
Table I. Then, Sμν = Sαβ = 2i(ψ†

αψβ − ψ
†
βψα ). For example,

τ x = 2i(ψ†
3 ψ2 − ψ

†
2 ψ3).

When H ′
S = H ′′

S = 0, the spin model has SO(6)/Z2 sym-
metry where Z2 consists of the 6 × 6 matrix −I . When
H ′

S �= 0, the spin rotation symmetry is [SO(2) × SO(4)]/Z2.
The Hilbert space at each site is decomposed to 6 = 2

⊕
4.

(ψ1, ψ2) transforms as SO(2) corresponding to U(1)valley.
(ψ3, ψ4, ψ5, ψ6) transforms as SO(4) under SU(2)+ ×
SU(2)−. If we further add the onsite intervalley spin cou-
pling H ′′

S , the spin rotation symmetry is further reduced to
SO(2) × SO(3). The Hilbert space at each site is decomposed
to three irreducible representations: 6 = 1

⊕
2

⊕
3. ψ3 forms

a trivial representation. (ψ1, ψ2) transforms under SO(2), and
(ψ4, ψ5, ψ6) transforms under SO(3) in the same way as a
spin-one degree of freedom.

For spin rotation symmetry SO(6)/Z2 and [SO(2) ×
SO(4)]/Z2, there is no symmetric gapped state. For the sym-
metry SO(2) × SO(3), a featureless insulator is possible. For
example, the state

∏
i ψ

†
3 (i) |0〉 is a featureless Mott insulator.

However, we need a large JH > 0 to favor this featureless
insulating phase. In the trilayer graphene/hBN system, we
expect |JH | to be smaller or at most comparable with J .
When J � |JH |, other phases including magnetic order, va-
lence bond solid (VBS), and spin liquids may be favored. In
this paper we try to classify all of possible symmetry spin-
liquid phases based on the projective symmetric group (PSG)
analysis.

B. Parton theories at νT = 2

For νT = 2, there are three different parton theories which
we introduce in this section.

1. Abrikosov fermion

The first parton theory is the Abrikosov fermion parton
which has been widely used in the treatment of spin- 1

2 sys-
tems. We introduce fermionic operator fi;a with a = 1, 2, 3, 4.
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The constraint is
∑

a f †
i;a fi;a = 2. There is a U(1) gauge struc-

ture. As we will discuss later, the only symmetric spin liquid
from the Abrikosov fermion parton is U(1) spin liquid with
four Fermi surfaces, each at filling 1

2 .

2. Six-flavor Schwinger boson

Because the Hilbert space at each site is six di-
mensional and forms the fundamental representation of
SO(6), we can use a six-flavor Schwinger boson par-
ton construction. Basically, we identify 
α in Eq. (9)
as a bosonic operator bα , where α = 1, 2, . . . , 6. Corre-
spondingly, the spin operator Sαβ = 2i(b†

αbβ − b†
βbα ). For

simplicity, we define a six-dimensional spinor B(r) =
(b1(r), b2(r), b3(r), b4(r), b5(r), b6(r)). The constraint is
B†(r)B(r) = 1 for each site r. The gauge structure is U(1).

We define hopping term T̂i j = B†
i B j and �̂i j = 1√

2
(BT

i B j +
BT

j Bi ). T̂ †
i j = Tji. �̂

†
i j = 1√

2
(B†

j B
†T
i + B†

i B†T
j ). Apparently,

�̂i j = �̂ ji.
The Hamiltonian in the SO(6) invariant limit can be written

as

H = 4J
∑
〈i j〉

T̂i j T̂ji − 4J
∑
〈i j〉

�̂
†
i j�̂i j . (10)

In the Schwinger boson theory, a typical mean field Ansatz is

HM =
∑
〈i j〉

(T †
ji T̂i j + �

†
ji�̂i j ), (11)

where Ti j and �i j are mean field parameters. For Schwinger
boson, the meaningful Ansatz has �i j �= 0, which describes a
Z2 spin liquid.

3. Six-flavor Schwinger fermion

Similar to the six-flavor Schwinger boson approach,
we can also identify each basis |α〉 in Eq. (9) to
be created by a fermionic operator 
α . Defining 
 =
(
1, 
2, 
3, 
4, 
5, 
6). The constraint is 
†(r)
(r) =
1 for each site r. The gauge structure is O(2) = Z2 �

U(1). Z2 corresponds to a charge conjugation C : 
(r) →

†(r). We define hopping term T̂i j = 


†
i 
 j and �̂i j =

1
2 (
i
 j − 
 j
i ). T̂ †

i j = T̂ji. �̂
†
i j = 1

2 (
†
j 


†
i − 


†
i 


†
j ). Ap-

parently, �̂i j = −�̂ ji.
The SO(6) invariant Hamiltonian can be written as

H = −4J
∑
〈i j〉

T̂i j T̂ji − 4J
∑
〈i j〉

�̂
†
i j�̂i j. (12)

The typical mean field Ansatz in the Schwinger fermion
approach is

HM =
∑
〈i j〉

(T †
ji T̂i j + �

†
ji�̂i j ), (13)

where Ti j and �i j are mean field parameters. For Schwinger
fermion parton theory, we can have both U(1) spin liquid with
�i j = 0 and Z2 spin liquid with �i j �= 0. If �i j is chiral, we
can also have chiral spin liquid.

C. PSG classification of U(1) spin liquids at νT = 2

We first discuss the U(1) spin liquid. There are two dif-
ferent kinds of U(1) spin-liquid phases. One is constructed
from the Abrikosov fermion and the other one is constructed
from the Schwinger fermion. For both Abrikosov fermion
and Schwinger fermion, symmetry U(1) spin liquids have the
same classification as shown in Appendix B. Both zero-flux
phase and π -flux phase are symmetric. However, nearest-
neighbor and next-nearest-neighbor hoppings in the π -flux
phase are forbidden by the PSG, which is not physical.
Therefore, we only consider the zero-flux phase for both the
Abrikosov fermion parton and the Schwinger fermion parton.

From the Abrikosov fermion, we have a U(1) spin liquid
with four Fermi surfaces, each of which is at filling 1

2 . This
spin-liquid phase can go through a continuous transition to
Fermi liquid. Basically, one can write the electron operator as
ci;a = eiθi fi;a and let the bosonic rotor go through a continuous
superfluid-Mott transition [41].

From the Schwinger fermion, we have a U(1) spin liquid
with six Fermi surfaces, each of which is at filling 1

6 . This
U(1) spinon Fermi-surface phase is not connected to the
Fermi liquid through direct transition.

D. PSG classification of Z2 spin liquids at νT = 2

We then classify symmetric Z2 spin liquids at νT = 2. The
Z2 spin liquid can be constructed from both the Schwinger
boson parton and the Schwinger fermion parton. The PSG is
the same for both Schwinger boson and Schwinger fermion
parton constructions. It is independent of the spin rotation
symmetry and therefore is true even if the SO(6)/Z2 spin
rotation is broken down to SO(2) × SO(3).

PSG classification is the same as the spin- 1
2 Schwinger

boson approach, and we can just quote the results of Wang
et al. in Ref. [42]. The PSG is labeled by (p1, p2, p3) where
p1, p2, p3 = 0, 1. These three integers label the fractionaliza-
tion of the translation σ and C6: T1T2 = T2T1(−1)p1 , σ 2 =
(−1)p2 , and C6

6 = (−1)p3 .
For each symmetry operation X , the corresponding projec-

tive symmetry operation is GX X where GX = eiϕX (r) is a U(1)
gauge transformation:

ϕT1 (x, y) = 0,

ϕT2 (x, y) = p1πx,

ϕσ (x, y) = p2
π

2
+ p1πxy,

ϕC6 (x, y) = p3
π

2
+ p1π

(
xy + y(y − 1)

2

)
, (14)

where the coordinate of a site is R = xa1 + ya2. The transfor-
mation of crystal symmetries can be found in Appendix A.

For both Schwinger boson and Schwinger fermion, there
are eight different Z2 spin liquids labeled by (p1, p2, p3).
However, more constraints need to be added if we require the
nearest-neighbor pairing to be nonzero. This is a reasonable
requirement for a model with dominant nearest-neighbor
antiferromagnetic coupling. It turns out there are only two
Z2 spin liquids for both fermion and boson parton in the
SO(6)-symmetric limit. In the following, we will introduce
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the two PSG Ansätze for the Schwinger boson and Schwinger
fermion, respectively. Then, we will connect the Schwinger
fermion and Schwinger boson approaches and show that they
describe the same Z2 spin liquids in terms of f particle and e
particle.

1. Z2 spin liquid in Schwinger fermion parton

The only SO(6)-symmetric pairing is
�(R)

∑
a 
a(r)
a(r + R) where a = 1, . . . , 6 is the

flavor index. For fermion we have �(R) = −�(−R).
We require �(R) �= 0 for nearest neighbor R. First, the
reflection σ maps R = (1, 1) to itself. Under the PSG,
�(1, 1) → �(1, 1)ei[ϕσ (0,0)+ϕσ (1,1)]. To have �(1, 1) �= 0, we
need ϕσ (0, 0) + ϕσ (1, 1)) = 0 mod 2π . This is equivalent to
p1 = p2.

Second, R2 = (−1, 0) is related to R1 = (1, 0) by three C6

rotations. Meanwhile, we have �(−1, 0) = −�(1, 0). There-
fore, we have the following condition:

3ϕC6 (0, 0)+ϕC6 (1, 1)+ϕC6 (0, 1)+ϕC6 (−1, 0) = π mod 2π,

(15)

which requires p3 = 1 − p1mod 2. Because of the above two
constraints, there are only two reasonable symmetric Z2 spin
liquids with SO(6) rotation symmetry. They are (0,0,1) and
(1,1,0) phases. The first is a zero-flux phase while the second
is a π -flux phase.

Next, we show that p1 = 1 forbids nearest-neighbor hop-
ping. Consider the hopping t (R)

∑
a 
†

a (r + R)
a(r). R1 =
(0, 1) and R2 = (1, 0) are related by σ or C2

6 . To have nonzero
nearest-neighbor hopping, we need to have

−ϕσ (0, 1) + ϕσ (0, 0)

= −ϕC6 (1, 1) − ϕC6 (0, 1) + 2ϕC6 (0, 0)mod 2π (16)

which fixes p1 = 0. As a result, the π -flux phase needs to have
zero nearest-neighbor hopping.

2. Z2 spin liquid in Schwinger boson parton

For six-flavor bosons, the pairing is also
�(R)

∑
a 
a(r)
a(r + R) for each bond R. We have

�(R) = �(−R). Similar to the fermion case, the reflection
σ fixes p1 = p2. The C3

6 relates R1 = (1, 0) to R2 = (−1, 0)
and fixes p3 = p1. There are also two symmetric spin liquids
satisfying the following constraint: the zero-flux phase (0,0,0)
and the π -flux phase (1,1,1). Again, the π -flux phase can not
have nonzero nearest-neighbor hopping.

3. Equivalence between Schwinger boson and Schwinger
fermion descriptions

We have found two symmetric Z2 spin liquids from both
Schwinger boson and Schwinger fermion construction. In this
section we show that the Schwinger fermion descriptions are
equivalent to the Schwinger boson approach.

In the Schwinger boson approach, we have the PSG for the
bosonic e particle. In the Schwinger fermion parton theory,
we have the PSG for the fermionic f = eυ. Here, υ denotes
the vison or m particle. The PSG of f particle can be derived
from the composition of the PSG of the e and m particles (with
possible twisting factor) [43–45]. There is one e particle per

TABLE II. Two symmetric Z2 spin liquids. Pb and P f label
symmetric fractionalization for e and f particles. We also list the
band bottom of e particle in the Schwinger boson mean field Ansatz
with only nearest-neighbor coupling.

Phase PSG Band bottom of e

Type I Z2 Pb = (0, 0, 0), P f = (1, 1, 0) (0,0)
Type II Z2 Pb = (1, 1, 1), P f = (0, 0, 1) ±( π

6 , π

2
√

3
), ±( 5π

6 , π

2
√

3
)

unit cell and the vison υ always see the e particle as an effec-
tive π flux. Thus, the vison always has the PSG T1T2 = −T2T1

and C6
6 = −1. It has been shown that σ 2 = −1 is anomalous

for the vison when there is a U(1) spin rotation symmetry.
Vison must have σ 2 = 1 [46] in our problem. For the frac-
tionalization of X = T1T2(T2T1)−1, σ 2,C6

6 , the PSG of vison
(−1)pυ

X can be uniquely determined as Pυ = (−1, 0,−1). We
can then get PSG of f from the PSG of e particle by (−1)P f

X =
(−1)Pe

X (−1)Pυ
X (−1)ε(X ), where ε(X ) = 1,−1 is a twist factor.

It has been shown that ε(T1T2(T2T1)−1) = 1 and ε(σ 2) =
ε(C6

6 ) = −1 [44,45]. We can then map PSG of e particle
Pb = (pb

1, pb
2, pb

3) to P f = (pf
1 , pf

2 , pf
3 ) by the equation

pf
1 = pb

1 + 1, pf
2 = pb

2 + 1, pf
3 = pb

3. (17)

From the above relation we can see that both Schwinger
boson theory and Schwinger fermion theory are describing
two symmetric Z2 spin liquids: I. Pb = (0, 0, 0) and P f =
(1, 1, 0). II. Pb = (1, 1, 1) and P f = (0, 0, 1).

In summary, we find two symmetric Z2 spin liquid, shown
in Table II. Each of them can be described using either
Schwinger boson or Schwinger fermion mean field Ansatz.
Details about the Ansatz and the dispersion can be found in
Appendix C.

V. PSEUDOGAP METALS AT νT = 2 − x

After discussing the Mott insulator, we turn to possible
metallic phases upon doping the Mott insulator. Especially,
we show that pseudogap metals with small Fermi surfaces can
naturally emerge upon doping the Mott insulator at νT = 2.
The Mott insulating phase at νT = 2 is sensitive to the onsite
intervalley spin-spin coupling JH . A nonzero JH split the
SO(6) symmetry down to 1 ⊕ 2 ⊕ 3. When JH > 0 and its
magnitude is much larger than J , it is obvious that the ground
state is a featureless Mott insulator with one valley triplet, spin
singlet at each site. When JH < 0, with a large magnitude, the
low energy is dominated by one SO(3) vector at each site.
Therefore, we have an effective spin-one model on triangular
lattice and the ground state is the 120◦ Neel order. For the
intermediate region with JH = 0, valence bond solid (VBS)
or resonant valence bond (RVB) may also be possible.

In the remaining part we discuss possible metallic phases
upon doping from the featureless Mott insulator and the
VBS/RVB phase. The physics of doping the Neel order is
very hard and we leave it to future work.

A. JH > 0: Symmetric and featureless pseudogap metal

In the simplest case, let us assume JH > 0 and is much
larger than J . In this case, the Mott insulator has one
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intervalley singlet at each site. When we dope the system to
the filling νT = 2 − x, there are x singlons. One natural state
is that these singlons move coherently and form four Fermi
surfaces, each of which has area AFS = − x

4 . The remaining
particles are still gapped out by singlet formation. Obviously,
this is a pseudogap metal with only a small Fermi surface.
The Hall number is opposite to the free-fermion case and is
proportional to x. This is quite similar to the phenomenol-
ogy of cuprates when superconductivity is suppressed by
strong magnetic field. This pseudogap metal is a symmetric
Fermi liquid. Although the picture is very simple, this state
is definitely beyond the conventional scenario with density
wave order. The existence of this simple example is a proof
that electrons can be gapped out from the Fermi sea without
invoking any symmetry-breaking order.

Although we can not describe this featureless pseudogap
phase with the conventional mean field theory, we find that
the essential physics can be easily captured by a slave-boson
mean field theory. When we remove one electron from νT =
2, we remove one doublon and create one singlon, therefore,
we use the following parton representation:

cα (x) =
∑
β �=α

�αβ (x) f †
β (x), (18)

where α, β = 1, 2, 3, 4 is the flavor index. �αβ (x) =
−�βα (x) is an antisymmetric slave-boson field, which has
been used before in Eq. (9). f †

β (x) creates a singlon with flavor
β. The above parton construction has a U(1) redundancy:

�αβ (x) → �αβ (x)eiθ (x), fβ (x) → fβ (x)eiθ (x) (19)

with the constraint n f (x) + nb(x) = 1.
When JH = 0, these six �αβ fields can form a SO(6) vector

in the basis defined in Eq. (9). In the following, we use the
SO(6) basis ba(x) with a = 1, 2, . . . , 6:

b1 = i√
2

(−�12 + �34),

b2 = 1√
2

(�12 + �34),

b3 = i√
2

(−�14 + �23),

b4 = 1√
2

(�14 + �23),

b5 = 1√
2

(�13 − �24),

b6 = − i√
2

(�13 + �24). (20)

We can substitute Eq. (20) to the t-J model in
Eq. (8) and decouple it in the form of mean field
theory:

HM = Hb + Hf ,

Hb = −tb
∑
〈i j〉

∑
a

b†
a;iba; j + H.c. − μ

∑
i

∑
a

b†
a;iba;i,

Hf = −t f

∑
〈i j〉

∑
α

f †
α;i fα; j + H.c. − μ f

∑
i

∑
α

f †
α;i fα;i. (21)

When we add a JH > 0, the degeneracy of the six-flavor
bosons is lifted and the one corresponding to the intervalley
singlet is favored. This is b3 = i√

2
(−�14 + �23) defined in

Eq. (20). Therefore, we consider the Ansatz with 〈b3(x)〉 �=
0. After the condensation of b, the internal U(1) gauge field
is Higgsed and f can be identified as a local hole operator
c†. The density of fermion f is n f = x. We have four Fermi
surfaces with Fermi surface area AFS = − x

4 .
To further prove the phase is a Fermi liquid, we can try to

calculate the single Green function. With simple algebras, we
can easily get

Gc
α1,α2

(x, t ; y, t ′) = 〈c†
α1

(x, t )cα2 (y, t ′)〉
=

∑
β1 �=α1

∑
β2 �=α2

〈�†
α1β1

(x, t )�α2β2 (y, t ′)〉〈 fβ1 (x, t ) f †
β2

(y, t ′)〉

=
∑

β �=α1,α2

〈�†
α1β

(x, t )�α2β (y, t ′)〉G f
β (x, t ; y, t ′). (22)

Using the fact that 〈�14〉 = −〈�23〉 = i√
2
〈b4〉 while other

components of �αβ are zero, we can easily get

Gc
11(x, t ; y, t ′) = 1

2 |〈b〉|2G f
44(x, t ; y, t ′),

Gc
22(x, t ; y, t ′) = 1

2 |〈b〉|2G f
33(x, t ; y, t ′),

Gc
33(x, t ; y, t ′) = 1

2 |〈b〉|2G f
22(x, t ; y, t ′),

Gc
44(x, t ; y, t ′) = 1

2 |〈b〉|2G f
11(x, t ; y, t ′). (23)

These equations also mean that the f operator should be
identified as a physical hole operator.

In summary, in the limit with a large anti-intervalley
Hund’s coupling, a natural state in the underdoped regime is
a symmetric and featureless Fermi liquid with small Fermi
surfaces. Such a state has Hall number ηH = −x for νT =
2 − x, in contrast to the free-fermion case with ηH = 2 − x.
This simple state offers a simple example to partially gap out
free-fermion Fermi surfaces by symmetric singlet formation,
instead of the more familiar density wave order.

B. JH = 0: Orthogonal metal with small Fermi surfaces

Next, we turn to the case with JH = 0. In this U(4)-
symmetric point, Luttinger theorem requires AFS = νT

4 for a
symmetric and featureless phase. However, we will argue that
an exotic symmetric pseudogap metal may be possible when
doping away from the νT = 2 Mott insulator in the U � t
limit. We will generalize the conventional RVB theory [37] to
the type II t-J model close to νT = 2. As in the familiar RVB
theory, we assume the undoped state is a Z2 spin liquid.

We still use the parton construction in Eq. (18). We have
n f = x and nb = 1 − x. In the undoped Mott insulator, there
are two Z2 spin liquids as we proposed before. For simplicity,
we just use the zero-flux Ansatz from the Schwinger boson
method. Basically, the Schwinger boson b is in a paired super-
fluid phase. Then, we dope the system, f can form four Fermi
surfaces with area AFS = − x

4 as in the featureless pseudogap
metal in the previous subsection. In this mean field Ansatz,
〈bib j〉 �= 0 Higgs the internal U(1) gauge field down to Z2. As
argued in Ref. [34], in this case the physical charge is carried
by fermion f . In another way, we can use Ioffe-Larkin rule for
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physical resistivity [47]: ρc = ρb + ρ f . Because the boson b
is in a paired superfluid phase, ρb = 0, therefore, ρc = ρ f . We
conclude that the transport property of this phase is exactly the
same as a Fermi liquid with small Fermi surfaces. Obviously,
we will also expect Hall number ηH = −x as in the featureless
pseudogap metal. The thermodynamic property, like specific
heat or spin susceptibility, should still be the same as the
featureless pseudogap metal. Therefore, we still view this
phase as a “pseudogap metal” because the number of carriers
is much smaller than the conventional Fermi liquid.

Next, we will show that this pseudogap metal is a non-
Fermi-liquid (NFL) instead of a Fermi liquid in terms of
single-electron Green function. Following the same analysis
as in the previous subsection, we can get Gc(x, y; t, t ′) ∝
〈b†(x, t )b(y, t ′)〉G f (x, y; t, t ′), where we have suppressed the
flavor index for simplicity. Because the Schwinger boson b is
in a paired-superfluid phase, a single-particle Green function
〈b†(x, t )b(y, t ′)〉 should be an exponential decay. As a result, a
single Green function for the physical electron Gc(x, y; t, t ′)
should also be an exponential decay. As a consequence,
ARPES or STM measurement can not detect any coherent
quasiparticle for this pseudogap metal. The charge carrier in
this exotic metal is not the physical electron. We will follow
the notation of Ref. [34] and dub it as “orthogonal metal.”

In summary, we have shown that a featureless pseudo-
gap metal or an orthogonal metal with small Fermi surfaces
AFS = − x

4 can naturally emerge at filling νT = 2 − x for large
positive JH or small JH . For a negative and large JH , we know
that the νT = 2 Mott insulator is in the 120◦ Neel order for
the low-energy spin-one model. Doping such a Neel order
may show a new metallic or superconducting phase beyond
the analysis here, which we leave to future work.

VI. DECONFINED METAL BETWEEN PSEUDOGAP
METAL AND CONVENTIONAL FERMI LIQUID

At the large U � t limit, we have argued that a pseudogap
metal with small Fermi surfaces is likely at small doping away
from νT = 2. Then, a natural question is how this small Fermi
surface pseudogap metal evolves to the conventional Fermi
liquid with large Fermi surfaces when increasing t

U or the
doping x. We try to provide one possible scenario in this
section.

For simplicity, we work in the case with JH = 0. We
have already presented a description of the orthogonal metal
with small Fermi surfaces. Next, we need to understand how
to describe the conventional Fermi liquid with large Fermi
surfaces. At large t

U , this is a trivial problem. At the large
U � t with large doping x, we still expect a conventional
Fermi liquid, which can not be simply understood as in the
free-fermion case because of the constraint P2 in Eq. (8). In
the familiar spin- 1

2 case or in the filling νT = 1 − x of the
U(4) model, the constraint in Eq. (7) can be respected in
the slave-boson description: cα (x) = b†(x) fα (x). Then, the
conventional Fermi liquid just corresponds to the Ansatz with
〈b(x)〉 �= 0. In contrast, in the case νT = 2 − x, the Hilbert
space consists of singlon and doublon. Neither of them can
simply condense without breaking spin rotation symmetry.
Meanwhile, the density of a singlon is x while the number
of a doublon is 1 − x. Therefore, to have the conventional

Fermi liquid with Hall number ηH = 2 − x, we need both
singlons and doublons to be absorbed to form the large Fermi
surface with area AFS = 2−x

4 . In the following, we will show
that a large Fermi surface state can be generated from “Kondo
resonance” similar to heavy-fermion systems.

To impose the constraint P2 in Eq. (8), we still use the
parton construction in Eq. (18). With this parton construction,
we can define spin operators for the doublon site using the
slave boson ba (linear transformation of �αβ) and the spin
operators for the singlon site using the fermion f .

The spin operator for the doublon site is

Sab
b (x) = 2i[b†

a(x)bb(x) − b†
b(x)ba(x)], (24)

where a, b = 1, 2, . . . , 6. Sab is the generator of the SO(6)
group. It has a one-to-one correspondence to the SU(4) spin
operators as defined in Table I.

The spin operator for the singlon site is

Sμν

f (x) = f †
α τμσ ν fβ (x), (25)

where α, β = 1, 2, 3, 4. τμσ ν with μ, ν = 0, x, y, z except
μ = ν = 0.

With this six-flavor slave-boson parton construction, the t
term in the t-J model defined in Eq. (8) looks like an exchange
term between the singlon f and the doublon b: b†

i b j fi f †
j . Here,

we suppressed the flavor index because generically it looks
quite complicated and involves many different terms. This
term can be decoupled to the mean field Ansatz in Eq. (21).
The J term in this case involves terms like Sb;iSb; j , S f ;iS f ; j , and
Sb;iS f ; j . At small doping x, we have nb = 1 − x and n f = x.
In this case, we can view the doublon site as a SO(6) spin
and the fermion f couples to the SO(6) moment through
the term Sb;iS f ; j , which resembles a Kondo coupling in the
heavy-fermion problem. Then, a large Fermi surface may be
generated through “Kondo resonance.”

The essential point of Kondo resonance is to absorb the
SO(6) spin to form a large Fermi surface with area AFS = 2−x

4 .
To do that, we need to split a doublon to two fermions first.
Therefore, we do a further parton construction on top of
Eq. (18):

�αβ = 1
2 [ψα (x)ψβ (x) − ψβ (x)ψα (x)]. (26)

In other words, the original electron operator is now written

cα (x) =
∑
β �=α

ψα (x)ψβ (x) f †
β (x) (27)

with the constraint 1
2 nψ (x) + n f (x) = 1. Still, there is a U(1)

gauge redundancy

fα (x) → fα (x)eiϕ(x), ψα (x) → ei 1
2 ϕ(x). (28)

So, ψ couples to the U(1) gauge field a with gauge charge
1
2 . In addition, ψ couples to another Z2 gauge field because
ψα (x) → −ψα (x) also does not change the physical operator.

With the parton construction in Eq. (27), we can access
both the conventional Fermi liquid and the pseudogap metals
with small Fermi surfaces. For simplicity, let us assume that
the physical gauge field A couples to f . It turns out that
the conventional Fermi liquid can evolve to the pseudogap
metal through two continuous transitions with an intermediate
“deconfined metal,” as is illustrated in Fig. 4. We have density
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FIG. 4. Evolution from pseudogap metal to the conventional
Fermi liquid. The red, blue, and black circles denote Fermi surfaces
with area 2−2x

4 , x
4 , and 2−x

4 . The intermediate phase is a “deconfined
metal” where the Fermi surfaces formed by ψ and f couple to an in-
ternal U(1) gauge field a. We can condense either ψψV or ψψψψV
to get featureless pseudogap metal or orthogonal pseudogap metal,
where V is the vison annihilation operator.

nψ = 2 − 2x and n f = x. The conventional Fermi liquid is de-
scribed by 〈ψ† f 〉 �= 0, similar to the Kondo resonance in the
heavy-fermion problems. To get the pseudogap metal, we can
just gap out the Fermi surfaces formed by ψ through pairing.
The first possibility is a charge-2e pairing 〈ψψ〉 �= 0. In the
case with JH = 0, this pairing term needs to break the SU(4)
spin rotation and lives in a manifold generated by SO(6)
rotation. If JH > 0, we can just make ψ to form the intervalley,
spin-singlet pairing which preserves spin rotation symmetry.
The pairing term will completely Higgs the U(1) gauge field
a. However, the Z2 gauge field still survives and decouples
with the remaining Fermi surfaces formed by f . This is actu-
ally a FL* phase with Fermi liquid coexisted with Z2 gauge
field. To avoid such an exotic state and get the featureless
pseudogap metal, we should condense 〈ψψV 〉 �= 0 where V is
the vison of the Z2 gauge field. In this way, the Z2 gauge field
also gets confined and we get exactly the featureless pseu-
dogap metal. In the SU(4)-symmetric point, the orthogonal
pseudogap metal may be favored. We can reach it through
a charge-4e SU (4) singlet pairing: 〈εαβγ δψαψβψγ ψδV 〉 �= 0.
This pairing Higgses the U(1) gauge field a down to Z2.
Therefore, the Fermi surface from f couples to both A and the
Z2 gauge field, which is exactly the property of the orthogonal
pseudogap metal described in the previous section.

Now, we have one theory that the pseudogap metal can
evolve to the Fermi liquid through two continuous phase tran-
sitions. Next, we briefly discuss the property of the intermedi-
ate deconfined metal. The low-energy physics is governed by
the following action:

L = ψ†

(
∂0 − 1

2
a0

)
ψ + f †(∂0 − a0) f

+ h̄2

2mψ

ψ†

(
−i�∂ − 1

2
�a
)2

ψ

+ h̄2

2m f
f †(−i�∂ + �A − �a)2 f . (29)

In the Gaussian approximation, an Ioffe-Larkin rule can be
easily derived as

ρc = ρψ + ρ f , (30)

where ρψ and ρ f should be viewed as the resistivity tensor for
ψ and f .

Because of the gauge fluctuation, the quasiparticle picture
is known to break down. Transport of such a deconfined
metal remains to be an unsolved theoretical problem. We hope
that the possible realization of this phase in graphene moiré
superlattice can provide more information from experiment
on this problem.

When applying an external magnetic field, we can get an
effective action for the internal magnetic flux:

Leff = χψ

∣∣ 1
2 b

∣∣2 + χ f |b − B|2. (31)

In the saddle point, the internal gauge field flux b is locked to
the external magnetic field: b = αB with α = 4χ f

χψ+4χ f
. Here,

χψ and χ f are the diamagnetism susceptibility in the Gaussian
approximation. Generically, we expect α is an order one num-
ber smaller than one. Using χ ∼ 1

m for a Fermi surface, we

have α = 4mψ

4mψ+m f
. Because of the locking, ψ sees an effective

field αB while f sees an effective field −(1 − α)B. Then, in
principle, one should see quantum oscillations corresponding
to the Fermi surfaces area for both ψ and f with frequency
renormalized by factor α and 1 − α.

Next, we discuss the Hall number of this deconfined metal.
The constraint 1

2 nψ + n f = 1 implies that Jψ = J f , where
Jψ = J is defined as variation of a while J f is defined as
variation of A. In the Gaussian approximation, we have the
result

ex = αB

nψ
1
2 e

Jψ
y ,

ex − Ex = 1 − α

n f e
BJ f

y , (32)

where we have used the result ρxy = B
nQ for a Fermi surface

with charge Q and density n.
Then, it is easy to get

Ex =
(

2α

nψe
− 1 − α

n f e

)
BJy. (33)

Therefore, the Hall number is

1

ηH
=

(
2α

nψ

− 1 − α

n f

)
(34)

or

ηH =
(

α

1 − x
− 1 − α

x

)−1

. (35)

Note that, generically, ηH is not related to the density of
charge carriers. At the limit x � 1 and α � 1, we have ηH ≈
− x

1−α
. ηH diverges when α increases to 1 − x. Therefore, the

Hall number can be arbitrary inside the deconfined metal,
depending on the value of α.

Once the system is in the FL phase, 〈ψ† f 〉 locks a = 2A. In
this case, ψ forms an electron pocket while f can be viewed
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as a hole pocket. Deep inside the FL phase, the two Fermi
surfaces merge together to form a large electron Fermi surface
and ηH = 2 − x.

In the above we have described one scenario for evo-
lution from pseudogap metals to conventional Fermi liquid
by increasing doping or bandwidth. In this simple scenario,
there is an intermediate deconfined metal phase. The physics
of the pseudogap metal we described is kind of similar to
the “symmetric mass generation” proposed in Ref. [48] for
Dirac fermions. In that simple, case Ref. [48] constructed a
deconfined critical point between an insulator and a Dirac
semimetal. It is not clear whether a direct transition between
the pseudogap metal and the conventional Fermi liquid can
exist or not in our case. We hope to study this in the future.

VII. U(1) SPINON FERMI-SURFACE STATE AND Z4 SPIN
LIQUID AT νT = 1

At νT = 1, the intervalley Hund’s term JH vanishes af-
ter projection to the Hilbert space without double occu-
pancy. Therefore, the spin rotation symmetry is SU(4)/Z4 or
U(1)valley × SO(3)+ × SO(3)−. We will show that there is no
symmetric gapped Z2 spin liquid when spin rotation symmetry
is both SU(4)/Z4 and U(1)valley × SO(3)+ × SO(3)−. Within
the Abrikosov fermion parton construction, the only symmet-
ric spin-liquid state is a U(1) spin liquid with spinon Fermi
surface, which can be reached from the Fermi-liquid phase
through a continuous transition. A symmetric Z4 spin liquid is
also possible but beyond mean field description.

A. Absence of gapped symmetric Z2 spin liquid

There is a general argument to rule out gapped Z2 spin
liquid with full spin rotation symmetry. Because there is
only one fundamental representation within each unit cell,
in a spin rotation invariant Z2 spin liquid, the spinon needs
to transform as ( 1

2 , 0) and (0, 1
2 ) under SU(2)+ × SU(2)−.

Basically, we have e+σ carries valley + and e−σ carries
valley −. A bound state formed by e+σ1 e−σ2 has dimension 4
and transforms as ( 1

2 , 1
2 ) under SU(2)+ × SU(2)−. Under 2π

rotation of Sz for either valley, it acquires a global −1 phase.
Therefore, the bound state is in the projective representation of
U(1)valley × SO(3)+ × SO(3)−. However, in a gapped Z2 spin
liquid, e+e− is created by a local operator and should be in a
linear representation. The contradiction implies that a gapped
symmetric Z2 spin liquid is not possible.

B. U(1) spin liquid in Abrikosov fermion parton construction

A U(1) spin liquid is possible and can be constructed in
the standard Abrikosov fermion parton theory. For the current
problem, Schwinger boson parton theory is not very useful
because there is no symmetric paired condensation phase of
the four-flavor Schwinger bosons. Therefore, we restrict to
Abrikosov fermion parton theory. At each site, we have fia in
the fundamental representation of SU(4) with the constraint∑

a f †
ia fia = 1. Unlike the spin- 1

2 case, there is only a U(1)
gauge redundancy.

Apparently, there can not be pairing term which preserves
the spin rotation symmetry. This is another manifestation that

symmetric Z2 spin liquid is not possible. In the following, we
classify all possible symmetric U(1) spin-liquid states.

The projective symmetric group (PSG) for U(1) spin liquid
is classified in Appendix. B. There are only two possible PSG,
which are labeled by the projective translation symmetry:
T1T2 = T2T1ei�T . It turns out only �T = 0 and �T = π are
compatible with the reflection symmetry σ . Once �T is fixed,
the symmetry realizations of σ and C6 are also fixed. Note
that C6

6 and σ 2 are meaningless in a U(1) spin liquid because
a global U(1) transformation can always be added in C6 and
σ . For each symmetry operation X , the symmetry realization
is eiϕX (x,y)X . The following is a list of the PSG:

ϕT1 = 0,

ϕT2 = p1πx,

ϕσ = p1πxy,

ϕC6 = p1πxy + 1
2 p1πy(y − 1) (36)

up to a constant phase. �T = p1π with p1 = 0, 1. p1 = 0
and p1 = 1 label the zero-flux phase and the π -flux phase.
However, in the π -flux phase the nearest-neighbor hopping
and the next-nearest-neighbor hopping are forbidden. This
Ansatz is not energetically favorable. Therefore, we only
consider the zero-flux phase.

In the zero-flux phase, ϕX = 0. Therefore, all of the sym-
metry operations are realized trivially. The phase is a U(1)
spin liquid with four Fermi surfaces, each at filling 1

4 . This
spin-liquid phase can be reached from the Fermi-liquid side
through a continuous quantum phase transition. In principle,
a symmetric Z4 spin liquid is also possible. In the Abrikosov
fermion description, the fermion can form a charge-4e singlet
pairing: 〈εabcd fa fb fc fd〉 �= 0, resulting in a symmetric Z4 spin
liquid.

For the spin-valley model at νT = 1, there is no symmetric
featureless Mott insulator and magnetic order may be sup-
pressed because of the frustration of triangular lattice and
large quantum fluctuation space. The most likely competing
ordered state is a plaquette order with four sites forming a
SU(4) singlet. If such a plaquette order is melted, we can get
a quantum spin-liquid phase. In this case, our PSG analysis
suggests a U(1) spin liquid with spinon Fermi surface or a Z4

spin liquid.
A superconductor has been reported at small doping away

from the νT = 1 Mott insulator [10]. For both the Z4 spin
liquid and the plaquette order, the Mott insulator is a SU(4)
singlet. Therefore, upon doping, the most likely superconduc-
tor has charge-4e pairing. A charge-4e superconductor will
be killed by in-plane Zeeman field, which is consistent with
the experiment [10]. In contrast, a conventional charge-2e
pairing lives on a SO(4) manifold because valley triplet, spin
singlet pairing is degenerate with the valley singlet, spin triplet
pairing. A Zeeman field will select the spin triplet pairing and
there is no reason to expect the Tc to be suppressed by Zeeman
field. Given the experimental phenomenology and the possible
SU(4)-symmetric Mott insulator nearby, the possibility that
the observed superconductor is charge-4e paired should be
taken seriously. We leave a detailed analysis of charge-4e
superconductor to future work.
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VIII. CONCLUSION

In this paper, we study possible interesting phases in a
spin-valley Hubbard model on triangular moiré superlattice.
We show that pseudogap metals with small Fermi surfaces can
naturally emerge by doping the νT = 2 Mott insulator. In the
moiré materials, it is also easy to study the possible transition
between the pseudogap metals and the conventional Fermi
liquid by tuning either doping or displacement field. We pro-
pose one possible route through an intermediate deconfined
metallic phase. We also comment on possible spin liquids at
νT = 1 and charge-4e superconductor nearby. Our proposals
can be easily tested in ABC trilayer graphene aligned with
hBN and in twisted transition metal dichalcogenide homobi-
layers. The existence of two distinct symmetric Fermi liquids
from symmetry analysis is also true for the graphene moiré
systems with topological bands. In the future, it is interesting
to study whether a similar symmetric Fermi liquid with small
Fermi surfaces can naturally exist in the topological case.
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APPENDIX A: CRYSTAL SYMMETRY OF TRIANGULAR
LATTICE

We define r = xa1 + a2. The lattice symmetries are

T1 : (x, y) → (x + 1, y),

T2 : (x, y) → (x, y + 1),

σ : (x, y) → (y, x),

C6 : (x, y) → (x − y, x). (A1)

The following algebraic constraints are useful:

T2T1 = T1T2,

T1C6 = C6T −1
2 ,

T2C6 = C6T1T2,

T1σ = σT2,

T2σ = σT1,

C6
6 = 1,

σ 2 = 1,

C6σ = σC5
6 . (A2)

APPENDIX B: PROJECTIVE SYMMETRY GROUP
CLASSIFICATION FOR U(1) SPIN LIQUID

At νT = 1, we can use the Abrikosov fermion in the
SU(4) fundamental representation. At νT = 2, we can
have U(1) spin liquid described by a six-flavor Schwinger
fermion. In this Appendix we classify all symmetric U(1)
spin-liquid states within the fermion parton theory for
both νT = 1 and 2. First, invariant gauge group (IGG)
is {eiθ } where θ ∈ [0, 2π ) is a constant phase. For each

symmetry operation X , we can parametrize the gauge
transformation as GX (r) = eiϕX (r). Under gauge transfor-
mation G(x) = eiϕG(x), the GX should be replaced by
GGX XG−1X −1. Correspondingly we have

ϕX (r) → ϕG(r) + ϕX (r) − ϕG(X −1r). (B1)

Next, we need to fix the gauge. Following Wen and Fa
Wang et al. [42], we fix ϕT1 (r) = 0. This can be done by
solving the equations

ϕG(x, y) + ϕX (x, y) − ϕG(x − 1, y) = 0. (B2)

These two equations fix dependence of G(x, y) on x. If G(0, y)
is fixed, then G(x, y) is fixed. Now, we only have the gauge
freedom G(0, y). Then, we can use T1T2 = T2T1 to fix GT2 .
Using T −1

1 T2T1T −1
2 = I , we have

ϕT2 (x, y) = ϕT2 (0, y) + �T x, (B3)

where � ∈ [0, 2π ) is a position-independent constant. We can
use the remaining gauge freedom G(0, y) to make ϕT2 (0, y) =
0. Because IGG is U(1), a constant phase in ϕX (x, y) does not
matter. A nonzero � means a projective translation symme-
try: T2T1 = T1T2ei�T . We need to fix �T

π
= p

q where p, q are
integers.

Next, we need to find PSG for σ and C6. First, we need to
point out the remaining gauge freedom we can use. The first
one is G1 : ϕ1 = const. The second one is G2 : ϕ2(x, y) = θ2x.
This will change ϕT1 = θ2. However, it belongs to the IGG
and does not matter. The third one is G3 : ϕ3(x, y) = θ3y.
This gauge of freedom can be used to eliminate redundant
parameters later.

Finally, we get ϕσ (x, y) = �T xy + const. From
T −1

1 σT2σ
−1 = I and T −1

2 σT1σ
−1 = I we have

ϕσ (x + 1, y) − ϕσ (x, y) = −�T y + φ′
2,

ϕσ (x, y + 1) − ϕσ (x, y) = �T x + φ′
3, (B4)

where φ′
2, φ

′
3 are constant phases.

From these equations we can get ϕσ (X,Y ) = ϕσ (0, 0) +
φ′

2X + φ′
3Y + �T XY mod2π = ϕσ (0, 0) + φ′

2X + φ′
3Y −

�T XY mod2π . To have solution, we need to fix �T = 0, π .
Therefore, a general flux � is not compatible with the re-
flection symmetry. In the following, we can use the notation
�T = p1π . A general solution is

ϕσ (x, y) = ϕσ (0, 0) + p1πxy + φ′
2x + φ′

3y. (B5)

From σ 2 = I we have

ϕσ (x, y) + ϕσ (y, x) = 2ϕσ (0, 0), (B6)

which fixes φ′
2 = −φ′

3 mod2π .
Now, we can use the gauge freedom G2 = eiθ2x to reduce

the parameters. ϕσ (x, y) changes to

ϕσ (x, y) → ϕσ (x, y) + θ2(x − y)

→ ϕσ (0, 0) + p1πxy + (φ′
2 + θ2)(x − y). (B7)

We can always choose θ2 = −φ′
2. Finally, we have the PSG

for σ :

ϕσ (x, y) = p1πxy + const. (B8)
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The next task is C6. We can still use G1 and G2G3, which
do not change GT1 , GT2 , Gσ up to a constant phase. Using
T −1

1 C6T −1
2 C−1

6 = I and T −1
2 C6T1T2C

−1
6 = I , we can get

ϕC6 (x + 1, y) − ϕC6 (x, y) = φ′
4 + p1πy,

ϕC6 (x, y + 1) − ϕC6 (x, y) = φ′
5 + p1π (x − y), (B9)

where φ′
4, φ

′
5 are constant U(1) phases. A general solution is

ϕC6 (x, y) = ϕC6 (0, 0) + p1πxy

− 1
2 p1y(y − 1)π + φ′

4x + φ′
5y. (B10)

C6σC6σ further impose the constraint

ϕC6 (x, y) + ϕC6 (y − x, y) + ϕσ (y, y − x) + ϕσ (y, x) = const,

(B11)

which fixes φ′
4 + 2φ′

5 = 0 mod2π . C6
6 = I imposes the con-

straint φ′
4 = 0 mod2π . Then, we can also fix φ′

5 = p′
5π with

p′
5 = 0, 1.

Under the gauge transformation G′
3 = eiθ3(x+y), the solution

of ϕC6 changes to

ϕC6 → ϕC6 (0, 0) + p1πxy − 1
2 p1y(y − 1)π

+ (p′
5π − θ3)y + 2θ3x. (B12)

Choosing θ3 = p′
5π , ϕC6 can always be reduced to

ϕC6 = p1πxy + 1
2 p1y(y − 1)π (B13)

up to a constant phase.

APPENDIX C: MEAN FIELD OF Z2 SPIN LIQUID AT νT = 2

In this Appendix we analyze the mean field Ansatz for
SO(6)-symmetric Hamiltonian with only nearest-neighbor
coupling J at νT = 2 based on the Schwinger fermion and
the Schwinger boson parton theories. We focus on the two
symmetric Z2 spin liquids.

1. Type I Z2 spin liquid

The type I Z2 spin liquid has PSG Pb = (0, 0, 0) and P f =
(1, 1, 0). The bosonic e spinon has a trivial PSG while the f
particle is in a π -flux phase. We can get the dispersions of the
e particle and the f particle from the Schwinger boson and the
Schwinger fermion mean field theories, respectively.

a. Mean field theory for the bosonic spinon

The dispersion of the e particle is described by the
Schwinger boson mean field theory with zero-flux Ansatz.
We have both nearest-neighbor hopping and pairing terms.
Because all of the six bosons decouple with each other in the
mean field level, we can work with a spinless boson b at filling
nb = 1

6 with the Hamiltonian

Hb = t
∑
〈i j〉

b†
i b j − �∗ ∑

〈i j〉
(bib j + H.c.) − μ

∑
i

b†
i bi (C1)

or in momentum space

Hb = 1

2

∑
k

(b†(k), b(−k))
(

ξ (k) −�(k)

−�∗(k) ξ (k)

)(
b(k)

b†(−k)

)

+ · · · , (C2)

where �(k) = ∑
R �e−ik·R.

Using the standard Bogoliubov transformation

αk = μkbk + υkb†
−k (C3)

with the constraint

μ2(k) − υ2(k) = 1. (C4)

The inverse transformation is

bk = μ∗
kαk − υkα

†
−k, (C5)

where we assumed μk = μ−k and υk = υ−k.
The solution is

μ2
k = 1

2

(
ξ (k)

Ek
+ 1

)
,

υ2
k = 1

2

(
ξ (k)

Ek
− 1

)
(C6)

with the sign

2μkυk = − �

Ek
, (C7)

where

Ek =
√

ξ 2
k − �2

k. (C8)

The final dispersion is

H = 1

2

∑
k

Ek(α†
kαk + α

†
−kα−k ) + E0. (C9)

At zero T , the expectation value is 〈α†
kαk〉 = 0, which leads

to

〈b†
kbk〉 = υ2

k (C10)

and

〈bkb−k〉 = −μkυk = �k

2Ek
. (C11)

Finally, we get the self-consistent equation

1

N

∑
k

υ2
k = 1

6
,

t = 24

(
1 + 1

6

)
J

1

N

∑
k

υ2
keik·a1 ,

� = 24

(
1 + 1

6

)
J

1

N

∑
k

�k

2Ek
e−ik·a1 , (C12)

where a1 = (1, 0) is one bond. The mean field energy is

EM = 28J
∑
〈i j〉

(〈b†
i b j〉2 − 〈bib j〉2). (C13)

For total density nb = 0.5/6, we find an Ansatz with t =
0.795J and � = 3.644J . Such an Ansatz has band bottom at
the � point. The mean field energy is EM = −0.03732 × 42J .
The critical density for condensation is around 1.45. The
condensation of e particle leads to a ferromagnetic state,
which is apparently not physical for an antiferromagnetic spin
model.
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a1

a2

FIG. 5. π -flux Ansatz for Schwinger fermion with nearest-
neighbor pairing. The pairing term is odd under inversion. The
direction of the arrow denotes the positive pairing.

b. Mean field theory of f particle

The Schwinger fermion mean field theory describes the
dispersion of the f particle. The PSG is P f = (1, 1, 0). It has
zero nearest-neighbor hopping while the pairing terms follow
a π -flux Ansatz depicted in Fig. 5.

The mean field Ansatz for each component is effectively
spinless:

HM = −μ
∑

i

f †
i fi −

∑
〈i j〉

(�∗
i j fi f j + H.c.). (C14)

We need to fix the filling 〈 f †
i fi〉 = 1

6 . The pairing Ansatz
is �i j = −� ji with |�i j | = �. The π -flux Ansatz has two
sublattices A and B. In the momentum space,

H = 1

2

∑
k∈sBZ

( f †
A (k), f †

B (k), fA(−k), fB(−k))

× H (k)

⎛
⎜⎜⎜⎝

fA(k)

fB(k)

f †
A (−k)

f †
B (−k)

⎞
⎟⎟⎟⎠, (C15)

where sBZ is a smaller rectangular BZ with half area. H (k) is

H (k) =
(−μI P(k)†

P(k) μI

)
, (C16)

where I is the identity matrix with 2 × 2 dimension. P(k) is

P(k) = 2i�(sin k1δz + sin k2σx − cos k3σy), (C17)

where k1 = k · a2 = kx, k2 = k · a2 = − 1
2 kx +

√
3

2 ky, and

k3 = k · (a1 + a2) = 1
2 kx +

√
3

2 ky. The dispersion is

E (k) =
√

μ2 + 4�2(sin2 k1 + sin2 k2 + cos2 k3). (C18)

Self-consistently we find � = 4.213J with mean field energy
EM = −0.0226 × 42J . μ = −8.93J .

a1

a2

FIG. 6. π -flux Ansatz for Schwinger boson with nearest-
neighbor pairing. The pairing term is even under inversion. The bold
bond denotes positive pairing while the weak bond denotes negative
pairing. There are two inequivalent sublattices.

2. Type II Z2 spin liquid

The type II Z2 spin liquid has PSG Pb = (1, 1, 1) and P f =
(0, 0, 1). The bosonic e spinon is in a π -flux phase while the
f particle is in a zero-flux phase. We can get the dispersions
of the e particle and the f particle from the Schwinger boson
and the Schwinger fermion mean field theories, respectively.

a. Mean Field theory of e particle

In the π -flux state, the unit cell is doubled. We have two
sublattices A and B. There is only pairing term with pattern
shown in Fig. 6. The Hamiltonian is

H = 1

2

∑
k∈ sBZ

(b†
A(k), b†

B(k), bA(−k), bB(−k))

× H (k)

⎛
⎜⎜⎜⎝

bA(k)

bB(k)

b†
A(−k)

b†
B(−k)

⎞
⎟⎟⎟⎠, (C19)

where sBZ is a smaller rectangular BZ with half area. H (k) is

H (k) =
( −μI P(k)

P(k)† −μI

)
, (C20)

where I is the identity matrix with 2 × 2 dimension. P(k) is

P(k) = 2�(cos k1δz + cos k2σx + sin k3σy), (C21)

where k1 = k · a2 = kx, k2 = k · a2 = − 1
2 kx +

√
3

2 ky, and

k3 = k · (a2 − a1) = 1
2 kx +

√
3

2 ky. The energy spectrum is

Ek =
√

μ2 − 4�2(cos2 k1 + cos2 k3 + sin2 k2). (C22)
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a1

a2

FIG. 7. Zero-flux Ansatz for Schwinger fermion with nearest-
neighbor pairing. The pairing term is odd under inversion. The
direction of the arrow denotes the positive pairing.

The self-consistent equations are

1

2

∑
k∈sBZ

( |μ|
Ek

− 1

)
= 1

6
,

28J
∑

k∈ sBZ

4�(cos2 k1 + cos2 k3 + sin2 k2)

12Ek
= �. (C23)

The sBZ is defined as kx ∈ [−π, π ] and ky ∈ [− π√
3
, π√

3
].

The solution is � = 5.1095J with mean field energy EMF =
−0.0333 × 42J . The critical density for condensation is
around 5.09, which is quite large.

The band minima of the dispersion are at the following
four points: K1 = ( π

6 , π

2
√

3
), K2 = ( 5π

6 , π

2
√

3
), −K1, and −K2.

Condensation of e particle can therefore lead to antiferromag-
netic order. Two-spinon spectrum minima: Q1 = K2 − K1 =

( 2π
3 , 0), Q2 = K1 − (−K1) = ( π

3 , π√
3

), Q3 = K2 − (−K2) =
(−π

3 , π√
3

), Q4 = K1 − K2 = (− 2π
3 , 0), Q2 = (−K1) − K1 =

(−π
3 ,− π√

3
), and Q6 = (−K2) − K2 = ( π

3 . − π√
3

). These six
vectors form another hexagon. The enlarged unit cell is
2
√

3 × 2
√

3.

b. Mean field theory of f particle

The PSG for the f particle is P f = (0, 0, 1). The hopping
term is equal for every bond. The pairing term follows the
pattern shown in Fig. 7.

The mean field Ansatz is

HM = −μ
∑

i

f †
i fi − t

∑
〈i j〉

( f †
i f j + H.c.)

−
∑
〈i j〉

(�∗
i j fi f j + H.c.). (C24)

We need to fix the filling 〈 f †
i fi〉 = 1

6 . The pairing Ansatz is
�i j = −� ji with |�i j | = �:

H = 1

2

∑
k∈BZ

( f †(k), f (−k))H (k)

(
f (k)

f †(−k)

)
(C25)

with

H (k) =
(

ξ (k) �(k)∗

�†(k) −ξ (−k)

)
. (C26)

Let us define k1 = k · a2 = kx, k2 = k · a2 = − 1
2 kx +

√
3

2 ky,

and k3 = k · (a1 + a2) = 1
2 kx +

√
3

2 ky. We have

ε(k) = −2t (cos k1 + cos k2 + cos k3), (C27)

�(k) = 2i�(sin k1 + sin k2 − sin k3). (C28)

The dispersion is

E (k) =
√

[ε(k) − μ]2 + 4�2(sin k1 + sin k2 − sin k3)2.

(C29)

Self-consistently we find � = 3.7522J with mean field en-
ergy EM = −0.02039 × 42J . μ = −7.095J .
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