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Abstract

In temporal planning, many different temporal network formalisms are used
to model real world situations. Each of these formalisms has different features
which affect how easy it is to determine whether the underlying network of tem-
poral constraints is consistent. While many of the simpler models have been
well-studied from a computational complexity perspective, the algorithms de-
veloped for advanced models which combine features have very loose complexity
bounds. In this paper, we provide tight completeness bounds for strong, weak,
and dynamic controllability checking of temporal networks that have condi-
tions, disjunctions, and temporal uncertainty. Our work exposes some of the
subtle differences between these different structures and, remarkably, establishes
a guarantee that all of these problems are computable in PSPACE.
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1. Introduction

In temporal planning, many different temporal formalisms are used to model
real world situations. The choice of any particular type of network in modeling
a problem has inherent trade-offs. If a temporal model supports more features,
it can model a given scenario with higher fidelity. However, the additional
features come at the expense of performance; modelers care about constructing
schedules for temporal networks, and the presence of additional feature types
can dramatically slow the runtime of scheduling algorithms.

The computational complexities of many of the simpler temporal models
have been well-studied, but the same cannot be said of more advanced mod-
els. Despite this gap, there has been considerable effort put into constructing
improved algorithms for these feature-rich temporal networks [3, 4, 5, 10, 24].
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Figure 1: A taxonomic organization of temporal networks considered in this paper, how they
relate to one another, and the complexity classes to which their decision problems belong. SC,
DC, and WC represent strong controllability, dynamic controllability, and weak controllability,
respectively. Results in bold represent novel results proved in this paper.

The main contribution of this paper is in providing significantly improved
theoretical complexity bounds for computing the controllability of temporal
networks with conditions, disjunctions, and temporal uncertainty. The existing
bounds for some of these results have been quite loose with most decision prob-
lems not known to be better than EXPTIME and some not known to be better
than EXPSPACE. We provide completeness results for the strong, weak, and
dynamic controllability decision problems across these networks and remark-
ably prove that all of these problems can be solved in PSPACE. Our results are
summarized in Figure 1. We conclude with a discussion of our results, giving
practical advice to modelers who are interested in the trade-offs of using dif-
ferent temporal networks and lending insight into the differences between these
networks.

There are many types of temporal networks beyond those that we focus
on in this paper. Many include features related to actor decisions, such as
Temporal Plan Networks [13], Temporal Plan Networks with Uncertainty [12],
Controllable Conditional Temporal Problems [26], Conditional Simple Temporal
Networks with Decisions [2], and Conditional Simple Temporal Networks with
Uncertainty and Decisions [27] while others, such as Probabilistic Simple Tem-
poral Networks [8] and their relevant extensions, consider probabilistic temporal
bounds. Despite the existence of other networks our work covers a broad area of
focus that is under active investigation. Future work in this direction will focus
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Figure 2: (a) An STN as specified by its set of constraints. (b) The same STN represented
graphically. (c) The same STN represented using its distance graph formulation.

on characterizing, organizing, and providing tighter bounds for controllability
in these other types of networks but is outside the scope of this work.

2. Background

In this section, we will introduce the set of temporal networks whose control-
lability we will analyze in depth, as well as their simpler base counterparts. The
set of networks that we focus on is summarized in Figure 1. We divide the dis-
cussion of temporal networks into that of base temporal networks, which build
on the simplest temporal network representations, and compositional temporal
networks, which make use of two or more features in their representation. After
describing the temporal networks in detail, we will introduce the complexity
classes that make up the polynomial-time hierarchy, as they will be useful in
categorizing the complexity of particular controllability classes.

2.1. Base Temporal Networks

2.1.1. Simple Networks

Simple Temporal Networks (STNs) are the most basic temporal network
on which all other formalisms are built [6]. STNs are composed of a set of
variables and a set of binary constraints limiting the difference between any two
variables (e.g. B−A ∈ [10, 20]). These variables denote individual points in time
(henceforth timepoints) and the constraints between them are binary temporal
constraints limiting their temporal difference (e.g. eventAmust happen between
10 and 20 minutes before event B).

Definition 1. STN [6]
An STN is a 2-tuple 〈X,R〉 where:
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• X is a set of timepoint variables composing the temporal network

• R is a set of constraints of the form lr ≤ xr − yr ≤ ur, where xr, yr ∈ X
and lr, ur ∈ R

When we consider the feasibility of an STN, we are generally concerned with
whether it is possible to construct a schedule, or an assignment of values from
R to each variable x ∈ X, such that all constraints are satisfied.

Typically, temporal networks are represented graphically where each time-
point is represented as a node and edges between nodes represent the range of
possible differences in value between the endpoints as specified by the original
constraints (see Figure 2b). We can similarly represent temporal networks by
their distance graphs [6] in which case we get a simple graph in which each edge
from A to B with weight w represents the constraint xB − xA ≤ w, which can
be extracted from the original constraints of the temporal network (see Figure
2c). In its distance graph formulation, determining the feasibility of an STN
reduces to finding a negative cycle in the graph. In general, we take n to be
the number of timepoints in a temporal networks and m to be the number of
constraints. In the case of STNs, determining feasibility takes at most O(mn)
time [6]. When describing modifications made by other temporal networks, we
will discuss how these changes affect the cost of checking schedule feasibility.

2.1.2. Disjunctive Networks

The first modification we make to STNs is to allow for disjunctions over tem-
poral constraints. In practice, we frequently construct and consider schedules
with disjunctive constraints; during a trip to the beach, we know that we want
to eat lunch either 30 minutes before swimming or immediately afterwards –
not at any moment in between.

The two types of disjunctive networks that are used in practice, Temporal
Constraint Satisfaction Problems (TCSPs) and Disjunctive Temporal Networks
(DTNs), differ in terms of the types of disjunctive constraints that they admit
[6, 19].

Definition 2. TCSP [6]
An TCSP is a 2-tuple 〈X,R〉 where:

• X is a set of timepoint variables composing the temporal network

• R is a set of simple disjunctive constraints of the form xr−yr ∈
⋃
k

[lr,k, ur,k],

where xr, yr ∈ X and lr,k, ur,k ∈ R

Definition 3. DTN [19]
An DTN is a 2-tuple 〈X,R〉 where:

• X is a set of timepoint variables composing the temporal network

• R is a set of full disjunctive constraints of the form
∨
k

(lr,k ≤ xr,k − yr,k ≤ ur,k),

where xr,k, yr,k ∈ X and lr,k, ur,k ∈ R

4



The disjunctive constraints of TCSPs require that every constraint in a given
disjunction relates the same pair of timepoints. In contrast, DTNs allow dis-
junctive constraints to be a disjunction over any constraints that might be found
in an STN. In this paper, we will refer to the type of disjunctions allowed by TC-
SPs as simple disjunctions and the type of disjunctions allowed by DTNs as full
disjunctions. Checking the feasibility of both TCSPs and DTNs is known to be
NP-complete [6, 19]. It is worth noting that a linear time transformation exists
that converts DTNs into equivalent TCSPs [18], but maintaining the distinction
between the two is important because, remarkably, as we extend the two types
of networks, we see that the computational complexity of solving them begins
to diverge.

2.1.3. Conditional Networks

The Conditional Simple Temporal Network (CSTN) represents a different
way in which we can augment STNs [22]. CSTNs allow for the introduction
and observation of uncontrollable events and the conditional enforcement of
constraints based on the observations of those events.

Definition 4. CSTN [22]
A CSTN is a tuple 〈X,R, P,O〉 where:

• X is a set of timepoint variables composing the temporal network

• R is a set of constraints of the form ψr → (lr ≤ xr − yr ≤ ur), where
xr, yr ∈ X, ψr is a label representing a conjunction of propositions or
their negations, and lr, ur ∈ R

• P is a set of propositions

• O is a function mapping propositions in P to the timepoints where their
values are observed

To illustrate the usefulness of CSTNs, we provide an example. If we want to
schedule the delivery of a package, we may prefer to use a CSTN to encode the
urgency of the request; a package that we see marked as urgent, may need to be
scheduled in the next 24 hours, but a package that is not marked as such can
use a more relaxed schedule that guarantees shipment within the next week. If
we have a timepoint A representing when the package goes out for delivery and
B as the timepoint representing when the package must be delivered, we can
encode the urgency using two constraints, if the package is urgent, we have the
constraint B − A ≤ 1d with label u, and if the package is not urgent, we have
the constraint B −A ≤ 7d with label ¬u. What makes scheduling over CSTNs
notable is that we may learn about the value of proposition u, or in this case the
urgency of the package, at some unrelated timepoint C that may differ from the
timepoints associated with the constraints they affect. In our given example, C
represents the time at which the customer tells us the package’s urgency. It is
possible that the customer indicates that the package is urgent the day before
dropping it off, but it is equally possible that the customer tells us the package
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is urgent several hours after they have already dropped it off. We conditionally
enforce labeled constraints by observing the realized values of the propositions
and checking whether a constraint’s label, ψr is true. In the package example,
we know that we will only need to enforce one of the two constraints based
on what the observed value of u is at timepoint C. We use the function O to
encode the timepoints at which specific propositions are observed.

Importantly, the true values of propositions are not “scheduled” in the same
way that timepoints are. Different instantiations of the same problem may
yield different values for the propositions and, correspondingly, result in dif-
ferent constraints that must be enforced during execution. As a result, the
scheduling problem for CSTNs is different than the one for STNs, TCSPs, and
DTNs. In the previously described temporal networks, we knew the full set of
constraints that would be enforced prior to scheduling and as such could satisfy
all constraints with an implicitly static schedule. However, with CSTNs, there
is no predetermined guarantee about when the scheduler learns about proposi-
tions, as the scheduler may have to predetermine a schedule that is robust to
any learned proposition values or may have the flexibility to adapt the sched-
ule on the fly. Across these different situations, different decisions may be made
with respect to scheduling that may trade off between learning the actual values
of propositions early in execution and maintaining a buffer of temporal flexi-
bility. As such, when checking feasibility of CSTNs, we use strong, weak, and
dynamic consistency to denote the different models under which the scheduler
is guaranteed to learn the actual proposition values [22].

Strong consistency implies there exists a schedule that can be constructed
that assigns values to all timepoints in X, such that for every realization of
the values of the propositions in P , all constraints in R are satisfied. Strong
consistency checking of a CSTN reduces to checking the temporal consistency
of the underlying STN and so is computable in O(mn) time [22]. A CSTN is
weakly consistent if for every assignment of values to the propositions in P , there
exists some schedule can be constructed assigning values to timepoint variables
in X, such that all constraints in R are satisfied. Weak consistency checking of
CSTNs is coNP-complete [22]. Dynamic consistency is concerned with whether
it is possible to dynamically construct a schedule where assignment to values in
X happen in order of timepoint values and the true values of propositions p ∈ P
are learned only when the corresponding timepoint given by O(p) is executed.
Dynamic consistency checking in CSTNs is PSPACE-complete [1].

2.1.4. Networks with Temporal Uncertainty

All the formalisms we have introduced to this point have one major short-
coming; namely, they assume that the scheduler has absolute control over each
and every timepoint. In practice, there exist few scenarios in which an agent
has that type of total control. Agents are unable to control how much traffic
will affect their morning commute or when it might start to rain. To account
for this, we need a way to augment temporal networks to capture the difficulty
of planning around uncertain events.
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Simple Temporal Networks with Uncertainty (STNUs) extend STNs, allow-
ing us to model events whose timings are outside the control of the scheduler but
still closely related to the actions taken by the scheduler [25]. By convention,
we say that those events and actions not explicitly chosen by the scheduler are
chosen by nature.

Definition 5. STNU [25]
An STNU is a 4-tuple 〈Xe, Xc, Rr, Rc〉 where:

• Xe is the set of executable timepoint variables

• Xc is the set of contingent timepoint variables

• Rr is the set of requirement constraints of the form lr ≤ xr − yr ≤ ur,
where xr, yr ∈ Xc ∪Xe and lr, ur ∈ R

• Rc is the set of contingent constraints of the form 0 ≤ lr ≤ cr − er ≤ ur,
where cr ∈ Xc, er ∈ Xe and lr, ur ∈ R

In STNUs, timepoints are subdivided into executable and contingent time-
points and constraints are subdivided into requirement and contingent ones.
Executable timepoints are the timepoints that the scheduler is responsible for,
whereas contingent timepoints are scheduled by nature. Requirements con-
straints behave like ordinary STN constraints and are free to constrain any pair
of timepoints. Contingent constraints, in contrast, represent relations between
a starting executable timepoint and an ending contingent timepoint that na-
ture is guaranteed to enforce. By convention, the lower bound of a contingent
constraint is required to be non-negative to enforce that the starting timepoint
of the constraint, in some sense, causes the ending timepoint. It is worth not-
ing that we require that all contingent constraints begin from an executable
timepoint. This does not have an impact on the expressivity of our networks,
as it is simple to take a pair of chained contingent links and interrupt them
with a simple zero-length requirement constraint, but it will simplify our proof
exposition.

For simplicity, we may sometimes refer to a contingent action duration. For
a contingent constraint r, represented as lr ≤ cr − er ≤ ur, we say that the
duration of r is the value specified by the difference cr−er. When the contingent
timepoints xe are picked by nature, it is equivalent to nature picking a series
of durations for contingent actions, as the set of contingent action durations
together with the set of executable timepoints uniquely determines a set of
contingent timepoints.

As was the case with CSTNs, when modeling the execution of STNUs, there
are events that are outside of the control of the scheduler that force us to consider
schedulability in the context of how we eventually learn about nature’s actions.
While CSTN feasibility was centered around strong, weak, and dynamic con-
sistency, STNU feasibility is based on strong, weak, and dynamic controllability
[25].
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We say that an STNU is strongly controllable if there exists a schedule for all
executable timepoints Xe, such that for every possible assignment of values to
contingent timepoints in Xc that satisfy the contingent constraints Rc, all of the
requirement constraints Rr are satisfied. STNU strong controllability checking,
much like STN consistency checking, reduces to detecting the presence of a
negative cycle and can be computed in O(mn) time [25].

Weak controllability asks whether it is possible to reactively construct a
schedule if the durations of the uncertain events are revealed before scheduling
begins. In other words, for every fully specified set of contingent action durations
that guarantee satisfaction of contingent constraints Rc, weak controllability
asks whether it is always possible to pick a set of executable timepoints Xe such
that all requirement constraints Rr are satisfied. While checking whether a
schedule exists for any one particular realization of the uncertain events reduces
to checking STN consistency, checking STNU weak controllability in general is
coNP-complete [14].

Dynamic controllability considers the question of whether it is possible to
create a just-in-time schedule, where timepoints Xe and Xc are chosen interac-
tively in order of their values (with the guarantee that all Xc are chosen such
that all contingent constraints Rc are satisfied), that guarantees the satisfaction
of all requirement constraints Rr. Dynamic controllability of an STNU can be
computed in polynomial time and more recently was shown to have a worst-case
O(n3) runtime [15, 16].

We will use these same notions of strong, weak, and dynamic controllability
when we extend the STNU to include conditions and disjunctions.

2.2. Compositional Temporal Networks

The compositional temporal networks that we choose to focus on in this
paper will be the ones that augment STNUs with disjunctions and conditional
constraints.

2.2.1. Disjunctions and Temporal Uncertainty

We start by adding disjunctions to STNUs. As was the case with disjunc-
tions added to STNs, when considering disjunctive temporal networks with un-
certainty, we consider the effects of allowing both simple and full disjunctions.

Temporal Constraint Satisfaction Problems with Uncertainty (TCSPUs) aug-
ment STNUs by adding simple disjunctions over constraints.

Definition 6. TCSPU [24]
A TCSPU is a 4-tuple 〈Xe, Xc, Rr, Rc〉 where:

• Xe is the set of executable timepoint variables

• Xc is the set of contingent timepoint variables

• Rr is the set of simple disjunctive temporal constraints over Xc ∪Xe

• Rc is the set of simple disjunctive contingent constraints

8



By augmenting a TCSPU with full disjunctions over temporal constraints,
we get Disjunctive Temporal Networks with Uncertainty (DTNUs) [23].

Definition 7. DTNU [17]
An DTNU is a 4-tuple 〈Xe, Xc, Rr, Rc〉 where:

• Xe is the set of executable timepoint variables

• Xc is the set of contingent timepoint variables

• Rr is the set of full disjunctive temporal constraints over Xc ∪Xe

• Rc is the set of simple disjunctive contingent constraints

It is worth noting that for DTNUs, all disjunctive contingent constraints
are simple. Most models of temporal uncertainty assume that the duration of a
contingent link is independent of any action taken by the scheduler. Accordingly,
allowing disjunctive constraints to span different contingent links or to span
contingent and requirement links would violate the spirit of this approach.

The concepts of strong, weak, and dynamic controllability as defined for
STNUs scale immediately to temporal networks with disjunctions. However,
the introduction of disjunctions makes the act of computing controllability much
more difficult. The best available algorithms for deciding strong controllability
of temporal networks with uncertainty and disjunction are in EXPSPACE [17].
Dynamic and weak controllability of these networks can be computed in expo-
nential time, but these approaches also use exponential space. It is unknown
whether any form of controllability checking for DTNUs or TCSPUs can be
done in polynomial space [3, 23].

2.2.2. Conditions and Temporal Uncertainty

Extending STNUs with conditional constraints gives us Conditional Simple
Temporal Networks with Uncertainty (CSTNUs) [9].

Definition 8. CSTNU [5]
A CSTNU is a tuple 〈Xe, Xc, Re, P,O〉 where:

• Xe is a set of executable timepoint variables

• Xc is a set of contingent timepoint variables

• Rr is a set of requirement constraints of the form ψr → (lr ≤ xr − yr ≤ ur),
where xr, yr ∈ Xe ∪Xc, ψr is a label representing a conjunction of propo-
sitions or their negations, and lr, ur ∈ R

• Rc is a set of contingent constraints of the form 0 ≤ lr ≤ cr − er ≤ ur,
where cr ∈ Xc, er ∈ Xe and lr, ur ∈ R

• P is a set of propositions

• O is a function mapping propositions in P to the timepoints where their
values are observed

9



With CSTNUs, we now have two sources of external uncertainty, the ob-
served values of propositions and the realized durations of contingent links.
While we could evaluate consistency and controllability conditions separately
(e.g. checking whether a network is strongly consistent while being dynamically
controllable), we typically consider the two jointly. In other words, we assume
that both the durations of contingent links and the values of the propositions are
either never observed, all observed before execution, or observed along the way
when we evaluate strong, weak, and dynamic controllability, respectively. Dy-
namic controllability of CSTNUs belongs to EXPTIME [3], but the complexity
of checking strong and weak controllability are still open questions.

2.2.3. Conditions, Disjunctions, and Temporal Uncertainty

Finally, we combine conditions, disjunctions, and temporal uncertainty in a
single network to get Conditional Disjunctive Temporal Networks with Uncer-
tainty (CDTNUs).

Definition 9. CDTNU
A CDTNU is a tuple 〈Xe, Xc, Re, P,O〉 where:

• Xe is a set of executable timepoint variables

• Xc is a set of contingent timepoint variables

• Re is a set of requirement constraints of the form∨
k

ψr,k → (lr,k ≤ xr,k − yr,k ≤ ur,k), where xr,k, yr,k ∈ X, ψr,k is a la-

bel representing a conjunction of propositions or their negations, and
lr,k, ur,k ∈ R

• Rc is a set of simple disjunctive contingent constraints

• P is a set of propositions

• O is a function mapping propositions in P to the timepoints where their
values are observed

We can apply the same techniques as those found in CSTNUs and DTNUs to
show that dynamic controllability of CDTNUs can be computed in EXPTIME
[3]. Algorithms for strong and weak controllability of CDTNUs have not yet
been developed.

2.3. Polynomial Time Hierarchy

Before we continue to the actual complexity results it is useful to introduce
the polynomial-time hierarchy [20], as it will allow us to more precisely charac-
terize the difficulty of some of our controllability problems.

The classes ΣPk and ΠP
k are defined recursively. We start with ΣP1 = NP

and ΠP
1 = coNP and define ΣPk+1 as NPΣP

k and ΠP
k+1 as coNPΣP

k , where AB

represents the set of problems that can be solved in complexity class A if an
oracle for a B-complete problem is provided.
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In this paper, we will pay close attention to the complexity classes ΣP2 and
ΠP

2 and will make heavy use of the fact that ΣPk = coΠP
k and that ∀∃3SAT is

a ΠP
2 -complete problem, where ∀∃3SAT is the problem of determining whether

for a given 3-CNF Φ(~x, ~y) it is the case that for all ~y, there exists ~x, such that
Φ(~x, ~y) is true [20]. ΣPk and ΠP

k are also known to be fully contained within
PSPACE, meaning that membership to any complexity class in the polynomial-
time hierarchy guarantees the existence of a deterministic algorithm that uses
at most polynomial space.

3. Complexity

While complexity results for the base temporal networks we have described
are well-known, very few tight bounds exist for the networks derived from their
composition, despite the fact that much work has been done to develop algo-
rithms for them. Many of their hardness lower-bounds can be inherited from
the base temporal networks, but it is an open question whether or not they are
tight.

In this section, we will prove complexity class completeness results for each
of strong, weak, and dynamic controllability for each network, updating the
hardness lower-bounds as needed before demonstrating membership to the ap-
propriate class. When describing the controllability decision problems, we will
use the prefixes SC-, WC-, and DC- to refer to checking the strong, weak, and
dynamic controllability of the denoted temporal network, respectively.

3.1. Hardness Results

We start by providing tighter hardness lower-bounds for the controllability
problems across temporal networks. Existing results for CSTNs give us appro-
priate lower-bounds for CSTNUs, but for the temporal networks with disjunc-
tion and uncertainty, we need tighter analysis than the NP-hardness provided
by TCSPs and DTNs.

Lemma 1. Checking the weak controllability of a TCSPU is ΠP
2 -hard.

Proof. To show WC-TCSPU is ΠP
2 -hard, we will provide a reduction from

∀∃3SAT. In other words, we want to construct a TCSPU T such that a formula
∀~y, ∃~x : φ(~x, ~y) is weakly controllable if and only if T is weakly controllable,
where ~x, ~y are vectors of boolean values, and φ is a 3-CNF formula.

We start by defining our timepoints, starting with a reference timepoint
Z. For each xi, we construct timepoint txi with disjunctive constraint txi −
Z ∈ [0, 0] ∪ [1, 1]. For each yj , we also construct timepoint tyj with contingent
constraint tyj − Z ∈ [0, 0] ∪ [1, 1]. These timepoints will represent the initial
values chosen against which we will evaluate φ with 0 corresponding to an
assignment of false and 1 corresponding to true.

For convenience, we also add timepoints corresponding to the negations of
each variable. txi has two corresponding constraints, txi − Z ∈ [0, 0] ∪ [1, 1]
and txi − txi ∈ [−1,−1] ∪ [1, 1]. This ensures that txi takes on a different
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Figure 3: A gadget used in the proof that WC-TCSPU is ΠP
2 -hard. The Ak timepoints

can each take on any value from {0, 1, 2}. The value Ak,6 represents the disjunction of
Gk,1, Gk,2, Gk,3 and is constrained to equal one.

value than txi . Similarly, we add new timepoints tyj with requirement links
tyj − Z ∈ [0, 0] ∪ [1, 1] and tyj − tyj ∈ [−1,−1] ∪ [1, 1]. We will rely on the fact
that we are evaluating weak controllability to ensure that we set the timepoints
for the negated variables in response to the values assigned by nature.

We now move on to encoding each individual clause of φ into our TCSPU T .
Our approach is going to be highly inspired by the reduction from 3SAT to the
3-coloring problem on graphs and the reduction from 3-coloring to computing
feasibility of a TCSP [6]. We will emulate the three colors by requiring all
timepoints to occur at time 0, 1, or 2 and enforce that two nodes ti, tj differ in
value by requiring that ti − tj ∈ {−2,−1, 1, 2}.

For each clause ck of ψ, we create a new gadget whose output represents the
truth value of ck (see Figure 3). Each timepoint Gk,l represents the truth value
of literal l of clause ck. We require that the value matches the initially assigned
value of literal q by adding the constraint Gk,l−tq = 0. The layout of timepoints
Ak weakly emulate an or-gate, where Ak,6 is the output and constrained to have
a value of 1. For any values of the timepoints Gk, it is possible to assign all of
the timepoints Ak such that Ak,6 = 1 except for when Gk,1 = Gk,2 = Gk,3 = 0.
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As a result, it is possible to choose a set of values for the timepoints to satisfy
the constraints of the gadget so long as at least one literal of the original clause
ck is true.

Taken together, if there exists an assignment of values to timepoints such
that each gadget’s constraints are satisfied, then for whichever particular ~y we
start with, then ∃~x : φ(~x, ~y). When checking weak controllability, all executable
timepoints are assigned values after the contingent timepoints, so as we have
constructed it, T is weakly controllable if and only if ∀~y, ∃~x : φ(~x, ~y). Thus,
WC-TCSPU is ΠP

2 -hard.

Lemma 2. Checking the dynamic controllability of a TCSPU is PSPACE-hard.

Proof. To show that DC-TCSPU is PSPACE-hard, we provide a reduction from
TQBF, which is known to be PSPACE-complete, to DC-TCSPU. In particular,
for a problem of the form ∃x1∀y1...∃xn∀yn : φ(~x, ~y), we can construct a TC-
SPU T such that T is dynamically controllable if and only if ∃x1∀y1...∃xn∀yn :
φ(~x, ~y), where φ is a 3-CNF formula.

Ideally, we would employ a strategy similar to our transformation for WC-
TCSPU in Lemma 1, but in that construction, many of the clausal gadget
timepoints can occur before the contingent timepoints they relate to are assigned
by nature. Because dynamic controllability requires timepoints to be assigned
reactively in a just-in-time manner, we must make sure that all values of ~y are
encoded and specified by the network before we do any subsequent computation.

We start by encoding the alternating choice of xi and yi as represented by
the values decided by the scheduler and nature. We start with an anchor point
O and for each xi and yi, we create timepoints τxi,s, τxi,e, τyi,s, and τyi,e. For
each xi, we create a requirement constraint of τxi,e − τxi,s ∈ [0, 0] ∪ [1, 1], and
for each yi, we create a contingent constraint of τyi,e− τyi,s ∈ [0, 0]∪ [1, 1]. This
enforces that the difference between the start and end values is either 0 or 1,
corresponding to an assignment of false or true in the original formula. To ensure
that the values are chosen in order when evaluated in a dynamic controllability
setting, we require that τxi,s − O = 2i − 2 and that τyi,s − O = 2i − 1. This
gives us the exact alternating pattern as described by the original formula, and
what remains is to evaluate the truth condition.

Our strategy for evaluating the truth of the formula is to replicate the same
structures used by the constructed TCSPU in Lemma 1. We create a secondary
anchor point Z with Z−O = 2n+ 2 to ensure that Z happens after all boolean
values have been assigned, and then create new timepoints corresponding to the
values of ~x and ~y that are anchored at Z instead of at different times during the
execution. For each xi, we create txi

with the constraint txi
−τxi,e = 2(n−i)+4,

and for each yi, we create tyi with the constraint tyi−τyi,e = 2(n−i)+3. The rest
of the construction, namely the construction of the negated literal values and the
clausal gadgets, remains the same, and by the same reasoning, we see that it is
possible for a given assignment, it is possible for all constraints to be respected if
and only if φ is satisfied by that assignment of values. Since the initial timepoints
are set up such that when the entire network is dynamically controllable the
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values of timepoints are chosen in the same order as the quantification of the
original TQBF formula, we know that T is dynamically controllable if and only
if ∃x1∀y1...∃xn∀yn : φ(~x, ~y). Because the new network can be constructed in
polynomial time, we have a polynomial time reduction from TQBF to DC-
TCSPU, so DC-TCSPU is PSPACE-hard.

Lemma 3. Checking the strong controllability of a DTNU is ΣP2 -hard.

Proof. To prove that SC-DTNU is ΣP2 -hard, we will reduce the complement of
∀∃3SAT, a ΠP

2 -complete problem, to SC-DTNU.
An example problem of ∀∃3SAT is of the form ∀~x, ∃~y : φ(~x, ~y), where ~x, ~y

are vectors of boolean values and φ is a 3-CNF formula. The complementary
problem is ∃~x, ∀~y : ψ(~x, ~y), where ψ is a 3-DNF formula representing the nega-
tion of φ. Given the input problem, we construct a corresponding DTNU D
that is strongly controllable if and only if the complementary formula ψ is true
(if the original formula φ is false).

First we define the timepoints of D. We start with a reference timepoint Z,
which represents the first point to be executed. For each xi ∈ ~x, we add points
txi and txi to represent the value of xi and its negation during some candidate
assignment to our formula. We do the same thing for ~y adding tyj and tyj for
each yj ∈ ~y. We also introduce a new gadget per clause of ψ (see Figures 4
and 5) and in each gadget, we introduce ten new timepoints. Timepoints Gk,1,
Gk,2, and Gk,3 represent the values of each literal of clause k and timepoint
Gk,and represents the value of the conjunction of those literals. For each clause,
we also add Ak,1, Ak,2, Ak,3, Ak,4, Ak,5, and Ak,6 which are used collectively to
simulate an and clause. By appropriately adding contingent and requirement
links between these timepoints, we will get a DTNU that is controllable if and
only if the original formula ψ is true.

We start by adding constraints to encode the initial assignment of values.
For each txi we add a simple disjunctive constraint requiring that txi − Z ∈
[0, 0] ∪ [1, 1]. Similarly, for each tyj , we add a disjunctive contingent constraint
enforcing tyj −Z ∈ [0, 0]∪ [1, 1]. The choice of values for these initial timepoints
maps directly back to an assignment of values in the 3-DNF formula ψ with 0
representing false and 1 representing true.

We also enforce the values of the negations of these variables for convenience,
with the same simple disjunctive constraint requiring txi − Z ∈ [0, 0] ∪ [1, 1]
and the disjunctive contingent constraint enforcing tyj − Z ∈ [0, 0] ∪ [1, 1]. To
ensure that xi and its negation take on values we also add the requirement that
txi
− txi

∈ ∪[−1,−1] ∪ [1, 1]. We will discuss our strategy for ensuring that the
values of tyj and tyj differ below.

We now move on to the constraints associated with the clausal gadgets.
Gk,l represents the truth value of the lth element of clause k, and Gk,and
represents the truth value of the entire clause; each timepoint, Gk,∗, that is
newly created for the gadget is initialized using a contingent constraint enforc-
ing G − Z ∈ [0, 0] ∪ [1, 1]. We also create a disjunctive constraint across all
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Disjunctive Link

Gk,1

Z

Ak,1 Ak,2

Ak,3

Ak,4

Ak,6

Ak,5

Gk,2 Gk,3

Gk,and

[1, ∞)

[1, ∞)

(-∞, -1]

[1, 1]

[1, ∞)

[0, 0]

[0, 0]

[0, 0]

[0, 0] [0, 0]

[0, 0][0, 0]

[0, 0]

[0, 0]

[0, 0]

Figure 4: A description of the disjunctive goal links found in each gadget used in the proof
that SC-DTNU is ΣP

2 -hard. The Ak timepoints can each take on any value from {0, 1, 2}.
The value Ak,6 will only be precluded from taking on a value of 0 when all of Gk,1, Gk,2, Gk,3

are 1. The disjunctive constraints of this gadget are all individual parts of the larger collective
disjunctive goal constraint.

gadgets, such that if for any k, Gk,and − Z = 1, then the constraint is satisfied.
We call this disjunctive constraint the goal constraint. This has an immediate
correspondence to the notion that the entire formula ψ is satisfied if any of its
constituent clauses is satisfied.

Our current construction makes heavy use of contingent constraints, and
while we may want the timepoints in our gadgets to represent certain values,
their values are chosen by nature, meaning we have no way to directly control
their values.

However, we do have control over the constraints of D and, in particular,
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Gk,1

Z

Ak,1 Ak,2

Ak,3

Ak,4

Ak,6

Ak,5

Gk,2 Gk,3

Gk,and

Contingent Link

{0, 1}

{0, 1, 2} {0, 1, 2}

{0, 1, 2}

{0, 1, 2}

{0, 1, 2}

{0, 1, 2}

{0, 1}{0, 1} {0, 1}

Figure 5: A description of the contingent links found in each gadget used in the proof that SC-
DTNU is ΣP

2 -hard. The links between Z and each Gk,l are contingent links but are constrained
to be equal in length to the original xi, yj they relate to using the shared disjunctive goal
constraint.

the disjunctive constraint that spans the gadgets. We can think of checking
strong controllability as a two-player game, where the scheduler goes first and
nature goes second. Nature’s goal is to construct an assignment such that some
constraint is violated. Upon closer examination, we see that in our construction,
the only constraint that can be affected by the contingent link durations chosen
by nature is the goal constraint. If there exist certain combinations of contingent
link durations that we want to preclude from our evaluation, we can do so by
adding additional disjunct to the goal constraint that are satisfied when those
contingent links take on those durations. In this way, any contingent link values
that do not conform to our desired structure make D trivially controllable, and
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controllability then reduces to controllability under our desired set of constraints
across contingent links.

First, we need to make sure that the timepoints tyj and tyj take on differ-
ent values. We can ensure this by adding tyj − tyj = 0 to our goal constraint;
if nature gives tyj and tyj the same value, then we trivially ignore this case.
Similarly, since we want Gk,l to take on the same value as the literal q it rep-
resents, we augment our disjunctive goal constraint with Gk,l − tq ∈ [−1,−1]
and Gk,l − tq ∈ [1, 1] where tq is the timepoint associated with literal q. As a
result, if the clausal representation of the variable differs from our assignment,
our network is trivially controllable.

We enforce the conjunction of the elements of each clause by augmenting our
goal constraint with Gk,and −Gk,l ≥ 1 for each Gk,l of our clause gadget. Since
each timepoint of our gadget can take on a value of 0 or 1, this constraint will
only be satisfied if some literal value is 0 while Gk,and has a value of 1. In these
situations, Gk,and does not represent the conjunction of the literals of clause k,
and our network then becomes trivially controllable.

Unfortunately, our network still does not perfectly encode the conjunction
seen in a DNF clause. It is possible for each Gk,l to take on a value of 1 while
Gk,and is assigned a value of 0. As a result, it may be the case that the original
problem, ∃~x∀~yψ(~x, ~y) is true but each Gk,and is set to 0, meaning that the
network is not strongly controllable.

To fix this, we must augment our gadget to enforce that identical inputs
have the same output. This is the reason for introducing timepoints Ak,m, and
these timepoints’ values are set by new contingent links that enforce Ak,m−Z ∈
[0, 0] ∪ [1, 1] ∪ [2, 2]. Through an exhaustive enumeration of possible values, we
can confirm that whenever Gk,1, Gk,2, Gk,3 are all 1, either Ak,6 will be 1 or
one of the disjuncts of the goal constraints (see Figure 4) will be satisfied. In
this case, when we add Ak,6 −Gk,and ≥ 1 to the goal constraint, we know that
when Gk,1, Gk,2, Gk,3 are all equal to 1, D is controllable, as either Gk,and = 1,
meaning Gk,and − Z = 1, which satisfies the goal constraint, or Gk,and = 0,
implying Ak,6 −Gk,and = 1, which also satisfies the goal constraint.

Before continuing, we need to confirm that the addition of the new sub-
gadget does not introduce any new problems. For all other values of Gk,1, Gk,2,
and Gk,3, we know it is possible for Ak,6 to take on a value of 0. Since Ak,6
is the only timepoint of the or-gate that is related to other values by the goal
constraint and setting it to 0 does not satisfy the goal constraint, we know that
if Gk,1, Gk,2, Gk,3 are not all 1, then there exists a choice of values by nature
such that the goal constraint is not satisfied by gadget k.

Our transformation is complete and because there is one gadget per clause
in ψ and each gadget is of constant size, we see that the transformation takes
polynomial time. What remains is to show that D is strongly controllable if
and only if ∃~x∀~yψ(~x, ~y) is true. This is evident from our construction.

If D is strongly controllable, there must be some set of assignment to values
txi

such that no possible assignment of values to the other timepoints violates
any of the constraints. We can prove this by contradiction, assuming that
although our choice of txi guarantees the satisfaction of all other constraints in
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D, there is no choice of ~x that guarantees satisfaction of ∀~yψ(~x, ~y). Let ~x be
specified such that xi is true if and only if txi = 1. If ψ is not guaranteed to be
satisfied, there must be some ~y such that ψ(~x, ~y) is false. Returning toD, assume
that nature specifies tyj such that tyj = 1 if and only if yj is true. Since D is
strongly controllable, we know that some disjunctive goal constraint is satisfied
no matter the assignment of contingent timepoint variables. Let’s assume that
all tyj are chosen such that they represent the negation of their corresponding
tyj , that all Ak,m of the gadgets are chosen such that the disjunctive constraints
involved between all Gk,l and Ak,m are not satisfied, and that all Gk,and are
chosen to be 0. The only remaining disjunctive constraints are those involving
each Gk,and. For any particular k, setting Gk,and to 0 only satisfies a constraint
if Ak,6 is 1, so given all these assumptions, at least one Ak,6 must be set to 1
(otherwise the system would be uncontrollable). As we demonstrated earlier,
Ak,6 is only constrained to be 1 when all of Gk,1, Gk,2, and Gk,3 are also 1.
But those three values correspond exactly to literals in a clause of ψ(~x, ~y). If all
three are 1, then we have a true clause and because ψ is a 3-DNF formula, this
means that ψ is true. We have a contradiction. Therefore if D is controllable,
∃~x∀~yψ(~x, ~y).

To conclude we show the reverse direction, that if ∃~x∀~yψ(~x, ~y) is true, then
D is strongly controllable. Let ~x be the assignment of variables that guarantees
∀~yψ(~x, ~y); we show how we can use ~x to show that D is strongly controllable.
We will pick our txi

such that txi
= 1 if and only if xi is true and will pick

our txi
such that txi

6= txi
. Again we will proceed with proof by contradiction,

assuming that D is not strongly controllable. Our choice of txi and txi satisfy
all constraints except the disjunctive goal constraint, so there must be a choice
of contingent timepoints that violate the disjunctive goal constraint. We know
setting Gk,and = 1 satisfies the goal constraint, so all Gk,and = 0. By proxy, for
all k, Ak,6 = 0 to ensure that the goal constraint is not satisfied because of the
link between Ak,6 and Gk,and. Because Ak,6 = 0, it must be the case that for
each gadget, at least one of Gk,1, Gk,2, or Gk,3 must equal zero. In order for
the goal disjunctive constraint to remain unsatisfied, each Gk,l must maintain
the same value as some txi

, txi , tyj , or tyj based on the values of the clauses of
φ. This forces a particular assignment of values to tyj which we can map back
to some ~y. For that particular assignment, we know that ψ(~x, ~y) is true, or that
there is some clause k′ with all literals set to true. This contradicts the fact
that for all k, at least one of Gk,1, Gk,2, or Gk,3 must be zero. Thus, D must
be strongly controllable, and we have proven that SC-DTNU is ΣP2 -hard.

3.2. Completeness

We now move on to proving completeness for the controllability problems
on each temporal network. Our general approach for characterizing the com-
plexity of controllability problems will be to map an inputted temporal network
to a corresponding system of conditional linear inequalities that encode the
same constraints. We will then use existential and universal quantifiers over the
variables to dictate which type of controllability is being determined.
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Our transformation proceeds as follows. We can imagine the execution of a
temporal network as being a game played between two agents, the scheduler and
nature, where the scheduler assigns times to executable timepoints and nature
assigns times to contingent timepoints. In general the question of determining
controllability will reduce to the problem of evaluating a quantified linear system
and our techniques draw inspiration from and are related to approaches in those
areas [7, 21].

For notational convenience, we will split our variables into ~x and ~y for those
assigned by the scheduler and nature, respectively. For each executable time-
point ei, we create a new variable xi, and for each contingent timepoint ci, we
create a new variable yi.

We create a one-to-one mapping between the set of temporal network con-
straints and the new linear inequalities. First, we replace all executable time-
points ei with the corresponding xi. With the contingent timepoints, however,
we need to be more careful. For each contingent timepoint ci, we find the con-
tingent constraint that restricts it of the form lc ≤ ci−ej ≤ uc. We then replace
each instance of ci in our constraints with yi+xj . Our reason for doing this has
to do with the nature of contingent constraints. In temporal networks, there is
a guarantee that nature respects the contingent constraint bounds in relation
to its corresponding starting executable timepoint. So while free constraints
relate timepoints in terms of the absolute time of their occurrence, contingent
constraints require nature to respect relative timings of events. If the durations
of contingent constraints are to be known before scheduling begins, as is the case
with weak controllability, then the constructed system of linear inequalities will
fail to map to the base temporal network if nature is asked to pick the precise
times of contingent events.

After the substitutions, each constraint is a combination of conditional linear

inequalities of the form ψ → ~a·
[
~x
~y

]
≤ b, where b is some constant, ψ is a (possibly

empty) precondition for the enforcement of the constraint, and ~a represents the
coefficients of the constraints where each coefficient is either -1, 0, or 1. Since all
constraints are relative, without loss of generality, we can say that the earliest
event happens at time t = 0, meaning we can safely require that ~x ≥ 0. When
we quantify over variables to pick controllability, we require that each xi has an
existential quantifier and each yi has a for-all quantifier drawn from the union
of the ranges [l1, u1], ..., [ld, ud], where lj and uj are retrieved from one of ci’s
corresponding contingent constraints.

When evaluating controllability for disjunctive networks, it is useful to con-
sider each contingent range separately, and so we will define Ω as a mapping
from each variable yi and one of its possible continuous ranges. In general,
we will use the shorthand ∀Ω to indicate that we are considering all possible
mappings and ∀~y ∈ Ω to specify that we are drawing our ~y from one particular
mapping. Our choice of the ordering of the quantifiers will dictate which type of
controllability will be considered. We also must consider how conditions affect
our model, and will define Ψ as the full set of conditions that can be observed
by the scheduler when our temporal networks include conditional constraints.
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It is also worth noting that whenever we consider a vector of values ~xc that
represent a solution to our scheduling problem, we assume that the representa-
tion of ~xc is polynomial in the size of the original input. While we are agnostic
to which particular representation is used, we do still require a fixed number
of bits required to represent each individual number. The implication of this is
that between any two numbers, there are a finite number of intermediate values
that can be represented.

The rest of our analysis is divided into an analysis of strong controllabil-
ity over temporal networks, weak controllability over temporal networks, and
dynamic controllability over temporal networks.

3.2.1. Strong Controllability

Theorem 4. Checking strong controllability of a CSTNU is in P.

Proof. We start by encoding the SC-CSTNU problem in our described format:

∃~x∀~y∀Ψ :
∧
i

ψi → ~ai ·
[
~x
~y

]
≤ bi

Because ∀
∧
φ is the same as

∧
∀φ, we can rewrite our problem as:

∃~x∀~y
∧
i

∀Ψ : ψi → ~ai ·
[
~x
~y

]
≤ bi

Since the inner equation must hold for all Ψ, it must also hold when ψi is true,
allowing us to eliminate the conditionals:

∃~x∀~y
∧
i

: ~ai ·
[
~x
~y

]
≤ bi

But of course, this is exactly the encoding for checking strong controllability
of an STNU. Since STNU strong controllability is verifiable in polynomial time
[25], our work demonstrates that strong controllability of a CSTNU can be
determined in polynomial time through reduction to an STNU.

Theorem 5. Checking the strong controllability of TCSPUs is NP-complete.

Proof. We know that checking the feasibility of a TCSP is NP-hard [6], and
because TCSPUs are a generalization of TCSPs, it follows that SC-TCSPU is
NP-hard. To prove completeness, we show that SC-TCSPU ∈ NP.

In a TCSPU, all disjunctive requirement links span the same pair of variables,
meaning that every requirement link is of the form ti − tj ∈ [l1, u1] ∪ ... ∪
[lk, uk], where for every p < q, up < lq. This allows us to rewrite all individual
constraints as:

ti − tj ≥ l1 ∧

(
k∧
p=2

ti − tj ≤ up−1 ∨ ti − tj ≥ lp

)
∧
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ti − tj ≤ uk
Now when we encode strong controllability of a TCSPU, we can write the for-
mula as:

∃~x∀~y :
∧
i

∨
j

~aij ·
[
~x
~y

]
≤ bij

∃~x
∧
i

∀~y :
∨
j

~aij ·
[
~x
~y

]
≤ bij

∃~x
∧
i

¬∃~y :
∧
j

~aij ·
[
~x
~y

]
> bij

For any fixed x̂ and i, we can solve the problem ∃~y :
∧
j

[x̂T ; ~yT ] · ~aij > bij in

polynomial time. We know that linear programs can be optimized in polynomial
time [11], and so to derive an answer for our original problem, we solve the linear

program
∧
j

[ ~aij
T ;−1]

x̂~y
ε

 ≥ bij maximizing ε. If no solution exists, then there

is no valid ~y. If a solution exists with ε ≤ 0, then there was some constraint
for which [x̂T ; ~yT ] · ~aij > bij did not hold as there was a non-positive margin
required to make all inequalities hold. Thus, only if ε > 0, do we say that there
exists a ~y satisfying our original constraints.

This immediately implies that we have a routine for verifying a certificate
for SC-TCSPU in polynomial time. Given a certificate x̂, then for each of the
constraints i, we run our subroutine for determining whether a ~y exists that
satisfies the specified sub-constraints. Since the verification algorithm runs in
polynomial time, we know that SC-TCSPU ∈ NP, and that SC-TCSPU is NP-
complete.

Theorem 6. Checking the strong controllability of DTNUs and CDTNUs are
ΣP2 -complete.

Proof. We know that checking the strong controllability of a DTNU is ΣP2 -hard
from Lemma 3 and because CDTNUs generalize DTNUs, SC-CDTNU is also
ΣP2 -hard. To demonstrate that both are ΣP2 -complete, we show that checking
the strong controllability of a CDTNU is in ΣP2 .

To do so, we show that with an NP oracle we can verify that a CDTNU
is strongly controllable in polynomial time. We start with an encoding of our
problem:

∃~x∀Ψ∀Ω∀~y ∈ Ω :
∧
i

∨
j

ψij →
∧
k

~aijk ·
[
~x
~y

]
≤ bijk

and we let our certificate be the assignment of values to all executable time-
points, x̂. Given this certificate, an NP-oracle is capable of evaluating:

∃Ψ∃Ω∃~y ∈ Ω : ¬
∧
i

∨
j

ψij →
∧
k

~aijk ·
[
x̂
~y

]
≤ bijk
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We can see this simply, as when we provide a certificate comprised of Ψ̂, Ω̂, ŷ, it
takes linear time to verify whether the conditional constraints are all satisfied.

Thus, when given a candidate assignment x̂, we can use an NP-oracle to
evaluate the negation of the remainder of the formula. If the negation has no
solution, then we know that the original formula is true, and we have a way to
verify SC-CDTNU in polynomial time. Thus, SC-CDTNU ∈ ΣP2 , so SC-DTNU
and SC-CDTNU are ΣP2 -complete.

3.2.2. Weak Controllability

Next, we move on to evaluating the complexity of weak controllability in
temporal networks.

Theorem 7. Checking the weak controllability of CSTNUs is coNP-complete.

Proof. Checking the weak controllability of STNUs is coNP-complete [14], so
similarly checking the weak controllability of CSTNUs must be coNP-hard.
To demonstrate that WC-CSTNU is coNP-complete, we must show that WC-
CSTNU ∈ coNP. We see this clearly when we look at the quantified linear system
we get when evaluating a CSTNU’s weak controllability:

∀Ψ∀~y∃~x :
∧
i

ψi → ~ai ·
[
~x
~y

]
≤ bi

To show that WC-CSTNU is in coNP, we show that its complement problem
is in NP, or that we can verify the following formula in polynomial time:

∃Ψ∃~y¬∃~x :
∧
i

ψi → ~ai ·
[
~x
~y

]
≤ bi

In this instance, we take as our certificate a particular choice of Ψ̂ and ŷ. We
can verify these values directly:

¬∃~x :
∧

i:Ψ̂�ψi

ψi → ~ai ·
[
~x
ŷ

]
≤ bi

¬∃~x :
∧

i:Ψ̂�ψi

~ai ·
[
~x
ŷ

]
≤ bi

Of course, we can evaluate all linear inequalities simultaneously through the
evaluation of a linear program:

¬∃~x : AΨ̂

[
~x
ŷ

]
≤ ~bΨ̂

Since linear programs can be evaluated in polynomial time [11], we can verify
the complement of WC-CSTNU in polynomial time, meaning that WC-CSTNU
∈ coNP and is coNP-complete.
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Theorem 8. Checking the weak controllability of TCSPUs, DTNUs, and CDT-
NUs are ΠP

2 -complete.

Proof. By Lemma 1, we know that computing the weak controllability of TCS-
PUs are ΠP

2 -hard, meaning computing WC-DTNU and WC-CDTNU are both
also ΠP

2 -hard. To show that all three are ΠP
2 -complete, we must show that WC-

CDTNU ∈ ΠP
2 . We start with the quantified formula representation of weak

controllability in a CDTNU:

∀Ψ∀Ω∀~y ∈ Ω∃~x :
∧
i

∨
j

ψij →

(∧
k

~aijk ·
[
~x
~y

]
≤ bijk

)

For our purposes, it will be useful to show that the complementary problem is
in ΣP2 :

∃Ψ∃Ω∃~y¬∃~x :
∧
i

∨
j

ψij →

(∧
k

~aijk ·
[
~x
~y

]
≤ bijk

)

To prove that solving the above formula is in ΣP2 , we show that with an NP-
oracle, we can construct a verification algorithm that runs in polynomial time.
Our verifier will take in the certificate composed of Ψ̂, Ω̂, ŷ, leaving the subprob-
lem:

¬∃~x :
∧
i

∨
j:Ψ̂�ψij

ψij →

(∧
k

~aijk ·
[
~x
ŷ

]
≤ bijk

)

¬∃~x :
∧
i

∨
j:Ψ̂�ψij

∧
k

~aijk ·
[
~x
ŷ

]
≤ bijk

The unnegated version of this problem is clearly in NP. Given a certificate x̂,
we can verify whether or not the formula holds in linear time. As a result,
with an NP-oracle, we can solve the presented subproblem, meaning that our
complement problem is in ΣP2 and our original problem is thus in ΠP

2 . This
proves that WC-TCSPU, WC-DTNU, and WC-CDTNU are ΠP

2 -complete.

3.2.3. Dynamic Controllability

Finally, we show that checking dynamic controllability for any temporal
network with uncertainty and either disjunctions or conditional constraints is
PSPACE-complete.

Theorem 9. Checking the dynamic controllability of CSTNUs, TCSPUs, DT-
NUs, and CDTNUs are PSPACE-complete.

Proof. We know from Lemma 2 that DC-TCSPU is PSPACE-hard, meaning
that checking the dynamic controllability of DTNUs and CDTNUs must also
be PSPACE-hard. Similarly because checking the dynamic controllability of
CSTNs is PSPACE-hard [1], DC-CSTNU must also be PSPACE-hard. In order
to show that determining dynamic controllability for any of these four networks
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Input: A list of timepoints with assigned values, T ;
A list of active contingent links, A;
A set of yet-to-be-executed timepoints E;
The input CDTNU G;
The current time, τ
Output: Whether the CDTNU is dynamically controllable.
CheckDC:
1 if E.empty() then
2 for realization ∈ A.realizationsFrom(τ) do
3 if !G.isConsistent(T.extend(realization)) then
4 return false;

5 return true;

6 for t ∈ E do
7 for τ ′ ∈ [τ,G.tMax] do
8 allSatisfied← true;
9 for realization ∈ A.realizationsFrom(τ) do

10 earliest← realization.earliest();
11 if early.time ≤ τ ′ then
12 if !CheckDC(T ∪ {earliest},
13 A.nextContingents(earliest),
14 E,
15 G,
16 earliest.time) then
17 allSatisfied← false;
18 break;

19 else
20 if !CheckDC(T ∪ {TimepointAssignment(t, τ ′)},
21 A.nextContingents(TimepointAssignment(t, τ ′)),
22 E \ t,
23 G,
24 τ ′) then
25 allSatisfied← false;
26 break;

27 if allSatisfied then
28 return true;

29 return false;
Algorithm 1: PSPACE algorithm for checking DC-CDTNU.

in PSPACE-complete, we provide an algorithm for checking the dynamic con-
trollability of CDTNUs which requires polynomial space (see Algorithm 1).

Before we explain the details of the algorithm, we need to extend some con-
cepts to describe a partially executed CDTNU, as our algorithm for determining
dynamic controllability will recursively act on partially executed networks. We
say that timepoints are scheduled if they have been assigned a specific value,
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whether by the scheduler or by nature. We say that a contingent link is active
if its starting timepoint has been scheduled but its ending timepoint has not.
Finally, given a group of active contingent links, we say that the set of all real-
izations from some time τ is the set of all possible times at which the contingent
links could end with none of them ending sooner than τ . We can now move on
to describing the function of the algorithm before demonstrating that it uses at
most polynomial space.

The algorithm works by recursively simulating all possible strategies used
by an agent in a dynamically controllable setting. As input, it takes in a list of
timepoints whose values have already been scheduled (either by the scheduler or
by nature), a list of active contingent links, a list of unexecuted timepoints, the
CDTNU, and the current time. While there are still executable timepoints that
need to be scheduled, the algorithm searches for one that guarantees a valid
dynamically controllable strategy.

In the context of dynamic controllability, an agent only has one of two pos-
sible actions: they can either unconditionally schedule an action or schedule an
action to occur so long as no other contingent timepoint occurs in the interim.
We model this behavior by modeling all scheduling actions as interruptible by
contingent timepoints. In other words, if a contingent timepoints occurs be-
fore an event we unconditionally scheduled, we still give the agent the choice to
adapt their strategy. In the case of an unconditionally scheduled action, they
would just reaffirm their previous choice.

To model all strategies, we iterate over all possible timepoints that can be
scheduled (line 6) and all possible times at which they can be scheduled (line
7). If at least one scheduling of a timepoint given the input parameters is valid,
then we know that the CDTNU is dynamically controllable. When there are
no active contingent links that might be scheduled before the timepoint that
we chose to schedule, we can recurse on that assignment to get an answer (line
20-26), but in the case that there are contingent links that may occur earlier,
we have to respond to them in turn (lines 9-18). If all possible realizations of
contingent link values still guarantee that the CDTNU is consistent, then we
know that the system is dynamically controllable.

Now, we show that the algorithm uses at most polynomial space. If we have
no more timepoints to schedule, then we stay in lines 1-5 of the algorithm, which
checks consistency over all possible realizations of the remaining contingent
links. Checking consistency is a polynomial time operation, as it just requires
iterating through each constraint and verifying that it is satisfied. While we have
to do this for exponentially many realizations, we do not need to remember each
particular realization; we merely need to remember the current realization and
know how to increment to the next one. As a result, handling all realizations
also takes polynomial space.

In the event that we do have executable timepoints to schedule, we operate
over lines 6-29. Iterating over each timepoint at line 6 takes polynomial space,
and when we iterate over all τ ′ at line 7, we have a finite but exponentially
large number of values to choose from but only need polynomially many bits to
represent that choice. At line 9, we handle realizations in the same way as we
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did at line 2, meaning we only need polynomial space, and then we have the
remaining recursive calls. If we look at the number of possible stack frames, we
see that every time we recursively call CheckDC, we add a new timepoint to
T , correspondingly removing it from either A (line 13) or E (line 22). The set
E never grows, and because every contingent link’s ending timepoint is unique,
we will never add the same timepoint to A twice. This means that after at
most |Xe ∪ Xb| recursive calls, we will eventually reach a state where E is
empty, and our recursive calls will terminate. This preserves our guarantee that
we use polynomial space, meaning that Algorithm 1 decides DC-CDTNU and
is in PSPACE. Thus, deciding dynamic controllability for CSTNUs, TCSPUs,
DTNUs, and CDTNUs are all PSPACE-complete.

4. Discussion and Conclusions

Our work provides novel complexity results that are much tighter than exist-
ing bounds and require at most polynomial space for strong, weak, and dynamic
controllability of several distinct types of temporal networks; this work is sum-
marized in Figure 1. Beyond the contribution of the relevant proofs, the value of
these results is that it gives modelers insight into which types of features have
a significant impact on the runtime complexity of a problem. Many of these
insights are not immediately obvious, and in the remainder of this section we
discuss a few of them.

First we consider CSTNUs. CSTNUs are a generalization of CSTNs and
STNUs and share much in common with their predecessors. In particular,
strong controllability of CSTNUs, being in P, can be computed quite efficiently.
Our proof for Theorem 4 actually proves a stronger result that a CSTNU is
strongly controllable if and only if the corresponding STNU derived by making
all constraints unconditional is strongly controllable. This implies that strong
controllability of CSTNUs can be computed in O(mn) time, which is as fast as
it takes to compute the feasibility of a simple STN. When we turn to weak and
dynamic controllability, we see that checking the controllability of a CSTNU is
in the same class as checking controllability of a CSTN. From the perspective of
the modeler, this implies that there is a surprisingly low cost to adding uncer-
tainty to a temporal constraint model that already uses conditional constraints.

While CSTNU controllability checking matches the complexity of CSTN
controllability checking, it only matches the controllability checking complex-
ity of strong and weak controllability for STNUs. In fact, dynamic control-
lability checking across all types of networks, with the exception of STNUs,
is PSPACE-complete. In scheduling problems, modelers must often make the
trade-off between using strong controllability, which is often easier to compute,
and dynamic controllability, which gives more flexibility during execution but
is more expensive. In instances where dynamic controllability is deemed neces-
sary, there is a significant advantage to relaxing the underlying temporal model,
eliminating conditional and disjunctive constraints, to use an STNU. It is still
quite surprising that despite the fact that STNU dynamic controllability can

26



be determined in polynomial time, every other modification makes computing
dynamic controllability PSPACE-complete.

A final area worth discussing is the effect of temporal disjunctions. The two
temporal network models that use disjunctions without temporal uncertainty
are TCSPs and DTNs; TCSPs have simple disjunctions, only requiring disjunc-
tions over a single link, while DTNs have full disjunctions, allowing disjunctions
to span multiple links. Since determining feasibility for both network structures
is NP-complete, intuition would suggest that after adding uncertainty the com-
plexity of checking controllability for TCSPUs and DTNUs would also be the
same. While this is the case for weak and dynamic controllability, we do see a
difference in strong controllability, meaning that strong controllability is easier
to compute in TCSPUs than it is in DTNUs, assuming NP 6= ΣP2 , implying
there is a meaningful difference between the two types of disjunctions.

As we look forward, there are still many areas worthy of future research
efforts. One, in particular, is the development of novel algorithms for determin-
ing the controllability of these networks. Our work establishes bounds on the
complexity of computing controllability but does minimal work to provide algo-
rithms for doing so. In practice, our proofs admit the trivial polynomial-space
strategy of recursive enumeration of certificates but these algorithms are likely
impractical. Our new theoretical bounds open up the challenge of finding novel
algorithms that are reasonable for practical use while still respecting polynomial
time bounds.
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