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Abstract
Freight vehicle tours and tour-chains are essential elements of state-the-art agent-based urban freight simulations as well 
as key units to analyse freight vehicle demand. GPS traces are typically used to extract vehicle tours and tour-chains and 
became available in a large scale to, for example, fleet management firms. While methods to process this data with the objec-
tive of analysing and modelling tour-based freight vehicle operations have been proposed, they were not fully explored with 
regard to the implication of underlying assumptions. In this context, we test different algorithms of stop-to-tour assignment, 
tour-type and tour-chain identification, aiming to expose their implications. Specifically, we compare the traditional stop-
to-tour assignment algorithm using the location of a “base” as the start/end point of tours, against other algorithms using 
stop activities or payload capacity usage. Furthermore, we explore high-resolution tour-type/chain identification algorithms, 
considering stop types and recurrence of visits. For tour-chain identification, we explore two algorithms: one defines the 
day-level tour-chain-type based on the predominant tour-type identified for the period of 1 day and another defines the tour-
chain-type based on the average number of stops per tour by stop type. For a demonstration purpose, we apply the methods 
to data from a large-scale GPS-based survey conducted during 2017–2019 in Singapore. We compare the algorithms in an 
assessment of freight vehicle operations day-to-day pattern homogeneity. Our analysis demonstrates that the predictions of 
tours, tourtypes, and tour-chain-types are highly dependent on the assumptions used, underlining the importance of carefully 
selecting and disclosing the methods for data processing. Finally, the exploration of day-to-day pattern homogeneity reveals 
operational differences across vehicle types and industries.

Keywords  Freight flows · Big data analytics · Truck GPS data · Commercial vehicle · Tour analysis

Introduction

GPS data for freight vehicles is increasingly available, due 
to the deployment of telematics to companies with sizeable 
fleets and fleet management firms. A widely known exam-
ple of such data is the American Transportation Research 

Institute truck GPS dataset (Short 2014). According to some 
criteria, such as its large volume and by-product nature, GPS 
traces of freight vehicles can be considered as big data. Ded-
icated data collection efforts are also becoming more sophis-
ticated, such as the integration of GPS-enabled devices and 
GPS-enabled digital freight surveys (Alho et al. 2018). As 
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a result, more vehicle trajectory and stop-level data is avail-
able to further study freight vehicle movements.

However, the methods to process and analyse such data 
for their use in freight transportation modelling have not 
been fully explored. Particularly, there is a research gap 
regarding the conversion of freight vehicle GPS traces into 
tour-level data. The importance of this process is evident 
from the fact tours are one of the adopted units for vehicle 
flow analysis, and furthermore, freight vehicle tours and 
tour-chains are an integral element of state-the-art agent-
based urban freight simulations (Hunt and Stefan 2007; de 
Bok and Tavasszy 2018). Well-structured and information-
rich records of truck tours have the potential to enhance the 
replication of freight vehicle tour-chains in a simulation 
environment for policy analysis. The definition of methods 
for identifying tours directly contributes to tour-chain mod-
elling (Jing et al. 2019), tour-based simulation case stud-
ies (Alho et al. 2019, Gopalakrishnan et al. 2019), and the 
identification of commodity flows and load factors (Alho 
et al. 2018).

Generally speaking, freight vehicle tours are more chal-
lenging to predict than passenger tours. For passengers, 
home and work are pivotal points around which tours and 
sub-tours occur. On the other hand, a single freight vehicle 
might visit multiple overnight parking locations (Alho et al. 
2018), which results in tour-chains having different start/end 
points at a daily level. Several other challenges are detailed 
by You et al. (2016), such as the limited data availability and 
increasing trip chaining behaviour (comparatively to passen-
ger tours). It must be acknowledged that, ideally, data on the 
“ground truth” regarding stop-to-tour membership, tour-type 
and tour-chain would be collected. To the best of our knowl-
edge, there is no consensus on the definition of a “freight 
vehicle tour”. In other words, the criteria which define the 
start and end of a tour are not well-established, which fur-
ther justifies the research in this paper. This research sets 
to explore the output differences arising from the various 
assumptions in the stop-to-tour assignment process as well 
as in the tour-type and tour-chain identification processes. 
A descriptive analysis follows, to illustrate such implica-
tions, where an application is focused on the prediction of 
day-to-day pattern homogeneity and the differences across 

sub-populations. Follow ups to the analysis in this paper 
include the exploration of concepts such as tour typology 
by, for example, the characteristics of operator, commodity 
handled, vehicle type and transportation service, and tour 
topology (e.g., spatial tour characteristics such as spatial 
coverage and displacement) by subpopulation.

The rest of this paper is organised as follows. The second 
section provides a literature review, covering the definitions 
of a set of terms that are still not standardised in this knowl-
edge domain; the third section describes a description of the 
data requirements for the analyses performed in this paper 
as well as the selected sample; the fourth section details 
selected tour formation algorithms and the experimental 
setting; the fifth section presents the results of the experi-
ments to compare the algorithms, as well as the prediction 
of day-to-day pattern homogeneity and the differences across 
sub-populations; the sixth section concludes this paper, sum-
marising obtained insights for data processing and modelling 
practice.

Literature Review

We define some terminology for purposes of this research. 
Vehicle trip ends, also known as vehicle stops, can be 
grouped into those relevant and those nonrelevant to the 
analysis at hand. For example, stops for short breaks might 
be considered differently than those to deliver goods. Zhou 
et al. (2014) justify this classification method. The sequence 
of trips taken between two relevant stops are defined as trip 
chains (Holguín-Veras and Patil 2005), represented in Fig. 1 
by ({a}, {b, c}, {d}, {e}, {f}). A tour consists of one or 
more trip chains. For illustrative purposes, in Fig. 1, assume 
a return to relevant stop numbered as “1” marks the end of a 
tour. Then, there are two tours in Fig. 1: the first composed 
by trip chains ({a}, {b, c}) and the second by trip chains 
({d}, {e}, {f}). A tour-chain is defined as the set of tours 
that occurs within a day. We borrow this term from Ruan 
et al. (2012). In Fig. 1, the tour-chain is composed of two 
tours.

With regard to data processing, the critical first steps rely 
on the methods for identifying stops from trips and their 

Fig. 1   Example sequence of 
stops and trips
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purposes (Du and Aultman-Hall 2007; Greaves and Figliozzi 
2008; Schuessler and Axhausen 2009, Sharman and Roorda 
2011; Joubert and Axhausen 2011, Yang et al. 2014). Data 
might be collected to inform the activities at/and destina-
tions (Alho et al. 2018). Even in the case such data is not 
available (i.e. only GPS traces are available), activities and 
destinations can be inferred. Examples are given by Sharman 
et al. (2012) who identify depots from the attributes of stops, 
and Sharman and Roorda (2013) who propose a process to 
assign parcel level information about the destinations.

Following the identification of stops, there are two semi-
nal quantitative studies that address stop-to-tour assignment. 
Liedtke and Schepperle (2004) briefly describe a fuzzy 
logic-based pattern recognition method to process a 1.7 mil-
lion trip records in five tour-types, covering both urban and 
interurban trips. You and Ritchie (2018) propose a method 
to post-process GPS data for identifying freight vehicle tours 
and applied it to GPS traces of freight vehicles traveling 
from/to port facilities. Beziat et al. (2015) presents tour-type 
identification by qualitatively defining 13 tour profiles based 
on interviews and a review of academic literature.

Several studies focus on the relationships between tour-
type and tour-chain and driver, vehicle, shipment, and oper-
ator characteristics. Zhou et al. (2014) assume tour-types 
as per the total of deliveries performed in a day and show 
that commercial vehicle tour-types tend to be associated 
with commodity type, land use type, loading/unloading 
cargo weight and travel speed. Ruan et al. (2012) identify 
five major daily tour-chain-types based on the vehicle base 
location(s), tours per day and stops per tour. Using urban 
commercial vehicle survey data for tour-chaining choice 
model estimation, they analyse the relationship between 
tour-chain-types, cost and shipment characteristics. Khan 
and Machemehl (2017) also determine tour-chain-types as 
function of a base location, tours per day and stops per tour. 
They estimate a model for determining tour-chain-types and 
the number of trips, based on a wide list of factors using 
a multiple discrete–continuous extreme value model. The 
aforementioned studies do not reveal the details of the pro-
cesses that lead to defining the tour-chain-types. Sharman 
and Roorda (2011) analyse day-to-day variations in terms 
of the overlap between the stop locations. While their data 
indicates that few destinations were visited on a daily basis, 
the research does not cover the analysis into the regularity 
of tour-type or tour-chain-type in freight vehicle operations; 
such analysis could provide insights on vehicle operational 
homogeneity across vehicle type or industry type over a cer-
tain period, informing whether single-day sampling would 
be sufficient for obtaining data about the routine of freight 
vehicle operations. As for the usage of the processed data, 
You et al. (2016) present a modelling framework of freight 
flows with spatial–temporal constraints that relies on tour-
level data for calibration. Subsequently, You and Ritchie 

(2018) use tour-level data to explore tour-level behaviour of 
clean drayage trucks, revealing distinct travel patterns across 
days despite tour-types having repetitive patterns.

This review demonstrates the wealth of research that both 
contributes to and leverages tour-level analysis. In light of 
some gaps, we argue positively for a comparative study of 
methods applicable to stop-to-tour assignment, as well as 
of tour-type and tour-chain identification. In the present 
research, we aim to reveal (1) insights into the interpre-
tation and inference of base locations; (2) the outcome of 
different assumptions in the algorithms to identify freight 
vehicle tours from stop chains; (3) the outcome of differ-
ent assumptions in the algorithms to identify tour-type and 
tour-chain-types; and (4) day-to-day pattern homogeneity 
with regard to tour-type and tour-chain-type for a sample of 
tracked vehicles.

Data

The data used in this research consists of GPS traces and 
stop-level data obtained from a driver survey. The data col-
lection process and the data collection platform, Future 
Mobility Sensing, are extensively described in Alho et al. 
(2018) and You et al. (2018), respectively. Stop-level data 
include stop purpose, location, duration, and cargo volume 
handled. The dataset includes records of 2151 driver-days 
with 497 unique drivers/vehicles. The sample is summa-
rized by the vehicle body type and by industry type served 
in Tables 1 and 2, respectively. It should be noted that the 

Table 1   Samples by vehicle body type

–, not applicable
a Body types of some samples are unknown due to incomplete survey 
responses

Body type Sample size Share (%) Extrac-
tion rate 
(%)

Low loader 1 < 1 < 1
Recovery vehicle 2 < 1 < 1
Refrigerated vehicle 3 < 1 3
Concrete/cement mixer 2 < 1 1
Platform truck 11 2.21 < 1
Tanker 7 1.41 < 1
Crane 2 < 1 < 1
Lorry metal 9 1.81 24
Garbage/sanitary wagon 22 4.43 1
Van 15 3.02 36
Prime mover 90 18.11 3
Wooden frame lorry 90 18.11 6
Tipper/dump truck 204 41.05 3
Unknowna 39 7.85 –
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sample is not representative of the population of freight 
vehicles in Singapore and was not collected with such inten-
tion. The data is only used to showcase an application of the 
methods further described. Although the above-mentioned 
data is not big data in itself, the algorithms could be applied 
to big data and the insights we intend to provide aim to 
inform a purposeful application. Stop-level data are often 
unavailable for GPS traces (Holguín-Veras and Patil 2005; 
Eluru et al. 2018) as driver surveys for stop-level data are 
costly. However, stop-level data are inferable (Sharman et al. 
2012). Furthermore, for data collected by fleet monitoring 
system, stop-purpose inference algorithms can leverage 
small surveys and/or Point of Interest data. Moreover, if GPS 
traces are collected by vehicle operators, these data could be 
matched with the activity and destination information based 
on their shipment records.

Methods

Stop Identification

The identification of stops is a two-step process using a cus-
tom developed method (Zhao et al. 2015) which includes 
DBSCAN (Ester et al. 1996), a clustering algorithm. First, 
a stop detection algorithm is applied, and then we aggregate 
raw stop records over the vehicle tracking period. Specifi-
cally, at the vehicle level, stop records at nearby coordinates, 

within 500 m, are considered the same stop. As mentioned 
earlier, we assume as relevant stops those for deliveries and/
or pickups as well as those at a base. Any other stops are 
considered nonrelevant.

Base Identification

The definition of “base” can vary across freight agents 
(such as shippers or carriers). This understanding seems to 
be shared by Ruan et al. (2012) who hypothesize multiple 
functions for the base, such as a “distribution center, a ware-
house, a business location (e.g., retail store, construction 
site), or fleet operator’s home office/garage”. Furthermore, 
for a given driver/vehicle, there could exist multiple bases 
which differ not only in purpose but also in location. For 
example, a driver/vehicle might have a “parking base”, i.e. 
overnight parking location, and a “pickup base”, i.e. the 
facility to which the vehicle returns multiple times during 
the day for picking up the goods. Ruan et al. (2012) also 
propose tour-chain structures that consider multiple bases. 
Selecting either of these bases as the pivotal point of tours 
potentially leads to a different set of tours despite the same 
stops being visited in the same order. We aim to contribute 
to this identification process, by exploring other algorithms 
that consider the purpose of stops and/or vehicle payload, as 
it will be further explained.

Base identification was prior addressed by Sharman and 
Roorda (2011) in the context of having no data apart from 
raw GPS traces. The authors evaluated the existence of 
bases (named ‘depots’) by considering several variables. 
Selection criteria were related to the percentage of stops 
performed at a given location within the study area and 
the average duration of the longest stop at such location 
on sampled days. Although the method is applicable to 
our case, our process differs as we attempt to leverage sur-
vey data first, providing an illustration of an alternative 
process.

In the driver survey we leverage, drivers had the option to 
declare a frequent stop (location) as a base, subject to their 
perception of what a base is. In our method, we first attempt 
to leverage declared bases over those identified using other 
methods, if confirmed “true” according to the criteria of 
“daily visits”. If there is a need for base identification, we 
first aim to use the locations, where drivers change shifts 
daily, and only subsequently, locations, where pickups occur 
daily. The main justification for the latter is that one of the 
stop-to-tour assignment methods uses pickup locations, and 
we wish to keep the applications distinct. The algorithm is 
described by the following high-level pseudocode, and fur-
ther detailed in “Appendix 1”: 

Table 2   Sample by vehicle operations industry

a The sum of the values is above 497 as the same respondent might 
serve multiple industries
b Due to incomplete survey data

Industry Sample sizea Share (%)

Accommodation 5 1
Agriculture 1 < 1
Construction 354 58
Manufacturing 60 10
Mining 1 < 1
Other services 10 2
Retail—food and beverage 5 1
Retail—non food and beverage 14 2
Transportation and storage 93 15
Utilities and waste 21 3
Wholesale 7 1
Unknownb 43 7
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throughout the day. It has been applied by Jing et al. 
(2019) and Alho et al. (2019).

•	 Capacity-driven algorithm: A pickup stop by an empty 
vehicle (i.e. the capacity usage is zero or equal to zero) 
marks the start of a new tour. We expect some level of 
alignment between the outputs from Capacity-driven and 
Purpose-driven algorithm, unless vehicles do pickups 
with some of the prior load still in the vehicle.

In all the three algorithms, a stop that follows a prior 
stop with a duration of over 240 min is considered the start 
of a new tour. This threshold was defined similarly to past 
research (You and Ritchie 2018) and observed in our data 
as a clear point demarcating between stop durations during 
operation periods (e.g., those for rest, pickup, and deliv-
ery) and those during non-operation periods (e.g., overnight 
and over the weekend). The high-level pseudocode for the 
algorithms is described following and further detailed in 
“Appendix 2”.

The Base-driven algorithm pseudocode is:

Table 3   Illustration of 
hypothetical application of stop-
to-tour assignment algorithms

Stop id 1 2 3 4 5 7 8

Base Yes No No No Yes No No
Purpose P P D D P D P
Capacity usage (%) 50 100 50 25 75 0 100
Tour id (base-driven algorithm) 1 1 1 1 2 2 2
Tour id (purpose-driven algorithm) 1 1 1 1 2 2 3
Tour id (capacity-driven algorithm) 1 1 1 1 1 1 2

Stop‑to‑Tour Assignment

We explore three algorithms for tour-type identification 
purposes, focusing on the regularity of activities, the type 
of activities performed, and the vehicle capacity usage. 
These are not an exhaustive list and other variables could 
be explored, which is out of the scope of this research, as 
their applicability is not so clear. All algorithms iterate over 
the stop sequences, inspecting the characteristics of each 
stop and assigning a sequential tour-identification number 
to it. These are:

•	 Base-driven algorithm: A return to the identified base 
marks the end of a tour. This algorithm is most aligned 
with prior research applications such as You and Ritchie 
(2018) and Gopalakrishnan et al. (2019).

•	 Purpose-driven algorithm: A pickup stop that follows 
a delivery marks the start of a new tour. This algorithm 
aligns to the case, where a vehicle returns, or heads to, 
one or more “operational” base(s) for picking up goods 

The Purpose-driven algorithm pseudocode is:
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The Capacity-driven algorithm pseudocode is:

Table  3 illustrates the algorithms’ application to a 
hypothetical case. It can be seen that for the Base-driven 
algorithm tour-identification number (id) switches from 
1 to 2 upon visiting the base. In this case, the increment 
is aligned to the non-sequential pickup in the Purpose-
driven algorithm, whereas the Capacity-driven algorithm 
only triggers a tour id change when the vehicle capacity 
reaches zero (stop 8).

We compare the outputs of the three stop-to-tour algo-
rithms in terms of the mean and standard deviation (SD) 

Table 4   Tour-type identification criteria

Tour-type No. of pick-
ups/tour

No. of 
pickup loc.

No. of deliv-
eries/tour

No. of 
delivery 
loc.

Direct 1 1 1 1
Unloading 1 1 > 1 > 1
Loading > 1 > 1 1 1
Mixed > 1 > 1 > 1 > 1

Table 5   Tour-chain identification criteria

a Fixed means location set (i.e., the locations of one or more stops) remains the same across tours; unfixed means location set varies across tours

Tour-chain group Tour-chain No. of tours No. of 
pickups/
tour

No. of pickup loc. No. of 
deliveries/
tour

No. of delivery loc.

Direct Single direct 1 1 1 1 1
Fixed pickup, fixed delivery > 1 1 1 1 1
Fixed pickup, unfixed delivery > 1 1 1 1 > 1
Unfixed pickup, fixed delivery > 1 1 > 1 1 1
Unfixed pickup, unfixed delivery > 1 1 > 1 1 > 1

Unloading Single unloading 1 1 1 > 1 > 1
Fixed pickup, multiple fixed deliveries > 1 1 1 > 1 > 1 and fixeda

Fixed pickup, multiple unfixed deliveries > 1 1 1 > 1 > 1
Unfixed pickup, multiple fixed deliveries > 1 1 > 1 > 1 > 1 and fixeda

Unfixed pickup, multiple unfixed deliveries > 1 1 > 1 > 1 > 1
Loading Single loading 1 > 1 > 1 1 1

Multiple fixed pickups, fixed delivery > 1 > 1 > 1 and fixeda 1 1
Multiple unfixed pickups, fixed delivery > 1 > 1 > 1 1 1
Multiple unfixed pickups, unfixed delivery > 1 > 1 > 1 1 > 1

Mixed Single mixed 1 > 1 > 1 > 1 > 1
Multiple mixed > 1 > 1 > 1 > 1 > 1
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of the following indicators: (1) tours per day, (2) stops per 
tour, (3) tour duration (minutes), and (4) tour distance (kilo-
metres). Our intention is not to reveal the best algorithm 
but rather to expose the implications of selecting them. To 
the best of our knowledge, there is no consensus on how to 
evaluate the effectiveness of the algorithms in revealing the 
“true” tours, since the concept is a human construct. In fact, 
as mentioned earlier, different interpretations of tours are 
used for different applications.

Tour‑Type and Tour‑Chain Identification

In the past research, tour-type and tour-chains have been 
defined considering base location, tours per day and stops 
per tour (Ruan et al. 2012, Khan and Machemehl 2017). This 
is considered as a valid method but potentially relies on a 
subset of relevant variables. Therefore, we explore also stop 
purposes and their recurrence, as well as regularity of stop 
locations. Regarding stop-purpose recurrence, the distinc-
tion is made in terms of the number of pickups relative to 
the number of deliveries. It is based on the hypothesis that 
certain combinations of stop-purpose recurrence are strongly 
correlated with operational characteristics of freight move-
ments. Regarding the regularity of stop locations, we make 
a distinction between those stops locations that are fixed and 
unfixed. Fixed stop locations are those visited more than 
once in a day, while those unfixed are only visited once in 
a day.

The definitions of tour-types and tour-chains to be 
explored are shown in Tables 4 and 5, respectively. The iden-
tification process primarily categorizes tours and tour-chains 
into the following four groups:

•	 Direct tours that consist of one pickup and one delivery, 
associated with full truck load (FTL) shipments. Past 
research indicates that this tour-type is associated with 
longer distances travelled and larger dwell times (Ruan 
et al. 2012).

•	 Unloading tours that consist of one pickup and more than 
one delivery, associated with less than truckload shipping 
(LTL) (e.g., parcel deliveries).

•	 Loading tours that consist of more than one pickup and 
one delivery, associated with operations such as those of 
waste collection.

•	 Mixed tours that consist of multiple pickups and deliver-
ies, and can be associated with delivery tours that also 
collect returned shipments.

To identify the tour-chain, two algorithms are considered:

•	 Tour-type-based identification (TT) Tour-chain is identi-
fied based on the types of tours performed in a day. If a 
tour-type accounts for at least 60% of all tours within a 
day, the tour-chain is labelled by such tour-type. 60% is 
set assuming that when two tours of different types are 
performed daily there is no predominant type.

•	 Tour-chain-based identification (TC) This alternative 
algorithm characterizes the tour-chain at the day level. 
Instead of using the predominant tour-type, the algorithm 
reads stops-to-tour assignments, averages the stops per 
tour by purpose and then identifies tour-chain for a day.

Note that tour-chain groups are also defined, consistent 
with the ratios between #Pickups/tour and #Deliveries/tour, 
for achieving direct comparisons between algorithms and 
further use in day-to-day pattern homogeneity analysis.

Day‑to‑Day Pattern Homogeneity Analysis

The day-to-day pattern homogeneity analysis is used as a 
partial demonstration of how differences in the assumptions 
can lead to differences in outputs. Moreover, it provides 
insights on whether there is some level of homogeneity on 
the patterns performed by the vehicles.

We propose to use an entropy concept (Eq. 1) to quan-
tify day-to-day pattern homogeneity. In past research, the 
entropy concept was applied to calculate the diversity of 
commercial establishment functions (Alho and de Abreu e 
Silva 2014). In this research, we apply it to measure the 
diversity of tour patterns. Pj is the proportion of tours (or 
tour-chain groups) of type j. J is defined in this case as the 
number of tour-types or tour-chain groups, depending on 
the application. This indicator is normalized and, therefore, 
ranges between one (with the equal share across tour-types 

Table 6   Tasks and run time Task Run time

Clustering (DBSCAN) ~ 4 min 51 s
Purpose/capacity-driven tours identification and classification (TT) ~ 1.5 s
Purpose/capacity-driven tours identification and classification (TC) ~ 2 s
Base-driven tours identification and classification (TT) ~ 34 s
Base-driven tours identification and classification (TC) ~ 34 s
Day-to-day pattern homogeneity calculation ~ 1 s
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or tour-chain groups) and zero (with the presence of only 
one tour-type or tour-chain groups):

The entropy is measured for the results of both algorithm 
outputs in tour-chain-type identification (TT and TC). It 
should be noted that the method is applied differently in 
both cases. For TT, we group tours by tour-types across the 
observed period, since the generalization at the daily level 
(i.e. the definition of the tour-chain) lowers the resolution 
of the inputs. For TC, we simply use tour-chain-type group. 
Thus, TT is applied from a perspective of all tours over the 
period (i.e., one or more tours types per day), while TC 
inputs are at the daily level (i.e., one tour-chain-type group 
per day).

Software and Hardware

To process the data, we use scripts written in the Python 
programming language. The selected hardware was an 
Intel Core i7-7700 CPU @ 3.60 GHz processor and 32 Gb 
RAM. In the current experimental setting, the algorithms 
run under a batch processing model, with run times, as listed 
in Table 6. The algorithms are compatible with the latest 
developments in the FMS platform (You et al. 2018), which 
has been developed to process and display collected GPS 
data from several types of loggers (stand-alone, built-in 
smartphones, and tablets). The scripts can be coupled in the 
platform as a streaming model.

Results

Base Identification

As mentioned earlier, we start with a comparison between 
bases declared by the respondent and those detected from the 
GPS traces by the detailed algorithm. This process allows us 
to clarify whether there is some common understanding of 
“base locations” among drivers and whether revealed data 
is valuable when compared with inferred data.

(1)Entropy =
∑

j

||
|
Pj × ln

(
Pj

)|
|
|

ln (J)
.

500 drivers declared 1072 frequent stops, out of which 
502 frequent stops were marked as bases, an average of 1 
base per respondent. 66% of declared bases were the loca-
tions, where drivers start/end the work shift, followed by 
the locations, where cargo is picked up (16%). On the other 
hand, 63% of the non-base frequent places were associated 
with locations, where cargo and/or trailers are picked up. 
This revealed that some level common understanding of the 
concept of “base” exists, with it being, where the work shift 
starts/ends, and not necessarily, where regular pickups are 
performed. Despite this, and contrary to expectations, fre-
quent stops were found to be visited sparingly. During the 
period of the survey (5 days), 35% of declared base frequent 
places and 6% of declared non-base frequent places were 
visited, which highlights some fundamental flaw either in 
the process of recalling or reporting information. This result 
indicates that declared bases (or frequent places) are not 
suitable as the reference points to identify tours.

Following these conclusions, we set to use revealed loca-
tions which were often visited as bases. Out of 8718 detected 
stops (i.e. clusters of raw stop records), 1186 were visited 
every day. Out of these stops with non-mutually exclusive 
activities, 88% are associated with a start/end work shift 
activity, 42% a pickup and 40% a delivery. Following, for 
93% of drivers a single base was identified, and 2% of driv-
ers have two or more bases identified. The records for which 
no bases were identified (5% of drivers), were excluded 
from the following steps of the analysis. For those drivers 
with base(s) identified, 34% were from declared bases, 57% 
were from revealed locations, where drivers change shift fre-
quently, and 9% were from revealed locations, where drivers 
perform pickups frequently.

Stop‑to‑Tour Assignment

Table 7 shows the results across the different stop-to-tour 
assignment algorithms. Relatively similar results can be 
observed in the Purpose-driven and Capacity-driven algo-
rithms, whereas the Base-driven algorithm leads to different 
outcomes. As expected, the latter leads to a smaller average 
number of tours, with more stops per tour, since the bases 
are, in many cases, the locations, where the drivers start/end 
the work shift (Fig. 2). The alignment between the Purpose-
driven and Capacity-driven algorithms is mainly due to that 

Table 7   Comparison of stop-
to-tour assignment algorithm 
results

Stop-to-tour assignment algorithm Tours per day Stops per tour Tour duration 
(min)

Tour distance 
(km)

Mean SD Mean SD Mean SD Mean SD

Base-driven 1.39 1.11 8.51 6.12 211.56 152.87 121.28 95.03
Purpose-driven 3.88 2.47 3.03 1.66 74.51 72.45 42.89 30.74
Capacity usage-driven 3.42 2.41 3.44 2.79 84.45 88.89 48.81 42.21
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Fig. 2   Frequency of stops per 
tour for each algorithm

Table 8   Tour-chain identification results using TT

Tour-type/tour-chain-type Base-driven Purpose-driven Capacity-driven

Tours (%) Tour-chains (%) Tours (%) Tour-chains (%) Tours (%) Tour-chains (%)

Direct 23.6 10.9 81.0 72.6 80.2 63.5
Unloading 4.3 2.2 5.7 3.3 4.4 2.7
Loading 3.7 1.7 4.0 1.4 1.8 0.9
Mixed (Mixed Single/Multiple) 57.2 62.6 5.5 4.5 10.6 13.1
Non-identifiable 11.3 22.5 3.8 18.2 3.0 19.8

Table 9   Tour-chain identification results using TC

Group Tour-chain-type % Tour-chain

Base-driven Purpose-driven Capacity-driven

Direct Direct (single tour) 7.6 7.8 7.4
Fixed pickup, fixed delivery 1.1 10.8 9.8
Fixed pickup, unfixed delivery 0.9 12.7 10.2
Unfixed pickup, fixed delivery 0.2 4.3 3.7
Unfixed pickup, unfixed delivery 2.0 38.8 30.6
Total 11.8 74.4 61.6

Unloading Unloading (single tour) 1.5 1.6 1.6
Fixed pickup, multiple fixed deliveries 0.1 0.0 0.0
Fixed pickup, multiple unfixed deliveries 0.6 1.5 0.9
Unfixed pickup, multiple fixed deliveries 0.0 0.1 0.0
Unfixed pickup, multiple unfixed deliveries 0.3 2.5 1.4
Total 2.6 5.8 4.0

Loading Loading (single tour) 0.9 1.1 1.1
Multiple fixed pickups, fixed delivery 0.1 0.2 0.0
Multiple unfixed pickups, fixed delivery 0.1 0.2 0.0
Multiple unfixed pickups, unfixed delivery 0.1 1.4 0.7
Total 1.2 3.0 1.8

Mixed Mixed (single/multiple) 46.5 7.5 15.8
Non-identifiable 38.0 9.2 16.6
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fact that most vehicles return/head to the next pickup loca-
tion with an empty load (i.e., perform full truck load opera-
tions). The choice of the algorithm has an influence on the 
tour-level indicators, and the base-driven algorithm is prone 
to reveal longer tours potentially including loading/unload-
ing operations within the tour-chain.

Tour‑Type and Tour‑Chain Identifications

Tables 8 and 9 show the results for tour-type and tour-chain 
identifications, respectively, using TT and TC. In Table 8, 
the results in the Tours column shows the share of each tour-
type identified, whereas the Tour-chain column illustrates 
the outcome of the TT process using the 60% threshold.

Fig. 3   Tour-chain-type groups and industry served by vehicle (top: TT; bottom: TC)
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The results of the TT application provide interesting 
insights. The Base-driven algorithm, associated with pre-
dominantly change-shift locations leads to a much higher 
share of Mixed tours, i.e. containing multiple pickups and 
deliveries, than the Purpose-driven and Capacity-driven 
algorithm. The tours identified by Purpose-driven algo-
rithm are more compatible with the tour-type alternatives, 
since it relies on the stop activity purpose. The Capacity-
driven algorithm was expected to produce similar results to 
Purpose-driven algorithm, as prior data analysis revealed 
that vehicles load fully at the pickup stops, and this seems 

to hold in many cases. For these algorithms, it can be 
noticed that there is a larger share of Non-identifiable 
tour-chains versus non-identifiable tours. This is due to 
situations, where there are no predominant tour-types, par-
ticularly associated with large share of days illustrated as 
having two tours in Fig. 2.

Regarding TC algorithm, the results follow a similar 
pattern, particularly in the alignment between the results 
for the Purpose-driven and Capacity-driven algorithm. As 
expected, the share of Mixed and Non-identifiable tours 
reveals that the Base-driven algorithm does not allow 

Fig. 4   Tour-chain-type groups and vehicle body type (top: TT; bottom: TC)
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understanding fully the patterns of pickups and deliveries 
performed by the vehicles.

There are interesting algorithm-to-algorithm comparisons 
that can be drawn and are demonstrated for an application 
of the Purpose-driven method. Regardless of the application 
of the TT or TC algorithm, most of tour-chains belong to 
the same group (direct, unloading, loading, or mixed). Spe-
cifically, matches for direct group are 94%, for Unloading 
86%, for Loading 86%, and for Mixed 89%. Differences are 
found in Non-identifiable tours, with 37% matched across 
algorithms.

An advantage of the TC algorithm is the ability to reveal 
that direct tours–chains have different natures, even for rela-
tively homogeneous samples like the one used. For example, 
considering tour-chains in the direct group, and using the 
purpose-driven algorithm, 39% of the cases are “Unfixed 
pickup, unfixed delivery”. This reveals a non-negligible 
share of tours that are not what direct tours are intuitively 
associated with; it is often thought that, in many cases, a 
fixed distribution center is used for full truck load ship-
ments to several destinations. Another interesting finding 
is that the TC algorithm produces results that reveal: (a) 
less predominance of direct tours and (b) smaller share of 
Non-identifiable tour-chains. This was expected, since aver-
aging out stops per tour “smoothens” tour heterogeneity at 
the daily level. The application of TC allows for a decrease 
in approximately 63% of tours–chains that the TT could not 
identify. Lacking “ground truth”, no process can ultimately 
be deemed as correct or wrong. However, deeming higher 

output resolution as desirable, the TC algorithm seems to 
be more suitable.

Following, we detail the results from the perspective 
of industry served and vehicle body type, selecting the 
Purpose-driven algorithm due to its better fit to the TC/
TT methods as well as high replicability potential com-
pared with the Capacity-driven algorithm. We aggregated 
the outputs of the TC algorithm using the prior defined 
groups to allow for a comparison with the TT outputs. 
Similar proportions of tour-chains, at the group level, can 
be observed for sampled vehicle-associated industry types 
(Fig. 3) with most industries operating on direct tours. The 
retail industry stands out (albeit the small sample size), 
as over 70% of its tour-chains are Loading and Unloading 
tours. Regarding the tour-types associated with the sam-
pled vehicle types (Fig. 4), direct tours–chains were also 
predominantly observed in most cases, other than Refriger-
ated Vehicles and Vans. This is not surprising, since about 
half of the vans, and one-third of the refrigerated vehicles 
serve the retail industry.

Day‑to‑Day Pattern Homogeneity Analysis

In the application of the tour identification with the Pur-
pose-driven method, we compare the day-to-day pattern 
homogeneity of the outputs from algorithm TT and TC, 
disaggregated by associated industry type (Table 10) and 
vehicle body type (Table 11). Industry and vehicle body 
types that show high (or low) entropy values are consist-
ent between the two algorithms but entropy values tend to 

Table 10   Entropy of tours quantified across industries served by vehi-
cles

–, non-applicable

Industry Sample size TT TC

Mean SD Mean SD

Accommodation 1 0.50 – 0.33 –
Construction 296 0.23 0.18 0.14 0.18
Manufacturing 13 0.27 0.14 0.20 0.18
Retail—non F&B 5 0.26 0.29 0.19 0.29
Transportation and storage 36 0.29 0.21 0.21 0.19
Utilities and waste 13 0.33 0.13 0.23 0.24
Wholesale 1 0.31 – 0.00 –
Other services 7 0.30 0.18 0.21 0.21
Multiple 94 0.23 0.19 0.20 0.21
Non-identifiable 25 0.25 0.12 0.16 0.20

Table 11   Entropy of tours quantified across vehicle body types

–, non-applicable

Vehicle body type Sample size TT TC

Mean SD Mean SD

Refrigerated vehicle 3 0.51 0.08 0.38 0.34
Low loader 1 0.38 – 0.46 –
Van 15 0.35 0.27 0.21 0.23
Garbage/sanitary wagon 22 0.26 0.19 0.16 0.21
Prime mover 87 0.27 0.18 0.21 0.20
Lorry wooden 90 0.26 0.20 0.21 0.22
Lorry metal 9 0.23 0.20 0.15 0.15
Recovery vehicle 2 0.22 0.02 0.12 0.17
Concrete/cement mixer 2 0.24 0.13 0.00 0.00
Tipper/dump truck 202 0.21 0.15 0.11 0.16
Tanker 6 0.15 0.13 0.12 0.19
Crane 2 0.15 0.22 0.00 0.00
Platform truck 11 0.12 0.15 0.03 0.09
Non-identifiable 39 0.26 0.20 0.22 0.21



187Journal of Big Data Analytics in Transportation (2019) 1:175–190	

1 3

be higher for the application of TT compared with that of 
the TC.

Looking at the tour-type homogeneity, in terms of indus-
tries served, construction is an example of having more 
homogeneous tour-types. With regard to vehicle body types, 
vehicles predominantly associated with construction also 
demonstrate this behaviour, e.g., Tipper/Dump Trucks.

Conclusions

A research gap has been identified regarding the methods of 
processing freight vehicles’ GPS data to tour and tour-chain 
data. The main steps to which this research aims to con-
tribute are stop-to-tour assignment as well as tour-type and 
tour-chain-type identifications. In this paper, we explored 
several algorithms for such objectives, i.e., assigning stops to 
tours, identifying tour-types and tour-chain-types, and com-
pared their outputs, highlighting differences. A major finding 
about the identification of bases, a critical input to one of 
the stop-to-tour assignment algorithms (Base-driven), was 
that declared data regarding bases might not be as accurate 
as inferred data. This finding holds despite a common under-
standing that the base is mostly associated with the place, 
where drivers change shift, which are not necessarily pickup 
locations. This also contributes positively to arguments 
towards not fully relying on survey data, which is likely to 
occur for applications to big data. Our analysis also revealed 
that most vehicle operations were associated with a base vis-
ited daily, in line with the most common assumptions in the 
literature regarding tour starting/end points. However, these 
findings also impact on the application of the subsequent 
tour-type and tour-chain-type identification algorithms. The 
Base-driven and Purpose-driven algorithms relied on differ-
ent types of pivotal points to trigger the start of a new tour, 
resulting in considerably different outputs (tour counts and 
number of stops per tour). Such difference resulted in a low 
compatibility of the identified tours using the Base-driven 

algorithm with the selected tour-type and tour-chain-type 
identification methods. Despite this, we highlight that this 
conclusion could be related to the nature of the data used in 
the application, and further applications are recommended. 
In case an alignment between identified bases and pickup 
locations had been achieved, the results would be expect-
edly different. Thorough this paper, several differences in 
outputs arising from a combination of the methods selected 
and data at hand have been exposed. Ultimately, our find-
ings indicate that researchers should take due diligence on 
selecting algorithms and provide clear descriptions on the 
selected pre-processing steps for a better understanding from 
the readers on the potential implications of the assumptions.
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Appendix 1: Base Identification Algorithm



189Journal of Big Data Analytics in Transportation (2019) 1:175–190	

1 3
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