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Abstract – In this paper, we simulate the impacts of 

Automated Mobility-on-Demand (AMoD) using SimMobility, 

an integrated land-use transport micro-simulation platform. 

Using data for Singapore, we examined the future scenarios in 

which AMoD is added as an additional mode on top of existing 

modes, or as an exclusive one. We found that AMoD may lead 

to changes in accessibility, which will consequently affect 

people’s behaviours. Our results show that a scenario in which 

AMoD is an additional mode is a preferred option, whereas the 

exclusion of AMoD will lead to lower accessibility for people in 

the study area.  

Keywords—Microsimulation, activity-based accessibility, 

autonomous vehicles 

I. INTRODUCTION 

Autonomous Vehicles (AVs) is by all means one of the 
most trending topics in transportation research. Researchers 
have explored several dimensions of AVs such as its 
potential impacts on traffic, policies, and people’s travel 
preferences [1–5]. However, little is known about how 
Automated Mobility-on-Demand (AMoD)’s effects on 
accessibility can be quantified. Furthermore, to date, none 
has provided a complete overview of AMoD’s impacts on 
multiple temporal and spatial levels. It is well-established 
that land use and transport interact with each other, that is, 
changes in land use affect transport performance and vice 
versa [6]. How does the interactive change look like when 
AMoD is introduced?  

Many integrated land use transport models (LUT) 
connect a travel demand model with a land use model using 
an accessibility measure. Accessibility is the value of the 
connectivity provided by a given land use transport system at 
a specific location [7]. Among several accessibility 
measures, the activity-based accessibility (ABA), the 
expected maximum utility that a person gains from access to 
spatially distributed opportunities, has a high potential as an 
accessibility indicator and as an integration link between 
land use transport models [8,9]. How can ABA be used to 
measure the impacts of AMoD? 

In this paper, we demonstrate how an integrated land-use 
transport micro-simulation platform simulates and reflects 

the impacts of AMoD in future scenarios. Specifically, we 
seek to answer three main questions: 

(1) What are AMoD’s impacts on accessibility? 

(2) How will AMoD affect transport performance? 

(3) How will changes in accessibility (resulting from 
AMoD) affect households and individuals’ 
behaviors? 

II. METHODOLOGY  

A. Activity-based accessibility (ABA) measure 

Based on the random utility theory, an individual’s 

accessibility is measured as the expected maximum utility 

that can be achieved from the choice set, which in a nested 

logit model can be expressed as: 

 
where is the systematic component of utility  for 

individual k selecting alternative i from the choice set  

and  is a scale parameter. This measure of accessibility is 

commonly referred to as the “logsum” i.e. the logarithm of 

the sum of the exponentiated utility among the available 

alternatives [8]. 

In a day activity schedule system, logsum is calculated 

from the lowest level to the top level of the nested logit      

of travel choices. Decisions on lower levels depend on those 

at higher levels. Higher level’s decisions are linked to the 

lower ones through the use of the logsum, which reflects 

expected maximum composite utility of choices from lower 

levels. This logsum generated at the highest level of a day 

activity schedule system is an indicator of an individual’s 

accessibility and is referred to as activity-based accessibility 

[8,9].  

The ABA is similar to traditional utility-based 

accessibility measures, yet instead of focusing on a 

particular trip purpose, it incorporates the impacts of trip 

chaining, the full set of activities pursued in a day, and the 
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scheduling of activities. This type of accessibility measure is 

generated from the day activity schedule model system, an 

activity-based travel demand model system, which can 

model the whole day’s schedule of multiple activities and 

trips taken by an individual, using various modes, and 

joined together in a particular pattern. Total accessibilities 

generated from the transport components can then be passed 

into the land-use components as exploratory variables to 

predict long-term choices. In an integrated model where the 

travel demand is activity-based, individual accessibility or 

access to spatial opportunities is assumed to affect long-

term decisions.  Changes in travel behaviour lead to changes 

in accessibility, which influence location choices. 

Conversely, changes in land use patterns lead to changes in 

accessibility and then changes in travel demand such as the 

mode, amount, and timing of travel. For this reason, ABA 

was adopted as an integration link in the SimMobility 

microsimulation platform.  

B. Simulation platform 

SimMobility is a system of mobility-sensitive 

behavioural models integrated in a multi-scale activity-

based simulation platform, which considers land-use, 

transport, and communication interactions [10,11]. In 

SimMobility, agent behaviours are modelled at multiple 

levels and in various timescales, which corresponds to three 

integrated simulators:  

Short-term (ST) simulator is a traffic micro-simulator, 

extended with a communication simulator as well as 

pedestrian and public transport. The ST simulator represents 

events and decisions at a high spatial temporal resolution 

(i.e. on the order of tenths of a second), such as lane 

changing, braking, accelerating, individual and crowd 

pedestrian movement, and agent-to-agent cell-phone 

communications. 

Mid-term (MT) simulator is a mesoscopic simulator 

designed for activity-based modelling, with explicit pre-day 

and within-day behaviour, including re-routing, re-

scheduling, and multiple transport modes. Agent decisions 

such as route choice, mode choice, and activity pattern are 

modelled at the seconds to minutes timeframe. The pre-day 

models follow an econometric day activity schedule 

approach to decide an agent’s initial overall daily activity 

schedule, particularly its activity sequence (including tours 

and sub-tours), with preferred modes, departure times by 

half-hour slots, and destinations. This is based on sequential 

application of hierarchical discrete choice models using a 

Monte Carlo simulation approach.  

Long-term (LT) simulator is a land-use transport 

simulator with a market transaction bidding model. It 

models long-term choices such as house (re)location, job 

location, and car ownership by simulating day-to-day 

transactions in the real estate and job market.  

Across these three levels, SimMobility implements the 

activity-based modelling paradigm i.e. all choices are 

ultimately tied to the agents’ goal of performing activities 

on the corresponding time scale. Agents can be of different 

types such as households or firms, and can have varying 

roles including operators, bus drivers, or real-estate agents. 

SimMobility simultaneously simulates demand and supply 

at each level, as well as interactions between different 

levels. For example, the LT simulator provides an agent 

population and land-use configuration to the MT, which 

transmits trip-chains to the ST simulator. The ST provides 

performance measures to the MT, which then provides 

accessibility measures in the form of ABAs from the top-

level model of pre-day component to the LT simulator.  

C. Integrating SimMobility-MT and SimMobility-LT with 

ABA  

SimMobility-MT consists of three main components: 

Pre-day, Within-day, and Supply models. The pre-day 

model is the highest level plan, including only important 

choices e.g. the activity schedule. The activity schedule 

defines an agent’s planned activities and corresponding 

times, together with the main transport modes between 

activities. Following the Day Activity Schedule approach 

[11], MT Pre-day model consists of a system of 

interconnected discrete choice models representing choices 

at distinct dimensions.  

The MT simulator receives the populations from the LT 

simulator that contains agents’ characteristics, and processes 

the day activity schedule of each agent. It then passes the 

accessibility measure i.e. the ABA from the top-level model 

of the Pre-day component (the Day Pattern Binary Model) 

to the LT simulator. In SimMobility, the ABA measure 

reflects the range of choices in destinations and modes, the 

scarcity of time and money, and accounts for the 

heterogeneous preferences among agents. As a link between 

the MT and the LT simulator, it ensures the behavioural 

consistency of agents by encapsulating agents’ day-to-day 

activity and travel considerations into their long-term 

location and vehicle ownership choices. 

We expect that introducing AMoD will affect 

individuals’ accessibility, which will subsequently affect 

their long-term and mid-term choices. We simulate the 

impacts of AMoD using the SimMobility simulation 

platform.  

To simulate AMoD in SimMobility, we made it an 

available option for individuals in the synthetic population 

when using MT Pre-day to model their activity schedule. In 

the Supply simulator, the passenger sends a request for an 

AMoD service specifying the pick-up and drop-off 

locations. An AMoD controller processes the request and 

sends a vehicle to pick up the passenger. After dropping off 

the passenger, the vehicle can either cruise (free floating) or 

be sent to designated parking locations. Details for the 

AMoD framework are described in Basu et al. [12].  

D. Scenario specifications 

We simulated three transportation scenarios for the year 

20XX: (1) Base case scenario refers to existing transport 

modes including car, ride-sharing, bus, train, and walk, but 

excluding cycling and PMDs, (2) Partial automation 

scenario refers to the case where AVs are introduced as an 

additional mode, and (3) Full automation scenario is where 

AV is the exclusive mode.   

AV deployment scenario is specified as in Table I. 
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TABLE I.  AV DEPLOYMENT SCENARIO 

Dimension Description 

AV vehicle 

type 

Varying fleet size and vehicle capacity 

AV services Point-to-point AV taxis & stop-to-stop 

AV mini-buses 

Controller MaaS-AMoD controller 

Ride type Single ride & Ride sharing 

Parking -Free floating/ always roaming 

-Central allocation (parking in assigned 

depots) 

 

Synthetic populations and road networks for the 

simulation were generated considering forecasted future 

growth rate. We assumed that road capacity remains the 

same as for the base case. The activity-based models in MT 

were estimated using the Singapore Household Interview 

Travel Survey (HITS) 2012 and the same preferences were 

assumed to hold in 20XX. AV fleet size was estimated 

based on travel demand (Table II). We also assumed that 

cost for AMoD rides is 50% of taxi rides.  

TABLE II.  AV FLEET SIZE 

Fleet Base case Partial 

automation 

Full 

automation 

AMoD 0 400 800 

MOD 1900 2100 0 

Taxi 550 450 0 

 

E. Sample selection and study area 

SimMobility was used to simulate AMoD impacts on 

accessibility in a selected planning area, which is located in 

central Singapore (black borders in Figure 2 and 3). The 

area covers 8.2km2, with an estimated population of 

approximately 200,000 in 20XX. The area is one of the 

oldest residential towns in Singapore and includes a good 

mix of land uses. We assume AMoD is deployed only in the 

study area while the rest of Singapore remains unchanged.  

 

III. RESULTS   

A. Changes in accessibility  

Figure 1 shows the changes in accessibility between 

various scenarios. From the figure, it is clear that the overall 

accessibility increases under the scenario of partial 

automation while decreases under the scenario of full 

automation, compared against baseline. For those living 

outside of the study area, changes are mostly nonexistent 

since most of their daily trips are not affected under 

different scenarios. For those living inside the study area, on 

the other hand, changes are more prominent. 

Both car owners and those who do not own private 

vehicles see an increase in accessibility under the partial 

automation scenario where AMoD is added to the available 

modes. For car owners, full automation leads to a drastic 

decrease in accessibility because of the restriction of private 

car use. For non-owners, the addition of AMoD outweigh 

the loss of private cars and taxis since they mostly rely on 

public transit in the baseline scenario. 

 

Fig. 1. Changes in accessibility  

Figure 2 and 3 below demonstrates the spatial 

distribution of changes in accessibility. As shown in Figure 

2, the most significant gain in accessibility occurs within the 

study area under the partial automation scenario. Figure 3, 

on the other hand, shows that the study area also sees the 

largest drop in accessibility under the full automation 

scenario. Results here suggest, under current specifications, 

the benefit of additional utility provided by AMoD could 

not compensate the complete loss of private vehicles. 

 

Fig. 2. Spatial distribution of accessibility changes (partial automation vs. 

baseline) 
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Fig. 3. Spatial distribution of accessibility changes (full automation vs. 

baseline)  

B. Short-term impacts 

The first immediate effects of AMoD will be on the 

transport network, which can be simulated at a microscopic 

level, e.g. SimMobility-ST. SimMobility-ST functions at the 

operational level; it simulates movement of agents at a 

microscopic granularity (within day). It synthesizes driving 

and travel behavior in detail and also interacts with a 

communication simulator that models the impact of device 

to device communication on these behaviors. The portfolios 

of AMoD under different scenarios can be compared in 

terms of following performance measures of urban mobility 

environment and help to set the key idea how to introduce 

and operate AMoD: 

- Urban infrastructure usage, from lane structure 

(curbside) congestion, travel-times, connectivity, 

intermodal hubs capacity and parking and curb side 

usage 

- Energy and fuel consumption to vehicle emission 

by travel, driving behavior changes as well as fleet 

management scenarios 

This part, however, has not yet been completely 

implemented. Hence, we focus on demonstrating AMoD 

impacts at the long term and mid-term time scales only.   

C. Mid-term impacts 

To evaluate AMoD impacts, we use several scenario 

evaluation criteria. This section describes a few typical 

indicators produced by SimMobility-MT to demonstrate 

AMoD impacts at the mid-term level.   

Having AMoD as a transport mode affects people’s 

mode choice. Figure 4 shows the mode share among three 

scenarios: Base case, Partial automation and Full 

automation. In the Base case, trips by cars account for 

approximately 25%. This figure reduces to about 21% when 

AMoD is introduced in the scenario of Partial automation. 

In contrast, the share of public transport trips increases from 

around 60% in Base case and Partial automation scenario to 

more than 90% in Full automation scenario. In the Partial 

automation scenario, AMoD serves about 1% of total trips 

and this figure increases to 3% in Full automation scenario. 

In the other words, there is a shift to AMoD and PT in 

Partial and Full automation scenarios, at the expense of 

private vehicles. 

 

 
 

 

Fig. 4. Mode share among three scenarios   

Figure 5 compares total travel time by transport mode 

among the three scenarios. It seems that travel time in Full 

automation scenario is the highest across all scenarios, for 

all activities. When looking at daily total travel time (figure 

not included), the numbers are similar between two 

scenarios: Base case and Partial automation. However, in 

the scenario of Full automation, travel time by public 

transport increases considerably from around 40,000 hours 

to nearly 55,000 hours for buses and from about 12,000 

hours to over 23,000 hours for MRT. This is probably due 

to the shift to public transport mentioned above. The fact 

that AMOD price is assumed to be higher than that of public 

transport might have contributed to the low take-up rate for 

AMOD and high take-up rate for bus and MRT. 
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Fig. 5. Daily total travel time  

Figure 6 shows the share of all trips by number of 

transfers. The share of trips without transfer is highest in 

Partial automation scenario, and lowest in Full automation 

scenario at all times. On the other hand, Full automation 

scenario has the largest share of transfer trips. Specifically, 

at peak hours, the number of trips with one transfer in this 

scenario increases by nearly 50% (from around 21% to 

around 33% in the morning peak hours), and similarly for 

trips with two or more transfers. It can be said that the 

Partial automation scenario tends to have the most efficient 

connection, followed by Base case and Full automation.  

 

 

Fig. 6. Share of transfer trips  

Figure 7 indicates the average number of passengers 

carried per vehicle across three scenarios. In the scenario of 

Base case and Partial automation, a human car carries 

around two people per hour. However, this figure increases 

to 10-12 people for AMoD vehicle at peak hours when it is 

introduced in the Partial and Full automation. During off-

peak hours, an AMoD vehicle serves about 4 and 9 people 

in the scenario of Partial and Full Automation respectively. 

AMoD is therefore more efficient than private cars in terms 

of number of passengers carried per hour.  

 

 

 

Fig. 7. Average number of passengers carried per vehicle   

D. Long-term impacts  

AMoD affects mode share, as described in the previous 

section. Under both partial and full automation, the car 

ownership rate is likely to decrease. The added accessibility 

originated from AMoD and also the decreased utility of 

private cars from restrictive measures would collectively 

contribute to the increased motivation of residents in the 

study area to give up car ownership. 

On the other hand, since the accessibility measure 

increases under the partial automation scenario, residence in 

the study area would become more attractive. Therefore, 

housing prices in the study area are likely to increase along 

with the willingness-to-pay level of household buyers on 

these housing units. Under the full automation scenario, the 

attractiveness of living in the study area would mostly 

depend on the tradeoff between accessibility gains from 

AMoD and the loss of private cars and taxis. In the current 

setting, it seems that the housing inside the study area is 

more favorable under full automation than it is under other 

scenarios, as detailed in [13].  

The impact of AMoD on job location choice may not be 

as obvious. Other factors including salary, promotion 

prospects, and other benefits may also affect the choice of 

job opportunities. Nonetheless, the increased accessibility 

by adding AMoD may attract more workers to work in the 

study area and encourage workers living in the study area to 

seek more distant jobs. Further information on long-term 

impacts will be detailed in our forthcoming paper [13].  

IV. CONCLUSIONS 

In this paper, we have examined a scenario in 20XX 

where AMoD is deployed in a relatively small area in 

Singapore, as either an additional mode on top of existing 
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modes, or as an exclusive one. Using an integrated 

simulation approach, our results show that AMoD may have 

several effects on individual’s accessibility, which will 

consequently influence their long-term and mid-term 

choices. Specifically, deployment of AMoD in the study 

area will lead to significant increase in accessibility for 

people who live in the area and do not own cars. For car-

owners, however, restricting private vehicle ownership will 

result in a loss in accessibility. With increased accessibility 

in the Partial Automation scenario, houses and jobs in the 

area may become more attractive, resulting in more people 

willing to relocate to the area. Changes in accessibility will 

also affect mode share, including an increase in public 

transport usage (mode share and travel time) at the expense 

of private mode. The introduction of AMoD will also lead 

to higher transportation efficiency as on average shared AVs 

will carry more passengers per hour than human cars. 

Overall, we found that a scenario in which AMoD is an 

additional mode is a preferred option, whereas the exclusion 

of AMoD will lead to lower accessibility and reduced 

transportation performance. We have not carried out the 

microscopic simulation but expect that AMoD will also 

have significant short-term impacts. 

Our paper demonstrates the potential of ABA as an 

integration indicator in integrated land-use transport models, 

which suggests important implications for micro-simulation 

approaches in LUT analysis. Our study is explorative in 

nature yet the preliminary results may provide some useful 

implications for urban and transport planners in their AVs 

policies decision-making process.  
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