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Microbial communities are often highly diverse in their composition, both at the level of coarse-grained taxa
suchasgenera aswell as at the level of strainswithin species. This variability canbedrivenbyboth extrinsic
factors like temperature, pH, etc., as well as by intrinsic ones, such as demographic fluctuations or ecologi-
cal interactions. The relative contributions of these factors and the taxonomic level at which they influence
community structure remain poorly understood, in part because of the difficulty of identifying true com-
munity replicates assembled under the same environmental parameters. Here, we address this problem
using an activated granular sludge reactor in which millimeter scale biofilm granules represent true com-
munity replicates whose differences in composition are expected to be driven primarily by biotic factors.
Using 142 shotgun metagenomes of single biofilm granules we found that, at the commonly used genus-
level resolution, community replicates varied much more in their composition than would be expected from
neutral assembly processes. This variation, however, did not translate into any clear partitioning into dis-
crete community types, i.e. the equivalent of enterotypes in the human gut. However, a strong partition
into community types did emerge at the strain level for the most abundant organism: strains of Candida-
tus Accumulibacter that coexisted in the metacommunityǁ-i.e. the reactorǁ-excluded each other within
community replicates. Single-granule communitiesmaintained a significant lineage structure, whereby the
strain phylogeny of Accumulibacter correlated with the overall species composition of the community, in-
dicating high potential for co-diversification among species and communities. Our results suggest that due
to the high functional redundancy and competition between close relatives, alternative community types
are most likely observed at the level of recently differentiated genotypes but not higher orders of genetic
resolution.
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Microbes outside the lab rarely occur as individual clonal units, but exist as populations that are diverse on
at least two levels: one, on the level of member species within microbial communities1; and two, on the
level of genotypes within an individual ‘species’2,3. Recently, puzzling patterns have emerged related to both
of these levels of diversity. Samples from similar environments have been found to differ greatly in their
species-level composition, despite a high degree of conservation in community-level metabolic function4,5.
Compositional differences manifest in terms of variation in species abundances that cannot be explained
with simple models of neutral assembly from common species pools6,7. In this framework, communities
are conceived as ‘patches’ that are colonized from a stable species pool. Explaining the large compositional
differences generally requires assuming that dispersal is limited or that interspecific interactions determine
which bacteria will dominate within a patch8,9.

In the extreme case, the processes of assembly, dispersal, and interactions can lead to the emergence of
community types, i.e. distinct assortments of species on patches that do not appear to inter-mix with one
another10, potentially due to incompatibilities between species. Concomitant with the variation in species
abundance across patches, a more fine-grained assessment of genetic diversity reveals that what is commonly
considered an individual species is often in fact a large collection of highly diversified genotypes. These
genotypes combined can contain hundreds or even thousands of genes that are unique to only a subset of
individual genotypes within the ‘species’11–13. Such nested taxonomic variability—with species abundances
fluctuating strongly among replicate communities and each species itself acting as a ‘community’ of strain
variants (i.e. a biological population)—is frequently overlooked in surveys of community structure due to
the limitations inherent to the use of molecular markers (but see refs # [14–16] for some exceptions). This
begs the question as to whether and to what degree strain-level variation influences community assembly
processes, and whether the observed between-community compositional variation is not just a direct conse-
quence of the within-species variation. Answering these questions requires (i) detailed knowledge of how
much compositional variation remains when all environmental influences are accounted for, and (ii) how
much strain-level diversity actually exists within each replicate community, where ecological interactions are
frequent and can impact community assembly.

Detecting the effects of ecological interactions on community assembly is often difficult as it requires
either strong external environmental consistency between sampled populations, or otherwise complete in-
formation of all environmental factors that are important for community function. Obtaining complete
environmental information is generally impossible to date, as we lack the necessary understanding of the
joint metabolic program of a whole community. Furthermore, any two natural communities will generally
not experience uniform environments across the scales that are relevant for microbial interactions. Exam-
ples include communities around marine particles17, within soil aggregates18 or in dental plaque biofilms19.
Full experimental control of the environment is in principle conceivable in a laboratory setting, but any ex-
perimental setup would need to be able to ‘grow’ communities to the level of complexity and diversity that
adequately mimics natural communities. The lack of good environmental data at length scales that are rel-
evant to the size of a community20 make the analysis of community structure and in particular community
types extremely challenging, as apparent community types may just be the consequence of environmental
variation unaccounted for during sampling.

In this paper, we use a well-controlled but complex engineered microbial community to ask: (i) how
much residual community variation remains at relevant community scales when the external environment is
uniform; and (ii) how strain-level variation structures microbial communities. In particular, we study the mi-
crobial community that constitutes the granular biomass in a laboratory scale granular enhanced phosphorus
removal (EBPR) reactor21,22. EBPR is one of the prime forms of microbe-mediated wastewater treatment,
as well as one of the best-studied model systems in microbial ecology. EBPR reactors have characteris-
tic microbial communities depending on their operating conditions, often either enriching for phosphorus
accumulating organisms (PAOs) or glycogen accumulating organisms (GAOs). Genomic studies of the mi-
crobial community in EBPR reactors have revealed that Candidatus Accumulibacter phosphatis (henceforth
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Accumulibacter) is the numerically dominant PAO23,24, and Candidatus Competibacter (henceforth Com-
petibacter) is the dominant GAO, under respective favorable conditions25–27. The Accumulibacter clade of
uncultured organisms has been considerably well studied. Accumulibacter is actively involved in phospho-
rus removal by accumulation of intracellular polyphosphate, the primary sink of phosphorus in activated
sludge23. Natural populations of Accumulibacter can be extremely diverse and reactor conditions select for
a few specific micro-clades, leading to the establishment of a few dominant Accumulibacter variants within
the reactor28,29. These micro-clades co-occur with other microbial taxa of diverse metabolic capabilities such
as nitrifiers, denitrifiers or degraders of aromatic compounds25,30. Despite this diversity, EBPR reactors can
maintain a relative stable performance for many months or even years.

The granular nature of the activated sludge biomass within bubble-column sequencing batch reactors
imposes an interesting and unique spatial structure to the community: each granule can be seen as a self-
organized replicate community within a well-mixed reactor environment. Thus, from an ecological stand-
point, these reactors have two characteristic length scales: (i) the global reactor scale (meters), which repre-
sents a meta-community composed of multiple granule; and (ii) the local granule scale (millimeters), which
corresponds to single replicate communities composed of many populations31. Functional consistency is
generally assessed on the reactor scale—a length scale that is comparable to typical studies on marine or soil
communities. However, biotic interactions such as cross-feeding, public goods exploitation32, antagonism33,
and predation occur at the local single-granule scale and will likely control species abundances.

Results

Large between-granule variation within a single reactor
Our first aim was to determine the variation in microbial community composition across granules, or patches.
To this end we sampled a total of 142 granules from a single experimental EBPR column reactor—the con-
trolled metacommunity—at two time points (see Fig. 1) and performed shotgun metagenomic sequencing
on individual granules (see Methods). We then mapped the sequencing reads to a database of reference
genomes to obtain a genus-level community composition of each individual granule. Overall, 42,777,533
reads out of a total of 57,896,625 (74%) mapped to reference genomes in the database, of which 24,994,161
(43%) had normalized mapping quality of at least −1.86 (roughly 70% sequence identity) and were thus
considered in the downstream analysis (see Methods and Figs. S1 and S2).

The overall reactor-level composition was dominated by a single genus, Candidatus Accumulibacter, with
a mean relative abundance of 54% (Fig. 1b). In total, 217 distinct genera recruited reads (Fig. S4), of which
47 comprised 90% of all reads. Within this set, the other dominant genera next to Accumulibacter were
Candidatus Competibacter, Acidovorax, Azoarcus, and Nitrospira, which are typically found in these type of
reactors21,26.

The reactor-level compositional consistency with previous studies, however, did not translate to uniform
community composition in individual granules within a single reactor (Fig. 1b). Accumulibacter relative
abundance fluctuated greatly across granules: from as low as 13% to as high as 93%. This large spread in rel-
ative abundance is captured by the coefficient of variation across samples, which was 37% for Accumulibacter.
The coefficient of variation is the standard error divided by the mean and accounts for decreasing standard
error as the relative abundance decreases. Despite this variation in relative abundance, Accumulibacter was
rather conserved in comparison to the typical genus (Fig. S5). Competibacter, Nitrospira, Nitrosomonas, and
Novosphingobium varied even more strongly than the typical genus, with coefficients of variation greater than
100% and overall variation of over two orders of magnitude (Figs. 1b and S5).

The variation in relative abundances was higher than expected under a model of neutral stochastic as-
sembly from a single global species pool (i.e. metacommunity). A maximum likelihood fit of the relative
abundances to a neutral model in the Sloan et al.34 framework predicts a very small value for the product
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Figure 1: High degree of variability among replicate communities at the level of genera. a. Overview of the analysis process. Individual
granules were sampled from an EPBR column reactor and submitted for shotgun metagenomic sequencing. Reads were then mapped to a
database of reference genomes. The number of hits were normalized by genome length and tabulated by granule. b. Relative abundance
of the top forty genera. Orange circles show the log10 mean relative abundance across all granules. The grey dots indicate the relative
abundance of each genus per granule. The bars on the right show the coefficient of variation of the relative abundance for each granule.
c. Principal component analysis (PCA) projection of the log10 relative abundance variation across granules. The contour lines show a 2D
kernel density estimate in the space of the first two principal components (PC). The grey lines indicate the direction of variation of the top
20 individual genera that explain the most variance, and the length of the thick portion indicates the amount of variation explained in the
first two PC. The identity of genera is indicated by numbers corresponding to panel d. Granules were sampled in two batches (squares:
May; circles: November), and the colors of the granules indicate the dominant Accumulibacter type (red: UW-1, blue: UW-2, green: BA-91). d.
Amount of variance in the first two PC explained by the top 20 genera. The numbers correspond to the numbers in panel c.
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of number of individuals per patch (granule) times the dispersal probability, Nm ≈ 358.4. Because the
number of bacterial cells in a granule is much larger than this number, the dispersal probability under the
neutral model would have to be very small to be consistent with the model predictions. Yet, even with such
a small dispersal probability, the neutral model would predict a variation in relative abundance that does not
match our data (see Fig. S6), and overall we reject the neutral model with p < 0.001.

Nevertheless, the large variability of specific genera across replicate communities within the same abiotic
context raises the question of whether the granules might assemble into distinct community types, with
neutral stochastic fluctuations around the typical composition of each type. Community types could then be
interpreted as distinct species pools from which the replicate communities assemble.

A principal component analysis (PCA) of the log relative abundances only weakly partitions the granules
into types (Fig. 1c). Granules mostly segregate according to sampling time (squares and circles in Fig. 1c),
though the separation between time points is not perfect. No natural cutoff for the partitioning of within and
between group variance appears in a k-means clustering (Fig. S7). Alternative ordination methods based on
Bray-Curtis and Aitchison distances qualitatively reproduce this apparent lack of structure (Fig. S8).

The first two principal components jointly explain a large 55.7% of the overall compositional variation.
We can extract and visualize the contributions from each genus to the variation explained by the principal
components (grey rays in Fig. 1c). Interestingly, Accumulibacter variation is not the main explanatory factor
for overall compositional variation (direction 17 in Fig. 1c). Granules are rather most strongly differentiated
based on the abundance of Competibacter, followed by Nitrospira. Certain genera appear to covary in similar
directions (e.g. 3, 6, 7; Fig. S9), and a portion of these appear to be conditionally dependent on each other
(Fig. S10). Taken together, there is remarkable granule-to-granule variation in community composition
within the reactor, yet no clear compositional classification into types emerges on the level of genera.

To test whether some of the weak structure found at the level of genera could be determined by micro-
scale differences in abiotic parameters, we determined the effect of granule size on community structure,
as size can have important consequences for the micro-scale environment, e.g. by limiting the diffusion of
oxygen to the internal parts of the biofilm granule. We measured the size of the November 2014 granules,
which had a mean diameter of 3.2 mm (s = 1.1mm), where the smallest and largest granule had a diameter
of 1.6 mm and 7.8 mm, respectively. Of the top eleven principal components that explain over 95% of the
compositional variance, only principal components PC2, PC3 and PC11 correlated significantly with gran-
ules size after Benjamini-Hochberg corrections (see Tab. 1 and Fig. S11). This indicated that community
composition did vary predictably with granule size in a compound manner along principal components PC2
(15.0%) and PC3 (10.0%), especially (PC11 only explained 0.75% of the overall variance). In order to visual-
ize how individual genera change in relative abundance with respect to granule size, we calculated Spearman’s
correlation coefficients for the top twenty most important genera in the PC2/PC3 direction. Among these
that varied with granule size, potential denitrifiers were enriched in larger granules, while nitrifiers showed
an enriched trend in smaller granules (Fig. S12). Hence, some of the weak structure observed at the level of
genera can be partially explained by differences in granule size with respect to oxygen flow.

Granules are differentiated based on strain-level differences
We hypothesized that the lack of clear differentiation between granules might also in part be due to the
rather coarse grouping of genotypes based on genus. Although two populations of the same genus can
have relatively similar function in terms of core metabolism (e.g. preferred electron donors and acceptors),
even two genotypes within the same species can differ strongly in their ecological interactions, in particular
those mediated by secondary metabolism35. Hence, the coarse-grained classification afforded by the genomic
approach taken so far could obscure important patterns of ecological structure in the community. We tested
this hypothesis by reconstructing the strain-level variation of Accumulibacter—the dominant species in the
granules—which is known to display a remarkable genotypic diversity across reactors of different types and
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geographical location36.
Using a database of ten previously assembled partial and complete reference genomes of Accumulibac-

ter, we found that at least three distinct genotypes coexisted within the reactor granular biomass (Fig. 2a).
This was consistent with a classification based solely on the polyphosphate kinase ppk1 gene, the most com-
monly studied marker of Accumulibacter diversity (Fig. S13a)28,37,38. Remarkably, these three genotypes
excluded each other at the single granule level (Fig. 2a). Of the ten genomes assembled in previous surveys
of Accumulibacter diversity, only the four genomes UW-1 (ppk1 type IIA), UW-2 (IA), BA-93 (IA), and
BA-91 (IIC) occurred at non-negligible abundances in our reactor, whereby UW-2 and BA-93 have been
previously shown to be almost identical in their core genome36. For most granules—if UW-2 and BA-93
are considered a single reference—sequencing reads were almost exclusively recruited to one of the three ref-
erence genomes, respectively (Figs. 2a and S14). This implied the existence of alternative community types
which are visible only at the level of strain variants. Given these observations we asked how much of the
previously observed compositional variation across community replicates was driven by the three different
Accumulibacter types that dominate the reactor. To test this, we first classified granules that consisted of
80% or more of a single genotype as ‘pure’ in terms of genotype. With this classification, 101 of the granules
were of type UW-1, 22 of type UW-2 (or BA-93), 4 of type BA-91, and 15 were of mixed type UW-1
and UW-2. We then compared the compositional variation within and between ‘pure’ granules grouped by
Accumulibacter type to ask to what extent Accumulibacter type conditioned the large variability previously
observed. Overall community composition based on the top three principal components differed between
granules of the same Accumulibacter type (ANOVA: F (2, 105) = 6.95, p = 9.41 · 10−7), indicating that
some of the compositional variation at the community level is statistically linked to the type of Accumulibac-
ter that dominated the granule. However, the significant differentiation was primarily driven by the different
community composition observed in the four granules of type BA-91 (after removing four BA-91 granules,
ANOVA: F (1, 102) = 1.94, p = 0.127; see also Fig. S8).

An analysis of single nucleotide polymorphism (SNP) variation within and between granules confirmed
that Accumulibacter was more clonal within granules than expected from the overall reactor diversity (Fig. 2b,c).
To assess genetic diversity, we realigned all reads that were recruited to any of the Accumulibacter reference
genomes by using a single reference genome as an alignment scaffold. For each aligned site we then calcu-
lated the nucleotide diversity, which is the probability that two randomly chosen individuals from within a
granule will have a polymorphism at the given site, and averaged across the whole genome. Using this ap-
proach we estimated diversity both within single granules and between any two granules. Fig 2b shows that
the distribution of between-granule diversities is characterized by a long tail corresponding to the inter-type
comparisons (e.g. type UW-1 vs. UW-2), which is absent from the single granule diversity distribution (Fig
2c). Moreover, diversity between granules of the same type (e.g. red bars in Fig 2c for UW-1) was still higher
between granules than within them, indicating that each Accumulibacter type carried significant strain-level
diversity that segregated across, more than within granules. This observations made us question whether
the micro-evolutionary history of Accumulibacter beyond the classification into three broad types could be
linked to the variability observed at the community level.

Lineage-level genetic structure correlates with compositional structure and shows signs of co-
diversification
In order to study the micro-evolutionary history of Accumulibacter within the granular biomass of the re-
actor, we took advantage of the comparatively low genomic Accumulibacter diversity within granules. We
reconstructed three phylogenetic trees from consensus sequences based on realignment against each of the
three reference genomes, and combined them into a single phylogeny of Accumulibacter across granules
(see Fig. S15), where each tip of the tree represents the Accumulibacter population in a given granule. In
agreement with our previous analysis, the phylogenetic structure reflected the large distances between Accu-
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Figure 2: Strains of Accumulibacter segregate among community replicates. a. Heatmap of the relative proportions of reads that map
to the 10 published reference genomes of Accumulibacter. Reference genomes are arranged in columns and individual granules are in rows,
sorted by majority type for readability. The tree showing the relationship between reference genomes is taken from Skennerton et al.36. b,c.
Histogram of the Accumulibacter nucleotide diversity between and within granules. The overall bar height indicates the total number/pairs
of granules within the respective histogram bin, and the colors indicate the partitioning of that bin by majority Accumulibacter type. The
color code follows panel a, with purple indicating granules of mixed UW-1/UW-2 type. d. Accumulibacter phylogeny of granules. Each tip
corresponds to a Accumulibacter consensus sequence from an individual granule. The ten reference genomes from panel a are included
in the tree and show the partitioning of granules based on type. The color gradient of the tips indicates the composition of granules from
panel a.
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mulibacter types, with the UW-1, UW-2, and BA-91 granules segregating in different clades (Fig. 2d).
The phylogeny also revealed a more fine-grained association between the Accumulibacter genetic struc-

ture and the ‘auxiliary’ community composition (i.e. excluding Accumulibacter). The matrix of phylogenetic
distances between granules correlated significantly with compositional distance (number of tips, n = 142;
Spearman’s ρ = 0.149; Mantel test p < 0.001, 1000 permutations). There was no significant correlation
between the Accumulibacter genetic structure and the relative abundance of Accumulibacter only (number
of tips, n = 142; Spearman’s ρ = 0.0497; Mantel test p = 0.071, 1000 permutations), indicating that Accu-
mulibacter genetic structure correlates with its auxiliary community rather than Accumulibacter abundance
itself. This association was only in part driven by the difference in composition of granules of type BA-91,
as the correlation persisted even when those granules were excluded from the analysis (n = 138; Spearman’s
ρ = 0.122; Mantel test p < 0.001, 1000 permutations). The correlation can also be inspected visually, where
sub-clades of the Accumulibacter tree—i.e. granules with genetically similar Accumulibacter populations—
are also more similar in the overall community composition (Fig. 3). Hence, the fine-scale genetic lineage
structure of the Accumulibacter populations in each granule corresponds to the fine-scale differences in the
composition of the auxiliary community to Accumulibacter.

Although ecological associations between taxa are often studied at the genus or species level, there is
a priori no reason why interactions should be confined to those levels of genetic resolution. Informed by
the link between the population genetic structure of Accumulibacter and the community composition, we
extended the phylogenetic analysis to other genera to ask whether associations between different taxa occur
at the strain-level. Similarly to Accumulibacter, we determined SNP frequencies with a coverage of at least
three and reconstructed phylogenies from consensus alignments for eight of the most variable genera across
samples: Competibacter, Dechloromonas, Acidovorax, Nitrospira, Nitrosomonas, Thauera, and Azoarcus. The
genetic structure of the individual genera correlated significantly across granules (Fig. S16). This pattern
suggests that some bacterial populations are co-diversifying within the reactor environment.

Discussion

This paper uses the granular biofilm communities in an activated granular sludge reactor as a controlled
model system with which to tackle a fundamental problem in microbial community ecology and evolution,
namely the interplay between community structure and strain-level variation in bacteria. First, we found that
community composition at the level of genera is highly variable across replicate communities—i.e. granules—
despite a homogeneous external abiotic environment and a common inoculum (i.e. global species pool).
Second, while individual replicate communities are only poorly distinguished on the basis of genus-level
taxonomic characterization, strain-level genetic resolution of member species reveals a clear partitioning of
replicates into community types. Third, communities that are genetically similar in the abundance of the
dominant member Accumulibacter are also more similar in overall community composition, and there is
indication that certain member populations display similar evolutionary histories across granules.

The surprising large variability in community composition indicates to us that biological interactions play
a significant role in the assembly of the local patch communities in granules. The amount of variation that
would be expected from neutrally assembling microbial communities has often been viewed in the light of
ecological theory of macro-organisms, such as mainland-island biogeography and Hubbell’s Unified Neutral
Theory of Biodiversity. These theories predict that local island or patch communities can indeed vary in their
composition if either the mainland/meta communities from which they are colonized are different, or if dis-
persal between patches is small enough such that initial differences in colonization cannot be equalized. For
microbes, however, the question of dispersal ability has mostly been discussed at length scales that are orders
of magnitude larger than an individual cell39. In our model system, there is strong periodic mixing such
that the bacteria should in principle not be limited by dispersal between patches21. Therefore, we posit that
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Figure 3: Accumulibacter strain-level phylogeny correlates with compositional structure. Left: The phylogeny is the Accumulibacter
phylogeny from Fig. 2c. Right: The composition of each granule is shown using the relative abundances of the top 10 genera from Fig. 1b.
Granules are ordered according to a hierarchical clustering based on the Aitchison distance. The tips of the phylogeny (left) are connected
to the corresponding compositional bar (right) by lines. Lines are colored according to the following criterion: orange, the genetically closest
neighbors of the granule in the phylogeny are more compositionally similar that would be expected by chance; brown, the compositionally
closest neighbors are genetically more similar than would be expected by chance; black, both is true; grey, no significant association.
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Figure 4: Schematic view of the relationship between phylogenetic depth and community structure. At the level of clades (e.g. genera)
there is high variability among replicate communities but little structure in community space (no community types). However, closer to the
tips of the phylogeny, at the level of strains within species, strong community types emerge. We propose this pattern emerges because of
the high functional redundancy and competition among strains. These two features imply that two replicate communities can be functionally
equivalent (to first approximation) independently of the strains that populate them, and that the co-occurrence of two `strains' in the same
granule is ecologically unstable and therefore unlikely to be found.

the large variability in relative abundances between communities is due to interspecies interactions that can
preclude or facilitate the coexistence of specific community members. For example, the Candidatus Com-
petibacter clade varies over multiple orders of magnitude across granules, and—importantly—is strongly
anti-correlated with Accumulibacter. Previous studies have shown that Accumulibacter and Competibac-
ter are in direct competition and can be preferentially enriched for depending on operating conditions27.
The reactor studied here was fed with both propionate and acetate as a carbon source. Propionate-only
reactor conditions can provide Accumulibacter with an advantage over Competibacter, while acetate-only
reactors have previously resulted in more erratic compositional dynamics with Competibacter dominating at
times25,27. Given this differential effect of carbon source on the dominant species at the reactor scale, it is
intriguing to consider the coexistance of Accumulibacter and Competibacter in terms of niche partitioning
at the granule scale. Such niche partitioning is generally employed to explain the coexistence of two or more
competitors that occupy the same habitat40,41. In the case of our granules, while the availability of two carbon
sources might indeed stabilize the coexistence of Accumulibacter and Competibacter on the metacommunity
scale, they nevertheless do appear to segregate on the individual patch scale, despite the a priori availability
of niches on each granule. While the respective preferred carbon source of either organism should be ho-
mogeneously distributed across the whole reactor, it is likely not the only resource for which they compete.
This highlights that—at least for bacteria—niche differentiation can rarely be reduced to a single nutrient
dimension.

The differentiation of replicate communities on the basis of Accumulibacter type highlights the impor-
tance of phylogenetic resolution when studying interactions and their effect patterns of community structure.
At coarse-grained levels of genetic resolution—such as the level of genera—the patterns of community struc-
ture are weak and communities cannot be clearly partitioned into discrete types (Fig. 4). Interestingly, most
other comparative studies of microbial communities, for example of the human gut microbiome, are also
based on coarse-grained phylogenetic markers like 16S rRNA and similarly detect only weak patterns of
structure42. In contrast, our study is to our knowledge one of the first that attempts to compare communities
at deep genetic resolution and does indeed find a clear pattern of community partitioning due to the mutual
exclusiveness of the various genotypes of the same species. Although such an extreme physical segregation
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between strains seems to indicate that each granule grows from a clonal colony of Accumulibacter, given the
high density of bacteria in the reactor it is not obvious how such strong founder effects could be maintained
in the absence of more direct competitive interactions. We therefore hypothesize that the observed patterns
of exclusion between community types reflect strong competition between functionally equivalent classes in
an environment with strong spatial structure.

A crucial question is to what extent the three types of Accumulibacter are functionally distinct. Previous
studies have investigated differences in Accumulibacter populations from different ppk1 clades. One sug-
gested functional differences is the potential ability of type IA to use nitrate as a terminal electron acceptor,
while type IIA might not36,43,44. Unfortunately, using our genomic approach it is not straightforward to
detect these particular differences, as the genomes of both types have been shown to contain the necessary
genes, but it is still unclear whether the pathways are functional in both types. These and potentially other
functional differences between Accumulibacter types could indeed result in differential attraction of auxil-
iary community members. This is in part supported by the correlation between the Accumulibacter genetic
structure and the auxiliary community compositional structure. A deeper investigation into the distribution
of functional genes across granules and the organisms that contain them in their genomes might prove an
intriguing path forward.

The link between Accumulibacter genetic structure and community composition, as well as the apparent
correlation between phylogenies of different genera provides a means for speculation about the life history
of granules in a reactor. Two scenarios for the appearance of such signals are: (i) as a granule initially assem-
bles and ‘grows’, the specific genetic variant of Accumulibacter in the granule determines both the relative
abundance of the other members as well as specifically those genetic variants with which this particular Ac-
cumulibacter clone was previously associated in the past; (ii) the life history of granular biofilms involves
cycles of growth, break-up or budding-off, and re-growth. Both scenarios would result in similar phylo-
genetic patterns, yet (i) requires preexisting co-adaptations between specific lineages while (ii) might just
reflect correlated neutral diversification. As so often is the case, reality is likely a combination of both sce-
narios. Because the diversity found in the Accumulibacter phylogeny is most likely rather old and pre-dates
the diversity generated in the reactor, we hypothesize that alternative community types—each containing a
different Accumulibacter type—were formed early during the establishment of the granular sludge. These
community types could then have been maintained by granule fission, and their frequencies regulated by
competition between full communities, leading to the mixed granule assemblages found in extant reactors.

Because of the tight spatial linkage between organisms over ecological and evolutionary timescales, gran-
ular biomass offers a unique opportunity to study the drivers of microbial community structure and evolution.
Full-granule fission—although not directly observed but only inferred in this paper—plays a crucial role in
conferring cohesive evolutionary histories to granules, akin to evolutionary histories of individual organisms.
Even though scenario (ii) above does not a priori call for lineage-level co-adaptations between organisms as
a prerequisite, the spatial coherence does set the stage for co-evolution to occur.

Overall, the study of granular biomass communities that co-occur in a unified reactor environment il-
lustrates a previously untapped resource to inform long-standing questions in microbial ecology. Granular
communities allow for the necessary experimental control of the abiotic external environment, while con-
serving community differentiation at length scales that are relevant for microbial interactions20. Importantly,
they provide an ideal platform to combine high-resolution genetic studies of individual species with com-
munity function and stability.
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Methods

Experimental methods
Aerobic granular sludge reactor and sample collection. The aerobic granular sludge was cultivated in a
double-wall glass bubble-column reactor (BCR) with a working volume of 1.75 L, an internal diameter of 62
mm, and a height-to-diameter ratio of 11. The synthetic influent wastewater contained equal concentrations
of acetate and propionate as carbon and energy sources in terms of chemical oxygen demand (COD: 300
mg/L; 2.7 mM or 200 mg/L propionate, 4.7 mM or 280 mg/L acetate). Ammonium and phosphate were the
main nutrient sources. The remaining composition of the influent was the same as described in Lochmatter
& Holliger22. The reactor was operated with a sequencing batch regime (SBR) and the fixed 3 h SBR cycles
consisted of the following phases: anaerobic feeding without mixing (60 min), constant aeration (110 min),
settling (5 min), and withdrawal (5 min; 50% of total volume). The hydraulic retention was thus 6 h. The
biomass concentration and the sludge age were maintained at 15 ± 2 gVSS/L and 15–20 days, respectively,
by automated purge of excess sludge from the aerated mixed liquors. Temperature was controlled at 20°C,
and pH was regulated at 7.0 ± 0.2 by dosing HCl or NaOH at 0.5 mol/L. Samples from this reactor were
collected once in May 2014 and a second time in November 2014 for manual sorting of individual granules
and DNA extraction.

DNA extraction and sequencing. Genomic DNA was extracted from granules with the MasterPure DNA
Purification Kit (Epicentre #MCD85201) following the standard protocol with an additional overnight en-
zymatic digestion step. Genomic libraries were prepared using the Nextera XT Library Prep Kit following
the manufacturer’s protocol. The resulting mean fragment size was around 500bp. Sequencing was per-
formed on Illumina MiSeq (250bp paired-end) at the Genomic Diversity Center (ETH Zurich, Zurich,
Switzerland) and Illumina HiSeq (100bp paired-end) at the Whitehead Institute of Biomedical Research
(MIT, Cambridge, MA, U.S.A.) for the May and November granules, respectively. The sequencing runs
resulted in a total of 8,799,127 (46 samples) and 41,060,893 (96 samples) paired-end reads, respectively, for
a total of 99.7M reads.

Determination of granule size. We determined granule size only for those granules from November 2014.
Sizes of granules were measured by drawing a two dimensional polygon around the contour of imaged gran-
ules and calculating the enclosed area, A. The granule radius was approximated by assuming a perfect circle
with area equal to the polygon, r =

√
A/π.

Statistical methods
Reference database construction. Raw sequencing reads were preliminarily run through MG-RAST45 to
obtain a rough representation of genera contained in the reactor. Representative genomes of the genera that
accounted for 90% of the mapped reads were then downloaded from NCBI and complemented with the
Accumulibacter references genomes36 and the Competibacter genome46. A full list of accession numbers is
given as Supplementary Data.

Quality trimming and merging. The paired raw sequencing reads were first merged and trimmed with
PEAR 0.9.047. Reads that were not merged were additionally quality trimmed with Trimmomatic 0.3648

(LEADING:3, TRAILING:3 SLIDINGWINDOW:10:20, MINLEN:36). Overall, this produced a data set of
57,896,625 reads.

12

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted March 11, 2018. . https://doi.org/10.1101/280271doi: bioRxiv preprint 

https://doi.org/10.1101/280271
http://creativecommons.org/licenses/by-nc-nd/4.0/


Read mapping. All reads were mapped against the representative database using Bowtie2 2.3.3.149. Be-
cause we expected the reference genomes in the database to be quite different from the actual genotypes in
the reactor, we used end-to-end alignment with very relaxed settings and no minimum cutoff (--score-min
L,0,-10 -N 1). This allowed us to obtain the best hit—if any—for each read and then subsequently filter
out reads in a second step based on the alignment score using bamcnt50. We normalized the alignment scores
from Bowtie2 by the read length, and fit a Gaussian mixture model to scores using the R package Rmixmod51.
This revealed three classes of alignment scores (Fig. S1), which we roughly attributed to: (A) matches to
a correct genotype, normalized alignment score > −0.36, which translates to 6 mismatches per 100 base
pairs when there are no insertions/deletions; (B) matches to a related genome, normalized alignment score
> −1.86, which translates to 31 mismatches per 100 base pairs without mapping gaps; and (C) matches to
distantly related genomes or spurious matches. We subsequently only considered reads from categories A
and B.

Genus 16S tree. For each genus in our reference database, we extracted the 16S sequence from the NCBI
16S Microbial Sequences database (Bioproject 33175; Aug 6, 2016). Sequences were aligned using Clustal
Omega 1.2.1452, and the phylogeny was subsequently reconstructed with FastTree 2.1.953 using a GTR
model.

Genus abundances. The genus of each reference genome was obtained from the taxonomic classification
in NBCI. Reads were then grouped and enumerated for each granule according to the genus of the matched
reference genome. In order to avoid double counting of DNA fragments for paired reads, we only counted
the match of the forward read. Reads that mapped to reference sequences that were identified as plasmids
were discarded. Because the expected number of DNA fragments in the library is proportional to the overall
genome size, we further normalized the genus read count by the average genome length (excluding plasmids)
of each genus in the database. Relative abundances were calculated by dividing the normalized counts by
their sum for each granule.

Coefficient of variation. We first calculated the coefficient of variation (CV) of the relative abundance,
rig, for each genus g: vg = sd (rig) /mean (rig). Even if the composition of each granule were equal, we
would expect a certain CV just because of random sampling from the population. Assuming that sam-
pling is uniform with respect to each member, the distribution for the abundances should follow a multi-
nomial distribution. Hence, the expected CV of the relative abundance just as a result of sampling is:
v̄g =

√
(1− pg)/(nipg), where pg is the true relative abundance and ni is the sampled population size.

Using the number of reads as a proxy for the sampled population size, and choosing the lower bound of the
number of reads across all granules as n = 104 (see also Fig. S2), we obtain a conservative estimate for the
expected CV purely due to sampling effects.

Additional noise from technical sources (DNA extraction, library preparation, etc.) might furthermore
contribute to the observed variation in relative abundance. We thus derived a heuristic approach to identify
genera that showed an especially large (or small) coefficient of variation. We first regressed the CV onto
the log10 mean relative abundance of the genera. Because the amount of expected variation increases with
decreasing relative abundance, we excluded a small number of genera with a particularly low mean relative
abundance of below 10−4 from the regression (see Fig. S5). We then calculated Cook’s distance of the CV
for each genus—a standard measure used to identify outliers in regression analysis. Genera that had a Cook’s
distance of more than two standard deviations above (or below) the mean in log space were highlighted as
strongly varying (or conserved).
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Neutralmodel. We tested whether the observed relative genus abundances arose from a neutral community
assembly process using the framework of Sloan et al.34. The Sloan model can be viewed as a large population
size diffusion approximation of Hubbel’s Unified Neutral Theory of Biodiversity6. In absence of growth rate
differences between the individual genera, the probability density that a genus, g, within an individual patch,
i, has relative abundance rig depends on the relative abundance in the metacommunity, pg, the migration
probability into the patch, m, and the total patch population size, Ni, and follows a beta distribution,

ϕ(xig|Ni,m, pg) ∼ Beta(Nimpg, Nim(1− pg)). (1)

Note, that the parameters Ni and m only occur together as a compound parameter mi = Nim. The overall
log likelihood that our data arose from a neutral model then just is

lnL =
M∑
i=1

G∑
g=1

lnϕ(xig),

where M is the total number of patches (granules) and G is the number of genera. Assuming that the
population sizes are the same across all patches, mi = m∀i, we find the maximum likelihood estimate of m
and (p1, . . . , pG) by maximizing lnL. Because of the constraint

∑
i pi = 1, we use the transformation yi =

pi/p1 for i = 2, . . . , G and maximize the likelihood numerically using the subplex algorithm implemented
in R54. The metacommunity relative abundances are easily found by back transforming the yi using p1 =
1/(1 +

∑
i yi) and pi = yip1.

We assess the goodness of fit analogous to Etienne55, by simulating data sets under the maximum like-
lihood Sloan model and comparing the likelihoods of the simulated data to the real data. The number of
simulated data sets that have a likelihood that is smaller than the real data yield empirical p-values for the
support of the neutral model. Furthermore, the Sloan model yields an expectation for the mean and variance
of relative abundances in each patch, and hence also for the coefficient of variation,

vg =

√
1− pg

pg(Nim+ 1)
. (2)

Note, that when migration/dispersal is frequent, m → 1 and the coefficient of variation tends to that of a
multinomial sampling model vg → v̄g.

Multivariate analysis. We performed a principal component analysis (PCA) by singular value decomposi-
tion of the sample covariance matrix of center log-ratio transformed (CLR) relative genus abundances56. A
pseudo count equal to the mean genus count per sample was added to counts from each sample to account
for uneven sequencing depths. Genus counts in each sample were then normalized by the total number of
genus counts per sample. Genus rays were extracted as the eigenvector components of the top two principal
components. Additionally, we also performed multidimensional scaling on Aitchison distance—Euclidian
distance of CLR vectors—and Bray-Curtis dissimilarity matrices using metaMDS in the vegan package57.
We assessed the partitioning of granule communities into discrete units through a k-means clustering of the
CLR transformed values with cluster numbers of 1, 2, . . . , 30. Clustering at different cluster numbers was
compared on the basis of the within-cluster sum of squares versus the overall sum of squares. We determined
conditional independence between genera from the inverse covariance matrix of CLR transformed relative
abundances. We estimated the inverse covariance matrix using a graphical LASSO regularization approach58

with a regularization parameter of ρ = 0.001.
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Accumulibacter genomic diversity. In order to assess Accumulibacter genomic diversity, we first re-aligned
all reads that mapped to any Accumulibacter reference genome to the UW-1 reference. For each base pair
position on the genome that were covered by at least three reads, we then estimated allele frequencies,
{pA, pC , pG, pT }, as the fraction of nucleotide variants that were observed. We calculated within gran-
ule nucleotide diversity as the probability that two randomly chosen DNA fragments would have different
nucleotide variants at a base position k,

πwithin(k) = 1−
∑

b∈{A,C,G,T}

pb(k)
2,

and averaged this over all sites with coverage of at least three using vcf2hs50. Similarly, we calculated
nucleotide diversity between granules i and j using vcf2fst50 as the average across all sites k with coverage
of at least three in both samples i and j:

πbetween(k) = 1−
∑

b∈{A,C,G,T}

pb(k)
(i)pb(k)

(j).

We then generated Accumulibacter consensus sequences for each granule using the majority nucleotide at
each base with coverage of at least three using vcfConsensus50.

In order to reconstruct Accumulibacter phylogenies including the ten reference genomes, we additionally
randomly fragmented all ten reference genomes as well as the Dechloromonas reference into 10,000 fragments
of 1000 base pairs each using fastaFrag50. We aligned these to the UW-1 reference and called consensus
sequences in the same manner as for the granule samples. Finally, we reconstructed phylogenies using Fast-
Tree 2.1.1053 with the gamma-optimized CAT model and the default pseudo count, and subsequently rooted
the trees with Dechloromonas as an outgroup. To account for potential biases of using the UW-1 reference,
we repeated this procedure for the UW-2 and BA-91 references. We calculated a combined cophenetic dis-
tance as the element-wise geometric mean of all three cophenetic distance matrices, and built a tree from the
combined distance matrix using least-squares FastME59 implemented in ape60.

Comparing the Accumulibacter phylogeny and the community composition. We calculated the Spearman
correlation between the combined cophenetic distance matrix and the community distance measures: (i)
the Aitchison distance of the whole community; (ii) the renomalized subcommunity with Accumulibacter
removed, and (iii) the distance between granules based on Accumulibacter relative abundance only. To test
the overall significance of these correlations, we performed Mantel tests, which involves shuffling the rows
and columns of the distance matrices, recalculating the correlation coefficient, and enumerating the number
of times the shuffled correlation coefficient is larger than the correlation coefficient calculated from the full
data.

To identify coherent subclades we calculated the geometric mean phylogenetic or Aitchison distance,
respectively, of the three closest neighbors, and compared this to the geometric mean distance of 1000 ran-
domly chosen triplets. A granule was marked as coherent if fewer than 5% of the random triplets had a
geometric mean distance that were below the actual nearest neighbor geometric mean distance.

Comparing phylogenies between genera. For a subset of genera, we generated consensus alignments in the
same manner as for Accumulibacter—i.e. by realigning all reads that mapped to the genus onto a single ref-
erence genome—and subsequently reconstructed phylogenies using FastTree (see Figs. S17, S18, S19). We
used the following reference genomes: Acidovoarx sp. (NC_018708.1), Azoarcus sp. (NC_008702.1), Can-
didatus Competibacter denitificans (GCF_001051235.1), Dechloromonas aromatica (NC_007298.1), Nitro-
somonas sp. (NC_015731.1), Nitrospira defluvii (NC_014355.1), Thauera sp. (NC_011662.2). Granules for
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which fewer than 1000 bases had a coverage of at least 3 were dropped from the trees. We calculated the
Spearman correlation between the cophenetic distances for pairs of genera and assessed significance with
Mantel tests.

Marker gene analysis. We performed a multiple sequence alignment of 1 012 published Accumulibacter
ppk1 sequences and a Rhodocyclus ppk1 sequence as an outgroup using MUSCLE61. A phylogenetic back-
bone tree was then reconstructed using RAxML with GTRGAMMA rate variation. We identified 2 897
ppk1 sequence reads using HMMER 3.1b262 based on the 1 012 sequences reference set. These reads were
then added to the multiple alignment with MUSCLE. Finally, the identified reads were phylogenetically
placed on the backbone using pplacer 1.1.alpha1763.
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Supplementary Information

Table 1: Principal compontents PC2 and PC3 that explain an important proportion of the variance correlate significantlywith granule
size.

% variance S ρ p (adjusted)
PC1 50.0% 138342 0.062 1
PC2 15.1% 82281 0.442 7.21 · 10−5

PC3 10.0% 210504 −0.428 1.52 · 10−4

PC4 8.44% 176522 −0.197 0.595
PC5 3.13% 157249 −0.067 1
PC6 2.39% 136372 0.075 1
PC7 2.27% 153590 −0.042 1
PC8 1.38% 146497 0.006 1
PC9 1.00% 142847 0.031 1
PC10 0.97% 138705 0.059 1
PC11 0.75% 92748 0.371 2.19 · 10−3

Spearman’s rank correlation of granule size was calculated for the top 11 principal components that account
for 95% of the variance. The reported p-values for a correlation different from zero are Hochberg corrected.
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Figure S1: Distribution of alignment scores for reads. Alignment scores are calculated using the default scoring from Bowtie249: mis-
matches are penalized with a score of −6, gap openings by −5 and gap extensions by −3. Scores are then normalized by read length.
A read score of−1.0 thus implies a mismatch at every sixth base on average (if there are no gaps). We identified three regimes of score
matching: (A) strong match, likely a correct reference genome for the specific genome in the sample; (B) weak match, likely a close refer-
ence genome of the species or genus; and (C) spurious matches. All analysis in the main text was performed using a cutoff of−1.86 that
includes regimes A and B.
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Figure S2: Number of reads that passed the mapping cutoff as a function of the total number of sequencing reads per granule. The
number of reads that mapped to an entry in the reference database with sufficient normalized score (> −1.86) did not differ systematically
between granules.
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Figure S3: Reference genomes per genus. The grey bars show the total number of reference genomes per genus in our database.
Genomes with multiple chromosomes/contigs are grouped by NCBI taxonomic ID. Black+ show the average number of taxa across samples
that recruited reads. Orange points show the evenness of recruitment across taxa. An evenness value of 1 indicates that all taxa within a
genus recruited an equal proportion of reads, while an evenness of close to zero indicates that only a single taxon recruited most of the
reads.
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Figure S4: Phylogenetic tree of the genera occurring on granules. The tree is based on 16S sequences from a single representative
species of each genus, respectively. The top 20 variance explaining genera are indicated in bold.23
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Figure S5: A subset of genera varymore strongly than themean genus. Each points shows the mean relative abundance and coefficient
of variation of a genus across all granules. The straight grey lines show the fit of linear regressions across 1000 bootstraps. For each
bootstrap replicate, genera were resampled with replacement. Extremely rare genera with a mean relative abundance of below 10−4 were
not included in the regression model. Genera that had a Cook's distance above or below the mean of two times the standard deviation are
colored in grey and labeled.
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Figure S6: Observed versus fitted relative abundances under the Sloan neutral model. The circles show the maximum likelihood
relative abundances of each genus in the metacommunity as a function of the median relative abundance of the genus across the granules.
Orange horizontal bars show the actual observed 95% quantile of relative abundance across the granules, and black vertical bars show the
95% quantile for data simulated under the maximum likelihood neutral model withNm = 258.4.
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Figure S7: k-means clustering of the log relative abundances. The within versus between cluster sum of squares decreases as a
power-law with the number of clusters (exponent≈ −1.56). Hence, there does not appear to be a concrete cutoff for the best number of
clusters.
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Figure S8: Two dimensional ordination plots based on multi-dimensional scaling. The mapping dimension for the Aitchison and Bray-
Curtis distance is set to three and two, respectively. The bottom panels show the same layout as the top, but highlights the estimated ellipses
and hulls.
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Figure S9: Covariation for a subgroup of genera.

27

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted March 11, 2018. . https://doi.org/10.1101/280271doi: bioRxiv preprint 

https://doi.org/10.1101/280271
http://creativecommons.org/licenses/by-nc-nd/4.0/


1
2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Gemmatimonas |
Flavobacterium |

Burkholderia |
Accumulibacter |
Pseudomonas |

Dechloromonas |
Brevundimonas |

Nitrosomonas |
Rhodobacter |

Xanthomonas |
Mesorhizobium |

Stenotrophomonas |
Novosphingobium |

Thauera |
Azospira |

Pseudoxanthomonas |
Acidovorax |

Azoarcus |
Nitrospira |

Competibacter | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure S10: Graphical representation of the inverse covariance matrix for the top 20 varying genera. Blue and orange edges/boxes
indicate positive and negative conditional dependencies between genera, respectively. Edge thickness and color intensity indicate the
strength of the conditional dependence. The inverse covariance matrix for all genera was calculated using the graphical Lasso approach58,
with a regularization parameter of ρ = 10−4.
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Figure S11: Linear regression of granule radius on principal components two and three.
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Figure S12: Genera differ in relative abundance between small and large granules. The points show the Spearman correlation between
granule radius and relative abundance. Bootstrap error bars were determined through 1000-fold resampling of granules and recalculation
the Spearman correlation coefficient.
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Figure S13: Accumulibacter ppk1 analysis.
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Figure S14: Most granules are dominated by a single Accumulibacter clade. The position on the simplex shows the relative abundance
of the three dominant Accumulibacter clades in each granule. The corners correspond to 100% of a single clade. The grey lines show relative
abundances of 90%, 80%, 70%, 60%, and 50% moving from a corner to the center of the simplex.
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Figure S15: Methodological overview of phylogenetic reconstruction from reference genomes using the short reads.
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Figure S16: Spearman correlation between cophenetic distances of granules based on different genera. Statistically significant
correlations (ρ > 0 with p < 0.1) are in black type, while non-significant correlations are in grey type. Each square shows Spearman's
rank correlation ρ, the number of granules for which there was enough coverage in both genera to be included in the analysis, and the
empirical p-value from a Mantel test.
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Acidovorax Azoarcus Competibacter

Figure S17: Granule phylogenies for Acidovorax, Azoarcus, and Competibacter.
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Dechloromonas Thauera

Figure S18: Granule phylogenies for Dechloromonas and Thauera.
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Nitrosomonas Nitrospira

Figure S19: Granule phylogenies for Nitrosomonas and Nitrospira.
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