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Dynamic enlargement of a hole in a sheet: crater formation and
propagation of cylindrical shock waves

Tal Cohena,b,∗

aDepartment of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
bDepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

Predicting the shape of a crater formed by high velocity impact is of interest in several fields. It can
aid in design of more efficient protective structures, in forensic analysis of bullet holes, and in under-
standing the effects of meteorite impact in both space systems and in extreme geological events. In
this paper we present, for the first time, a complete theoretical solution of the dynamic plane-stress
problem. We consider the steady-state expansion of a cylindrical hole in a strain hardening elasto-
plastic sheet and find that a self-similar field emerges if the ‘specific cavitation energy’ is constant.
It is shown that at the quasistatic limit this solution reduces to available classical solutions, while at
high expansion velocities shock waves can appear. Investigation of the constitutive sensitivities of
the expansion field is conducted and compared with available results for the spherical field which is
commonly applied to predict resistance to high velocity penetration. It is shown that shock waves
appear at significantly lower expansion velocities, in the plane-stress deformation pattern, for which
material compressibility is found to have a negligible effect. This insensitivity can be taken advantage
of in the future for design of light weight protective layers by incorporating porosity.

Keywords: shock waves, metal plasticity, dynamic cavity expansion, cavitation

1. Introduction

In 1947 G. I. Taylor reports on an investigation on the enlargement of a circular hole in a thin plastic
sheet (Taylor, 1948). Considering a perfectly plastic material, Taylor combines the Tresca yield con-
dition with the Mises flow rule to arrive at what we would refer to today as a non-associated plasticity
model, and studies the quasistatic expansion process. He compares his results with those from an
unpublished communication with Hance A. Bethe1 and concludes that Bethe’s model is “inconsistent
with any theory of plasticity”. Later, R. Hill (1950) considers the same problem and subjects Taylor’s
work to similar critisism. He claims that “Taylor’s method of integration was insufficiently accurate”
and that “the almost exact agreement... found experimentally by Taylor is certainly fortuitous”. All
three authors considered situations in which the hole expansion process occurs symmetrically under
plane stress conditions, such that “the metal near the hole piles up into a thickened crater”. To exam-
ine if the symmetry assumption holds, Taylor conducted experiments in lead sheets. The expansion

∗Corresponding author.
Email address: talco@mit.edu (Tal Cohen)

1This communication is apparently an extension of earlier work by Bethe (1941).
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was achieved by a series of tapering sections of steel cones that penetrated the sheet while being ro-
tated. Images of two representative samples where shown (Taylor, 1948), and have been included in
Appendix A of this paper.

The controversy between Bethe, Taylor, and Hill is revisited in more detail by Masri et al. (2010),
and resolved by employing modern constitutive models and integration methods. It revolves around
the values of the radial pressure applied at the hole (p), and the deformed thickness of the ‘crater’
(h). These two values combine to predict the work invested in the quasistatic expansion process,
which is proportional to their product (ph). More recently, Cohen et al. have shown that, in fact, both
p and h can become singular at the cavity wall, while their multiplication arrives at an asymptotic
value (Cohen and Durban, 2013a, 2010; Cohen et al., 2009). Accordingly, they define the ‘specific
cavitation energy’ - sc = ph/h0, with h0 representing the initial thickness of the sheet. This asymptotic
quantity can be interpreted as the incremental work needed to create a new unit of hole volume, during
self-similar expansion. It provides a measure for the resistance of a solid to penetration.

Motivated by the wartime need for prediction of penetration resistance of protective metal targets,
the studies by Bethe, Taylor, and Hill, provided a meaningful estimation of the energy invested in the
perforation process. However, their results did not account for the dynamics of the process and, in par-
ticular, the role of inertia in resisting high velocity perforation. In fact, it is during the same years that
the first theories of dynamic propagation of plastic deformation were being formulated. Perhaps most
notable is the work of von Karman and Duwez (1950) that considered tensile impact of a bar. Quite
surprisingly, to this day, the fundamental problem and the quasistatic solutions presented by Bethe,
Taylor, and Hill, have not been extended to dynamic expansion. This is despite the fact that its solu-
tion can extend to explain several additional phenomena including extreme geophysical events, such
as meteorite impact (Melosh and Collins, 2005; Goodier, 1965), volcanic eruptions and earthquakes
(Gudmundsson, 2016, 2014), and the growing threat of orbital debris on space operations (Johnson,
2010; Smirnov and Kondratyev, 2009; Hopkins and Swift, 1970; Hosseini and Abbas, 2006).

In absence of solutions for the dynamic expansion problem in plane-stress conditions, Goodier
(1965), followed the notion of Bishop et al. (1945), to determine the indentation resistance of metal
plates by employing the spherically symmetric cavity expansion field. To account for inertia, he
used solutions by Hill (1950) and Hopkins (1960). This methodology has been shown to provide
good prediction for deep penetration problems in various materials (Forrestal et al., 1995; Forrestal
and Tzou, 1997; Masri, 2010; Chen and Li, 2002; Ben-Dor et al., 2005; Warren and Forrestal, 1998;
Johnsen et al., 2018; Vorobiev et al., 2007; Masri and Durban, 2009; Gabi et al., 2013), and over
the years has developed into an active research discipline. For thin sheets, other studies continue to
employ the quasistatic plane-stress expansion field pioneered by Bethe, Taylor, and Hill, as recently
reviewed by Ryan et al. (2018). In particular, models based on the ‘specific cavitation energy’ (Cohen
et al., 2010a; Masri, 2014, 2015; Cohen and Durban, 2013a, 2010; Cohen et al., 2009), have been
identified as providing the best performance.

In this paper we present, for the first time, a complete solution of the dynamic plane-stress prob-
lem, which reduces to the solutions by Bethe, Taylor, and Hill at the quasistatic limit. This solution
is achieved by identifying that when a constant ‘specific cavitation energy’ applied to the sample, is
larger than the quasistatic value (sd > sc), the cylindrical hole will expand in a self-similar manner at
a constant velocity. Additionally, it is shown that if the expansion velocity exceeds a critical value,
a cylindrical shock wave will form. Solutions of the entire field, including the shock discontinuity
are obtained and sensitivity to the constitutive properties (i.e. yield stress, elastic compressibility, and
strain hardening) are examined. In the next section we begin by presenting the problem setting. Then,

2



in section 3, the governing equations are derived. In section 4, the solution procedure is presented,
including derivation of an analytical solution for the elastic zone. In section 5 we present results and
provide a discussion in comparison with available results for the quasistatic field, and for the dynamic
spherical cavity expansion field. Finally, we conclude in section 6, and discuss directions for future
work.

2. Problem setting and the self-similar field

Consider a cylindrical cavity embedded in a plane sheet being expanded radially at constant expansion
velocity ȧ by application of internal (dimensionless) pressure p, as illustrated in Fig. 1. The sheet, of
undeformed thickness h0, spans indefinitely in the plane, hence disturbances are not reflected back to-
wards the cavity. It will be shown that in this setting, assuming plane-stress conditions and permitting
changes in thickness, a self-similar field emerges in which the ‘specific cavitation energy’ (Cohen and
Durban, 2013a, 2010; Cohen et al., 2009) invested in expanding the cavity remains constant in time,
although the applied pressure and deformed thickness at the cavity wall become singular.

Figure 1: Schematic illustration of the sheet in both its (a) undeformed configuration, and (b) deformed configuration,
shown by a cross-section. The cavity wall is shown at the normalized radial location ξ = r/a = 1, a plastic shock may
appear in the elastoplastic zone (1 6 ξ 6 ξi) and its normalized radial location is denoted by ξ = ξp. An elastic precursor,
at ξ = ξe propagates into the undisturbed material followed by an elastic zone (ξi 6 ξ 6 ξe). The interface between the
elastic and elastoplastic zones is denoted by ξi.

Assuming symmetry about the axis of the cylindrical cavity, the material velocity v is in the radial
direction and we denote the current and reference radial coordinates by r and R, respectively. A
self-similar field must be independent of the current radius of the cavity a, and thus, if it exists, all
field variables can be written as functions of a single independent variable, the dimensionless radial
coordinate

ξ =
r
a
. (1)

As was previously suggested for the spherical field in Durban and Fleck (1997) we may define the
dimensionless velocity along the radial coordinate by

V =
v
ȧ
. (2)
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Hence, at the cavity wall (r = a), we have both ξ = 1 and V = 1. We can now write the useful
transformations

d()
dr

= ()′
1
a
, (̇) = ()′(V − ξ)

ȧ
a

where ()′ =
d()
dξ

, (3)

for the radial and time differentiation of a field variable in the self-similar state of cavity expansion,
respectively.

As shown for the spherical cavity expansion field (Cohen et al., 2010b; Cohen and Durban, 2013b;
Durban and Masri, 2004), for materials with a definite yield point, in absence of remote loading, we
expect that at the steady-state an elastic precursor, at ξe, propagates into the undeformed stationary
regime, followed by an elastoplastic interface, at ξi, that separates the elastic region from the elasto-
plastic region, in which the material has yielded. It was shown in (Cohen et al., 2010b; Cohen and
Durban, 2013b) that in the spherical setting, there exists a critical expansion velocity ȧ, at which
a plastic shock wave may appear (ξp). In the present study we investigate the analogous field in a
plane-stress deformation pattern, hence we have an additional field variable; the current thickness of
the sheet, denoted by h. The propagating singularity surface, identified as a shock wave, implies a
finite jump in field variables and as such induces a localized jump in the thickness of the sheet. A
similar geometrical discontinuity was obtained by Knowles (2002), in the investigation of shock wave
propagation due to tensile impact of rubber.

In the next sections we will show that a self-similar cavity expansion field exists in the plane-
stressed deformation pattern. It is associated with a constant level of energy input invested in hole
expansion (i.e. specific cavitation energy), while the applied radial pressure at the cavity wall is not
finite, in contrast to the extensively studied spherical pattern.

3. Governing equations

Continuity. We begin by writing the continuity equations in the most general form. This will be
useful later in deriving the jump conditions across a shock discontinuity.

In the plane-stress deformation pattern, though changes in thickness of the sheet are permitted,
motion is assumed to occur only in the plane. Conservation of momentum in the axially symmetric
field is thus written for radial motion

∂(hσ̄r)
∂r

+
h
r

(σ̄r − σ̄θ) =
∂(ρhv)
∂t

+
1
r
∂(rρhv2)

∂r
. (4)

which employs the underlying assumption, that the field is uniform through the thickness of the sheet.
Here ρ is the current density and (σ̄r, σ̄θ) are, respectively, the radial and circumferential principal
stress components. In the following formulation we will remove the bar notation to denote the dimen-
sionless values, henceforth all stress components in the formulation have been nondimensionalized
with respect to the elastic modulus E.

The second continuity equation requires conservation of mass

∂(ρh)
∂t

+
1
r
∂(rρhv)
∂r

= 0 . (5)

By combining equations (4) and (5) we may rewrite the equation of motion in the more compact
Navier-Stokes form

∂(hσr)
∂r

+
h
r

(σr − σθ) =
ρ

E
hv̇ . (6)
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We now insert relations (1) - (3) into (5) and (6) to arrive at the self-similar versions of the equation
of motion

(hσr)′ +
h
ξ

(σr − σθ) = m2 ρ

ρ0
h(V − ξ)V ′, (7)

and conservation of mass

V ′ +
V
ξ

+ (V − ξ)
(
h′

h
+
ρ′

ρ

)
= 0 , (8)

respectively. Here we have used the dimensionless expansion velocity

m =
ȧ

CE
. (9)

where CE =
√

E/ρ0 is the wave velocity in a long elastic rod and ρ0 is the density of the material in
its undeformed state.

Constitutive response. Following the standard principles of Mises flow theory plasticity, we write
the dimensionless Mises effective stress in the present plane-stress field as

σ2
e = σ2

r − σrσθ + σ2
θ . (10)

Employing an associated flow rule, we take the total logarithmic strain rate as the sum of a Hookean
hypoelastic part and a plastic part, and invoke the principle of plastic power equivalence, which for
the present deformation pattern, leads to a set of three scalar constitutive equations

ε̇r = σ̇r − νσ̇θ + ηrε̇p ,

ε̇θ = σ̇θ − νσ̇r + ηθε̇p ,

ε̇z = −ν(σ̇r + σ̇θ) − (ηr + ηθ)ε̇p ,

(11)

where, for compactness, we have defined

ηr =
2σr − σθ

2σe
, ηθ =

2σθ − σr

2σe
. (12)

Here (εr, εθ, εz) are the radial, circumferential and out of plane logarithmic strain components, respec-
tively, ν is the Poisson’s ratio, and εp is the effective (logarithmic) plastic strain; a known function
of the effective stress. We limit our analysis to rate independent material response and neglect ther-
mal effects. Hence, at this point in the formulation it is most instructive to proceed with an arbitrary
hardening relation εp = εp(σe), which can be determined by the standard tension test for a material of
interest.

Strain kinematics. The logarithmic strain components in the present deformation pattern can be
written as

εr = ln
(
∂r
∂R

)
, εθ = ln

( r
R

)
, εz = ln

(
h
h0

)
. (13)

and thus the dilatation is

εr + εθ + εz = ln
(
ρ0

ρ

)
. (14)
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which is an integrated form of the continuity equation (8). On the other hand, by adding relations (11)
and performing straight forward integration over time we find that

εr + εθ + εz = 3βσh , (15)

where the plastic branch does not participate due to plastic incompressibility. Here σh = (σr + σθ)/3
is the hydrostatic stress, and β = 1 − 2ν is the compressibility parameter. Combining the above two
relations yields the useful result which is independent of the loading path

ρ

ρ0
= e−3βσh . (16)

By differentiating the strain components (13) we have the strain rates

ε̇r =
dv
dr
, ε̇θ =

v
r
, ε̇z =

ḣ
h
, (17)

which, in combination with the self-similar field relations (1)-(3), can be inserted into (11) to arrive
at the self-similar form of the constitutive relations

V ′ = (V − ξ)
(
σ′r − νσ

′
θ + αηrσ

′
e
)
, (18)

V
ξ

= (V − ξ)
(
σ′θ − νσ

′
r + αηθσ

′
e
)
, (19)

h′

h
= ε′z = −ν(σ′r + σ′θ) − α(ηr + ηθ)σ′e . (20)

Note that since εp = εp(σe) we have replaced ε′p = ασ′e where

α =
dεp

dσe
. (21)

We can now rewrite the equation of motion (7) with the aid of (16) and (20) as

σ′r + σrε
′
z +

1
ξ

(σr − σθ) = m2e−3βσh(V − ξ)V ′. (22)

Summary of equations. At this point we have a system of four first-order nonlinear differential
equations (18)-(20) and (22) with the five unknown field variables (σr, σθ, σe, εz,V). An additional
relation is provided by definition of the effective Mises stress (10), which implies also a relation
between the plastic strain and the principal stress components. It is possible to reduce this system by
removing the dependence on σe and εz. First, by differentiating equation (10) we can write

σ′e = ηrσ
′
r + ηθσ

′
θ , (23)

which is substituted into equations (18)-(20) to arrive at the forms

V ′ = (V − ξ)
(
(1 + αη2

r )σ′r − (ν − αηrηθ)σ′θ
)
, (24)
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V
ξ

= (V − ξ)
(
(1 + αη2

θ)σ
′
θ − (ν − αηrηθ)σ′r

)
, (25)

ε′z = −(ν + αηr(ηr + ηθ))σ′r − (ν + αηθ(ηr + ηθ))σ′θ . (26)

Now, substituting (26) in (22) reads

(1 − σr(ν + αηr(ηr + ηθ)))σ′r − σr(ν + αηθ(ηr + ηθ))σ′θ +
1
ξ

(σr − σθ) = m2e−3βσh(V − ξ)V ′ . (27)

In summary, we have a set of three differential equations (24), (25) and (27) with three unknown
field variables (σr, σθ,V) that depend on the single independent variable ξ. Recall that ηr, ηθ are
known functions of σr, σθ defined in (12) and with the effective stress given in (10). Once a solution
is obtained, the density ratio ρ/ρ0 is given from (16), and the thickness ratio h/h0 can be obtained by
integration of (26) with the definition in (13)3. By (21), α is assumed to be a known function of σe.
To represent a broad range of plastic response, in the present investigation we will employ the power
law

εp =

0 σe < σy ,

σy

(
σe
σy

) 1
n
− σe σe ≤ σy ,

(28)

where σy is the dimensionless yield stress and n is the hardening index.

Shock Condition. The governing system of equations (22) and (24)-(26) may become singular if the
determinant of its coefficients vanishes, which after some algebra reads

∆ = (V − ξ)
[
1 − ν(1 + ν)σr + α((1 − 2νσr)η2

θ − σrηr(ηr + ηθ))

− m2e−3βσh(V − ξ)2(1 − ν2 + α(η2
r + η2

θ − 2νηrηθ))
]

= 0 .
(29)

From the above result, it is first noticed that singularity necessarily appears at the cavity wall
where V = ξ. This singularity is associated with the unbounded levels of stress that exist even at the
quasistatic limit (Cohen and Durban, 2013a, 2010; Cohen et al., 2009). Nonetheless, it appears only
at the boundary of the body and thus does not involve a discontinuity. On the other hand, the second
root of the above equation can occur within the material region. Accordingly, we can write a shock
condition in the form

m2e−3βσh(V − ξ)2 =
1 − ν(1 + ν)σr + α((1 − 2νσr)η2

θ − σrηr(ηr + ηθ))
1 − ν2 + α(η2

r + η2
θ − 2νηrηθ)

. (30)

If this singularity appears, the local representation of the governing equations is no longer sufficient
and jump conditions are required.
Jump Conditions. If a shock wave appears, in accordance with the shock condition (30), field vari-
ables may vary discontinuously across the propagating front where the governing equations are re-
placed with jump conditions that assure conservation of mass and momentum. If the field is self sim-
ilar, a shock wave propagates at a constant dimensionless radial location denoted here by ξw = rw/a
and with constant velocity,

Vw = ξw , (31)
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according to (3). Considering a frame of reference that moves with the discontinuity, in the steady-
state field, we may write the transformation δξ = ξ−ξw, such that the discontinuity is located at δξ = 0,
and any field variable g can be rewritten in the form g(r, t) = ĝ(ξ − ξw). Then, by substituting this
transformation into the continuity equations (4) and (5) and performing integration between δξ = 0−

and δξ = 0+ we arrive at the jump condition
s

h
h0
σr + m2 ρ

ρ0

h
h0

V(ξw − V)
{

= 0 , (32)

for continuity of momentum, and s
ρ

ρ0

h
h0

(ξw − V)
{

= 0 , (33)

for continuity of mass. The above two relations are plane-stress forms of the Rankine-Hugoniot jump
conditions. Both are readily written in terms of the dimensionless radial coordinate and velocity of
the self-similar field, and the square brackets denote the jump in the of the enclosed quantity across
the discontinuity (JgK = g+ − g−).

Since present system consists of four differential equations (24)-(27) with four unknowns (σr, σθ, εz,V)
, two additional jump conditions are needed to fully define the jump across the singularity. First we
identify that to permit discontinuity, singularity of the field equations must hold on both sides of the
shock. According to the shock condition (30), this translates to the jump condition

s
m2e−3βσh(V − ξw)2 −

1 − ν(1 + ν)σr + α((1 − 2νσrη
2
θ) − σrηr(ηr + ηθ))

1 − ν2 + α(η2
r + η2

θ − 2νηrηθ)

{
= 0 . (34)

An additional requirement that must be accounted for is compatibility, which for the present problem
translates to continuity of the circumferential strain. Hence, we return to the constitutive relation
(11)2, which we now write in incremental form, and require dεθ = 0 across the shock to write

dσθ − νdσr + ηθdεp = 0 , (35)

With the aid of (10), the above result can be rewritten in the form

(1 + αη2
θ)dσθ − (ν − αηrηθ)dσr = 0 . (36)

Now, by rearranging, we find that variations of stress throughout plastic deformation at constant
circumferential strain, obey the first order nonlinear differential equation

dσr

dσθ

= f (σr, σθ) where f (σr, σθ) =
1 + αηθ
ν − αηrηθ

(37)

Hence, for any given initial state (in front of the shock) represented by the pair (σ+
r , σ

+
θ ), isothermal

compression, by variation of εr at a constant εθ, follows a unique path up to the final state (behind
the shock), represented by the pair (σ−r , σ

−
θ ), which can be obtained by straight forward integration.

Although departures from the isothermal compression curve, defined by (37), are permitted within the
shock, and lead to dissipation, in absence of rate dependence and thermo-mechanical coupling, the end
states are assumed to exist on the curve. This provides us with a correspondence condition between
the two states and thus dictates permissible jumps across the shock discontinuity. In connection with
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available shock wave theories (Davison and Graham, 1979), the above relation essentially provides a
differential analog to the Hugoniot curve.

Boundary Conditions. Since the remote field is undisturbed and stationary, we may write the remote
boundary conditions as

ξ > ξe : σr = 0, σθ = 0, εz = 0, V = 0. (38)

At the cavity wall we prescribe the expansion velocity, which by definition implies

ξ = 1 : V = 1, (39)

which serves as a compatibility requirement.
For a given expansion velocity m, a physical self-similar solution exists if it is associated with a

finite level of applied load, which in the present field, is identified with the dynamic specific cavitation
energy

sd = p
h
h0

where p = −σr(ξ = 1) (40)

Though the boundary conditions (38) and (39) do not seem to depend on the expansion velocity, it is
the singularity of the equations at the remote field (ξ = ξe) that inserts an additional unknown, which
is directly related to m. In the next sections we present the solution procedure, beginning with an
analytical solution of the remote elastic zone, which appears if the material has a definite yield point.

4. Solution procedure

4.1. The elastic zone
In the elastic zone the plastic strain identically vanishes, thus α ≡ 0 and equations (24)-(26) reduce to

V ′ = (V − ξ)
(
σ′r − νσ

′
θ

)
, (41)

V
ξ

= (V − ξ)
(
σ′θ − νσ

′
r
)
, (42)

ε′z = −ν(σ′r + σ′θ). (43)

Upon subtracting equation (42) from (41) it is possible to perform integration and after some algebra
to arrive at the relation for the material velocity

V = ξ
(
1 − e(1+ν)(σr−σθ)

)
, (44)

this is inserted back into (42) to write

σ′θ − νσ
′
r =

1
ξ

(
1 − e(1+ν)(σθ−σr)

)
. (45)

Relations (41), (43) and (44) can now be inserted into the equation of motion (22) to write

(1 − νσr)σ′r − νσrσ
′
θ +

1
ξ

(σr − σθ) = m2ξ2e(1+4ν)σr−3σθ (σ′r − νσ′θ) , (46)

9



A further simplification is achieved by recognizing that in the elastic zone the dimensionless stress
components are small compared with unity |σr|, |σθ| � 1, and as previously suggested by Durban and
Masri (2004) for the spherical field, we may write the linearized form of the above two relations

νσ′r − σ
′
θ =

1 + ν

ξ
(σθ − σr) (47)

(1 − m2ξ2)σ′r + νm2ξ2σ′θ =
1
ξ

(σθ − σr) (48)

The determinant of coefficients of the above system is

∆2 = 1 − (1 − ν2)m2ξ2 (49)

Notice that, according to boundary condition (38), in the remote field the stress components vanish
and the system of equations is homogenous. Hence, a nontrivial solution at ξ = ξe can be obtained
only if the determinant vanishes (∆ = 0), thus further implying that the radial location of the elastic
precursor is given by

m2ξ2
e =

1
1 − ν2 (50)

and since in the dynamic field ξ < ξe we consistently have ∆2 > 0. It is worth noting that, according
to relation (3)2 in combination with (9), a wave at ξ = ξw propagates with the velocity

vw = CEmξw (51)

which by (50) implies that cylindrical waves in a thin linearly elastic plate propagate faster than
longitudinal waves in a long elastic bar (ve/CE = 1/

√
1 − ν2 > 1). Additionally, we find that the

elastic wave propagates at finite velocity, even if the material is incompressible (ν = 1/2). This is due
to the effective compressibility induced by the out of plane deformation. In the next section it will
be shown that this effective compressibilty dominates the response, such that the effect of the elastic
compressiblity becomes negligible.

We now proceed to solve the linear system of equations (47) and (48) to arrive at the two relations
for the radial and circumferential stress components

σr =
c
2

[
m2ν (1 + ν) ln (1 − ∆) −

∆

ξ2

]
, (52)

σθ =
c
2

[
m2ν (1 + ν) ln (1 − ∆) +

∆

ξ2

]
, (53)

where we have readily applied the stress free boundary condition (38) at ξ = ξe (with ∆ = 0). The
remaining integration constant c must be obtained by solving the entire field, to comply with the
compatibility condition at the cavity wall (39) for a given expansion velocity m.

Notice that the principal stress difference is

σθ − σr =
c∆

ξ2 . (54)
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Hence, in combination with (44), we find that the cavity boundary conditions (V = ξ = 1) cannot be
satisfied assuming a purely linearly elastic response. In other words, a linearly elastic solution to the
self-similar expansion problem does not exist.

Now, we may obtain the out of plane component of strain by integration of (43), which upon
substitution of the above stress components along with the boundary condition (38) reads

εz = −cm2ν2 (1 + ν) ln (1 − ∆) . (55)

Similarly, at the linear limit, the velocity field (44) reduces to

V = c(1 + ν)
∆

ξ
. (56)

Yield. The elastic zone terminates once the effective stress arrives at the yielding limit, σe = σy. By
assigning σe = σy in (10) and substituting the principal stress components with the relations (52) and
(53), we can find the location of the elastoplastic interface ξi

4σ2
y

c2 =
3∆2

i

ξ4
i

+
[
m2ν (1 + ν) ln (1 − ∆i)

]2
. (57)

where ∆i = ∆(ξi).
In the range 1 6 ξ < ξi, the material flows plastically. Due to the nonlinearity in this regime, we

shall solve the governing system of equations in the elastoplastic zone by numerical integration, as
will be discussed in the following section. It will be shown that under certain conditions shock waves
may appear in this zone and applying jump conditions across the discontinuity is imperative to obtain
a solution of the entire field.

4.2. The elastoplastic zone
Once plasticity sets in, the solution proceeds by straight forward numerical integration2 of the system
of four first order nonlinear differential equations (24)-(27), to find the four unknown field variables
(σr, σθ, εz,V). This is done by applying a shooting method such that for a given expansion velocity (m)
the integration constant c, in the elastic zone equations (52)-(57), is chosen so that the compatibility
condition at the cavity wall (39) is satisfied. If the cavity expansion rate is sufficiently high, then
the governing system of equations may become singular at a given radial location ξ = ξp within the
elastoplastic zone. That cylindrical singularity surface is identified as a shock wave. If a shock wave
appears, then jump conditions (32)-(34) are applied, along with the numerical integration of (37), to
obtain the isothermal compression curve, to resolve the entire field.

5. Results and Discussion

Following the solution procedure described in the previous section, results are obtained for self-similar
expansion in sheets of different constitutive properties and at various expansion velocities. Table 1
summarizes the set of representative material properties used to investigate the constitutive sensitiv-
ities of the expansion dynamics and the critical velocity at which a shock wave first appears (mc).

2Integration is performed using a forth-order Runge-Kutta method.
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Table 1: Material properties of investigated representative materials. Material 1 serves as a reference material. The critical
(dimensionless) velocity at which a shock wave first appears is denoted by mc. Recall that σy is dimensionless with respect
to the elastic modulus.

Material ν n σy mc

1 0.3 0.3 0.003 0.15
2 0.3 0.1 0.003 0.08
3 0.1 0.3 0.003 0.15
4 0.5 0.3 0.003 0.15
5 0.3 0.3 0.001 0.11

Figure 2: Curves of dimensionless principal stress components (σr, σθ), dimensionless velocity (V), and thickness ratio
(h/h0), as functions of the dimensionless radial coordinate (ξ), and for various expansion velocities (m). Fields are shown
for Materials 1 2 and 5. Notice that for all curves, ξ is shown on a logarithmic scale and the plotted range varies among
the insets to increase visibility of the region that develops near the cavity wall ξ = 1. In the bottom left side, thickness
ratio profiles are plotted also for Material 4 (yellow dashed lines), showing insensitivity to ν. On the top left side inset
shows enlargement of the region near the cavity.
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The self-similar fields that develop in sheets of Materials 1, 2 and 5, subjected to hole expansion
at different rates (as represented by m) are shown in Figure 2. For all materials, it is immediately
observed that as expansion velocities increase, the field concentrates near the cavity wall (ξ = 1)
and the gradients steepen. Beyond a critical expansion velocity (mc) a discontinuity is observed. By
comparing fields for Materials 1 and 2, (with n = 0.3 and n = 0.1, respectively) it is found that
material hardening also contributes to the localization of the response near the cavity wall. Hence, the
critical velocity for appearance of a shock is highly sensitive to the hardening index (Table 1).

As the quasistatic limit is approached (m → 0), we recover the results obtained in earlier studies
(Cohen et al., 2009; Masri et al., 2010). Therein, it was shown that for perfectly plastic materials
(with n→ 0), the solutions obtained by Taylor (1948) and Hill (1950) are recovered. Those results are
comparable to the black curves for Material 2 in Figure 2, and exhibit non-intuitive trends. Both the
radial and the circumferential stresses are shown to be non-monotonic. The radial stress decreases in
magnitude as the cavity wall is approached, while the circumferential stress changes signs throughout
the field. Similar non-monotonic behaviors are observed for all materials and can be explained by the
particular deformation pattern in which circumferential expansion and radial compression compete
in promoting hole expansion. Nonetheless, in all cases, the effective stress (derived from Eq. (10))
varies monotonically, as shown in Figure A.2 of the Appendix section. Additionally, it is observed
that the principal stress components and the effective stress, all approach a singularity at the cavity
wall.

Next, we examine the variations in thickness for the different fields. For the material with lower
hardening (Material 2) we find that the edge of the ‘crater’ is a thin knife edge, as described by Taylor
(1948). That sharp increase in thickness at the cavity wall appears also for the hardening materials
(Material 1 and 5), however only at high expansion velocities. For moderate expansion velocities a
peak value is observed (as shown also in (Cohen et al., 2009; Masri et al., 2010) for the quasistatic
limit). This peak value is accompanied by change in slope of the radial stress, as shown in the enlarged
region for Material 1.

Variations in density are shown in Figure A.2 of the Appendix section. Quite surprisingly, it is
found that over a broad range of parameters, elastic compressiblity leads to negligible changes in
density of the order of 1%. To further examine this nearly isochoric deformation, we compare results
obtained for different values of the Poisson’s ratio ν (i.e. Materials 1, 3 and 4) and we find a negligible
effect on the resulting field. This insensitivity is shown in Figure 2 by comparing the thickness profiles
for Material 1 (with ν = 0.3) and Material 4 (with ν = 0.5). Discrepancies between the responses of
the two materials are observed only in near the edge of the crater. It is found that the peak value of
thickness does not appear for the incompressible response. Overall, it is apparent that the thickening
of the plate is a preferable mechanism for cavity expansion, in comparison with volume change, and
the effect of material compressibility is localized to the vicinity of the crater3.

After examining the expansion fields for different representative materials, and identifying the
singularity that arises at ξ = 1, we now examine in Figure 3 the radial variation of the nominal
pressure

s = −σrh/h0, (58)

It is shown that in all cases the nominal pressure arrives at a finite value when the edge of the crater is

3Note that similar insensitivity to Poisson’s ratio was obtained in all field variables and for 0 < ν < 0.5. The
comparison in Figure 2 (shown by the yellow dashed lines) serves as a representative example.
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approached. According to equation (40), this value is the ‘specific cavitation energy’ - sd = s(ξ → 1).

Figure 3: Curves of dimensionless nominal stress (s) as functions of the dimensionless radial coordinate (ξ), and for
various expansion velocities (m). Fields are shown for three Materials 1, 2 and 5. Notice that ξ is shown on a logarithmic
scale and the plotted range is chosen to increase visibility of the region that develops near the cavity wall ξ = 1.

Figure 4: On the left - specific cavitation energy as a function of expansion velocity. Inset shows enlarged region. On
the right - integration constant c as a function of expansion velocity. Curves are shown for different material properties
defined in Table 1. Dashed curves are for comparison with spherical field with n = 0.3, σy = 0.003 and with two values
of ν indicated next to the curves.

To further investigate the dependence of the specific cavitation energy on the expansion velocity,
we plot curves of sd = sd(m) in Figure 4. Here we further confirm the insensitivity of the expansion
field to the elastic compressibility, by observing that the curves for Materials 1, 3 and 4 are indistin-
guishable. Curves for Materials 2 and 3, that have lower hardening index and yield stress, respectively,
expand at lower values of sd, with difference more pronounced at the quasistatic limit (an inset with
an enlarged view of this limit is shown). The curve for Material 2 is limited to values of m ≤ 0.15.
This limitation is due to numerical difficulties that arise in the high gradient zone along with high
sensitivity to the value of integration constant c, at high expansion velocities4. This increased sen-
sitivity is observed in Figure 4, by the formation of an asymptotic limit for the integration constant
c. Essentially, at these extreme expansion velocities, small perturbations in the far field response, as
dictated by c, are associated with large changes in the near field response.

To compare the results obtained for plane-stress expansion with the commonly applied spherical
field results, we have plotted in Figure 4 the ‘specific cavitation energy’ for the spherical field (from

4Recall that c arises in the solution of the elastic field (52)-(57).
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Cohen et al. (2010b))5 with n = 0.3, σy = 0.003 and with two extreme values of the Poisson’s ratio
ν = 0 and ν = 0.5. It is found that while the incompressible limit provides a strict upper bound
in the entire range, spherical expansion with lower values of ν can provide a good approximation
in an intermediate range of expansion velocities. Nonetheless, in the spherical field the appearance
of a shock is delayed to higher expansion velocities in the range 0.4 < mc < 0.7 in comparison to
0.08 ≤ mc ≤ 0.15 the present plane-stress field, for representative Materials in Table 1.

6. Conclusions

High velocity expansion of a cylindrical hole in a sheet is investigated in the context of large strain
J2 plasticity, accounting for strain hardening and elastic compressibility in a plane-stress deformation
pattern. While earlier studies have been limited to quasistatic expansion, or adopt dynamic results
obtained for spherically symmetric deformation, this study reveals that self-similar expansion does
exist in the plane-stress field and captures the shape of the crater that is formed and its dependence
on both the expansion velocity and the constitutive properties of the penetrated material. It is found
that a steady-state is reached when the energy invested in creating new hole volume - the ‘specific
cavitation energy’, is constant. Solutions of the entire field are obtained, including jump conditions
that are applied across a shock discontinuity, if it appears. Study of the constitutive sensitivities of the
resulting field reveals the influence of material hardening and yield stress on the dynamic expansion,
and shows that the effective compressibility, induced by out of plane deformation, dominates over the
effect of elastic compressibility of the material. At the quasistatic limit, results are shown to agree
with available solutions. In the dynamic range, comparison of the penetration resistance (the specific
cavitation energy) obtained for the present field, with available results for the spherical field, shows
significant geometric sensitivity; the spherical field is highly sensitive to elastic compressibility and
exhibits shock waves at expansion velocities that are of order of magnitude higher.

There are a number of limitations in the present analysis, which give rise to a multitude of addi-
tional open questions that should be subject for future work. The present formulation is restricted to
in plane motion and does not account for out of plane bending or plug formation. Thermo-mechanical
coupling is not accounted for, nor is strain rate dependence. Incorporating the later effect can poten-
tially be achieved by applying the methodology used in (Santos et al., 2019), for the spherical field.
Thermal effects can be accounted for by extending the work in Masri (2014) to include inertia. The
insensitivity to material compressiblity, identified in this work, suggests an avenue for exploration of
the dynamic performance of light weight protective layers, by incorporating porosity, as in Cohen and
Durban (2012, 2013a,b); Czarnota et al. (2017). Additional constitutive models can also be explored,
to study the response of reinforced concrete or geological materials (Vorobiev et al., 2007; Durban
and Papanastasiou, 1997), or the effect of mechanically induce phase transformations (Rodrı́guez-
Martı́nez et al., 2014).

By providing prediction of the geometry of the crater and its dependence on the penetration veloc-
ity, the results obtained in the present study can be used for forensic analysis of projectile penetration
in ductile metals. The dependence of penetration resistance on expansion velocity and the constitutive
properties of the target material can inform the design of more efficient protective layers.

5Note that for the spherical field the specific cavitation energy is identical to the cavitation pressure (i.e. sd = p). Find
comparison between quasistatic response in Cohen and Durban (2013a).
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Appendix

Figure A.1: Cross-section images of specimens from experiments by Taylor (1948). Image on the top shows symmetric
expansion. Image on the bottom shows bending out of plane that is reported to occur when the diameter of the hole is of
the order of 10 times the thickness of the plate.

Figure A.2: Curves of dimensionless effective stress (σe), and density ratio (ρ/ρ0), as functions of the dimensionless radial
coordinate (ξ), and for various expansion velocities (m). Fields are shown for Materials 1, 2 and 5. Notice that for all
curves, ξ is shown on a logarithmic scale and the plotted range varies among the insets to increase visibility of the region
that develops near the cavity wall ξ = 1.
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