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ABSTRACT

The sum-product algorithm (SPA) was recently shown to provide a

scalable methodology for multitarget tracking (MTT) using multiple

sensors. Here, we focus on another advantage of the SPA frame-

work, namely, its capacity for Bayesian fusion of heterogeneous

data sources and auxiliary information. We develop extensions of

the SPA-based multisensor MTT algorithm that integrate data from

an auxiliary surveillance system and geographic information about

standard target routes. The effectiveness of our approach is demon-

strated for a simulated scenario and for a real maritime scenario.

Index Terms— Multitarget tracking, factor graph, sum-product

algorithm, probabilistic data association, information fusion.

1. INTRODUCTION

Multitarget tracking (MTT) [1–12] aims at estimating the number

and states of multiple targets from measurements provided by one or

multiple sensors. The difficulty and complexity of MTT are mostly

due to the measurement origin uncertainty (MOU) [1], i.e., the fact

that it is not known from which target, if any, a given measure-

ment originated. Recently, a Bayesian message passing algorithm

for MTT that efficiently resolves the MOU problem was presented in

[3,4]. This algorithm uses the sum-product algorithm (SPA) [13] for

efficient approximate marginalizations of the joint posterior proba-

bility density function (pdf) of the target states.

In addition to improved scalability as discussed in [3–5],

the SPA-based MTT algorithm enables an efficient and effective

Bayesian fusion of heterogeneous sensors and other data sources. In

this paper, we consider the integration of information provided by

an auxiliary surveillance system such as the automatic identification

system (AIS) [14] and of geographic information about standard

target routes, such as sea lanes in a maritime environment [15].

This integration is achieved by the formal inclusion of an additional

sensor in the first case and by the introduction of multiple dynamic

models in the second case. The remainder of this paper is organized

as follows. The SPA-based MTT algorithm for multiple radar sen-

sors [3, 4] is briefly reviewed in Section 2, where also an adaptive

extension supporting multiple dynamic models [16] is described.

In Sections 3 and 4, we discuss the integration of, respectively,
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data provided by an auxiliary surveillance system and geographic

information about standard target routes. In Sections 5 and 6, the

performance of the algorithm proposed in Section 3 is assessed in a

simulated scenario and in a real maritime scenario, respectively.

2. SPA-BASED MULTISENSOR MTT ALGORITHM

This section reviews the SPA-based multisensor MTT algorithm [3,

4] and its extension to multiple dynamic models [16].

2.1. System Model

While the number of targets is unknown, we fix the maximum pos-

sible number of targets, nt. Accordingly, we consider nt potential

targets (PTs) k ∈K, {1, 2, . . . , nt} [3,4]. The existence of PT k at

a given (current) time step is described by rk ∈ {0, 1} in the sense

that PT k exists (does not exist) if rk is 1 (0). The state of PT k at

the current time step is denoted as xk; it consists of the PT’s position

and possibly further parameters, and is formally considered also if

rk = 0. The vector yk , [xT
k rk]

T will be termed the augmented

state of PT k. We also denote by y−
k , [x−T

k r−k ]T the augmented

state of PT k at the previous time step, and by y and y− the vectors

stacking all the augmented PT states at the current time step and at

the previous time step, respectively. The temporal evolution of the

kth PT state is described by the state-transition pdf f(xk|x
−
k ). This

is embedded in the augmented state-transition pdf f(yk|y
−
k ), which

also models the birth/death of PT k [4].

There are ns sensors s ∈ {1, 2, . . . , ns} that produce measure-

ments z
(s)
m resulting from the detection stage of the radar signal pro-

cessing chain [17]. An existing PT k (i.e., with rk=1) is “detected”

by sensor s—in the sense that it generates a measurement z
(s)
m at

sensor s—with probability q(s). Let M(s) , {1, 2, . . . , n
(s)
m } com-

prise the indices m of the measurements z
(s)
m produced by sensor s

at the current time. A measurement z
(s)
m generated by an existing

PT k is modeled by the likelihood function f
(

z
(s)
m

∣

∣xk

)

. We denote

by z(s) the vector of all the z
(s)
m , m ∈ M(s), and by z and z− the

vectors of all the measurements of all the sensors up to the current

time step and up to the previous time step, respectively.

The association between the measurements and the existing PTs

is generally unknown, and it is also possible that a measurement did

not originate from any PT (false alarm) or that a PT did not generate

any measurement (missed detection). This uncertainty is referred

to as MOU. We make the assumption—hereafter referred to as data

association assumption—that an existing PT can generate at most

one measurement at a given sensor and a measurement can originate

from at most one existing PT [1]. Let us define the PT-oriented



association variable a
(s)
k , k ∈K to be m∈M(s) if PT k generates

measurement m at sensor s, and zero if PT k is missed by sensor s.

Similarly, we define the measurement-oriented association variable

b
(s)
m , m∈M(s) to be k∈K if measurement m at sensor s originates

from PT k, and zero if it is a false alarm. Finally, following [5], we

define the indicator function Ψ
(s)
km

(

a
(s)
k , b

(s)
m

)

to be one if the values

of a
(s)
k and b

(s)
m are consistent and zero otherwise. More formally,

Ψ
(s)
km

(

a
(s)
k , b

(s)
m

)

= 0 if and only if either a
(s)
k =m and b

(s)
m 6= k or

a
(s)
k 6= m and b

(s)
m = k. We also denote by a and b the vectors of,

respectively, all the a
(s)
k , k∈K and all the b

(s)
m , m∈M(s) for all the

sensors at the current time step.

2.2. Target Detection and State Estimation

The ultimate goal of MTT is to determine if a PT k∈K exists and to

estimate the states xk of the detected PTs. In the Bayesian setting,

this essentially amounts to calculating the posterior existence proba-

bilities p(rk=1|z) and the posterior state pdfs f(xk|rk=1,z). PT

k is detected—i.e., declared to exist—if p(rk = 1|z) is larger than

a suitably chosen threshold Pth [18, Ch. 2]. Then, for each detected

PT k, an estimate of xk is provided by, e.g., the minimum mean-

square error estimator x̂k ,
∫

xk f(xk|rk = 1, z)dxk [18, Ch. 4].

The statistics p(rk=1|z) and f(xk|rk=1,z) can be obtained from

the posterior pdf f(xk, rk|z) = f(yk|z) by applying Bayes’ rule

and marginalization. Thus, the remaining problem is to calculate the

posterior pdfs f(yk|z) for all k∈K.

2.3. Joint Posterior Distribution and Factor Graph

The posterior pdf f(xk, rk|z) = f(yk|z) is a marginal density of

the joint posterior pdf f(y, y−,a, b|z). Under commonly made in-

dependence assumptions [1–3], one can show that [4]

f(y, y−
,a, b|z) ∝

nt
∏

k=1

f(yk|y
−
k )f(y−

k |z−)

ns
∏

s=1

υs

(

yk, a
(s)
k ;z(s))

×

n
(s)
m
∏

m=1

Ψ
(s)
km

(

a
(s)
k , b

(s)
m

)

. (1)

Here f(y−
k |z−) is the posterior pdf of y−

k , which was calculated at

the previous time step, and υs

(

yk, a
(s)
k ;z(s)

)

is a function involv-

ing the likelihood function f
(

z
(s)
m

∣

∣xk

)

for m = a
(s)
k [3, 4]. The

factorization (1) can be represented by the factor graph [13] shown

in Fig. 1, and an efficient and scalable approximate implementa-

tion of the marginalization operations converting f(y, y−,a, b|z)
into the nt marginal posterior pdfs f(yk|z), k ∈ K can be ob-

tained by employing the iterative SPA on this factor graph. To re-

duce the complexity and limit negative effects of loops in the fac-

tor graph, we use a message calculation schedule where iterative

message passing is only performed for probabilistic data association,

but not across the sensors [4]. Furthermore, in order to accommo-

date nonlinear/non-Gaussian state-transition and measurement mod-

els, we represent messages related to continuous state variables by

particles [4]. Explicit expressions of the resulting messages and be-

liefs are provided in [3, 4] and will not be repeated here.

2.4. Extension to Multiple Dynamic Models

So far, the evolution of PT k was characterized by a single dynamic

model (DM) described by f(yk|y
−
k ). However, many tracking sce-

narios, such as those of maneuvering targets [19], require the use of
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Fig. 1. Factor graph describing the factorization of f(y, y−,a, b|z)
in (1). For simplicity, the sensor index s is omitted, and the following

short notations are used: f−
k , f(y−

k |z−), fk , f(yk|y
−
k ), υk ,

υs

(

yk, a
(s)
k ; z(s)

)

, and Ψkm , Ψ
(s)
km

(

a
(s)
k , b

(s)
m

)

.

different DMs in different time periods. Therefore, following the in-

teracting multiple model approach [19, Ch. 11], we now model the

evolution of the state of an existing PT k∈K as

xk = ξℓk
(

x
−
k ,u

(ℓk)
k

)

.

Here, ξℓk( · , ·) is the state-transition function of PT k that is in force

at the current time and u
(ℓk)
k is a driving process that is assumed

independent and identically distributed (iid) across time and k [1,

19]. The DM Dℓk is then defined by ξℓk ( · , ·) and the statistics of

u
(ℓk)
k , and it is selected from a set {Dj}

J

j=1 of possible DMs by the

DM index ℓk ∈ J , {1, 2, . . . , J}. From Dj , one can obtain the

state-transition pdf fj(xk|x
−
k ). The DM indices ℓk are modeled as

discrete random variables that are independent across k and evolve

according to a Markov chain with transition matrix L ∈ [0, 1]J×J

[16]. That is, the transition probability mass function (pmf) of ℓk is

given by p(ℓk=j|ℓ−k = i) = [L]
i,j

for i, j ∈J .

Let us extend the augmented state yk to include the DM index

ℓk, i.e., we redefine it as yk , [xT
k rk ℓk]

T. Then, the DM Dj

together with a suitable birth/death model implies the augmented

state-transition pdf fj(yk|y
−
k ). We can now run the SPA on a factor

graph that is equal to that in Fig. 1 except for the new definition

of the variable nodes “yk” and “y−
k ”. This results in a multisensor

MTT algorithm that automatically adapts its DM in each time step

[16]. We note that this “multiple DM” formalism will also be used

in Section 4 for the integration of geographic information.

3. INTEGRATION OF AUXILIARY SURVEILLANCE DATA

In various applications, the MTT task is assisted by an auxiliary

surveillance system, such as the automatic dependent surveillance

broadcast (ADS-B) system in air traffic control [20] and the auto-

matic identification system (AIS) system in maritime traffic con-

trol [14]. These systems are based on cooperative targets that au-

tonomously broadcast reports informing about their current state.

However, the fusion of this information is often difficult due to the

asynchronicity and sparsity of these reports. Although each report

usually includes a unique identification (ID), the association between

targets and reports is not trivial: the ID may be absent, or it may be

mistaken for a different ID, or it may be observed for the first time,

in which case no prior information about the target is available.

Let us reconsider the multisensor MTT scenario from Section

2.1, with nt PTs k ∈ K and ns sensors s ∈ {1, 2, . . . , ns} produc-



ing measurements z
(s)
m , m ∈ M(s). We formally associate the re-

ports from the auxiliary surveillance system with an additional sen-

sor s=0, and accordingly denote the reports as z
(0)
m , m∈M(0) ,

{1, 2, . . . , n
(0)
m }. We assume that a target provides at most one re-

port within one time step. Moreover, we assume that targets do not

intentionally alter their reports, from which it follows that a report

cannot be a false alarm. Therefore, the data association assump-

tion for reports is phrased such that an existing PT can be associated

with at most one report and a report is necessarily associated with

an existing PT. The mth report z
(0)
m consists of state information dm

and ID ζm, i.e., z
(0)
m = [dT

m ζm]T. Here, ζm ∈ L , {0, 1, . . . , L},

where ζm ∈ {1, 2, . . . , L} represents an ID identifying a target and

ζm = 0 represents the case in which the ID is absent. Further-

more, for each PT k ∈ K, we introduce an ID label τk ∈ L, where

τk = l∈ {1, 2, . . . , L} means that PT k produces reports with ID l,

and τk=0 means that PT k produces reports without an ID. Finally,

we redefine the augmented state vector to include the ID label, i.e.,

yk , [xT
k rk τk]

T, and the association vectors a and b to include

a
(0)
k ∈{0, 1, . . . , n

(0)
m }, k ∈K and b

(0)
m ∈ {1, 2, . . . , nt}, m∈M(0),

respectively.

Then, one can show that f(y, y−,a, b|z) factorizes as in

(1), however with an additional factor corresponding to the ad-

ditional sensor s = 0 [21]. That is, the product
∏ns

s=1 in (1) is

replaced by
∏ns

s=0, which additionally involves the indicator factor

Ψ
(0)
km

(

a
(0)
k , b

(0)
m

)

and the report-related factor υ0(yk, a
(0)
k ;z(0)).

The factor Ψ
(0)
km

(

a
(0)
k , b

(0)
m

)

additionally takes into account the no-

false-alarm assumption (i.e., b
(0)
m cannot be zero) and is therefore

defined to be zero if and only if either a
(0)
k = m and b

(0)
m 6= k or

a
(0)
k 6= m and b

(0)
m = k or b

(0)
m = 0, and one otherwise. The factor

υ0(yk, a
(0)
k ;z(0)) involves the likelihood function f

(

z
(0)
m

∣

∣xk, τk
)

for m = a
(0)
k . This likelihood function describes the asynchronous

measurement model of the auxiliary surveillance system, includ-

ing the statistical dependence of ζm and τk (see [21] for details).

A scalable approximate calculation of the marginal posterior pdfs

f(xk, rk, τk|z) can now again be obtained by running the iter-

ative SPA on the factor graph representing the factorization of

f(y,y−,a,b|z). The resulting approximation of f(xk, rk, τk|z)
is used (after marginalizing out τk) for target detection and state

estimation as explained in Section 2.2.

4. INTEGRATION OF GEOGRAPHIC INFORMATION

The performance of an MTT algorithm can be further improved

by integrating geographic information about standard target routes,

such as known sea lanes in a maritime scenario or known roads in

a terrestrial scenario [15]. This type of information fusion can be

accomplished by using the “multiple DM” formalism of Section 2.4

with suitable modifications. Consider JR target routes indexed by

j ∈ {1, 2, . . . , JR}. We describe the movement of a PT along the

jth route by a DM Dj as in Section 2.4, however with a directional

driving process whose standard deviation in the direction orthogonal

to the route is smaller than that in the direction of the route [22]. On

the other hand, a PT may also move more irregularly off the standard

routes (e.g., a ship during fishing operations); we describe this case

by a DM D0 with a nondirectional driving process whose standard

deviation is equal in all directions. Similarly to Section 2.4, we use a

discrete random variable ℓk∈ {0, 1, . . . , JR} to select the DM index

j that is in force for PT k at the current time; this DM is associated

either with one of the JR target routes (ℓk ∈ {1, 2, . . . , JR}) or with

free movement (ℓk=0).
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Fig. 2. Positions of the radar sensors (E, S) and exemplary realiza-
tions of the target trajectories. The crosses mark the final positions
of the targets.

The evolution of ℓk is again modeled by a Markov chain. How-

ever, because the number of target routes JR can be very large, we

use a reduced Markov chain corresponding to a variable structure

interacting multiple model [22]. The idea is to consider index tran-

sitions only to those target routes that are currently close enough so

that they can be reached by the respective PT k. The set of these

target route indices j depends on the PT index k and the previous

PT state x−
k , and thus also the transition matrix Lk(x

−
k ) depends on

k and on x−
k . Nonetheless, the reduced Markov chain is still con-

sistent with the adaptive multi-DM formulation in Section 2.4, and

thus the iterative SPA can be used as described there. This results in

a multisensor MTT algorithm that automatically takes into account

the knowledge of standard target routes. The fact that only a sub-

set of all the DM index transitions is allowed typically leads to a

significant reduction of complexity and also an improved tracking

accuracy. A difference from Section 2.4 is the fact that the possible

index transitions and the corresponding transition matrix Lk(x
−
k )

have to be determined at each time step and for each PT k.

5. SIMULATION RESULTS

We show simulation results demonstrating the fusion of measure-

ments produced by two radar sensors and data provided by an aux-

iliary surveillance system as described in Section 3. Three targets

move during 300 time steps in a square region-of-interest given by

[−15 km, 15 km]× [−15 km, 15 km]. The PT states consist of two-

dimensional position and velocity, i.e., xk = [x1,k x2,k ẋ1,k ẋ2,k]
T.

Their evolution is governed by a single DM of the nearly-constant

velocity type, i.e., xk = Ax−
k + Wuk, where the matrices A ∈

R
4×4 and W ∈ R

4×2 are chosen as in [19, Sec. 6.3.2] (with a time

step duration of 10 seconds) and the driving process uk ∈ R
2 is

iid zero-mean Gaussian with a per-component standard deviation

of 0.05m/s2. (Extensions to multiple DMs can be easily obtained

following the discussion in Section 2.4.) The targets exist at all

times, and their trajectories are randomly generated in each simula-

tion run. There are ns =2 radar sensors, dubbed “S” and “E,” which

measure the targets’ range and bearing. These range and bearing

measurements are affected by Gaussian noise with standard devia-

tion 100 m and 0.5◦, respectively. The probability of detection is

q(1) = q(2) = 0.8. The false-alarm pdf is chosen uniform on the

region-of-interest; the number of false-alarm measurements is Pois-

son distributed with mean 2. Fig. 2 shows the positions of the two

sensors and exemplary realizations of the three target trajectories.

The auxiliary surveillance data consist of the noisy positions (in

Cartesian coordinates) and IDs of the three targets. The reported
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Fig. 3. MOSPA error obtained for different fusion strategies.

target positions are affected by Gaussian noise with a per-coordinate

standard deviation of 10 m. On average, each target nominally sends

0.5 reports per time step. However, one of the three targets does not

send any reports between time steps 100 and 200.

We compare the performance of the following four fusion strate-

gies for MTT: (i) using only the measurements of sensor S (this strat-

egy is referred to as S); (ii) fusing the measurements of the two sen-

sors (S+E); (iii) fusing the measurements of sensor S and the aux-

iliary surveillance data (S+Aux); and (iv) fusing the measurements

of the two sensors and the auxiliary surveillance data (S+E+Aux).

For these strategies, Fig. 3 shows the Euclidean distance based mean

optimal sub-pattern assignment (MOSPA) error with order p = 1
and cutoff parameter c = 100m [23], averaged over 200 simula-

tion runs and displayed versus time. The MOSPA error metric takes

into account both the estimation errors for correctly detected tar-

gets and the errors due to incorrect target detections. The results

in Fig. 3 clearly show the benefit of fusing the information from sev-

eral sources. In particular, it is interesting that S+Aux consistently

outperforms S+E, despite the asynchronous and intermittent nature

of the auxiliary surveillance data. This superiority of S+Aux over

S+E remains true even during the temporary absence of reports from

one of the targets (which is indicated by an increased MOSPA error

between time steps 100 and 200).

Table 1 compares the time-on-target (ToT) and the track frag-

mentation (TF), averaged over the three targets, for the four fusion

strategies. The ToT is the fraction of time that a target is success-

fully tracked in the sense that the Euclidean distance between its

estimated and true state is smaller than the MOSPA cutoff parameter

c = 100m. The TF is the number of subtracks associated with a

target throughout its lifetime. Our ToT and TF results confirm the

results in Fig. 3.

6. EXPERIMENTAL RESULTS USING REAL DATA

Finally, we present results of a numerical experiment based on real

high-frequency surface wave (HFSW) radar measurements and real

AIS data. The radar measurements were obtained by two Wellen

Radar (WERA) systems [24] located on the coast of the Ligurian

Fusion Strategy ToT TF

S 74.5% 26.2

S+E 91.3% 13.3

S+Aux 95.4% 6.5

S+E+Aux 98.0% 3.8

Table 1. Average ToT and TF.
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Fig. 4. Experimental results based on real data. Colored lines repre-
sent estimated trajectories corresponding to identified ships, while
black lines represent estimated trajectories corresponding to false
tracks or to ships not sending AIS data. Blue and green dots indicate
the measurements of the IP and SRP radars, which are located at the
position of the blue and green triangle, respectively. (Map courtesy
of Google)

Sea, one on the island of Palmaria (IP) and the other in San Rossore

Park (SRP). The radar measurements were produced by a 3D order

statistics constant false alarm rate algorithm [17, Sec. 16.6]. Each

measurement z
(s)
m , s ∈ {1, 2} consists of range, bearing, and range

rate. The false-alarm pdf is chosen uniform on the surveillance re-

gion, which is the intersection of the fields-of-view of the two radar

sensors; the number of false-alarm measurements is modeled by a

Poisson distribution with mean 100.

Fig. 4 shows results obtained with the MTT algorithm described

in Section 3, which fuses measurements of the two HFSW radars

with AIS data. The figure distinguishes graphically between esti-

mated trajectories where a nonzero ID label, i.e., a specific ship iden-

tity, has been detected and those that are false tracks or correspond

to nonidentified ships (i.e., ships that do not send any AIS data). One

can conclude from Fig. 4 that the fusion of radar measurements with

AIS data is beneficial in that it enables ship identification for many

of the estimated trajectories and, at the same time, it also allows the

detection and tracking of ships that are not sending AIS data. Fur-

ther results demonstrating the performance of the MTT algorithm

with radar/AIS fusion are provided in [21].

7. CONCLUSION

The recently proposed sum-product algorithm (SPA) framework for

multisensor-multitarget tracking constitutes a powerful and flexible

basis for Bayesian information fusion. In this paper, we developed

the fusion of multisensor radar measurements with data provided by

an auxiliary surveillance system and with geographic information

about standard target routes. This fusion was achieved by the formal

inclusion of an additional sensor in the first case and by the introduc-

tion of multiple dynamic models in the second case. Experimental

results using both simulated and real data demonstrated the effec-

tiveness of our SPA-based fusion approach. Possible directions of

future research include applications of the proposed framework to

indoor localization [25, 26] and simultaneous localization and map-

ping [27, 28].
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