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Abstract
In temporal planning, agents must schedule a set
of events satisfying a set of predetermined con-
straints. These scheduling problems become more
difficult when the duration of certain actions are
outside the agent’s control. Delay controllability
is the generalized notion of whether a schedule can
be constructed in the face of uncertainty if the agent
eventually learns when events occur. Our work in-
troduces the substantially more complex setting of
determining variable-delay controllability, where
an agent learns about events after some unknown
but bounded amount of time has passed. We pro-
vide an efficient O(n3) variable-delay controlla-
bility checker and show how to create an execu-
tion strategy for variable-delay controllability prob-
lems. To our knowledge, these essential capabili-
ties are absent from existing controllability check-
ing algorithms. We conclude by providing empiri-
cal evaluations of the quality of variable-delay con-
trollability results as compared to approximations
that use fixed delays to model the same problems.

1 Introduction
In temporal planning problems, agents are required to find
schedules for events that satisfy a set of predetermined con-
straints. This scheduling problem becomes more difficult
when the duration of certain actions are outside of an agent’s
control (e.g. when driving to work, it is impossible to give a
precise schedule because of the unpredictability of traffic).

When temporal planning problems include uncertainty, de-
lay controllability checking provides a generalized way of de-
termining the feasibility of the temporal plan, unifying the
previous notions of strong and dynamic controllability [Bhar-
gava et al., 2018]. Informally, under delay controllability, the
main actor learns about the true duration of uncertain events
after some amount of time has elapsed, and delay controlla-
bility assesses the feasibility of the temporal plan under dif-
ferent observation patterns.

While delay controllability gives us a rich language with
which to model temporal planning in the face of uncertainty,
it still has some fundamental limitations. In particular, it re-
quires that an agent either learns the exact time that an event

happens or learns nothing about the event. In contrast, there
are many instances where some of the temporal ambiguity
around an event is resolved after time passes even if it is im-
possible to learn its exact occurrence. For example, a human
actor is unlikely to remember that they finished lunch at pre-
cisely 1:08pm several hours later, but they may be able to say
that they finished lunch between 1:00pm and 1:15pm. Of-
ten, this partial reduction in uncertainty is both necessary and
sufficient to ensure that the remaining constraints can be sat-
isfied, but this uncertainty reduction might only happen well
after the initial action occurred. Others have created mod-
els where the observation of events allows us to branch and
consider distinct possible states [Moffitt and Pollack, 2007;
Combi et al., 2013], but these models do not consider how
to incorporate partial resolution of uncertainty in events that
have already happened. In this paper, we focus on addressing
this modeling gap and provide three main contributions.

First, we provide a formalism for modeling uncertain ob-
servations of events. We build our model and controllabil-
ity checking algorithms on top of Simple Temporal Networks
with Uncertainty [Vidal and Fargier, 1999] and for each ac-
tion with uncertain duration, we provide a bounded interval
representing the amount of time that may pass after an event
occurs before an agent learns that it occurs.

Second, we provide an efficient algorithm for verifying that
these networks are controllable under uncertain observation.
We approach the problem by creating a parallel temporal net-
work that is controllable with respect to some fixed observa-
tions if and only if our original network is controllable. If
we let n be the number of events in our schedule and m be
the number of constraints, we can apply this transformation in
O(m+n) time, and since controllability checking under fixed
observation can be performed inO(n3) time [Bhargava et al.,
2018], we can similarly check variable-delay controllability
in O(n3) time. Along with a controllability check, we also
show how to derive an execution strategy for controllable net-
works with uncertain observations. The same approach used
to assess the controllability of the network yields a new, less
expressive network that is controllable with respect to some
fixed-delay observations. We show how only a few modifi-
cations are needed to reduce our original execution problem
to that of finding an execution strategy on the less expressive
network.

Third and finally, we provide an empirical characterization



of the quality of variable-delay controllability as contrasted
against controllability checks that approximate the model us-
ing fixed delays. We show that the false positive rate is low
but not zero, indicating that it is most appropriate to check
variable-delay controllability directly.

Beyond temporal and observational uncertainty, many oth-
ers have extended temporal networks and temporal network
controllability checking to suit particular needs. Probabilis-
tic Simple Temporal Networks ascribe probability distribu-
tions to the uncontrollable constraints of a network [Fang
et al., 2014], and Conditional Simple Temporal Networks
with Uncertainty allow for conditional execution and en-
forcement of constraints based on the observation of pre-
specified events [Combi et al., 2013]. When new temporal
constraints are added one at a time to a network, iterative
controllability checks show improvements over non-iterative
solutions [Stedl and Williams, 2005; Shah et al., 2007;
Nilsson et al., 2013; 2014], and when constraints are instead
iteratively relaxed, RelaxIDC [Bhargava et al., 2017] gives
us an algorithm that speeds up controllability checking over
time.

Despite the many existing extensions to temporal networks
and controllability checking, we argue that the ability to
model, validate, and execute temporal networks under obser-
vational uncertainty represents a unique and significant im-
provement over state of the art. With previous temporal con-
trollability formalisms, inference only flowed forward with
time. Observations that happened in the future had no impact
on our beliefs about past events. In contrast, our approach
provides a rigorous means of incorporating future observa-
tions in our updated beliefs about past events. While oth-
ers have worked on extending existing models to account for
these relationships [Moffitt and Pollack, 2007; Moffitt, 2007;
Bit-Monnot et al., 2016; Casanova et al., 2016], none have
provided a sound and complete algorithm for verifying con-
trollability in arbitrary networks.

2 Background & Definitions
In temporal planning, Simple Temporal Networks (STN) are
composed of a set of events and simple binary constraints
relating those events (e.g. event A must happen at least 20
minutes before event B) [Dechter et al., 1991]. STNs are
useful for modeling problems where the agent can precisely
schedule the timings of events, but they do not let us model
actions whose durations are uncertain.

Simple Temporal Networks with Uncertainty (STNU) aug-
ment the STN allowing us to model these types of uncertain
actions [Vidal and Fargier, 1999]. Events are subdivided into
activated and received timepoints while constraints are sub-
divided into free and contingent constraints.

Definition 1. STNU [Vidal and Fargier, 1999]
An STNU is a 4-tuple 〈Xb, Xe, Rc, Rg〉 where:

• Xb is the set of activated timepoints

• Xe is the set of received timepoints

• Rc is the set of free constraints of the form lc ≤ xi −
xj ≤ uc, where xi, xj ∈ Xb ∪Xe

• Rg is the set of contingent constraints of the form lg ≤
ei − bj ≤ ug , where ei ∈ Xe, bj ∈ Xb

Activated timepoints represent events whose values are ex-
plicitly scheduled by the main agent while received time-
points are assigned values by some external actor. Free con-
straints behave like ordinary STNU constraints while contin-
gent constraints represent actions with values of uncertain du-
ration. Contingent constraints always begin with an activated
timepoint, representing an initiated action, and end with a re-
ceived timepoint.

Since an STNU has events whose occurrences are outside
of an agent’s control, to assess the feasibility of an STNU, we
examine its delay controllability to determine whether a valid
schedule can be constructed given a guarantee that future un-
certainty will eventually be fully resolved [Bhargava et al.,
2018]. In the rest of this paper, we will refer to the original
notion of delay controllability as fixed-delay controllability
for clarity.

Fixed-delay controllability uses a fixed-delay function to
parameterize controllability. The fixed-delay function en-
codes the amount of time that must pass before we observe
a received timepoint when constructing our schedule.

Definition 2. Fixed-Delay Function [Bhargava et al., 2018]
A fixed delay function, γ : Xe → R+ ∪ {∞} maps from re-
ceived timepoints to the amount of time that must pass before
that timepoint is observed.

Definition 3. Fixed-Delay Controllability [Bhargava et al.,
2018]
An STNU is fixed-delay controllable with respect to some
delay function γ if it is possible for an agent to reactively ex-
ecute a plan if they learn the true value of received timepoint
e only after an additional γ(e) time has passed.

Importantly, fixed-delay controllability generalizes other
notions of controllability. For example, by using a fixed-delay
function where we observe all timepoints, checking fixed-
delay controllability reduces to checking dynamic controlla-
bility. Similarly, a fixed-delay function specifying that we
never observe any received timepoints corresponds to check-
ing strong controllability [Vidal and Fargier, 1999].

As a matter of convention, we will use A −→ B to repre-
sent requirement links between timepoints A and B and will
use A =⇒ E to represent contingent links between A and E.
When we talk about the delay function associated with the re-
ceived timepoint E of some contingent link A =⇒ E, we will
use the notation γ(e).

2.1 Variable-Delay Controllability
While fixed-delay controllability is quite expressive, its fun-
damental limitation is that events must be observed only after
a fixed offset. If there were some uncertainty in our observa-
tion event, the controllability problem becomes much harder,
as we now only have rough bounds around when an event in
the past happened rather than ground truth. We now rigor-
ously introduce the notions of a variable-delay function and
variable-delay controllability.

Definition 4. Variable-Delay Function
A variable-delay function, γ̄ : Xe → (R+ ∪ {∞}) × (R+ ∪



{∞}), takes a received timepoint and outputs an interval
[a, b]. The range bounds the least amount of time and most
amount of time that may pass after the assignment of a value
to the received timepoint before a value is known to be as-
signed. By convention, we use γ̄−(e) to represent the lower-
bound in observation and γ̄+(e) to represent the upper-bound.

Definition 5. Fixed Delay Set
We say F (γ̄) represents the set of all possible fixed-delay
functions that are valid groundings of the variable-delay func-
tion γ̄. In other words, ∀γ ∈ F (γ̄),∀e ∈ Xe : γ(e) ∈
[γ̄−(e), γ̄+(e)].

Definition 6. Possible Observed Situations
Let Ω be the set of all possible sets of assignments of du-
rations to contingent links, let δ : Xb → R be a partially
committed schedule for activated timepoints, let ω ∈ Ω be
the actual assignment of durations to contingent links, let γ̄
be the variable-delay function, and let γ ∈ F (γ̄) be the actual
observational delay. The set of all possibly observed situa-
tions before t with respect to some δ, ω, γ̄, γ is Ω<t,δ,ω,γ̄,γ =
{ω′ ∈ Ω : p(ω, ω′, δ, t, γ̄, γ) ∧ q(ω, ω′, δ, t, γ̄, γ)}, where:

• p(ω, ω′, δ, t, γ̄, γ) =
∧
ωij∈ω (δ(bi) + ωij + γ(ej) > t)→(

δ(bi) + ω′ij + γ̄+(ej) > t
)
; or for any event that has

not yet been seen, it is possible to have not yet seen that
event in ω′.

• q(ω, ω′, δ, t, γ̄, γ) =
∧
ωij∈ω (δ(bi) + ωij + γ(ej) ≤ t)→(

γ(ej) + ωij − ω′ij ∈ γ̄(ej)
)
; or for any event that has

been seen, it must be possible to see that event at the
same moment in ω′.

Definition 7. Variable-Delay Controllability
For any δ, let δ<t,δ represent a restriction on the set of assign-
ments δ, where δ<t,δ only contains assignments for events
that happen before time t. An STNU S is variable-delay con-
trollable with respect to some variable-delay function γ̄ if and
only if: ∀ω ∈ Ω,∀γ ∈ F (γ̄), there exists an assignment δ,
such that ∀(x, t) ∈ δ, ∀ω′ ∈ Ω<t,δ,ω,γ̄,γ , there exists δ′, such
that δ<t,δ ⊆ δ′ and δ′ is an assignment that satisfies Sω′ .

In other words, an STNU is variable-delay controllable
with respect to some variable-delay function γ̄ if it is always
possible to construct a satisfying plan for the future given the
inferences that have been made about events that have already
been observed.

It is clear that variable-delay controllability is a generaliza-
tion of fixed-delay controllability. For any fixed-delay func-
tion γ, we can produce a corresponding variable-delay func-
tion γ̄ where γ̄+(e) = γ̄−(e) = γ(e).

3 Determining Controllability
Our strategy for determining whether a given STNU S is
variable-delay controllable with respect to γ̄ is to instead con-
struct a related STNU S′ that is fixed-delay controllable with
respect to some derived delay function γ′.

It is important to note that we do not expect S′ and γ′ to be
expressive enough to model our original problem. Because
our focus is on checking the controllability of our problem, it

suffices for us to focus on the worst-case areas of our prob-
lem, or the situations that are hardest to schedule, and we
construct S′ and γ′ with that end in mind.

To construct S′ and γ′, we start by copying the original
graph S. We then make a series of iterative modifications to
our new outputs so that they capture the controllability of our
original input. We start by updating our definition of γ′ based
on observed values of γ̄.

Lemma 1. For any received timepoint e ∈ Xe in S, if
γ̄−(e) = γ̄+(e), we can express the same behavior in S′

using γ′(e) = γ̄+(e).

Proof. If γ̄−(e) = γ̄+(e), then γ̄ already emulates a fixed-
delay for timepoint e. Assigning γ′(e) = γ̄+(e) makes no
change to the proposed controllability since the modified S′
and γ′ cover the same scenarios as S and γ̄.

Lemma 2. If for some e ∈ Xe, γ̄+(e) = ∞, we can express
the same behavior in S′ using γ′(e) =∞

Proof. If γ̄+(e) = ∞, then in some scenarios, e is unob-
servable in S. It does not matter that in some instances we
may learn about e after some delay; controllability checking
is about verifying that a valid execution strategy exists in all
scenarios. Thus, if we can verify that S′ is controllable when
e is unobservable (when γ′(e) = ∞), then we know that S
is controllable whenever e is observed after t ∈ γ̄(e) since
a valid execution strategy could always choose to ignore the
observation. If S′ is uncontrollable when γ′(e) = ∞, then
we also similarly know that we would not be able to find a
valid execution strategy if e ended up unobservable in S.

After repeated applications of Lemmas 1 and 2, we are
left with a series of received timepoints whose variable-delay
function values represent finite ranges. Since the delay in ob-
servation is an uncertain and uncontrollable duration, a naive
attempt at transforming the model would be to model obser-
vation itself as a contingent link (Figures 1a, 1b). This struc-
ture better equips us to reason about the controllability and
execution of our original problem, but it is important to re-
alize that this structure is not a valid STNU. In an STNU,
all contingent links are required to start at an activated time-
point, whereas this transformation lets a contingent link start
at a received timepoint. Nonetheless, while normal STNU al-
gorithms may fail on this structure, we can still leverage it to
better understand how to reason about variable-delay execu-
tion.

Under this new transformation, the next question we con-
sider is how much information the observation of γ̄ gives us
in the worst case. Let [a, b] be the bounds of the contingent
link X =⇒ E. There are two ways to handle these contingent
links based on how the uncertainty of the observation com-
pares to the uncertainty of the original link.

Lemma 3. If b − a ≤ γ̄+(e) − γ̄−(e), we can express the
same behavior in S′ using γ′(e) =∞.

Proof. In this situation, there is at least as much uncertainty
in the observation of the event as there is in the occurrence
of the event, meaning we have no guarantee of receiving any
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Figure 1: (a) A contingent link followed by a requirement link in our original STNU. (b) An equivalent (improper) STNU, which has a
fixed-delay function instead of a variable-delay one. E becomes unobservable, and instead we immediately observe an explicit event Y
after some uncertain delay. (c) An STNU that encodes a sufficient set of semantics to guarantee successful execution at runtime. XY refers
to the true observed duration of the contingent link from X to Y . (d) A valid equivalent STNU, which has a fixed-delay function instead
of a variable-delay one. The range of the contingent link shrinks, but the range of all attached requirement links must also shrink by a
corresponding amount.

meaningful information after observing that the event hap-
pened. Consider the worst-case scenario where we learn
that e happened a + γ̄+(e) after the starting activated time-
point. It is clear that the original contingent link could have
taken on a value of a given this information, but because
a + γ̄+(e) − b ≥ γ̄−(e), we also know that the original link
could have had a value of b and thus been anywhere in [a, b].
Since γ̄ is not guaranteed to give us any information in this
instance, in our derived STNU S′, we can let γ′(e) =∞.

We do not make controllability checking or network execu-
tion any harder by going from a highly uncertain observation
to no observation at all. We always know the starting time of
the original contingent link, as we choose it ourself, meaning
we still have our original coarse bounds [a, b] on when the
event occurs.

Lemma 4. If b − a > γ̄+(e) − γ̄−(e), we can replace the
bounds of the original link ending at e with [a + γ̄+(e), b +
γ̄−(e)].

Proof. If b − a > γ̄+(e) − γ̄−(e), we can take our original
contingent link with range [a, b] and variable-delay γ̄(e), and
in S′ we can transform it into a contingent link [a+γ̄+(e), b+
γ̄−(e)] with γ′(e) = 0 (see contingent link across Figures
1a, 1b, 1d), folding some of the uncertainty in observing e
directly into the contingent link.

It is important to notice that the range of the modified
contingent link is shorter than the range of possible times
at which we would actually notice the occurrence of e,
[a + γ̄−(e), b + γ̄+(e)]. Here again, we rely on the notion

that we are only interested in capturing the worst-case sce-
nario. Imagine that we observed e at some time a+ γ̄+(e)−ε
where 0 < ε ≤ γ̄+(e). We know that the original link oc-
curred at a lower-bound of a and that it has an upper-bound
of a+(γ̄+(e)−γ̄−(e))−ε. In contrast, with an observation at
a+ γ̄+(e), we have a strictly larger range of possible options
for the original contingent link, meaning our restriction does
not make the scheduling problem less constrained.

We can make the same argument for the upper-bound. If
we observe e at some b+ γ̄−(e) + ε, then we have an upper-
bound of b and a lower-bound of b − (γ̄+(e) − γ̄−(e)) + ε.
When we instead observe e at b + γ̄−(e), we have the same
upper-bound but a smaller lower-bound at b − (γ̄+(e) −
γ̄−(e)), meaning the range of possible options is strictly
larger. This means that our modified contingent link with
γ′(e) = 0 fully captures the worst-case scenarios for e with
our original S and γ̄.

What remains is to demonstrate how to transform the re-
quirement links attached to e such that they represent the orig-
inal execution semantics of S. To validate that this is the case,
we first examine what local execution semantics look like in
a variable-delay temporal network (Figures 1b, 1c).

Lemma 5. If we have contingent link X =⇒ E with duration
[a, b], outgoing requirement link E −→ Z with duration [u, v]
with an unobservable E, and contingent link E =⇒ Y with
range [γ̄−, γ̄+], we can replace the original requirement link
during execution with a new link Y −→ Z with bounds [u −
max(γ̄−, XY − b), v − min(γ̄+, XY − a)], where XY is



the true duration of X =⇒ Y . See Figure 1c for reference.

Proof. From an execution perspective, X and Y are the only
events that can give us any information that we can use to
reason about when to execute Z (sinceE is wholly unobserv-
able).

If we execute Z based on what we learn from Y , then
we use our information from Y to make inferences about
the true durations of X =⇒ E and E =⇒ Y based on
X =⇒ Y . We know that the lower-bound of E =⇒ Y
is at least XY − b and that its upper-bound is at most
XY − a. But we also have the a priori bounds on the
contingent link that limit its range to [γ̄−, γ̄+]. Taken to-
gether, during execution we can infer that the true bounds
of E =⇒ Y are [max(γ̄−, XY − b),min(γ̄+, XY − a)].
Since we have bounds only on Z’s execution in relation to
E, we can then infer a requirement link Y −→ Z with bounds
[u−max(γ̄−, XY − b), v −min(γ̄−, XY − a)].

If we try to execute Z based on information we have from
X , we must be robust to any possible value assigned to X =⇒
E. This means that we would be forced to draw a requirement
link X −→ Z with bounds [u + b, v + a]. But we know that
u−max(γ̄−, XY −b) ≤ u+b−XY and v−min(γ̄−, XY −
a) ≥ v + a−XY , which means that the bounds we derived
from Y are at least as expressive as the bounds that we would
derive from X .

Since we have a local execution strategy that depends on
the real value of XY , we can try to apply that strategy to
the contingent link we restricted in Lemma 4 to repair the
remaining requirement links.

Lemma 6. If we have an outgoing requirement link E −→
Z with duration [u, v] where E is a received timepoint, we
can replace the bounds of the original requirement link with
[u− γ̄−, v − γ̄+]. See Figure 1d for reference.

Proof. If we directly apply the transformation from Figure
1c to our original STNU, we introduce a new complexity in
the form of reasoning over min and max operations in our
link bounds. However, from Lemma 4, we know that in a
controllability evaluation context, it is acceptable for us to
have the X =⇒ Y link take on stricter range [a + γ̄+, b +
γ̄−] instead of [a+ γ̄−, b+ γ̄+], meaning for the purposes of
evaluating controllability, we can assume a + γ̄+ ≤ XY ≤
b + γ̄−. When we evaluate the requirement link Y −→ Z,
max(γ̄−, XY − b) = γ̄− and min(γ̄+, XY − a) = γ̄+.
This gives us the bounds for the requirement link that we see
in Figure 1d.

Lemma 6 handles outgoing requirement edges connected
to received timepoints, but we also must handle incoming
edges.

Corollary 6.1. If we have an incoming requirement link Z −→
E with duration [u, v] where E is a received timepoint, we
can replace the bounds of the original requirement link with
[u+ γ̄+, v + γ̄−].

Proof. A requirement link Z −→ E with bounds [u, v] can
be immediately rewritten as its reverse E −→ Z with bounds
[−v,−u]. After reversing the edge, we can apply Lemma 6 to

Input: STNU S; variable-delay function γ̄
Output: An STNU S′ and fixed-delay function γ′
Initialization:

1 S′ ← S.copy();
2 γ′ ← {};

CONVERTTOFIXEDDELAY:
3 for l ∈ S′.contingentLinks() do
4 e← l.endpoint();
5 a, b← l.bounds();
6 if γ̄+(e) ==∞ or γ̄+(e) == γ̄−(e) then
7 γ′(e)← γ̄+(e);
8 else if b− a ≤ γ̄+(e)− γ̄−(e) then
9 γ′(e)←∞;

10 else
11 e← l.endpoint();
12 a, b← l.bounds();
13 l.setBounds(a+ γ̄+(e), b+ γ̄−(e));
14 γ′(e)← 0;
15 for l′ ∈ e.outgoingReqLinks() do
16 u, v ← l′.bounds();
17 l′.setBounds(u− γ̄−(e), v − γ̄+(e));
18 for l′ ∈ e.incomingReqLinks() do
19 u, v ← l′.bounds();
20 l′.setBounds(u+ γ̄+(e), v + γ̄−(e));
21 return S′, γ′

Algorithm 1: Algorithm for converting a variable-delay
controllability problem to a fixed-delay controllability one.

get Y −→ Z with bounds [−v− γ̄−,−u− γ̄+], which we can
reverse again to getZ −→ Y with bounds [u+γ̄+, v+γ̄−].

Now we put it all together and introduce Algorithm 1
as a complete algorithm for transforming an STNU S and
variable-delay function γ̄ into a corresponding STNU S′ and
fixed-delay function γ′, where S is variable-delay control-
lable if and only if S′ is fixed-delay controllable.

Theorem 7. We can convert a variable-delay controllabil-
ity problem into a corresponding fixed-delay controllability
problem in O(m+ n).

Proof. Initially in Algorithm 1 (lines 6-7), we handle Lem-
mas 1 and 2. Next, we check the condition set forth by
Lemma 3 (lines 8-9) to see if in the worst-case the obser-
vation would fail to give us new information.

Finally, in the remaining part of the algorithm (lines 10-
20), we transform all other contingent links and the require-
ment links that are associated with them. At line 13, we apply
the transformation as specified by Lemma 4. At lines 15-20,
we ensure that all outgoing and incoming requirement links
are updated as specified in Lemma 6 and Corollary 6.1.

Overall, the transformation is efficient, running in linear
time. Let n be the total number of timepoints and let m be
the total number of constraints in an STNU. There are at most
O(n) contingent links, meaning the operations spanning lines
4-14 are applied at most O(n) times. For each requirement
link in S′, we modify its bounds at most once as an outgoing
link (lines 15-17) and once as an incoming link (lines 18-20).



This means that lines 15-20 are executed at mostO(m) times,
meaning the total runtime is O(m+ n).

Since we can convert any variable-delay controllability
problem into an equivalent-valued fixed-delay controllabil-
ity problem, we can use fixed-delay controllability checkers
to assess the variable-delay controllability of an STNU after
transformation.
Theorem 8. Variable-delay controllability can be evaluated
in O(n3) time.

Proof. Since the transformation takesO(m+n) time without
changing the size of the output STNU and fixed-delay con-
trollability checking takes O(n3) [Bhargava et al., 2018], the
result is an O(n3) way to check variable-delay controllability
for any STNU since m ≤ n2.

4 Variable-Delay Execution
Our algorithmic transformation gives us an efficient way to
determine whether an STNU is variable-delay controllable
but the resulting transformation does not give us an execu-
tion strategy for our STNU.

Intuitively, we want to use the resulting STNU from our
fixed-delay transformation to guide execution but we face
some limitations. To simplify our controllability checking,
we restricted the ranges of many of our contingent links. If
we tried to execute the resulting STNU, we would likely en-
counter a violation since it is possible for the world to violate
the invariants of our STNU – namely that nature will respect
the bounds of all contingent links. However, this problem
is not insurmountable. We can use our transformed STNU
as a guide for execution but amend our execution semantics
slightly to account for these slight discrepancies.
Theorem 9. Deriving an execution strategy for a variable-
delay controllability problem reduces to finding an execution
strategy for a fixed-delay controllability problem.

Proof. The problem lies in a few contingent links that in the
transformed STNU have bounds [a + γ̄+, b + γ̄−] but in the
original STNU have implicit bounds of [a+ γ̄−, b+ γ̄+]. The
reason we were allowed to restrict these bounds is that the ex-
ecution of other actions in the STNU were not dependent on
the endpoint of this longer contingent link but rather on some
other contingent link that had bounds [a, b]. In the restricted
case, we always had less information about the true duration
of the original contingent link, despite the fact that the range
itself was smaller.

Armed with this knowledge, the remedy for our execution
strategy is relatively straightforward. We follow the normal
fixed-delay execution strategy for our derived STNU but with
two exceptions. First, if the true duration of a contingent link
is less than a + γ̄+, we buffer the response and act as if the
duration was actually a+ γ̄+. It is clear that waiting gives us
no extra information.

Second, if more than b+γ̄− time has passed and the contin-
gent link has not reached completion, we act as if it actually
reached completion at b+ γ̄−. We can safely assume the ear-
lier completion time because of the information it gives us.
When b+ γ̄− time passes, the value of the original contingent

link is somewhere in [b− (γ̄+ − γ̄−), b]. If we were to learn
about the value at a later moment, b+γ̄−+ε, then the value of
the original contingent link would be in [b+ε−(γ̄+− γ̄−), b],
which is strictly tighter. Thus, if we assume an earlier com-
pletion time, we give ourselves a strictly harder problem, but
we know it is still controllable because this still maps to our
corresponding fixed-delay controllability problem.

These changes restrict the information we can learn about
the original [a, b] link, but since the system is still control-
lable with this restriction, our execution strategy remains
valid. Thus, finding an execution strategy for an STNU with
variable-delay function reduces to finding an execution strat-
egy for an STNU with a fixed-delay function.

5 Empirical Evaluation
The introduction of variable-delay controllability gives us a
level of expressiveness that we previously lacked. In this sec-
tion, we attempt to characterize the gap in expressivity by
showing how attempts to evaluate variable-delay problems
using fixed-delay approximations lead to incorrect results.

To evaluate the comparative quality of the different ap-
proaches, we constructed a set of randomly generated
STNUs. Each STNU had 10 contingent links with lower-
bound 0 and an integer upper-bound uniformly chosen be-
tween 1 and 4. Each contingent link had a variable-delay
function with a lower-bound of 0 and upper-bound chosen
from the exponential distribution f(t) = λe−λt with λ = 0.5.
For each pair of contingent link endpoints, we established a
requirement link between them with probability 1

40 . Each re-
quirement link had a lower-bound of 0 and an integer upper-
bound uniformly chosen between 1 and 4. We chose these
parameters because they represent a reasonable trade-off be-
tween simplicity in degenerate cases and sufficient complex-
ity to exhibit interesting behaviors. Moving forward, we hope
to validate our approach against real-world examples that
demonstrate both temporal and observational uncertainty.

We employed three different strategies for our fixed-delay
approximations: γ(xe) = γ̄−(xe), γ(xe) = γ̄−+γ̄+

2 , and
γ(xe) = γ̄+(xe). For each strategy, we know that whenever
the original STNU is variable-delay controllable with respect
to γ̄, it is also fixed-delay controllable with respect to γ. Each
choice of γ represents a potential realization of the delays of-
fered by γ̄, and the fixed-delay approximation has the added
benefit of eliminating uncertainty in observation.

We generated 1000 different STNUs and compared the
variable-delay controllability results to the different fixed-
delay controllability approaches (Table 1). The instances
that are of greatest interest are those where the STNU is
not variable-delay controllable but the fixed-delay approxi-
mations determines it to be controllable.

The false positive rate of the minimum fixed-delay con-
trollability approximation is quite high at 39%, but the mean
and maximum fixed-delay approximations have more reason-
able false positive rates at 4.5% and 3.0% respectively. Since
all approximations yield the correct answer when the origi-
nal STNU is variable-delay controllable, it makes sense that
the maximum fixed-delay approximation has the lowest false
positive rate, as it is the most demanding of the three.



Minimum
fixed-delay
controllable

Minimum
fixed-delay

uncontrollable

Mean
fixed-delay
controllable

Mean
fixed-delay

uncontrollable

Maximum
fixed-delay
controllable

Maximum
fixed-delay

uncontrollable
Variable-delay

controllable 267 0 267 0 267 0

Variable-delay
uncontrollable 289 444 33 700 21 712

Table 1: Variable-delay vs. minimum, mean, and maximum fixed-delay controllability results when using an exponential delay function with
λ = 0.5.

We note that these results are also dependent on the width
of the variable-delay ranges found in the network. We can
simulate increasing the likelihood that a delay takes on a
larger value by decreasing the choice of λ in our exponen-
tial delay function. When we vary our delay function using
λ = 0.5, 0.1, 0.05, 0.01, the false positives of the max-delay
approximation are 3.0%, 3.4%, 3.9%, 5.2%. As expected,
this indicates that as the uncertainty of our bounds grows,
there is an increasing advantage, from a correctness perspec-
tive, to using variable-delay controllability.

6 Conclusion
In this paper, we introduce variable-delay controllability as
an extension to fixed-delay controllability over STNUs. We
provide a formal definition showing how it generalizes fixed-
delay controllability while also providing an efficient sound
and complete algorithm for determining the variable-delay
controllability of an STNU. Because variable-delay controlla-
bility execution reduces to fixed-delay controllability execu-
tion, we are able to demonstrate that variable-delay controlla-
bility is a formalism that can be used in practice to construct
and evaluate schedules in the face of both temporal and ob-
servational uncertainty.
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