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(LHCb Collaboration)

(Received 18 October 2019; revised manuscript received 12 December 2019; published 29 January 2020)

Searches are performed for both promptlike and long-lived dark photons, A0, produced in proton-proton
collisions at a center-of-mass energy of 13 TeV. These searches look for A0 → μþμ− decays using a data
sample corresponding to an integrated luminosity of 5.5 fb−1 collected with the LHCb detector. Neither
search finds evidence for a signal, and 90% confidence-level exclusion limits are placed on the γ–A0 kinetic
mixing strength. The promptlike A0 search explores the mass region from near the dimuon threshold up to
70 GeV and places the most stringent constraints to date on dark photons with 214 < mðA0Þ≲ 740 MeV
and 10.6 < mðA0Þ≲ 30 GeV. The search for long-lived A0 → μþμ− decays places world-leading
constraints on low-mass dark photons with lifetimes Oð1Þ ps.
DOI: 10.1103/PhysRevLett.124.041801

Substantial effort has been dedicated recently [1–3] to
searching for the dark photon (A^′), a hypothetical massive
vector boson that could mediate the interactions of dark
matter particles [4], similar to how the ordinary photon γ
mediates the electromagnetic (EM) interactions of charged
standard model (SM) particles. The dark photon does not
couple directly to SM particles; however, it can obtain a
small coupling to the EM current due to kinetic mixing
between the SM hypercharge and A0 field strength tensors
[5–12]. This coupling, which is suppressed relative to that
of the photon by a factor labeled ε, would provide a portal
through which dark photons can be produced in the
laboratory, and also via which they can decay into visible
SM final states. If the kinetic mixing arises due to processes
described by one- or two-loop diagrams containing high-
mass particles, possibly even at the Planck scale, then
10−12 ≲ ε2 ≲ 10−4 is expected [2]. Exploring this few-loop
ε region is one of the most important near-term goals of
dark-sector physics.
Dark photons will decay into visible SM particles if

invisible dark-sector decays are kinematically forbidden.
Constraints have been placed on visible A0 decays by
previous beam-dump [12–28], fixed-target [29–32], col-
lider [33–38], and rare-meson-decay [39–48] experiments.
These experiments ruled out the few-loop region for dark-
photon masses mðA0Þ≲ 10 MeV (c ¼ 1 throughout this
Letter); however, most of the few-loop region at higher
masses remains unexplored. Constraints on invisible A0

decays can be found in Refs. [49–61]; only the visible
scenario is considered here.
Many ideas have been proposed to further explore the

½mðA0Þ; ε2� parameter space [62–82]. The LHCb Coll-
aboration previously performed a search based on the
approach proposed in Ref. [76] using data corresponding
to 1.6 fb−1 collected in 2016 [83]. The constraints placed
on promptlike dark photons, where the dark-photon life-
time is small compared to the detector resolution, were the
most stringent to date for 10.6 < mðA0Þ < 70 GeV and
comparable to the best existing limits for mðA0Þ <
0.5 GeV. The search for long-lived dark photons was
the first to achieve sensitivity using a displaced-vertex
signature, though only small regions of ½mðA0Þ; ε2� param-
eter space were excluded.
This Letter presents searches for both promptlike and

long-lived dark photons produced in proton-proton, pp,
collisions at a center-of-mass energy of 13 TeV, looking for
A0 → μþμ− decays using a data sample corresponding to an
integrated luminosity of 5.5 fb−1 collected with the LHCb
detector in 2016–2018. The strategies employed in these
searches are the same as in Ref. [83], though the threefold
increase in integrated luminosity, improved trigger effi-
ciency during 2017–2018 data taking, and improvements in
the analysis provide much better sensitivity to dark pho-
tons. The promptlike A0 search is performed from near the
dimuon threshold up to 70 GeV, achieving a factor of 5 (2)
better sensitivity to ε2 at low (high) masses than Ref. [83].
The long-lived A0 search is restricted to the mass range
214 < mðA0Þ < 350 MeV, where the data sample poten-
tially has sensitivity and provides access to much larger
regions of ½mðA0Þ; ε2� parameter space.
Both the production and decay kinematics of the A0 →

μþμ− and γ� → μþμ− processes are identical, since dark
photons produced in pp collisions via γ–A0 mixing inherit
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the production mechanisms of off-shell photons with
mðγ�Þ ¼ mðA0Þ. Furthermore, the expected A0 → μþμ−

signal yield is related to the observed prompt γ� → μþμ−

yield in a small �Δm window around mðA0Þ, nγ�ob½mðA0Þ�,
by [76]

nA
0

ex½mðA0Þ; ε2� ¼ ε2
�
nγ

�
ob½mðA0Þ�
2Δm

�
F ½mðA0Þ�ϵA0

γ� ½mðA0Þ; τðA0Þ�;

ð1Þ

where the dark-photon lifetime τðA0Þ is a known function of
mðA0Þ and ε2, F is a knownmðA0Þ-dependent function, and
ϵA

0
γ� ½mðA0Þ; τðA0Þ� is the τðA0Þ-dependent ratio of the A0 →
μþμ− and γ� → μþμ− detection efficiencies. For promptlike
dark photons, A0 → μþμ− decays are experimentally indis-
tinguishable from prompt γ� → μþμ− decays, resulting in
ϵA

0
γ� ½mðA0Þ; τðA0Þ� ¼ 1. This facilitates a fully data-driven
search where most experimental systematic effects cancel,
since the observed A0 → μþμ− yields nA

0
ob½mðA0Þ� can be

normalized to nA
0

ex½mðA0Þ; ε2� to obtain constraints on ε2

without any knowledge of the detector efficiency or
luminosity. When τðA0Þ is larger than the detector decay-
time resolution, A0 → μþμ− decays can potentially be
reconstructed as displaced from the primary pp vertex
(PV) resulting in ϵA

0
γ� ½mðA0Þ; τðA0Þ� ≠ 1; however, only the

τðA0Þ dependence of the detection efficiency is required to
use Eq. (1). Finally, Eq. (1) is altered for large mðA0Þ to
account for additional kinetic mixing with the Z
boson [84,85].
The LHCb detector is a single-arm forward spectrometer

covering the pseudorapidity range 2 < η < 5 described in
detail in Refs. [86,87]. The promptlike A0 search is based on
a data sample that employs a novel data-storage strategy
made possible by advances in the LHCb data-taking
scheme introduced in 2015 [88,89], where all online-
reconstructed particles are stored, but most lower-level
information is discarded, greatly reducing the event size. In
contrast, the data sample used in the long-lived A0 search is
derived from the standard LHCb data stream. Simulated
data samples, which are used to validate the analysis, are
produced using the software described in Refs. [90–92].
The online event selection is performed by a trigger [93]

consisting of a hardware stage using information from the
calorimeter and muon systems, followed by a software
stage that performs a full event reconstruction. At the
hardware stage, events are required to have a muon with
momentum transverse to the beam direction pTðμÞ≳
1.8 GeV, or a dimuon pair with pTðμþÞpTðμ−Þ≳
ð1.5 GeVÞ2. The long-lived A0 search also uses events
selected at the hardware stage due to the presence of a high-
(p_T) hadron that is not associated with the A0 → μþμ−
candidate. In the software stage, where the (p_T) resolu-
tion is substantially improved, cf. the hardware stage,

A0 → μþμ− candidates are built from two oppositely
charged tracks that form a good-quality vertex and satisfy
stringent muon-identification criteria, though these criteria
were loosened considerably in the low-mass region during
2017–2018 data taking. Both searches require pTðA0Þ >
1 GeV and 2 < ηðμÞ < 4.5. The promptlike A0 search uses
muons that are consistent with originating from the PV,
with pTðμÞ > 1.0 GeV and momentum pðμÞ > 20 GeV in
2016, and pTðμÞ > 0.5 GeV, pðμÞ > 10 GeV, and
pTðμþÞpTðμ−Þ > ð1.0 GeVÞ2 in 2017–2018. The long-
lived A0 search uses muons that are inconsistent with
originating from any PV with pTðμÞ > 0.5 GeV and
pðμÞ > 10 GeV, and requires 2 < ηðA0Þ < 4.5 and a decay
topology consistent with a dark photon originating from
a PV.
The promptlike A0 sample is contaminated by prompt

γ� → μþμ− production, various resonant decays to μþμ−,
whose mass-peak regions are avoided in the search, and by
the following types of misreconstruction: (hh) two prompt
hadrons misidentified as muons, (hμQ) a misidentified
prompt hadron combined with a muon produced in the
decay of a heavy-flavor quark Q that is misidentified as
prompt, and (μQμQ) two muons produced in Q-hadron
decays that are both misidentified as prompt. Conta-
mination from a prompt muon and a misidentified prompt
hadron is negligible, though it is accounted for automati-
cally by the method used to determine the sum of the hh
and hμQ contributions. The impact of the γ� → μþμ−

background is reduced (cf. Ref. [83]) by constraining the
muons to originate from the PV when determining
mðμþμ−Þ. This improves the resolution σ½mðμþμ−Þ� by
about a factor of 2 for small mðA0Þ. The misreconstructed
backgrounds are highly suppressed by the stringent require-
ments applied in the trigger; however, substantial contri-
butions remain for mðA0Þ ≳ 1.1 GeV. In this mass region,
dark photons are expected to be predominantly produced in
Drell-Yan processes, from which they would inherit the
well-known signature of dimuon pairs that are largely
isolated. Therefore, the signal sensitivity is enhanced by
applying the anti-kT-based [94–96] isolation requirement
described in Refs. [83,97] for mðA0Þ > 1.1 GeV.
The observed promptlike A0 → μþμ− yields, which are

determined from fits to the mðμþμ−Þ spectrum, are nor-
malized using Eq. (1) to obtain constraints on ε2. The
nγ

�
ob½mðA0Þ� values in Eq. (1) are obtained from binned

extended maximum likelihood fits to the min½χ2IPðμ�Þ�
distributions, where χ2IPðμÞ is defined as the difference in
the vertex-fit χ2 when the PV is reconstructed with and
without the muon. The min½χ2IPðμ�Þ� distribution provides
excellent discrimination between prompt muons and the
displaced muons that constitute the μQμQ background. The
χ2IPðμÞ quantity approximately follows a χ2 probability
density function (PDF), with 2 degrees of freedom, and
therefore, the min½χ2IPðμ�Þ� distributions have minimal
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dependence on mass for each source of dimuon candidates.
The prompt-dimuon PDFs are taken directly from the data
at mðJ=ψÞ and mðZÞ, where prompt resonances are
dominant. Small corrections are applied to obtain these
PDFs at all othermðA0Þ, which are validated near threshold,
at mðϕÞ, and at m½ϒð1SÞ�, where the data predominantly
consist of prompt-dimuon pairs. Based on these validation
studies, a shape uncertainty of 2% is applied in each
min½χ2IPðμ�Þ� bin. Same-sign μ�μ� candidates provide
estimates for the PDF and yield of the sum of the hh and
hμQ contributions, where each involves misidentified
prompt hadrons. The μ�μ� yields are corrected to account
for the difference in the production rates of πþπ− and π�π�,
which are determined precisely from the data using dipion
candidates weighted to account for the kinematic depend-
ence of the muon misidentification probability, since the hh
background largely consists of πþπ− pairs where both pions
are misidentified. The uncertainty due to the finite size of the
μ�μ� sample in each bin is included in the likelihood.
Simulated Q-hadron decays are used to obtain the μQμQ
PDFs, where the dominant uncertainties are from the relative
importance of the various Q-hadron decay contributions at
each mass. Example min½χ2IPðμ�Þ� fits are provided in
Ref. [97], while the resulting promptlike candidate categori-
zation versus mðμþμ−Þ is shown in Fig. 1. Finally, the
nγ

�
ob½mðA0Þ� yields are corrected for bin migration due to

bremsstrahlung, which is negligible except near the low-
mass tails of the J=ψ and ϒð1SÞ, and the small expected
Bethe-Heitler contribution is subtracted [76], resulting in the
nA

0
ex½mðA0Þ; ε2� values shown in Fig. S2 of Ref. [97].
The promptlike nA

0
ob½mðA0Þ� mass spectrum is scanned in

steps of σ½mðμþμ−Þ�=2 searching for A0 → μþμ− contribu-
tions [97] using the strategy from Ref. [83]. At each mass, a
binned extended maximum likelihood fit is performed in a
�12.5σ½mðμþμ−Þ� window around mðA0Þ. The profile
likelihood is used to determine the p value and the upper
limit at 90% confidence level (C.L.) on nA

0
ob½mðA0Þ�. The

signal is well modeled by a Gaussian distribution whose
resolution is determined with 10% precision using a
combination of simulated A0 → μþμ− decays and the

observed pT-dependent widths of the large resonance peaks
in the data. The mass-resolution uncertainty is included in
the profile likelihood. The method of Ref. [98] selects the
background model from a large set of potential compo-
nents, which includes all Legendre modes up to tenth order
and dedicated terms for known resonances, by performing a
data-driven process whose uncertainty is included in the
profile likelihood following Ref. [99]. No significant
excess is found in the promptlike mðA0Þ spectrum after
accounting for the trials factor due to the number of signal
hypotheses.
Dark photons are excluded at 90% C.L. where the upper

limit on nA
0

ob½mðA0Þ� is less than nA
0

ex½mðA0Þ; ε2�. Figure 2
shows that the constraints placed on promptlike dark
photons are the most stringent for 214 < mðA0Þ ≲
740 MeV and 10.6 < mðA0Þ≲ 30 GeV. The low-mass
constraints are the strongest placed by a promptlike A0
search at any mðA0Þ. These results are corrected for
inefficiency and changes in the mass resolution that arise
due to τðA0Þ no longer being negligible at such small values
of ϵ2. The high-mass constraints are adjusted to account for
additional kinetic mixing with the Z boson [84,85], which
alters Eq. (1). Since the LHCb detector response is
independent of which qq̄ → A0 process produces the dark
photon above 10 GeV, it is straightforward to recast the
results in Fig. 2 for other models [100,101].
For the long-lived A0 search, contamination from prompt

particles is negligible due to a stringent criterion applied in
the trigger on min½χ2IPðμ�Þ� that requires muons be incon-
sistent with originating from any PV. Therefore, the dom-
inant background contributions are as follows: photons that
convert into μþμ− in the silicon-strip vertex detector that
surrounds the pp interaction region known as the VELO
[103], b-hadron decay chains that produce two muons, and
the low-mass tail from K0

S → πþπ− decays, where both
pions are misidentified as muons (all other strange decays
are negligible). A p value is assigned to the photon-
conversion hypothesis for each long-lived A0 → μþμ− can-
didate using properties of the decay vertex and muon tracks,
along with a high-precision three-dimensional material map
produced from a data sample of secondary hadronic
interactions [104]. An mðA0Þ-dependent requirement is
applied to these p values that results in conversions having

FIG. 1. Promptlike mass spectrum, where the categorization of
the data as prompt μþμ−, μQμQ, and hhþ hμQ is determined using
the min½χ2IPðμ�Þ� fits described in the text (examples of these fits
are provided in the Supplemental Material [97]). The anti-kT-
based isolation requirement is applied for mðA0Þ > 1.1 GeV.

FIG. 2. Regions of the ½mðA0Þ; ε2� parameter space excluded at
90% C.L. by the promptlike A0 search compared to the best
published [35,38,83] and preliminary [102] limits.
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negligible impact on the sensitivity, though they are still
accounted for to prevent pathologies when there are no other
background sources. The remaining backgrounds are highly
suppressed by the decay topology requirement applied in the
trigger. Furthermore, since muons produced in b-hadron
decays are often accompanied by additional displaced
tracks, events are rejected if they are selected by the
inclusive heavy-flavor software trigger [105,106] indepen-
dent of the presence of the A0 → μþμ− candidate. In
addition, boosted decision tree classifiers are used to reject
events containing tracks consistent with originating from the
same b-hadron decay as the signal muon candidates [107].
The long-lived A0 search is also normalized using

Eq. (1); however, ϵA
0

γ� ½mðA0Þ; τðA0Þ� is not unity, in part
because the efficiency depends on the decay time t. The
kinematics are identical for A0 → μþμ− and prompt γ� →
μþμ− decays for mðA0Þ ¼ mðγ�Þ; therefore, the t depend-
ence of ϵA

0
γ� ½mðA0Þ; τðA0Þ� is obtained by resampling prompt

γ� → μþμ− candidates as long-lived A0 → μþμ− decays,
where all t-dependent properties, e.g., min½χ2IPðμ�Þ�, are
recalculated based on the resampled decay-vertex locations
(the impact of background contamination in the prompt
γ� → μþμ− sample is negligible). This approach is vali-
dated using simulation, where prompt A0 → μþμ− decays
are used to predict the properties of long-lived A0 → μþμ−

decays. The relative uncertainty on ϵA
0

γ� ½mðA0Þ; τðA0Þ� is
estimated to be 5%, which arises largely due to limited
knowledge of how radiation damage affects the perfor-
mance of the VELO as a function of the distance from the
pp interaction region. The looser kinematic, muon-iden-
tification, and hardware-trigger requirements applied to
long-lived A0 → μþμ− candidates, cf. promptlike candi-
dates, also increase the efficiency. This t-independent
increase in efficiency is determined using a control data
sample of dimuon candidates consistent with originating
from the PV but otherwise satisfying the long-lived criteria.
The nA

0
ex½mðA0Þ; ε2� values obtained using these data-driven

ϵA
0

γ� ½mðA0Þ; τðA0Þ� values (discussed in more detail in
Ref. [97]), along with the expected promptlike A0 →
μþμ− yields, are shown in Fig. 3.

The long-lived mðA0Þ spectrum is also scanned in
discrete steps of σ½mðμþμ−Þ�=2 looking for A0 → μþμ−
contributions [97]; however, discrete steps in τðA0Þ are also
considered here. Binned extended maximum likelihood fits
are performed to the three-dimensional feature space of
mðμþμ−Þ, t, and the consistency of the decay topology as
quantified in the decay fit χ2DF, which has 3 degrees of
freedom. The photon-conversion contribution is derived in
each ½mðμþμ−Þ; t; χ2DF� bin from the number of dimuon
candidates that are rejected by the conversion criterion.
Both the b-hadron and K0

S contributions are modeled in
each ½t; χ2DF� bin by second-order polynomials of the energy
released in the decay

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðμþμ−Þ2 − 4mðμÞ2

p
. These con-

tributions are validated using the following large control
data samples: candidates that fail the b-hadron suppression
requirements and candidates that fail, but nearly satisfy, the
stringent muon-identification requirements. The profile
likelihood is used to obtain the p values and confidence
intervals on nA

0
ob½mðA0Þ; τðA0Þ�. No significant excess is

observed in the long-lived A0 → μþμ− search (the three-
dimensional data distribution and the background-only pull
distributions are provided in Ref. [97]).
Since the relationship between τðA0Þ and ε2 is known at

each mass [76], the upper limits on nA
0

ob½mðA0Þ; τðA0Þ� are
easily translated into limits on nA

0
ob½mðA0Þ; ε2�. Regions of

the ½mðA0Þ; ε2� parameter space where the upper limit on
nA

0
ob½mðA0Þ; ε2� is less than nA

0
ex½mðA0Þ; ε2� are excluded at

90% C.L. Figure 4 shows that sizable regions of ½mðA0Þ; ε2�
parameter space are excluded, which are much larger than
those excluded in Ref. [83].
In summary, searches are performed for promptlike and

long-lived dark photons produced in pp collisions at a
center-of-mass energy of 13 TeV. Both searches look for
A0 → μþμ− decays using a data sample corresponding to an
integrated luminosity of 5.5 fb−1 collected with the LHCb
detector during 2016–2018. No evidence for a signal is

FIG. 3. Expected reconstructed and selected long-lived A0 →
μþμ− yield.

FIG. 4. Ratio of the observed upper limit on nA
0

ob½mðA0Þ; ε2� at
90% C.L. to the expected dark-photon yield nA

0
ex½mðA0Þ; ε2�, where

regions less than unity are excluded. The only constraints in this
region are from (hashed) the previous LHCb search [83].
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found in either search, and 90% C.L. exclusion regions are
set on the γ–A0 kinetic mixing strength. The promptlike A0
search is performed from near the dimuon threshold up to
70 GeVand produces the most stringent constraints on dark
photons with 214 < mðA0Þ≲ 740 MeV and 10.6 <
mðA0Þ≲ 30 GeV. The long-lived A0 search is restricted
to the mass range 214 < mðA0Þ < 350 MeV, where the
data sample potentially has sensitivity and places world-
leading constraints on low-mass dark photons with life-
times Oð1Þ ps. The threefold increase in integrated lumi-
nosity, improved trigger efficiency during 2017–2018 data
taking, and improvements in the analysis result in the
searches presented in this Letter achieving much better
sensitivity to dark photons than the previous LHCb results
[83]. The promptlike A0 search achieves a factor of 5 (2)
better sensitivity to ε2 at low (high) masses than Ref. [83],
while the long-lived A0 search provides access to much
larger regions of ½mðA0Þ; ε2� parameter space.
These results demonstrate the excellent sensitivity of the

LHCb experiment to dark photons, even using a data
sample collected with a hardware-trigger stage that is
highly inefficient for low-mass A0 → μþμ− decays. The
removal of this hardware-trigger stage in Run 3, along with
the planned increase in luminosity, should increase the
potential yield of A0 → μþμ− decays in the low-mass region
by a factor Oð100Þ compared to the 2016–2018 data
sample. Given that most of the parameter space shown
in Fig. 4 would have been accessible if the data sample was
only 3 times larger, these upgrades will greatly increase the
dark-photon discovery potential of the LHCb experiment.
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R. Le Gac,10 R. Lefèvre,9 A. Leflat,39 F. Lemaitre,47 O. Leroy,10 T. Lesiak,33 B. Leverington,16 H. Li,70 X. Li,66 Y. Li,6

Z. Li,67 X. Liang,67 R. Lindner,47 F. Lionetto,49 V. Lisovskyi,11 G. Liu,70 X. Liu,3 D. Loh,55 A. Loi,26 J. Lomba Castro,45

I. Longstaff,58 J. H. Lopes,2 G. Loustau,49 G. H. Lovell,54 Y. Lu,6 D. Lucchesi,27,p M. Lucio Martinez,31 Y. Luo,3

A. Lupato,27 E. Luppi,20,h O. Lupton,55 A. Lusiani,28 X. Lyu,5 S. Maccolini,19,f F. Machefert,11 F. Maciuc,36 V. Macko,48

P. Mackowiak,14 S. Maddrell-Mander,53 L. R. Madhan Mohan,53 O. Maev,37,47 A. Maevskiy,77 K. Maguire,61

D. Maisuzenko,37 M.W. Majewski,34 S. Malde,62 B. Malecki,47 A. Malinin,75 T. Maltsev,42,y H. Malygina,16 G. Manca,26,g

G. Mancinelli,10 R. Manera Escalero,44 D. Manuzzi,19,f D. Marangotto,25,r J. Maratas,9,x J. F. Marchand,8 U. Marconi,19

S. Mariani,21 C. Marin Benito,11 M. Marinangeli,48 P. Marino,48 J. Marks,16 P. J. Marshall,59 G. Martellotti,30

L. Martinazzoli,47 M. Martinelli,24 D. Martinez Santos,45 F. Martinez Vidal,46 A. Massafferri,1 M. Materok,13 R. Matev,47

A. Mathad,49 Z. Mathe,47 V. Matiunin,38 C. Matteuzzi,24 K. R. Mattioli,79 A. Mauri,49 E. Maurice,11,c M. McCann,60,47

L. Mcconnell,17 A. McNab,61 R. McNulty,17 J. V. Mead,59 B. Meadows,64 C. Meaux,10 G. Meier,14 N. Meinert,73

D. Melnychuk,35 S. Meloni,24,j M. Merk,31 A. Merli,25 M. Mikhasenko,47 D. A. Milanes,72 E. Millard,55 M.-N. Minard,8

O. Mineev,38 L. Minzoni,20,h S. E. Mitchell,57 B. Mitreska,61 D. S. Mitzel,47 A. Mödden,14 A. Mogini,12 R. D. Moise,60

T. Mombächer,14 I. A. Monroy,72 S. Monteil,9 M. Morandin,27 G. Morello,22 M. J. Morello,28,u J. Moron,34 A. B. Morris,10

A. G. Morris,55 R. Mountain,67 H. Mu,3 F. Muheim,57 M. Mukherjee,7 M. Mulder,31 D. Müller,47 K. Müller,49 V. Müller,14

C. H. Murphy,62 D. Murray,61 P. Muzzetto,26 P. Naik,53 T. Nakada,48 R. Nandakumar,56 A. Nandi,62 T. Nanut,48 I. Nasteva,2

M. Needham,57 N. Neri,25,r S. Neubert,16 N. Neufeld,47 R. Newcombe,60 T. D. Nguyen,48 C. Nguyen-Mau,48,o E. M. Niel,11

S. Nieswand,13 N. Nikitin,39 N. S. Nolte,47 C. Nunez,79 A. Oblakowska-Mucha,34 V. Obraztsov,43 S. Ogilvy,58

D. P. O’Hanlon,19 R. Oldeman,26,g C. J. G. Onderwater,74 J. D. Osborn,79 A. Ossowska,33 J. M. Otalora Goicochea,2

T. Ovsiannikova,38 P. Owen,49 A. Oyanguren,46 P. R. Pais,48 T. Pajero,28,u A. Palano,18 M. Palutan,22 G. Panshin,78

A. Papanestis,56 M. Pappagallo,57 L. L. Pappalardo,20,h C. Pappenheimer,64 W. Parker,65 C. Parkes,61,47 G. Passaleva,21,47

A. Pastore,18 M. Patel,60 C. Patrignani,19,f A. Pearce,47 A. Pellegrino,31 M. Pepe Altarelli,47 S. Perazzini,19 D. Pereima,38

P. Perret,9 L. Pescatore,48 K. Petridis,53 A. Petrolini,23,i A. Petrov,75 S. Petrucci,57 M. Petruzzo,25,r B. Pietrzyk,8

G. Pietrzyk,48 M. Pikies,33 M. Pili,62 D. Pinci,30 J. Pinzino,47 F. Pisani,47 A. Piucci,16 V. Placinta,36 S. Playfer,57 J. Plews,52

M. Plo Casasus,45 F. Polci,12 M. Poli Lener,22 M. Poliakova,67 A. Poluektov,10 N. Polukhina,76,d I. Polyakov,67

E. Polycarpo,2 G. J. Pomery,53 S. Ponce,47 A. Popov,43 D. Popov,52 S. Poslavskii,43 K. Prasanth,33 L. Promberger,47

C. Prouve,45 V. Pugatch,51 A. Puig Navarro,49 H. Pullen,62 G. Punzi,28,q W. Qian,5 J. Qin,5 R. Quagliani,12 B. Quintana,9

PHYSICAL REVIEW LETTERS 124, 041801 (2020)

041801-9



N. V. Raab,17 R. I. Rabadan Trejo,10 B. Rachwal,34 J. H. Rademacker,53 M. Rama,28 M. Ramos Pernas,45 M. S. Rangel,2

F. Ratnikov,41,77 G. Raven,32 M. Ravonel Salzgeber,47 M. Reboud,8 F. Redi,48 S. Reichert,14 F. Reiss,12 C. Remon Alepuz,46

Z. Ren,3 V. Renaudin,62 S. Ricciardi,56 S. Richards,53 K. Rinnert,59 P. Robbe,11 A. Robert,12 A. B. Rodrigues,48

E. Rodrigues,64 J. A. Rodriguez Lopez,72 M. Roehrken,47 S. Roiser,47 A. Rollings,62 V. Romanovskiy,43

M. Romero Lamas,45 A. Romero Vidal,45 J. D. Roth,79 M. Rotondo,22 M. S. Rudolph,67 T. Ruf,47 J. Ruiz Vidal,46 J. Ryzka,34

J. J. Saborido Silva,45 N. Sagidova,37 B. Saitta,26,g C. Sanchez Gras,31 C. Sanchez Mayordomo,46 B. Sanmartin Sedes,45

R. Santacesaria,30 C. Santamarina Rios,45 M. Santimaria,22 E. Santovetti,29,k G. Sarpis,61 A. Sarti,30 C. Satriano,30,t

A. Satta,29 M. Saur,5 D. Savrina,38,39 L. G. Scantlebury Smead,62 S. Schael,13 M. Schellenberg,14 M. Schiller,58

H. Schindler,47 M. Schmelling,15 T. Schmelzer,14 B. Schmidt,47 O. Schneider,48 A. Schopper,47 H. F. Schreiner,64

M. Schubiger,31 S. Schulte,48 M. H. Schune,11 R. Schwemmer,47 B. Sciascia,22 A. Sciubba,30,l S. Sellam,68

A. Semennikov,38 A. Sergi,52,47 N. Serra,49 J. Serrano,10 L. Sestini,27 A. Seuthe,14 P. Seyfert,47 D. M. Shangase,79

M. Shapkin,43 T. Shears,59 L. Shekhtman,42,y V. Shevchenko,75,76 E. Shmanin,76 J. D. Shupperd,67 B. G. Siddi,20

R. Silva Coutinho,49 L. Silva de Oliveira,2 G. Simi,27,p S. Simone,18,e I. Skiba,20 N. Skidmore,16 T. Skwarnicki,67

M.W. Slater,52 J. G. Smeaton,54 A. Smetkina,38 E. Smith,13 I. T. Smith,57 M. Smith,60 A. Snoch,31 M. Soares,19

L. Soares Lavra,1 M. D. Sokoloff,64 F. J. P. Soler,58 B. Souza De Paula,2 B. Spaan,14 E. Spadaro Norella,25,r P. Spradlin,58

F. Stagni,47 M. Stahl,64 S. Stahl,47 P. Stefko,48 S. Stefkova,60 O. Steinkamp,49 S. Stemmle,16 O. Stenyakin,43 M. Stepanova,37

H. Stevens,14 S. Stone,67 S. Stracka,28 M. E. Stramaglia,48 M. Straticiuc,36 S. Strokov,78 J. Sun,3 L. Sun,71 Y. Sun,65

P. Svihra,61 K. Swientek,34 A. Szabelski,35 T. Szumlak,34 M. Szymanski,5 S. Taneja,61 Z. Tang,3 T. Tekampe,14 G. Tellarini,20

F. Teubert,47 E. Thomas,47 K. A. Thomson,59 M. J. Tilley,60 V. Tisserand,9 S. T’Jampens,8 M. Tobin,6 S. Tolk,47

L. Tomassetti,20,h D. Tonelli,28 D. Y. Tou,12 E. Tournefier,8 M. Traill,58 M. T. Tran,48 C. Trippl,48 A. Trisovic,54

A. Tsaregorodtsev,10 G. Tuci,28,47,q A. Tully,48 N. Tuning,31 A. Ukleja,35 A. Usachov,11 A. Ustyuzhanin,41,77 U. Uwer,16

A. Vagner,78 V. Vagnoni,19 A. Valassi,47 G. Valenti,19 M. van Beuzekom,31 H. Van Hecke,66 E. van Herwijnen,47

C. B. Van Hulse,17 J. van Tilburg,31 M. van Veghel,74 R. Vazquez Gomez,44 P. Vazquez Regueiro,45 C. Vázquez Sierra,31

S. Vecchi,20 J. J. Velthuis,53 M. Veltri,21,s A. Venkateswaran,67 M. Vernet,9 M. Veronesi,31 M. Vesterinen,55

J. V. Viana Barbosa,47 D. Vieira,5 M. Vieites Diaz,48 H. Viemann,73 X. Vilasis-Cardona,44,n A. Vitkovskiy,31 V. Volkov,39

A. Vollhardt,49 D. Vom Bruch,12 A. Vorobyev,37 V. Vorobyev,42,y N. Voropaev,37 R. Waldi,73 J. Walsh,28 J. Wang,3 J. Wang,71

J. Wang,6 M. Wang,3 Y. Wang,7 Z. Wang,49 D. R. Ward,54 H. M. Wark,59 N. K. Watson,52 D. Websdale,60 A. Weiden,49

C. Weisser,63 B. D. C. Westhenry,53 D. J. White,61 M. Whitehead,13 D. Wiedner,14 G. Wilkinson,62 M. Wilkinson,67

I. Williams,54 M. Williams,63 M. R. J. Williams,61 T. Williams,52 F. F. Wilson,56 M. Winn,11 W. Wislicki,35 M. Witek,33

G. Wormser,11 S. A. Wotton,54 H. Wu,67 K. Wyllie,47 Z. Xiang,5 D. Xiao,7 Y. Xie,7 H. Xing,70 A. Xu,3 L. Xu,3 M. Xu,7

Q. Xu,5 Z. Xu,8 Z. Xu,3 Z. Yang,3 Z. Yang,65 Y. Yao,67 L. E. Yeomans,59 H. Yin,7 J. Yu,7,ab X. Yuan,67 O. Yushchenko,43

K. A. Zarebski,52 M. Zavertyaev,15,d M. Zdybal,33 M. Zeng,3 D. Zhang,7 L. Zhang,3 S. Zhang,3 W. C. Zhang,3,aa Y. Zhang,47

A. Zhelezov,16 Y. Zheng,5 X. Zhou,5 Y. Zhou,5 X. Zhu,3 V. Zhukov,13,39 J. B. Zonneveld,57 and S. Zucchelli19,f

(LHCb Collaboration)

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China

4School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
5University of Chinese Academy of Sciences, Beijing, China
6Institute Of High Energy Physics (IHEP), Beijing, China

7Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
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jAlso at Università di Milano Bicocca, Milano, Italy.
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rAlso at Università degli Studi di Milano, Milano, Italy.
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