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Abstract: Data on proteomic and metabolomic signatures of healthy dietary patterns are limited.
We evaluated the cross-sectional association of serum proteomic and metabolomic markers with
three dietary patterns: the Alternative Healthy Eating Index (AHEI), the Dietary Approaches to Stop
Hypertension (DASH) diet; and a Mediterranean-style (MDS) diet. We examined participants from
the Framingham Offspring Study (mean age; 55 years; 52% women) who had complete proteomic
(n = 1713) and metabolomic (n = 2284) data; using food frequency questionnaires to derive dietary
pattern indices. Proteins and metabolites were quantified using the SomaScan platform and liquid
chromatography/tandem mass spectrometry; respectively. We used multivariable-adjusted linear
regression models to relate each dietary pattern index (independent variables) to each proteomic
and metabolomic marker (dependent variables). Of the 1373 proteins; 103 were associated with at
least one dietary pattern (48 with AHEI; 83 with DASH; and 8 with MDS; all false discovery rate
[FDR] ≤ 0.05). We identified unique associations between dietary patterns and proteins (17 with
AHEI; 52 with DASH; and 3 with MDS; all FDR ≤ 0.05). Significant proteins enriched biological
pathways involved in cellular metabolism/proliferation and immune response/inflammation. Of the
216 metabolites; 65 were associated with at least one dietary pattern (38 with AHEI; 43 with DASH;
and 50 with MDS; all FDR ≤ 0.05). All three dietary patterns were associated with a common signature
of 24 metabolites (63% lipids). Proteins and metabolites associated with dietary patterns may help
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characterize intermediate phenotypes that provide insights into the molecular mechanisms mediating
diet-related disease. Our findings warrant replication in independent populations

Keywords: dietary patterns; diet quality; proteomic; metabolomic; biomarker

1. Introduction

Sub-optimal diet quality is a leading cause of death in the United States and is estimated to
contribute to approximately 44% of coronary heart disease deaths and 51% of stroke related deaths [1].
Data from clinical trials and prospective cohort studies indicate that healthy dietary patterns are
associated with better metabolic health, lower risk of major chronic diseases, and lower mortality [2–5].
These studies indicate that diet quality may be a key factor in the prevention and mitigation of chronic
disease. Yet, the molecular mechanisms [2,3] underlying the beneficial effects of healthy diet are not
completely understood.

The identification of molecular biomarkers (proteins and metabolites) related to dietary patterns
holds promise to elucidate biological pathways underlying the diet-related risk of chronic disease.
Molecular biomarkers related to dietary intake may also relate to risk factors for chronic disease,
or overt chronic disease per se. Such molecular markers reflecting dietary patterns have the potential
to help inform risk assessment and allow for targeted preventive measures prior to the onset of
chronic disease states. Population-based high-throughput proteomic studies of dietary patterns are
lacking even though proteomic profiling may identify molecular biomarkers reflective of the biological
functions/dysfunctions associated with an exposure (such as diet) or chronic disease states. In contrast,
the use of untargeted metabolomics in nutrition research has increased in past years with the primary
goal of biomarker discovery for the objective assessment of dietary intake [6]. Fewer studies have
sought to relate dietary metabolomic profiles to disease outcomes; some studies have suggested
that certain circulating metabolites may contribute to the biological underpinnings of diet–disease
relations [7–9].

Multi-level omics analyses that combine high-dimensional molecular data from high throughput
platforms can provide a comprehensive assessment of intermediate phenotypes (e.g., molecular
endophenotypes) that may help link diet (or other exposures) to more distal chronic disease phenotypes.
We hypothesized that proteomic and metabolic signatures of habitual dietary patterns encompass
the respective functional states and metabolic consequences of unique dietary patterns including the
sequelae of chronic disease. The objective of the present investigation was to determine the associations
of the Alternative Healthy Eating Index (AHEI), Dietary Approaches to Stop Hypertension (DASH)
diet, and a Mediterranean-style diet (MDS) with 1373 plasma proteins and 216 circulating metabolites
in a sample of community-dwelling middle-aged adults.

2. Materials and Methods

2.1. Study Sample

The description of the Framingham Offspring Study is located elsewhere [10]. For the present
investigation, we evaluated data from participants who attended the fifth examination cycle (1991–1995)
of the Framingham Offspring Study. Details of participant inclusion are displayed in Supplementary
Figure S1. For our analyses of diet–protein relations, 1913 participants who had proteomic profiling
completed on the SOMAscan platform were eligible. Participants were excluded from analysis if they
did not have complete dietary data (n = 200) or had missing covariate data (n = 51). This resulted
in a final analytical sample of 1662. For analyses of diet–metabolite relations, 2526 participants who
had metabolites assayed were eligible. Participants were excluded from analysis if they did not have



Nutrients 2020, 12, 1476 3 of 20

complete dietary data (n = 242) or if they were missing covariate data (n = 76). This resulted in a
second analytical sample of 2208 for diet–metabolite relations.

2.2. Protein Quantification

Proteomics profiling in the Framingham Offspring Study has been described previously [11,12].
Blood samples were collected from participants at the fifth exam Heart Study visit using standard
phlebotomy procedures. Using the SOMAscan platform, a total of 1373 proteins were quantified
using single-stranded DNA-based aptamers. Samples were assayed in two batches (n = 821 and
n = 1092). For each respective batch, age and sex adjusted protein values were loge transformed and
standardized to a mean = 0 and standard deviation (SD) = 1. The inter- and intra-assay reproducibility
of proteins quantified on the SOMAscan platform in the Framingham Offspring Study has previously
been reported [11].

2.3. Metabolite Quantification

Measurements of 216 metabolites in the Framingham Offspring Study has been previously
described in detail [13–15]. Blood samples were collected at the fifth exam Heart Study visit.
Positively charged polar, negatively charged polar, and lipid metabolites were quantified using
liquid chromatography with tandem mass spectrometry (LC/MS/MS). Known standards were used to
identify metabolites and internal standards were used for quality control [13]. Nomenclature for lipid
metabolites includes the total lipid acyl chain-length followed by the total number of double bonds
(e.g., twenty-two carbon acyl chain and six double bonds is indicated by = C22:6).

2.4. Dietary Assessment

Dietary intake at examination cycle five was assessed using the Harvard semi-quantitative
food frequency questionnaire (FFQ). The Harvard FFQ measures usual frequency of consumption of
126 dietary items over the year preceding the Heart Study visit. Food frequency categories range from
none or <1 serving per month to ≥ 6 servings per day. Use of the Harvard FFQ has previously been
validated for the assessment of dietary intake using 7-day dietary records [16]. We only used FFQs
that were considered valid (<13 blank items and estimated daily caloric intake was ≥600 kcal/d and
<4000 kcal/d for women or <4200 kcal/d for men) [17].

2.5. Dietary Pattern Indices

The AHEI, DASH diet score, and MDS were constructed using dietary intake data from the
aforementioned FFQ. Components and scoring criteria for each score were based on prior studies and
have been described in detail elsewhere [18–20].

AHEI components include vegetables, fruits, nuts and legumes, sugar-sweetened beverages and
fruit juice, whole grains, red and processed meat, eicosapentaenoic acid and docosahexaenoic acid,
polyunsaturated fatty acids (PUFA), trans fatty acids, sodium, and alcohol [20]. For each component,
a maximum score of 10 points was possible. Reverse scores (lower consumption receives a higher score)
were assigned to sugar-sweetened beverages, trans fatty acids, and sodium. Individual components
were summed to a maximum total score of 110 points.

The DASH diet score has 8 components, which includes fruits and fruit juices, vegetables, nuts
and legumes, whole grains, low-fat dairy, sodium, red and processed meats, and sugar-sweetened
beverages. For each component, scoring was based on quintiles of intake with the first quintile
(Q1) receiving a score of 1 and the fifth quintile (Q5) receiving the maximum score of 5 points [19].
Reverse scores were assigned to sodium, red and processed meats, and sugar-sweetened beverages.
All components were summed to a maximum DASH diet score of 40.

Lastly, the MDS components included vegetables, fruits, nuts, legumes, whole grains, fish, red
meat, ratio of monounsaturated fatty acids (MUFA) to saturated fatty acids (SFA), and alcohol. Except
for alcohol, all component scores are based on sex-specific quartiles of intake for our respective sample,
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with participants in the first quartile (Q1) receiving a score of 0 and the fourth quartile (Q4) having
the maximum score of 3 [21]. Reverse scores were assigned to red and processed meat component.
Participants received a score of 1 for sex-specific moderate alcohol consumption or a score of 0 for over-
or under-consumption [18]. Component scores were summed to a maximum final MDS score of 25.

2.6. Covariate Assessment

We included the following covariates in our analysis: age, sex, total caloric intake, current
smoking status, physical activity index, use of lipid lowering medication, use of anti-hypertensive
medication, and body mass index (BMI). All covariates were assessed at the fifth examination cycle of
the Framingham Offspring Study (1991–1995). We classified participants who smoked regularly in the
year preceding the Heart Study visit as current smokers. Use of anti-hypertensive and lipid-lowering
medications in the past year was based on self-report. BMI was calculated as measured weight in
kilograms divided by the square of height in meters (kg/m2). The physical activity index was calculated
based on time and intensity of activities in a day [22]. Lastly, total energy was calculated from the
aforementioned semi-quantitative FFQ.

2.7. Statistical Analysis

We used multivariable linear regression models to determine the cross-sectional associations of
each dietary pattern index (AHEI, DASH, and MDS; independent variables, a separate model for each)
with each protein and metabolite (dependent variables, a separate model for each). We standardized
all three dietary pattern indices (mean = 0, SD = 1) and modeled the standardized scores as continuous
variable to maximize our statistical power. Results are reported as increments in proteins or metabolite
concentrations for each SD-unit increase in the standardized dietary pattern indices (AHEI, DASH
or MDS). Multivariable linear regression models included adjustment for age, sex, total caloric
intake, current smoking status, physical activity index, use of lipid lowering medication, use of
anti-hypertensive medication, and BMI. We calculated age- and sex-adjusted Spearman’s correlation
coefficients among proteins and metabolites (separately) identified as statistically significant in our
second multivariable regression model.

For all analyses we considered the Benjamini–Hochberg false discover rate (FDR) q value of ≤0.05
to define statistical significance. A Bonferroni adjustment (0.05/1373 proteins and 0.05/216 metabolites)
was used to display a condensed list of top significant proteins and metabolites. Statistical analyses were
completed using SAS statistical software (version 9.4; SAS Institute, Cary, NC, USA) and R (version 3.6.1)
run on RStudio (RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, USA).

2.8. Enrichment Analysis

We completed an enrichment analysis to determine underlying biological significance of proteins
that have statistically significant associations with dietary patterns. A pathway over-representation
analysis was conducted on significant (FDR q ≤ 0.05) proteins using Web-based Gene Set Analysis
Toolkit (WebGestalt) [23]. Proteins were mapped to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) functional database [24]. KEGG pathways with less than 5 proteins or more than 2000 proteins
were excluded from the analysis. Enriched pathways with an FDR q ≤ 0.05 were considered
statistically significant. Significant metabolites were mapped to the KEGG functional database for
descriptive annotation.

Overlap between Dietary Protein and Metabolite Quantitative Trait Loci and Prior Genome-Wide
Association Study Risk Loci

Previous work in the Framingham Offspring Study has identified genetic loci (protein and
metabolite quantitative trait loci [p/mQTL]) of 156 of the proteins and all of the 216 metabolites assayed
at examination cycle five [25,26]. Genotyping and the identification of p/mQTLs in the Framingham
Offspring Study have been described elsewhere [25,26]. In the present study, we present p/mQTL that
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were previously identified in the Framingham Offspring Study to be associated with proteins and/or
metabolites that we observed to be significantly associated with at least one of the respective dietary
patterns. We searched the NHGRI-EBI Catalogue of Published genome-wide association studies
(GWAS) [27] to determine overlap between dietary p/mQTL and risk loci identified in prior GWAS.

3. Results

3.1. Sample Characteristics

Our overall study sample had an average age of 55 years and 52 percent were women. Sex-specific
participant characteristics, represented as mean (SD) or frequency (proportion), are displayed in Table 1.
On average, women had a lower BMI and a small proportion reported use of lipid-lowering and
anti-hypertensive medications, compared to men. Additionally, women reported a lower average
energy intake and had higher average AHEI and DASH dietary pattern scores.

Table 1. Sample characteristics at examination five of the Framingham Offspring Study.1

Men Women

n = 2208 Mean ± SD Mean ± SD

n = 1054 n = 1154

Age, yr 55.7 ± 9.9 54.5 ± 9.6
Current smoker, n (%) 190 (18%) 210 (18%)
Physical activity score 36.0 ± 7.4 33.4 ± 4.7
BMI, kg/m2 28.2 ± 4.1 26.7 ± 5.4
Lipid-lowering medications, n (%) 101 (10) 67 (6)
Anti-hypertensive medication, n
(%) 238 (23) 195 (17)

Energy intake, kcal/day 1992 ± 642 1742 ± 566
AHEI (0–110) 48.0 ± 9.6 51.7 ± 9.7
DASH (0–40) 23.0 ± 4.9 25.3 ± 4.7
MDS (0–25) 12.3 ± 4.3 12.0 ± 4.4
Food Group Intake

Vegetables, svg/d 2.0 ± 1.3 2.4 ± 1.7
Fruits, svg/d 1.2 ± 1.0 1.4 ± 1.2
Low-fat dairy, svg/d 0.8 ± 0.9 0.9 ± 1.0
Nuts, svg/wk 0.4 ± 0.6 0.2 ± 0.4
Legumes, svg/wk 0.3 ± 0.3 0.3 ± 0.3
Whole grains, svg/wk 1.2 ± 1.2 1.2 ± 1.2
Red/processed meat, svg/wk 0.9 ± 0.7 0.6 ± 0.5
Fish, svg/wk 0.3 ± 0.3 0.3 ± 0.3
Sugar-sweetened beverage &

fruit juice, svg/wk 1.4 ± 1.2 1.1 ± 1.2

Sugar-sweetened beverage,
svg/wk 0.5 ± 0.8 0.3 ± 0.6

Fruit juice, svg/wk 0.9 ± 0.9 0.8 ± 0.9
Alcohol, gm/day 15.4 ± 20.0 6.7 ± 11.2
MUFA:SFA 1.1 ± 0.2 1.1 ± 0.2
MUFA, %kcal 11.3 ± 2.7 10.9 ± 2.6
SFA, % kcal 10.5 ± 3.0 10.3 ± 2.8
PUFA, % kcal 5.7 ± 1.7 6.0 ± 1.7
Trans fat, % kcal 1.6 ± 0.8 1.4 ± 0.7
Omega-3 fatty acids, mg/day 257.8 ± 235.5 253.2 ± 217.8

1 Values presented as mean and standard deviation or proportion and frequency. Abbreviations: AHEI, Alternative
Healthy Eating Index; BMI: body mass index; DASH, Dietary Approaches to Stop Hypertension; MDS, Mediterranean
Diet-style Score; MUFA, Monounsaturated fatty acid; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids.



Nutrients 2020, 12, 1476 6 of 20

3.2. Associations of Dietary Patterns with Plasma Protein Concentrations

Overall, 103 unique proteins were significantly associated with at least one dietary pattern
index (48 with AHEI, 83 with DASH, and 8 with MDS; Figure 1A). Forty-six proteins were directly
associated with at least one dietary pattern index and 57 proteins had inverse associations with at
least one dietary pattern index (Figure 2A). The top significant results by a Bonferroni adjustment
are listed in Table 2. Beta coefficients representing the difference in concentrations of each of the
103 proteins per SD increase in the AHEI, DASH and MDS indices are listed in Supplemental Table S1.
Five proteins (epidermal growth factor receptor [ERBB1], kynureninase [KYNU], stanniocalcin 1,
macrophage migration inhibitory factor [MIF], and WAP, kazal, immunoglobulin, kunitz and NTR
domain-containing protein 2 [WFKN2]) were significantly associated with all three dietary pattern
indices. We observed that 52 proteins were uniquely associated with the DASH diet score (19 direct
and 33 inverse associations; all FDR q ≤ 0.05) and 17 proteins were uniquely associated with the AHEI
(7 direct and 10 inverse associations; all FDR q ≤ 0.05). Additionally, 26 proteins were significantly
associated with the DASH diet score and the AHEI but not the MDS (15 direct and 11 inverse
associations; all FDR q ≤ 0.05). Unlike the DASH diet score and the AHEI, associations of the MDS
with plasma proteins were less evident. The MDS was significantly associated with just 8 proteins, 3 of
which (p-selectin, intercellular adhesion molecular 5 [ICAM-5], and cathepsin S) uniquely related to
the MDS (all FDR q ≤ 0.05). Among the 103 unique proteins, we observed two groupings of positively
correlated proteins (34 proteins and 40 proteins; Figure 3). The first grouping consists of 34 proteins
that primarily had inverse associations with dietary patterns and the second grouping consists of
40 proteins that primarily had positive associations with dietary patterns.

Figure 1. The number of protein (A) and metabolite (B) markers associated with dietary pattern indices.
Venn diagrams illustrate the overlap of significant proteins (FDR q ≤ 0.05) and metabolites across the
AHEI, DASH, and MDS dietary patterns. Significant proteins and metabolites were based on a false
discovery rate threshold ≤ 0.05 from multivariable models adjusted for age, sex, total caloric intake,
current smoking, physical activity index, lipid lowering medication, anti-hypertensive medication, and
body mass index. Abbreviations: AHEI, Alternative Healthy Eating Index; DASH, Dietary Approaches
to Stop Hypertension; FDR, false discovery rate; MDS, Mediterranean-style Diet Score.
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Figure 2. Protein (A) and metabolite (B) markers associated with dietary pattern indices. Colored points (red, green, blue) indicate statistical significance (FDR q ≤ 0.05)
by the respective dietary pattern indices. Multivariable regression models are adjusted for age, sex, total caloric intake, current smoking, physical activity index,
lipid lowering medication, anti-hypertensive medication, and body mass index. β estimates represent the change in marker per one-unit increase in the respective
dietary pattern indices. Eleven metabolites with β coefficients < −0.50 or >0.50 are excluded from the figure. Abbreviations: AHEI, Alternative Healthy Eating Index;
CE, cholesterol ester; DASH, Dietary Approaches to Stop Hypertension; FDR, false discovery rate; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine;
MDS, Mediterranean-style Diet Score. PC, phosphatidylcholine; SM, sphingomyelin; TAG, triacylglycerol.
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Figure 3. Heatmap depicting Spearman’s partial correlation coefficients adjusted for age and sex between proteins that were statistically significant (FDR p ≤ 0.05) in
multivariable models adjusting for age, sex, total caloric intake, current smoking, physical activity index, lipid lowering medication, anti-hypertensive medication, and
body mass index.
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Table 2. Top significant associations of dietary patterns with plasma protein concentrations 1.

Name Type/Class Diet 2
AHEI DASH MDS

B 3 SE β SE β SE

Carbonic anhydrase 6 Enzyme DASH 0.095 0.023 0.108 * 0.023 0.085 0.025
Carnosine dipeptidase 1 (CNDP1) Peptidase AHEI, DASH 0.135 * 0.024 0.105 * 0.025 0.085 0.026
Contactin 4 Enzyme DASH 0.051 0.024 0.112 * 0.024 0.075 0.025

Epidermal growth factor receptor (ERBB1) Kinase AHEI, MDS,
DASH 0.133 * 0.022 0.127 * 0.023 0.111 * 0.024

Fibroblast growth factor receptor 1 (bFGF-R) Kinase AHEI,DASH 0.092 * 0.023 0.107 * 0.023 0.076 0.024
Galectin 3 Other AHEI 0.101 * 0.023 0.073 0.024 0.076 0.025
Glypican 3 Other DASH 0.057 0.024 0.109 * 0.024 0.070 0.025
Hemojuvelin BMP co-receptor (RGM-C) Other DASH 0.090 0.024 0.105 * 0.025 0.088 0.026
Heterogeneous nuclear ribonucleoprotein A/B (hnRNP A/B) Enzyme DASH −0.054 0.023 −0.099 * 0.024 −0.042 0.025

Kynureninase (KYNU) Enzyme AHEI, MDS,
DASH −0.127 * 0.024 −0.153 * 0.024 −0.112 * 0.026

Leucine rich repeats and immunoglobulin like domains 3 (LRIG3) Other AHEI 0.114 * 0.024 0.087 0.025 0.069 0.026
Macrophage migration inhibitory factor (MIF) MDS, DASH −0.098 0.024 −0.119 * 0.024 −0.106 * 0.026
Matrix metallopeptidase 2 (MMP-2) Peptidase DASH 0.076 0.024 0.117 * 0.024 0.074 0.025
MET proto-oncogene, receptor tyrosine kinase (MET) Kinase AHEI 0.102 * 0.023 0.096 0.024 0.050 0.025

Notch 1 Transcription
regulator AHEI, DASH 0.098 * 0.023 0.113 * 0.023 0.069 0.024

Peroxiredoxin 1 Enzyme DASH −0.068 0.024 −0.113 * 0.025 −0.077 0.026
Plasminogen activator, tissue type (tPA) Peptidase DASH −0.048 0.022 −0.101 * 0.022 −0.068 0.023
Serpin family C member 1 (Antithrombin III) Enzyme AHEI 0.093 * 0.021 0.063 0.022 0.053 0.023

Stanniocalcin 1 Kinase AHEI, MDS,
DASH −0.108 * 0.024 −0.103 * 0.024 −0.111 * 0.025

Thrombospondin 2 (TSP2) Other AHEI −0.112 * 0.024 −0.087 0.025 −0.077 0.026
Transferrin Transporter AHEI 0.127 * 0.022 0.083 0.023 0.068 0.024
WAP, follistatin/kazal, immunoglobulin, kunitz and netrin domain
containing 2 (WFKN2) Other AHEI, DASH 0.095 * 0.023 0.097 * 0.023 0.099 0.024

Prostatic binding protein DASH −0.046 0.024 −0.101 * 0.024 −0.042 0.026
1 Multivariable regression models with proteins as the dependent variable and dietary pattern scores as the independent variable (separate model for each dietary pattern and protein).
Models are adjusted for age, sex, total caloric intake, current smoking, physical activity index, lipid lowering medication, anti-hypertensive medication, and body mass index. * Statistically
significant following Bonferroni adjustment (0.05/1373 proteins). 2 Diets with a statistically significant association. 3 β estimates represent the change in protein concentration per
standardized unit increase in the respective dietary pattern indices. Abbreviations: AHEI, Alternative Healthy Eating Index; DASH, Dietary Approaches to Stop Hypertension; MDS,
Mediterranean Diet-style Score.
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3.3. Associations of Dietary Patterns with Plasma Metabolite Concentrations

Of the 216 plasma metabolites, 65 were associated with at least one dietary pattern index (38 with
AHEI, 43 with DASH, 50 with MDS; all FDR q ≤ 0.05; Figures 1B and 2B). Of these, 27 metabolites
had direct associations and 38 metabolites had inverse associations with a dietary pattern. The top
statistically significant results after a Bonferroni correction are listed in Table 3. Beta coefficients
representing the difference in concentrations of each of the 65 proteins per one-unit increase in the AHEI,
DASH and MDS indices are listed in Supplemental Table S2. The majority of statistically significant
metabolites associated with the three dietary patterns were lipids (55%). Additional notable classes
of molecules associated with the three dietary patterns included amino acids (11%), bile acids and
derivatives (5%), nucleotide metabolism (5%), and tricarboxylic acid and derivatives (5%). We observed
that 24 metabolites were significantly associated (15 directly and 9 inversely) with all three dietary
pattern indices (all FDR q ≤ 0.05). Half of the 24 metabolites were highly-unsaturated lipid species
directly associated with the respective diet indices. Overall, we observed fewer significant unique
associations of the three dietary pattern indices with metabolites than with proteins. The MDS was
uniquely associated with 11 lipid species and the nucleotide metabolite adenosine monophosphate
(AMP, all FDR q ≤ 0.05). The AHEI and DASH indices had fewer unique associations (5 and 6
respectively), all of which were with non-lipid metabolites (all FDR q ≤ 0.05). Of the 65 metabolites, we
observed that concentrations of lipid species with a similar degree of saturation had direct correlations
with each other (Figure 4).

Figure 4. Heatmap depicting Spearman’s partial correlation coefficients adjusted for age and sex
between metabolites that were statistically significant (FDR p ≤ 0.05) in multivariable models adjusting
for age, sex, total caloric intake, current smoking, physical activity index, lipid lowering medication,
anti-hypertensive medication, and body mass index. CE, cholesterol ester; FDR, false discovery rate;
LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; SM,
sphingomyelin; TAG, triacylglycerol.
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Table 3. Top significant associations of dietary patterns with plasma metabolite concentrations 1.

Name Type\Class Diet 2 AHEI DASH MDS

B 3 SE β SE β SE

Aconitate Aliphatic acyclic compound AHEI, DASH −0.025 * 0.006 −0.025 * 0.006 −0.019 0.007
Cholesterol ester (C22:6) Lipid AHEI, MDS 0.059 * 0.015 0.048 0.016 0.080 * 0.017
Cis/trans-hydroxyproline L-alpha-amino acid MDS, DASH −0.033 0.012 −0.070 * 0.012 −0.054 * 0.013
Cotinine MDS, DASH −2.094 0.723 −3.075 * 0.734 −3.097 * 0.772

Hippurate Aromatic homomonocyclic
compounds AHEI, MDS, DASH 0.364 * 0.079 0.430 * 0.080 0.354 * 0.085

Isocitrate Aliphatic acyclic compounds AHEI, MDS, DASH −0.041 * 0.008 −0.049 * 0.008 −0.041 * 0.008
Lysophosphatidylcholine (C20:5) Lipid AHEI, DASH 0.079 * 0.016 0.069 * 0.017 0.062 0.018
Lysophosphatidylcholine (C22:6) Lipid AHEI, MDS, DASH 0.073 * 0.010 0.052 * 0.011 0.077 * 0.011
Lysophosphatidylethanolamine (C20:4) Lipid MDS −0.022 0.009 −0.028 0.009 −0.045 * 0.010
Ornithine L-alpha-amino acid DASH −0.028 0.011 −0.057 * 0.011 −0.039 0.012
Oxalate Aliphatic acyclic compounds MDS, DASH 0.064 0.018 0.107 * 0.018 0.086 * 0.019
Pantothenate Water-soluble vitamins DASH 0.049 0.022 0.126 * 0.022 0.083 0.023
Phosphatidylcholine (C38:6) Lipid AHEI, MDS, DASH 0.039 * 0.005 0.035 * 0.005 0.046 * 0.005
Phosphatidylcholine (40:6) Lipid AHEI, MDS, DASH 0.041 * 0.006 0.038 * 0.006 0.054 * 0.006
Serine Amino acid DASH −0.006 0.007 −0.030 * 0.007 −0.018 0.008
Sphingomyelin (C14:0) Lipid MDS −0.012 0.006 −0.001 0.007 −0.043 * 0.007
Sphingomyelin (C18:0) Lipid AHEI, MDS, DASH −0.026 * 0.006 −0.028 * 0.006 −0.032 * 0.006
Sphingomyelin (C18:1) Lipid AHEI, MDS, DASH −0.044 * 0.007 −0.044 * 0.007 −0.036 * 0.007
Thiamine Water-soluble vitamins DASH 0.067 0.037 0.150 * 0.037 0.101 0.039
Triacylglycerol (C54:7) Lipid MDS 0.036 0.012 0.037 0.012 0.050 * 0.013
Triacylglycerol (C56:7) Lipid AHEI, MDS, DASH 0.037 * 0.007 0.031 * 0.007 0.041 * 0.008
Triacylglycerol (C56:8) Lipid AHEI, MDS, DASH 0.043 * 0.009 0.040 * 0.009 0.054 * 0.009
Triacylglycerol (C58:10) Lipid AHEI, MDS, DASH 0.045 * 0.010 0.038 * 0.010 0.048 * 0.011
Triacylglycerol (C58:8) Lipid AHEI, MDS, DASH 0.042 * 0.008 0.037 * 0.008 0.047 * 0.008
Triacylglycerol (C58:9) Lipid AHEI, MDS, DASH 0.050 * 0.009 0.045 * 0.009 0.057 * 0.009
Uridine Ribonucleosides AHEI, DASH 0.028 * 0.005 0.034 * 0.005 0.019 0.005

1 Multivariable regression models with each metabolite as the dependent variable and dietary pattern scores as the independent variable (separate model for each dietary pattern and
protein). Models are adjusted for age, sex, total caloric intake, current smoking, physical activity index, lipid lowering medication, anti-hypertensive medication, and body mass index.
* Statistically significant following Bonferroni adjustment (0.05/216 metabolites). 2 Diets with a statistically significant association. 3 β estimates represent the change in metabolite
concentration per standardized unit increase in the respective dietary pattern indices Abbreviations: AHEI, Alternative Healthy Eating Index; DASH, Dietary Approaches to Stop
Hypertension; MDS, Mediterranean Diet-style Score.
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3.4. Protein Enrichment Analysis

We completed a pathway over-representation analysis of the 103 proteins significantly associated
with the AHEI, DASH, or MDS diet indices. Sixty-eight proteins successfully mapped to KEGG
pathways. The top ten enriched pathways for these 68 proteins are displayed in Table 4. Seven pathways
were significantly enriched by protein related to dietary patterns: complement and coagulation
cascades, staphylococcus aureus infection, endocrine resistance, HIF-1 signaling pathway, central
carbon metabolism in cancer, PI3K-Akt signaling pathway, and malaria (all FDR q ≤ 0.05). Additionally,
three pathways had FDR q < 0.07, including fluid shear stress and atherosclerosis, Prostate cancer,
and cell adhesion molecules (CAMs). Pathways were broadly involved in biological processes such
as cellular proliferation, cellular metabolism, immune response, and inflammation. We completed
separate analyses on the 48 proteins significantly associated with the AHEI and the 83 proteins
significantly associated with the DASH diet score (Supplementary Table S3). Thirty-seven of the
48 proteins associated with the AHEI and 49 of the 83 protein associated with the DASH diet score
successfully mapped to KEGG pathways. This secondary enrichment analysis suggested that proteins
associated with the DASH diet score predominately enriched the HIF-1 signaling pathway, PI3K-Akt
signaling pathway, malaria, fluid shear stress and atherosclerosis, and prostate cancer pathways.

Table 4. Pathway over representation analysis of protein markers associated with dietary pattern 1.

Pathway Enrichment
Ratio P-Value 2 FDR Q-Value 3 Matched Molecules

hsa04610 Complement and
coagulation cascades 12.51 3.1 × 108 1.0 × 105 PLAT, SERPINC1, C3, SERPINE1, SERPINA5,

CFH, C1S, C3AR1, CPB2

hsa05150 Staphylococcus aureus
infection 9.81 1.4 × 104 1.7 × 102 C3, CFH, C1S, SELP

hsa01522 Endocrine resistance 6.72 2.5 × 104 1.7 × 102 EGFR, MMP2, BCL2, NOTCH1, MED1, JAG1

hsa04066 HIF-1 signaling
pathway 6.59 2.8 × 104 1.7 × 102 EGFR, GAPDH, SERPINE1, TEK, TF, BCL2

hsa05230 Central carbon
metabolism in cancer 8.45 2.9 × 104 1.7 × 102 EGFR, FGFR1, KIT, MET, NTRK3

hsa04151 PI3K-Akt signaling
pathway 3.41 3.1 × 104 1.7 × 102 CDC37, EGFR, FGFR1, HSP90AB1, MET, TEK,

THBS2, BCL2, KIT, YWHAB
hsa05144 Malaria 8.97 9.8 × 104 4.6 × 102 MET, SELE, SELP, THBS2

hsa05418 Fluid shear stress and
atherosclerosis 4.74 1.6 × 103 6.2 × 102 HSP90AB1, MMP2, PLAT, BCL2, SELE, BMPR1A

hsa05215 Prostate cancer 5.66 1.8 × 103 6.2 × 102 EGFR, PLAT, HSP90AB1, FGFR1, BCL2

hsa04514 Cell adhesion
molecules (CAMs) 4.58 1.9 × 103 6.2 × 102 SELP, SELE, CNTN1, NEGR1, PDCD1LG2,

NRXN3
1 All proteins analyzed were significantly (FDR q ≤ 0.05) related to the respective dietary pattern scores in
multivariable models adjusting for age, sex, total caloric intake, current smoking, physical activity index, lipid
lowering medication, anti-hypertensive medication, and body mass index. Analyzed proteins were annotated to
KEGG pathways with >5 and <2000 proteins. 2 Unadjusted p value. 3 False discovery rate p value. Abbreviations:
AHEI, Alternative Healthy Eating Index; DASH, Dietary Approaches to Stop Hypertension; KEGG, Kyoto
Encyclopedia of Genes and Genomes; MDS, Mediterranean-style Diet Score.

3.5. Metabolite Enrichment

In a descriptive assessment, we mapped metabolites to pathways in the KEGG functional
database (Supplemental Table S4). Metabolites mapped to notable pathways including bile secretion,
cholesterol metabolism, and ABC transporters. Additional pathways include choline metabolism,
glycerophospholipid metabolism, and vitamin digestion and absorption.

3.6. Overlap between Dietary Protein and Metabolite Quantitative Trait Loci and Prior Genome-Wide
Association Study Risk Loci

Of the previously identified genetic loci associated with 156 proteins from the SOMAscan platform,
39 were related with concentrations of 25 plasma proteins that we identified as having a significant
association with at least one respective dietary pattern index (Table 5). Four of these dietary pQTL were
associated with clinical traits in prior GWAS analyses. In particular, a variant (rs2519093) of the ABO gene,
which is directly associated with concentrations of E-selectin, has direct associations with coronary artery
disease [28], venous thromboembolism [29], and cardiometabolic risk factors. Additionally, 19 mQTL
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were associated with concentrations of 18 metabolites, 15 of which are lipid metabolites (Table 6). Many
lipid metabolites were associated with genetic variants of the of the fatty acid desaturase gene family
[FADS1-2]. Genetic variants of the FADS gene cluster are associated with plasma concentrations of
omega-3 and -6 fatty acids [30,31], and cardiometabolic risk factors (blood lipids, insulin, and glycemic
markers) [32,33]. Further, a genetic variant of the APOA gene cluster was associated with concentrations
of TAG (C52:4) and has been linked to increased susceptibility of CVD [34].

Table 5. Overlap among dietary protein quantitative trait loci and prior genome-wide association study
risk loci.1.

Protein 1 Variant 2 Nearest Gene GWAS Associated Traits 3 GWAS Study Accession 4

AK1A1 rs72688441 NASP Blood protein
concentrations GCST006585, GCST005806

AK1A1 1:46767127:TCTC_ LRRC41
AK1A1 rs72684498 ZSWIM5
AK1A1 rs72676591 EIF2B3
Antithrombin III rs334516 TNS3
bFGF-R 8:38324424:ACC_A FGFR1

C1s rs6695321 CFH Blood protein
concentrations GCST004365, GCST005806

C1s rs150845796 CFHR2
C3a rs11583804 ACTRT2

Cadherin-5 rs8176672 ABO
Blood protein
concentrations, optic cup
area

GCST005806, GCST004137

Cadherin-5 rs11534419 TMEM8C
Carbonic anhydrase 6 rs11576766 CA6
Cathepsin D rs1558500

Cathepsin S rs72702561 HORMAD1 Blood protein
concentrations GCST006585

Cathepsin S rs9661107 PRUNE1
Cathepsin S rs141935877 TARS2
Contactin-1 rs11640313 MRPL28
ERBB1 rs12112554

Factor H rs10737680 CFH
Macular degeneration, lung
function, blood protein
concentrations

GCST004737, GCST003265,
GCST004365

Factor H rs12134610 KCNT2
Factor H rs150845796 CFHR2

Factor H rs1329428
Macular degeneration,
central serous retinopathy,
lung function

GCST000806, GCST006416,
GCST003265

Gal 3 rs11733361 SLC25A31
iC3b rs11583804 ACTRT2
IGFBP-1 rs139504202
KYNU rs35647509 KYNU
KYNU rs4733300 NRG1
LSAMP rs117955663 OR56B2P

MET rs635634 ABO

Blood protein
concentrations, LDL-C
concentrations, TC
concentrations, ischemic
stroke, immune cell count,
T2D

GCST000759, GCST000760,
GCST006910, GCST004613,
GCST004773, GCST005806

Notch 1 rs138015312 UGT2B15

PARC rs1102934 CCL18 Blood protein
concentrations GCST006585

RGM-C rs2381409 FAM221B
RGM-C 7:57407593:TTCC_

sE-Selectin rs2519093 ABO

Blood protein
concentrations, LDL-C
concentrations, venous
thromboembolism, TC
concentrations, hematocrit,
hemoglobin, immune cell
count, CAD

GCST005806, GCST006612,
GCST004256, GCST007143,
GCST005994, GCST005995,
GCST007070, GCST005195

sE-Selectin rs9722289 TMEM8C
TIG2 rs10282458 LOC107986858
Transferrin rs71544591 PTPRN2
TSP2 rs73043837 THBS2
WFKN2 rs7207028 WFIKKN2

1 Proteins whose concentrations were significantly associated (FDR q ≤ 0.05) with at least one dietary pattern index
and had a pQTL previously identified in the Framingham Offspring Study [26]. 2 Previously identified pQTL. 3 Top
traits associated with corresponding GWAS risk loci. A complete list of traits can be found in the NHGRI-EBI
Catalogue of Published GWAS. 4 GWAS Study accession number of studies linking GWAS risk loci and traits.
A complete list of GWAS Study accession number can be found in the NHGRI-EBI Catalogue of Published GWAS.
CAD, coronary artery disease; GWAS, genome-wide association study; LDL-C, low-density lipoprotein cholesterol;
TC, total cholesterol; T2D; diabetes mellitus; QTL, quantitative trait loci.
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Table 6. Overlap among dietary metabolite quantitative trait loci and prior genome-wide association
study risk loci.1

Metabolite 1 Variant 2 Nearest Gene GWAS Associated Traits 3 GWAS Study Accession4

Cholesterol ester (C20:5) rs174548 FADS1-2

Blood metabolite concentrations, metabolite
ratios in CKD, TG concentrations, HDL-C
concentrations, plasma N6 concentrations,
metabolite ratios

GCST000274, GCST005650,
GCST000809, GCST000805,
GCST003237, GCST002442

Indoxylsulfate rs875480 CSNK1G3

Lysophosphatidylcholine (C20:5) rs174548 FADS1-2

Blood metabolite concentrations, metabolite
ratios in CKD, TG concentrations, HDL-C
concentrations, plasma N6 concentrations,
metabolite ratios

GCST000274, GCST005650,
GCST000809, GCST000805,
GCST003237, GCST002442

Lysophosphatidylcholine (C22:6) rs174550 FADS1-2

Blood metabolite concentrations, TG
concentrations, FBG, HDL-C concentrations,
LDL-C concentrations, plasma N6
concentrations, plasma N3 concentrations,
HOMA-B

GCST002443, GCST004237.
GCST005186, GCST004232,
GCST007141, GCST002446,
GCST001178, GCST005180,

Lysophosphatidylethanolamine
(C18:2) rs4246215 FADS2

Plasma N3 concentrations, platelet count, IBD,
RBC fatty acid concentrations, Crohn’s
disease, CRC

GCST001180, GCST001337,
GCST001725, GCST002712,
GCST004132, GCST007992

Lysophosphatidylethanolamine
(C20:4) rs174548 FADS1-2

Blood metabolite concentrations, metabolite
ratios in CKD, TG concentrations, HDL-C
concentrations, plasma N6 concentrations,
metabolite ratios

GCST000274, GCST005650,
GCST000809, GCST000805,
GCST003237, GCST002442

Lysophosphatidylethanolamine
(C20:4) rs4149056 SLCO1B1

Blood metabolite concentrations, TG
concentrations, bilirubin, response to statin,
ER+ breast cancer, thyroxine concentrations,
hemoglobin, metabolite ratios

GCST002442, GCST007133,
GCST000386, GCST000213,
GCST004359, GCST006896,
GCST007068, GCST002442

Phosphatidylcholine (C36:2) rs174541 FADS2
Blood metabolite concentrations, metabolite
ratios in CKD, trans fatty acid concentrations,
RBC fatty acids,

GCST001852, GCST005650,
GCST002721, GCST002712

Phosphatidylcholine (C40:6) rs174535 FADS1-2

Blood metabolite concentrations, plasma N3
concentrations, RBC fatty acids, trans fatty
acid concentrations, inflammatory disease,
asthma, glycemic traits, respiratory disease

GCST002443, GCST001178,
GCST002712, GCST002721,
GCST005537, GCST007799,
GCST008674, GCST007076

Proline rs2078743 PRODH

Serine rs477992 PHGDH Blood metabolite/amino acid concentrations,
TC concentrations GCST002966, GCST006614

Sphingomyelin (C14:0) rs11158519 SYNE2 Sphingomyelin concentrations GCST008933

Triacylglycerol (C54:2) rs964184 APOA1/C3/A4/A5

Blood metabolite concentrations, TG
concentrations, lipoprotein concentrations,
CHD, stroke, MetS, phospholipid fatty acids,
fat soluble vitamin concentrations, CAD, age
related CVDs

GCST001639, GCST004550,
GCST004759, GCST000998,
GCST002290, GCST001436,
GCST001414, GCST001142,
GCST004787, GCST004045,

Triacylglycerol (C54:4) rs174550 FADS1-2

TG concentrations, FBG, HDL-C
concentrations, LDL-C concentrations, plasma
N6 concentrations, HOMA-B, plasma N3
concentrations, RBC fatty acids, trans fatty
acid concentrations

GCST004237, GCST008032,
GCST004232, GCST007141,
GCST002448, GCST005180,
GCST001178, GCST002712,
GCST002721

Triacylglycerol (C54:5) rs964184 APOA1/C3/A4/A5

Blood metabolite concentrations, TG
concentrations, lipoprotein concentrations,
CHD, stroke„ MetS, phospholipid fatty acids,
fat soluble vitamin concentrations, CAD, age
related CVDs

GCST001639, GCST004550,
GCST004759, GCST000998,
GCST002290, GCST001436,
GCST001414, GCST001142,
GCST004787, GCST004045,

Triacylglycerol (C56:7) rs6593086

Triacylglycerol (C58:10) rs174548 FADS1-2

Blood metabolite concentrations, metabolite
ratios in CKD, TG concentrations, HDL-C
concentrations, plasma N6 concentrations,
metabolite ratios

GCST000274, GCST005650,
GCST000809, GCST000805,
GCST003237, GCST002442

Triacylglycerol (C58:8) rs6593086
Triacylglycerol (C58:9) rs6593086

1 Metabolites whose concentrations were significantly associated (FDR q ≤ 0.05) with at least one dietary pattern
index and had a mQTL previously identified in the Framingham Offspring Study (26). 2 Previously identified mQTL.
3 Top traits associated with corresponding GWAS risk loci. A complete list of traits can be found in the NHGRI-EBI
Catalogue of Published GWAS. 4 GWAS Study accession number of studies linking GWAS risk loci and traits.
A complete list of GWAS Study accession number can be found in the NHGRI-EBI Catalogue of Published GWAS.

4. Discussion

Proteomic and metabolomic correlates of dietary patterns (sometimes referred to as ‘signatures’)
may collectively represent an intermediate phenotype of the underlying metabolic state and provide
insight into the molecular mechanisms mediating diet and chronic disease associations. In the present
investigation we identified high-throughput proteomic and metabolomic signatures of dietary patterns
that have been previously associated with reduced risk of chronic disease mortality from all causes [4,5].
Our main findings are four-fold; first, we identified unique proteomic correlates of the DASH and
AHEI dietary patterns. Second, we identified a shared ‘signature’ of 24 metabolites associated with
all three healthy dietary patterns. Third, downstream enrichment analysis indicated that proteins
associated with dietary patterns are involved in biological pathways that may underlie associations
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between dietary patterns and metabolic health. Fourth, overlap between dietary p/mQTL and prior
GWAS risk loci suggest the potential utility of dietary pattern-related proteins and metabolites as
endophenotypes that may link diet to cardiometabolic health and risk of chronic disease.

Our investigation adds to the literature by relating a broad array of over 1300 plasma proteins to
dietary patterns using multiplexed high-throughput single-stranded DNA aptamer technology that
allows for efficient and deep profiling of the plasma proteome [35]. Of the 103 dietary pattern-related
proteins in our investigation, 16 were associated with various metabolic traits (BMI, visceral adiposity,
triglycerides, insulin resistance, and fasting glucose) in the Diet, Obesity, and Genes interventional
trial [36,37] and 45 proteins were associated with cardiometabolic risk and/or incidence CVD in
the Framingham Offspring Study [11]. In addition, our over representation analysis indicated that
diet related proteins enriched biological pathways involved in cellular proliferation/metabolism and
immune response/inflammation. However, we observed considerable overlap of proteins among
the identified pathways. The relatively modest number of proteins that successfully mapped to
KEGG pathways may have hindered a thorough enrichment analysis. Lastly, our observation that
concentrations of E selectin were related to a poorer DASH diet score and a variant of the ABO gene
that is directly associated with CAD may delineate a functional link between diet and metabolic health.

To the best of our knowledge, only two prior studies have examined proteomic profiles of dietary
patterns [38,39]. A recent investigation by Warensjo Lemming et al. examined a panel of 184 proteins
and identified 59 proteins associated with Swedish population empirically derived dietary patterns;
21 of which were validated in an independent cohort [39]. We observed significant positive associations
with five of the 21 proteins (ERBB1 [EGFR], insulin like growth factor binding protein 1 [IGFBP1],
programmed death ligand 2 [PDL2], galectin-3 [Gal3], and contactin 1 [CNTN1]) that are involved in
processes including cellular metabolism, cellular proliferation, immune response, and cellular adhesion.
Prior experimental studies indicate that gene and/or protein expression of ERBB1, PDL2, and CNTN1 is
atheroprotective [40–42]. Further, multiple studies have reported that low concentrations of IGEBP1 are
directly associated with glucose intolerance and risk of diabetes mellitus [43,44]. Notably, ERBB1 and
CNTN1 were found to be inversely associated with cardiometabolic risk and/or incidence CVD [11,45].
In contrast, prior work has identified direct associations between Gal3 and heart failure [46]. Thus,
the direct association of Gal3 with healthy dietary patterns warrants further investigation.

Perhaps our most intriguing finding is the unique proteomic signatures, or lack thereof, we
observed across dietary patterns. Notably, the DASH diet score was associated with a unique signature
of 52 proteins, which enriched pathways involved in cellular metabolism, hypoxia, inflammation, and
atherosclerosis. Clinical trials have demonstrated the efficacy of the DASH diet in lowering blood
pressure [3] and epidemiological studies have found that adherence to the DASH diet is associated
with reduced risk of hypertension, CVD, and mortality [19,47,48]. Additional studies are needed to
determine if proteins in this unique signature are associated with blood pressure lowering and other
cardio-protective qualities of the DASH diet.

Similar to our investigation, two prior studies comparing hypothesis-driven dietary patterns
reported just a modest number of unique dietary pattern and metabolite associations [49,50]. A higher
degree of similarities across metabolomic signatures of healthy dietary patterns might indicate a
generalized metabolic response of an overall healthy dietary pattern. Prior studies have reported that a
large proportion of the metabolites associated with dietary patterns are lipids [49–51]. Lipids represented
63% of the metabolites associated with all three dietary patterns. We observed that lipids directly
associated with a higher diet quality tended to have ≥5 carbon double bonds. Further, we observed
that genetic variants (rs174548 and rs174550) associated with distinct highly-unsaturated lipid species
had concordant associations with blood triglycerides and high-density lipoprotein metabolism [52,53].
Previous studies have found that highly-unsaturated lipids, with a longer acyl-chain length have inverse
associations with risk of CVD and diabetes mellitus [54–57]. Hence, lipid correlates of dietary patterns,
particularly highly-unsaturated lipids, may serve as markers of overall diet quality and may be directly
related to pathogenesis of cardiometabolic and other chronic disease risks.
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Lastly, we note that concentrations of several metabolites associated with the respective dietary
patterns could be influenced by composition of the gut microbiome. This includes metabolites involved
in choline metabolism (phosphotidylcholine, choline, and betaine), bile acid metabolism (glycocholate,
deoxycholate, and deoxyglycholoate), and amino acid metabolism (tryptophan, indoxylsufate, proline,
and hydroxyproline). Such metabolites have previously been linked to inflammation, chronic kidney
disease, and CVD [58–61]. Metabolites related to dietary patterns and the gut microbiome may
represent the functional response of diet—microbial interactions that influence metabolic health,
a premise that warrants further evaluation.

The present study has several strengths. The Framingham Offspring Study is a well-established
cohort with a comprehensive assessment of phenotypic, lifestyle, and dietary data on participants.
We used a multiplexed aptamer-based high-throughput assay to identify and quantify a large number
of plasma proteins. Lastly, we assessed three complementary dietary pattern indices that are extensively
reviewed in the literature and can be readily reproduced in other study populations. Limitations of
our investigation include the use of self-reported dietary data, which is prone to measurement error
that may lead to misclassification and attenuation of observed associations. A more comprehensive
metabolomic profile would aid in direct comparisons across studies. A large proportion of the
metabolites associated with dietary patterns were lipid species that do not map to the KEGG functional
database. This precluded a thorough enrichment analysis of metabolites related to dietary patterns.
Participants from the Framingham Offspring Study are predominantly white and of European ancestry.
Hence, our results may not be generalizable across populations that are more racially/ethnically diverse.
We conducted a cross-sectional analysis and, therefore, cannot determine causality of any of the
observed associations, and cannot exclude the possibility of uncontrolled or residual confounding.

In summary, the present investigation identified proteomic and metabolomic correlates of
three dietary patterns. The DASH and AHEI were associated with unique proteomic signatures;
whereas the largest metabolomic ‘signature’ was associated with all three dietary patterns. Proteins
and metabolites related to dietary patterns may have prognostic value and inform future clinical
interventions. Additional work, in in vitro and in vivo settings, is warranted to identify genetic
determinants of dietary correlates and examine how they may relate to the progression of modifiable
chronic disease. Findings from this investigation will require replication in independent and ethnically
diverse populations.
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KEGG pathway mapping of metabolites associated with dietary pattern indices.
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