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Abstract
As modern computation platforms become increasingly com-
plex, their programming interfaces are increasingly difficult
to use. This complexity is especially inappropriate given the
relatively simple core functionality that many of the compu-
tations implement. We present a new approach for obtaining
software that executes on modern computing platforms with
complex programming interfaces. Our approach starts with
a simple seed program, written in the language of the devel-
oper’s choice, that implements the desired core functionality.
It then systematically generates inputs and observes the
resulting outputs to learn the core functionality. It finally
automatically regenerates new code that implements the
learned core functionality on the target computing platform.
This regenerated code contains boilerplate code for the com-
plex programming interfaces that the target computing plat-
form presents. By providing a productive new mechanism
for capturing and encapsulating knowledge about how to
use modern complex interfaces, this new approach promises
to greatly reduce the developer effort required to obtain se-
cure, robust software that executes on modern computing
platforms.
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1 Introduction
Within the last decade, undergraduate computer science
enrollments, both within and outside the major, have dra-
matically increased [Zweben and Bizot 2016]. As a result,
undergraduates are now acquiring basic programming skills
as a normal part of their college education. Indeed, the abil-
ity to write (relatively simple) programs, like the ability to
read, write, and perform basic mathematical reasoning, is
now increasingly seen as part of the personal portfolio of a
literate person in our culture [Lohr 2017; Smith 2016].

At the same time, the systems on which even simple pro-
duction software must execute are becoming increasingly
complex. Some decades ago most software executed on a sin-
gle machine, with the programming environment providing
a few simple abstractions (such as file system interfaces) for
accessing the devices attached to that machine. Most soft-
ware today, in contrast, is expected to execute in complex,
networked, distributed computing platforms. A common sce-
nario, for example, is for a program to compute over data
stored across many machines in a cloud computing environ-
ment to generate results that are then distributed via the
Internet for graphical presentation on remote devices.
Modern software environments rely heavily on software

packages that help developers deal with the resulting com-
plexity. Examples include application server frameworks
such as JBoss and IBMWebSphere, key/value storage systems
such as Redis, NoSQL databases such as HBase, distributed
memory caching systems such as memcached, and cluster
computing frameworks such as Spark andMapReduce.While
the implementations of such systems encapsulate the other-
wise potentially overwhelming complexity of coordinating
the actions of the components of large distributed comput-
ing systems, the programming interfaces they provide are
far from easy to use (as can be seen in the large volume of
questions posted to web sites such as Stack Overflow [Stack-
Overflow 2018]). Indeed, developers that work with such
systems spend much of their time constructing appropriate
search terms to find previously developed code that they can
copy and adapt for their needs. The complexity of these pro-
gramming interfaces can be seen as especially inappropriate
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given the relatively simple core functionality that many of
the computations implement. At a conceptual level, such
computations often simply store and retrieve data or per-
form simple computations on the stored data. The complexity
comes not from the core functionality that the computation
implements, but from the computing platform on which the
computation executes.
We propose a new approach for developing software for

such computing platforms. Instead of coding to complex
programming interfaces that existing software packages ex-
port, developers implement the core functionality in a seed
program using the programming language of their choice.
The seed program may use only the simplest standard pro-
gramming interfaces, such as standard text input and output
interfaces.

Our system first interacts with the seed program to learn
its core functionality. The system then regenerates (a poten-
tially augmented version of) the computation that uses so-
phisticated software packages to implement the learned core
functionality on the new, potentially much more complex
computing platform. In effect, the knowledge and expertise
required to use the relevant software packages are all encap-
sulated in the regenerator. This approach can be particularly
productive in a world in which basic programming skills are
widely available, but the specialized knowledge and expertise
required to productively use specialized software packages is
scarcer. This is the case for the world we are now entering as
a society: such specialized knowledge of specialized software
packages is constantly changing, available to fewer people,
and more difficult to use for everyone regardless of their skill
level. Our approach is founded on several principles:

• Programs as Specifications: We propose to use pro-
grams as (partial, noisy) specifications of the desired core
functionality. In comparison with using standard speci-
fication languages based on formal logic, programming
is a relatively widely available skill within our society
(and a skill that promises to become more available over
time). In comparison with natural language specifications,
programs provide precision and the ability to explore and
learn the specification by observing the program as it pro-
duces outputs in response to targeted synthesized inputs.

• Program Inference via Active Learning: Starting with
a seed program that (mostly) implements the desired core
functionality, the system uses active learning to reverse
engineer the seed program. The result is an inferred repre-
sentation of the core functionality that the seed program
implements.
In this paper we present a black box inference algorithm
that interacts with the seed program by generating in-
puts and observing the resulting outputs. An advantage
of using a black box approach is that the seed program
can use any language or implementation methodology.
For example, the black box approach readily works with

obfuscated seed programs. Gray box and white box ap-
proaches can also be appropriate — they can obtain certain
kinds of information more quickly by observing aspects
of the implementation, but may require more involved
mechanisms that (dynamically or statically) instrument,
monitor, and/or analyze aspects of the program and/or
its execution [Mendis et al. 2015; Shen and Rinard 2017,
2018a; Wu 2018].

• Noisy, Partial Programs:Developing a fully correct pro-
gram that handles every corner case correctly is known to
be much more difficult than developing a program that im-
plements most of the desired functionality correctly. The
inference algorithms are therefore designed to work with
such mostly correct programs, in some cases by working
with inputs that are unlikely to trigger rare corner cases,
in others by identifying and discarding undesirable behav-
ior (noise) from the seed program that should not be part
of the specification. This approach can reduce developer
effort by enabling the developer (of the seed program) to
focus on the desired core functionality while omitting er-
ror checking and corner case code (potentially with such
code inserted automatically during regeneration).

• Focused Domains: To make the inference tractable, each
inference algorithm focuses on a specific domain. Ideally,
the domain can be finitely testable, i.e., each computation
in the domain can be uniquely identified from within all of
the computations in the domain by a finite set of inputs. In
this paper we capture the domain with a collection of data
structures. Another promising approach is to capture the
domain via a domain-specific language [Shen and Rinard
2017, 2018a; Wu 2018].

• Augmented Regeneration: Working with the learned
representation of the core computation, regenerate the
program for the target context. This regeneration may
involve simply producing a computation that uses the
facilities that the target context provides. In most cases,
however, we expect that a productive regeneration will
augment the core computation with additional capabilities.
These may include additional error or security vulnerabil-
ity checks, data consistency or cleaning checks, robustness
and recovery code, or the generation of a graphical user
interface for the program.

• Reinterpretation:Manymodern programming languages
support a simple and basic model of computation (sequen-
tial execution, file input and output, standard data struc-
tures, a single address space) that usually enables straight-
forward implementation of the desired core functionality.
In many cases, however, the goal is to implement this core
functionality in a more complex environment — to operate
on distributed data, to work with data stored in a relational
database or key/value store, to access specialized comput-
ing devices, to execute time-consuming computations in
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parallel, to package the core functionality into an appeal-
ing graphical user interface potentially accessed via the
Internet, or to access values available via remote sensors.
To support such implementations, the regeneration algo-
rithm reinterprets standard constructs to translate them
into implementations that operate successfully in the new,
more complex target context.

1.1 Encapsulated Knowledge
The regenerator encapsulates the knowledge of how to use
the complex software components that the regenerated code
uses. Over the last several decades, the field has explored
a variety of approaches for capturing and communicating
this kind of knowledge. Examples include user manuals, text-
books, example programs, and, more recently, web sites such
as Stack Overflow [StackOverflow 2018]. All of these mecha-
nisms require the developer to examine the provided code
and modify it to adapt it for their purpose in their system.
Regeneration enables the developer to immediately obtain
working code that implements the desired core function-
ality without the need to examine and/or modify the code
(although the developer may very well do so if he or she
desires). In this sense the regenerator can provide a more
robust encapsulation of the (in some cases quite involved)
knowledge required to productively use the powerful but
complex target components.

1.2 Current Scope
We initially focus on programs that store, retrieve, and/or
delete data because this class of programs combines 1) wide-
spread applicability with 2) simple enough semantics to sup-
port relatively straightforward inference and regeneration
algorithms. We anticipate several use cases:

• New Software: In this use case, the seed implementation
is developed from scratch, for example by implementing
a simple text-based interface in a widely-taught language
such as Python. These use cases typically involve substan-
tial reinterpretation and augmentation to re-implement
the functionality on more complex production comput-
ing environments and/or to provide the system with an
enhanced user interface.

• Software Archeology: In this use case, the developer
starts with a legacy system that implements the desired
functionality. Here one goal is to start with a system that
runs in an obsolete or otherwise undesirable computing
context to obtain a regenerated version that can operate
successfully in a more modern context. Another goal is
to start with a system that may have defects or security
vulnerabilities to generate a program without defects or
vulnerabilities (by, for example, systematically generating
appropriate checks and code). Yet another goal is to im-
prove performance by replacing an inefficient implemen-
tation with a more efficient regenerated implementation.

Even another goal is to replace a program that has been
maintained so intensively that its lifecycle is over and it is
no longer feasible to continue to maintain it [Belady and
Lehman 1976].

• Targeted Functionality Extraction: In this use case,
the seed program implements a range of functionality,
only part of which comprises the desired core functional-
ity. The developer provides a limited interface specifica-
tion that targets only the desired core functionality, with
the program inference system oblivious to the remaining
undesired functionality.

1.3 Future Scope
In the longer term, we envision several directions for grow-
ing the scope of this idea (some of these directions have
already been explored in concurrent research [Shen and Ri-
nard 2017, 2018a; Wu 2018]).

• RecursiveComponentDecomposition:Many large ap-
plications may have sufficiently complex behavior to make
direct inference infeasible. But this behavior may arise via
the interaction of multiple inferrable components. A strat-
egy that recursively subdivides the application to identify,
learn, and regenerate some or all of these components,
then composes the regenerated components to obtain a
final regenerated application, can enable the application of
program inference and regeneration to such applications.
One particularly appealing aspect of this approach is that
it would enable the appropriately targeted deployment
of different learning algorithms to learn different compo-
nents that implement different computational patterns.
One approach would leave the components in place, ob-
serving not just inputs and outputs, but all traffic on com-
ponent interfaces. Concurrent research has used this ap-
proach to learn and regenerate database-backed web ap-
plications [Shen and Rinard 2018a] or to replace Python
data structures with a backend database [Wu 2018].
Another approach would extract and learn each compo-
nent in isolation [Amidon et al. 2015], enabling the direct
application of active learning to each component (instead
of working with the interactions that the application gen-
erates between components running in place as part of
the full application).

• MergingApplications: Learning functionality frommul-
tiple applications would enable the regeneration of appli-
cations that combine all of the functionality into a single
unified regenerated application. This could be particularly
useful, for example, for augmenting an existing application
with desirable features implemented in other applications.
Here inference and regenerationwould be an alternative to
direct inter-application code transfer [Sidiroglou-Douskos
et al. 2017, 2015].
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• Partial Inference Algorithms: Our current approach
uses active learning to uniquely identify the inferred pro-
gram within the target computational domain. We antici-
pate the development of inference algorithms that aspire
only to partially identify the program within this domain.
The motivation might be to improve the performance of
the inference algorithm or to work with a more general
or complex class of computations. In such scenarios the
inference algorithm may only aspire to infer the program
with a high probability or a concise representation (in com-
parison with the other programs that are consistent with
the observed inputs and outputs). Here the goal would
be to generate inputs and observed outputs that distance
the inferred program from other candidate programs that
are also consistent with the inputs and observed outputs.
The inferred partial models may help debugging or error
discovering [Aarts et al. 2013; De Ruiter and Poll 2015].

• New Domains: In this research we focus on programs
that store and retrieve data. We anticipate generalizing
the approach to new domains, for example programs that
read and write data in more sophisticated ways and pro-
grams that perform numerically intensive computations.
Applications that access databases comprise a particularly
compelling target, with encouraging initial results that
highlight the potential of this domain [Shen and Rinard
2017, 2018a; Wu 2018].

• Enhanced Regeneration and Reinterpretation: We
also expect the program regeneration and reinterpretation
algorithms to grow in sophistication to deliver regenerated
applications that operate successfully in more complex or
challenging environments, with the value of the regener-
ation growing with the complexity of the environments.
We expect environments characterized by distribution,
errors, stringent security or privacy needs, or scale to be
particularly compelling regeneration targets.

1.4 User Inputs Versus Active Learning
Instead of using active learning, an alternative approach
is to use dynamic monitoring to obtain inputs for interact-
ing with the seed program. We implemented a system that
observes the inputs, outputs, and database traffic from a run-
ning system in normal use and then synthesizes a model
of the application from this information [Shen and Rinard
2018b]. Preliminary results indicate that the monitored user
inputs may be insufficient for exploring the functionality
in rare usage scenarios, especially for more sophisticated
applications. When the observations are insufficient, the
system may synthesize incorrect programs. These results
highlight the utility of active learning in inferring accurate
seed program semantics in this context.

1.5 Implications for the Field
This approach promises to substantially reduce the time and
effort required to obtain programs that work with complex
programming interfaces on modern complex hardware plat-
forms. By automating the generation of error, privacy, and
security checking code, it promises to improve program ro-
bustness and reliability.
But despite these instrumental advantages, perhaps the

most important implication is the transformative effect this
approach can have on the activities and daily lives of people
who work in the field. Modern software development is in-
creasingly becoming an activity in which developers spend
their time searching for arcane code sequences that (for of-
ten poorly understood reasons) happen to deliver something
close to the desired functionality. Automating the generation
of these code sequences can free developers to focus on the
core technical challenges of automating central activities
that human society relies on to function smoothly. The pro-
fession will (once again) provide the world’s best platform
for creative people to spend their days in inspiring technical
work.

1.6 Paper Structure
The remainder of the paper is structured as follows. We
present an example of a course registration system in Sec-
tion 2. The seed program is written with a text interface in
Python, with the registration information stored in native
Python data structures. We present a regeneration for an
HTTP-based web server that uses Python, Flask, and SQL. In
Section 3 we present the program inference algorithms. We
survey related work in Section 4 and conclude in Section 5.

2 Example
We next present an example that highlights how our pro-
posed approach works for a simple student course registra-
tion system. We implemented a prototype that successfully
infers store, retrieve, and delete operations and their map-
pings.

2.1 Command Interface for Seed Program
Our approach starts with a command interface that the user
provides for the registration system. The command interface
is in the form of operations, or parameterized commands,
that the registration system should implement:
• enroll (name, id, year): Enroll a student to take classes.
Store the student’s name, id, and graduation year.

• id (name) → id: Retrieve the id of the student with the
given name.

• name (id)→ name: Retrieve the name of the identified
student given the student’s id.

• add (id, class): Add a class to the list of classes for which
the student is registered. The student is identified by the
student’s id.
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• drop (id, class): Drop the specified class from the stu-
dent’s registration list. The student is identified by the
id.

• classes (id) → class: Retrieve the class or classes for
which the identified student is currently registered.

Here each operation has a command (enroll, id, name, add,
drop, or classes), parameters (name, id, year, or class), and
outputs (name, id, or list(class)). The parameter names all
identify disjoint sets of (abstract) objects so that, for example,
the name parameter of the enroll operation is drawn from
the same set of objects as the name parameter of the id
operation, while the class parameter (from the add and drop
operations) is drawn from a different disjoint set of objects.

2.2 Seed Program
The developer next implements a seed program, written in
Python, that implements the core functionality. Python is a
widely taught language that many developers find easy to
use. The program implements a simple text-based interface
that is designed to accept and process one command per
line. While a text-based interface may not be as easy to
use as a more involved graphical or browser interface, it is
much easier to implement and supports text-based program
inference systems.
Figure 1 presents the seed program in our example. The

program maintains four data structures: classes, which
maps each student id to the list of classes for which the
student is registered, ids, which maps student names to
corresponding student ids, names, which maps student ids
to corresponding names, and years, which maps student ids
to corresponding years of graduation. The main loop reads
and implements a command for each line of input. The seed
program is quite simple — there is little input validation (for
example, the program will accept any string as a student
name, student id, class id, or year), little error checking (for
example, the code that implements the drop and classes
operations does not check if the classes map has an entry
for the provided id, which leaves the program vulnerable
to KeyErrors), no corner case checks, and no attempt to
provide useful messages to the user of the program. The
text-based interface is straightforward to implement using
basic Python input and string handling constructs. There is
no need for the developer to learn and use more complex
Python packages for building HTTP servers, graphical user
interfaces, or interacting with database storage systems.

2.3 Program Inference
The program inference algorithm exploits the availability of
the seed program to learn the functionality. Unlike most ma-
chine learning and program synthesis approaches, which are
limited to working with a provided set of input/output pairs,
the program inference algorithm can purposefully select the
inputs it provides to the seed program to target and resolve

import sys

classes = {} # id -> [

classes]

ids = {} # name -> id

names = {} # id -> name

years = {} # id ->

graduation year

while (True):
line=sys.stdin.readline ()

if not line: break;
list = str.split(line)
cmd = list [0]

if cmd == "enroll ":

name , id, year = list

[1:4]

names[id] = name

ids[name] = id

years[id] = year

elif cmd == "id":

name = list [1]

print ids[name]

elif cmd == "name":

id = list [1]

print names[id]

elif cmd == "add":

id, num = list [1:3]

if not id in classes:

classes[id] = []

if not (num in classes[id

]):

classes[id]. append(num)

elif cmd == "drop":

id, num = list [1:3]

classes[id]. remove(num)

elif cmd == "classes ":

id = list [1]

print classes[id]

Figure 1. Python seed program for a class registration sys-
tem

ambiguities. We next outline how our prototype program
inference algorithm exploits this ability (as well as the struc-
ture present in the provided interface to the seed program)
to learn the core functionality. The inference algorithm is
designed to work with programs that have the following sets
of properties:

• Key/Value Maps: The program works with a fixed set
of maps. Each map contains relations that map a key to
a value or to a list of values. Note that the program is
not required to implement the maps using any particular
data structure or mechanism — because the program in-
ference algorithms for this example only generate inputs
and observe the resulting outputs, they are oblivious to
the particular map implementation technique.

• Store, Retrieve, andRemoveOperations:The program
implements three kinds of operations, specifically store
operations, which store one or more relations between
the parameters of the operation into one or more of the
maps, retrieve operations, which use the parameter as a
key to retrieve and return a value (or list of values) from
one of the maps, and remove operations, which remove
one or more relations from the maps.

• Initial Empty Maps: When the program runs, it starts
with empty maps.

The provided interface distinguishes the retrieve operations,
which return values, from the store/remove operations, which
return nothing.
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2.4 Store/Retrieve Pair Inference
The program inference algorithm first repeatedly executes
selected operations with selected parameters starting from
empty maps to discover store/retrieve pairs — paired oper-
ations in which the first operation stores a relation into
a map and the second operation retrieves and returns the
corresponding value (or list of values) stored by the first
operation (Section 3.1). Each store/retrieve pair is mediated
by a key/value pair chosen from the parameters of the store
operation — the first parameter of this pair is the key of the
stored relation; the second parameter is the corresponding
value.

The program inference algorithm repeatedly starts with
an empty map, executes an enroll operation with a unique
name and id, then executes classes, name, and id opera-
tions to determine if one of these operations returns one
of the enroll parameters. If so, the inference algorithm has
discovered a store/retrieve pair backed by a map. In the ex-
ample the inference algorithm discovers that enroll/name
is a store/retrieve pair mediated by the id/name parameters
of the enroll operation, enroll/id is a store/retrieve pair
mediated by the name/id parameters, and add/classes is a
store/retrieve pair mediated by the id/class parameters of
the add method.

2.5 Keep, Replace, or List Inference
After the pairs of store/retrieve operations as well as their
keys are determined, the inference algorithm next uses this
information to determine which store operations accumulate
the stored values in lists, which overwrite the old mapping
with the new mapping, and which leave the old mapping
in place and discard the new mapping (Section 3.2). The
algorithm executes two store operations that insert different
values into the same map under the same key, then executes
the corresponding retrieve operation to determine if the
retrieve returns both values, the first inserted value only, or
the second inserted value only. In our example the inference
algorithm determines that the enroll operation overwrites
the old mappings and the add operation accumulates the
stored values in lists.

2.6 Store/Delete Pair Inference
The next step is to use the store/retrieve pairs to identify
store/delete pairs in which the first operation stores a rela-
tion and the second operation removes the relation (Section
3.4). The inference algorithm executes the store operation,
then a candidate delete operation, then the corresponding
retrieve operation. If the retrieve operation does not return
the stored value, then the inference algorithm has discovered
a store/delete pair. In our example the inference algorithm
determines that the add and drop operations comprise a
store/delete pair.

2.7 Map Inference
Finally, the inference algorithm uses the store/retrieve pairs
to determine which operations work with the same map
and which work with different maps (Section 3.5). The basic
idea is to execute the seed program twice, once with one
store operation and once with another store operation. Both
operations insert the same relation, but potentially into dif-
ferent maps. Both executions next execute the same retrieve
operation (the paired retrieve operation from the first store
operation). If both executions return the same value, the
inference algorithm concludes that they both accessed the
same map (working under the assumption that the retrieve
operation always accesses the same map). The code genera-
tion algorithm uses the resulting inferred equivalence classes
of operations to determine how many maps to generate and
which maps each operation accesses.

2.8 Tolerating Seed Program Errors
In any of these steps, the inference algorithm tolerates noise
in the seed program when it crashes due to unchecked errors.
For example, a Python retrieve operation may crash from
a KeyError when attempting to look up a key that does
not exist in a map (the classes, name, and id operations).
In this situation, the inference algorithm decides that the
retrieved value isNil. Also, a candidate delete operation may
crash from a KeyError when attempting to look up a key
that does not exist in a map or, when the key does exist,
may crash from a ValueError when attempting to remove
a value that does not exist in a list (the drop operation). In
these situations, the inference algorithm decides that the
candidate delete operation does not correspond to the store
operation and immediately goes to the next iteration of the
closest enclosing loop. This design makes our algorithm
robust against certain kinds of noise in the seed program
while still learning the core functionality.

2.9 A Web Server with HTTP Interface
Here we present a regenerated program in Python that uses
the Flask [Flask 2018] web framework (we also have regen-
erated versions in C using Redis, with both text and web
interfaces [Rinard and Shen 2017]). Flask is a lightweight,
flexible Python web framework for web application back-
ends or servers. It is widely used for implementing industry
micro-services. The regenerated program utilizes the SQLite3
package for non-volatile data storage. SQLite3 creates a local
file which stores all the information associated with given
tables and provides SQL access to read or modify the data in
the file.
Regenerated based on the specified command interface

(Section 2.1), the web server contains routes. Each route
allows the web server to handle an HTTP request that imple-
ments a command in the seed program. For each command,
the inputs and outputs use the JSON data format. Figure 2
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import sqlite3

from flask import *

app = Flask(__name__)

DATABASE = 'students.db '

def get_db ():

db = getattr(g, '_database ', None)

if db is None:

db = g._database = sqlite3.connect(DATABASE)

db.row_factory = sqlite3.Row

return db

def query_db(query , args =()):

cur = get_db ().execute(query , args)

rv = cur.fetchall ()

cur.close()

return rv

def write_db(query , args =()):

db = get_db ()

cur = db.execute(query , args)

db.commit ()

cur.close()

def init_db ():

with app.app_context ():

db = get_db ()

with app.open_resource('schema.sql ', mode='r') as f:

db.cursor ().executescript(f.read())

db.commit ()

@app.teardown_appcontext

def close_connection(exception):

db = getattr(g, '_database ', None)

if db is not None:

db.close()

Figure 2. Boilerplate code in regenerated Python/Flask/SQL
program

DROP TABLE IF EXISTS students;

CREATE TABLE IF NOT EXISTS students (

id INTEGER NOT NULL ,
name STRING NOT NULL ,
year INTEGER NOT NULL ,
classes STRING NOT NULL

);

Figure 3. Regenerated SQL script to create database tables

contains the boilerplate code for building a Flask web server
using an SQLite3 database. This code needs to be imple-
mented once, then it is systematically regenerated for each
seed program. Figure 3 contains the regenerated SQL script
for creating tables in the database. The information about ta-
bles and columns are converted from the inferred mappings.
This script is executed when a user initializes the database
for the web server. Figures 4 and 5 present the regenerated
HTTP request handlers. Each request handler corresponds to
a command in the seed program. They contain the boilerplate
code to convert inputs from JSON and convert outputs to
JSON. They perform the inferred operations on the database
using SQL queries.
In our approach, the knowledge of how to successfully

handle URL requests in a web server and of how to suc-
cessfully use SQLite, including the specialized knowledge
of boilerplate code sequences, is all encapsulated inside the
regenerator for automated oblivious reuse by system users.

@app.route('/enroll ', methods = ['POST '])

def enroll_mapping ():

name = request.json['name ']

id = request.json['id ']

year = request.json['year ']

if len(query_db('SELECT * FROM students WHERE id = ? OR

name = ?', (id, name))) == 0:

write_db('INSERT INTO students (id , name , year ,

classes) VALUES (?, ?, ?, ?)', (id, name , year ,

''))

return ('', 200)

@app.route('/id ', methods = ['POST '])

def id_mapping ():

name = request.json['name ']

data = {}

for row in query_db('SELECT * FROM students WHERE name

= ?', (name)):

data['id '] = row['id ']

resp = Response(json.dumps(data), status =200, mimetype

='application/json ')

return resp

@app.route('/name ', methods = ['POST '])

def name_mapping ():

id = request.json['id ']

data = {}

for row in query_db('SELECT * FROM students WHERE id =

?', (id)):

data['name '] = row['name ']

resp = Response(json.dumps(data), status =200, mimetype

='application/json ')

return resp

Figure 4. HTTP request handlers for commands enroll, id,
and name

2.10 Installation, Configuration, and
Documentation

In this section we have focused on the source code that
the regenerator produces. But in modern computer systems
the source code is only part of the solution. In addition to
encapsulating the knowledge of how to develop code, the
regenerator can also encapsulate knowledge of how to install
and configure the relevant subsystems, in the form of natural
language narratives or scripts that implement installation
and configuratoin.
Our current regenerator implementation produces code

without comments or documentation. While many develop-
ers may very well use the regenerated code directly without
examining it, others may wish to examine, understand, or
even modify the code. For these uses, the regenerator can
also produce helpful documentation or comments.

3 Program Inference Algorithms
We next present program inference algorithms for programs
whose operations store, remove, and delete relations from
maps. The algorithms take as inputs the seed program SP ,
a set of potential store/remove operations S (each of which
may store or remove relations), with each operation of the
form sop p1 . . . pk (here sop is the name of the operation
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@app.route('/add ', methods = ['POST '])

def add_mapping ():

id = request.json['id ']

num = request.json['num ']

for row in query_db('SELECT * FROM students WHERE id =

?', (id)):

classes = row['classes '] + str(num) + ';'

write_db('UPDATE students SET classes = ? WHERE id =

?', (classes , id))

return ('', 200)

@app.route('/drop ', methods = ['POST '])

def drop_mapping ():

id = request.json['id ']

num = request.json['num ']

for row in query_db('SELECT * FROM students WHERE id =

?', (id)):

classes = row['classes ']. replace(str(num) + ';', '')

write_db('UPDATE students SET classes = ? WHERE id =

?', (classes , id))

return ('', 200)

@app.route('/classes ', methods = ['POST '])

def classes_mapping ():

id = request.json['id ']

data = {}

data['classes '] = []

for row in query_db('SELECT * FROM students WHERE id =

?', (id)):

data['classes '] = row['classes ']

resp = Response(json.dumps(data), status =200, mimetype

='application/json ')

return resp

Figure 5. HTTP request handlers for commands add, drop,
and classes

and p1 . . . pk are the names of the k parameters), and a set
of potential retrieve operations R, with each operation of
the form rop p → q (here rop is the name of the operation,
which takes a single parameter p and returns a value or list
of values q). The algorithm partitions the operations into S
and R based on whether they return a value (operations in
R) or not (operations in S). The algorithms are designed to
infer the complete functionality of these programs so that
the regenerated program can serve as drop-in replacement
for the original program.

As presented, the algorithm works with potential retrieve
operations that take a single parameter and return a single
value or list of values. It is straightforward to generalize
the algorithms to work with potential retrieve operations
with multiple parameters that may return multiple retrieved
values. We also note that the algorithms as currently formu-
lated assume that the application conforms to the target class
of applications to infer — if presented with an application
outside this class of applications, the algorithms will almost
certainly fail to infer a correct model of application behavior.

The inference algorithms represent the inferred informa-
tion with a collection of (conceptual) data structures. Exam-
ples include SRP (a set of inferred store/retrieve pairs that

Inputs:
SP-Seed Program
S = {sop1 p11 . . . p

1
k1
, . . . , sopn pn1 . . . p

n
kn
}

R = {rop1 p1 → q1, . . . , ropm pm → qm}

Output:
SRP = {⟨sop1, rop1,k1, i1, j1⟩, . . . ,

⟨sopl , ropl ,kl , il , jl ⟩}
Algorithm:
SRP = ∅

for sop p1 . . . pk ∈ S
for rop p → q ∈ R
choose distinct v1, . . . ,vk
for 1 ≤ i ≤ k
v = sop v1 . . . vk ; rop vi | SP
for 1 ≤ j ≤ k
if v = vj or v = [vj ]
SRP = SRP ∪ {⟨sop, rop,k, i, j⟩}

Figure 6. Store/Retrieve Pair SRP Inference Algorithm

records which operations retrieve items stored by other oper-
ations, Section 3.1), KRL (a set of inferred tuples that records
whether operations keep, replace, or accumulate items in-
serted under the same key, Section 3.2), SDP (a set of inferred
store/delete pairs that record which operations delete items,
Section 3.4), and M (a set of inferred tuples that identify
operations that store items into the same map, Section 3.5).
The regeneration algorithm works with these inferred data
structures 3.6.

3.1 Store/Retrieve Pair Inference Algorithm
Figure 6 presents the store/retrieve pair inference algorithm.
The algorithm takes as inputs the seed program SP , a set
of potential store/remove operations S (each of which may
store or remove relations), with each operation of the form
sop p1 . . . pk (here sop is the name of the operation and
p1 . . . pk are the names of the k parameters), and a set of
potential retrieve operations R, with each operation of the
form rop p → q (here rop is the name of the operation,
which takes a single parameter p and returns a value or list
of values q). The algorithm partitions the operations into
S and R based on whether they return a value (operations
in R) or not (operations in S). As presented, the algorithm
works with potential retrieve operations that take a single
parameter and return a single value or list of values. It is
straightforward to generalize the algorithms to work with
potential retrieve operations with multiple parameters that
may return multiple retrieved values.
The algorithm produces as output a set of store/retrieve

pairs SRP , with each pair of the form ⟨sop, rop,k, i, j⟩. Here
sop is a potential store operation with k parameters that
stores a relation that maps its i’th parameter to its j’th pa-
rameter. rop is a retrieve operation that, when given the
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Inputs:
SP-Seed Program
S = {sop1 p11 . . . p

1
k1
, . . . , sopn pn1 . . . p

n
kn
}

R = {rop1 p1 → q1, . . . , ropm pm → qm}

SRP = {⟨sop1, rop1,k1, i1, j1⟩, . . . , ⟨sopl , ropl ,kl , il , jl ⟩}
Output:

KRL = {⟨sop1,k1, i1, j1, krl1⟩, . . . , ⟨sopl ,kl , il , jl , krll ⟩}
Algorithm:
KRL = ∅

for ⟨sop, rop,k, i, j⟩ ∈ SRP
choose distinct v1, . . . ,vk ,u1, . . . ,uk
such that vi = ui
v = sop v1 . . . vk ; sop u1 . . . uk ; rop vi | SP
if v = vj krl = Keep
if v = uj krl = Replace
if v = [vj ,uj ] krl = List
KRL = KRL ∪ {⟨sop,k, i, j, krl⟩}

Figure 7. Keep/Replace/List KRL Inference Algorithm

i’th parameter (the key) of a previously executed sop oper-
ation, returns the j’th parameter (the stored value) of that
operation.

The algorithm itself enumerates all potential store/retrieve
pairs to collect all pairs that exhibit the required store/re-
trieve behavior. Specifically, it runs the the seed program
SP (starting with empty maps) first on a potential store
operation sop v1 . . .vk , then on a potential retrieve oper-
ation rop vi , and collects the resulting value v that the
potential retrieve operation returns. We use the notation
v = sop v1 . . .vk ; rop vi | SP to denote running the seed
program SP on these two operations to obtain the returned
value v . If the resulting value v matches one of the parame-
ters vi of the potential store operation, then the algorithm
has found a store/retrieve pair (that it then collects into the
output set of store/receive pairs SRP ).

3.2 Keep, Replace, or List Inference Algorithm
The keep, replace, or list inference algorithm explores the
behavior of the seed program when multiple relations with
the same key are stored in the same map. The algorithm
infers three different possible behaviors:
• Keep: Keep original relation and drop subsequent stores.
• Replace: Replace existing relation with new relation.
• List: Accumulate the values from multiple stores into a
list of values stored under the key.
Figure 7 presents the keep, replace, or list inference al-

gorithm. The algorithm takes as inputs the seed program
SP , a set of potential store/remove operations S , a set of
potential retrieve operations R, and the store/retrieve pairs
SRP from the store/retrieve pair inference algorithm (Fig-
ure 6). It produces as output a set of tuples ⟨sop,k, i, j, krl⟩,
where sop is an operation with k parameters that stores

Inputs:
SP-Seed Program
S = {sop1 p11 . . . p

1
k1
, . . . , sopn pn1 . . . p

n
kn
}

R = {rop1 p1 → q1, . . . , ropm pm → qm}

SRP = {⟨sop1, rop1,k1, i1, j1⟩, . . . , ⟨sopl , ropl ,kl , il , jl ⟩}
Output:

SCP = {⟨sop1,k1, i1, j1, sop
′
1,k

′
1, i

′
1⟩, . . . ,

⟨sopo ,ko , io , jo , sop
′
o ,k

′
o , i

′
o⟩}

Algorithm:
SCP = ∅

for ⟨sop, rop,k, i, j⟩ ∈ SRP
choose distinct v1, . . . ,vk
for ⟨sop′ p1 . . . pk ′⟩ ∈ S
for 1 ≤ i ′ ≤ k ′

choose distinct u1, . . . ,uk ′
such that vi = ui′

v = sop v1 . . .vk ; sop′ u1 . . .uk ′ ; rop vi | SP
if v = Nil
SCP = SCP ∪ {⟨sop,k, i, j, sop′,k ′, i ′⟩}

Figure 8. Store/Clear Pair SCP inference algorithm

a relation into some map. The i ′th parameter is the key
and the j’th parameter is the value of this stored relation.
krl ∈ {Keep, Replace, List} specifies whether the operation
keeps the original relation, replaces the original relation, or
accumulates the stores into a list of values.

The algorithm iterates over all of the store/retrieve pairs in
SRP (from the store/retrieve pair inference algorithm) to find
operations that store relations in some map. It executes the
seed program SP , invoking the store operation twice with
the same key but different values. It then retrieves the value
stored under the key to determine if the store operations
kept the first relation, replaced the first relation with the
second relation, or accumulated the values into a list stored
under the key.

3.3 Store/Clear Pair Inference Algorithm
In addition to storing relations, operations may also remove
relations. If an operation removes relations based only on
the key, we call the operation a clear relation; if the operation
removes relations based on both the key and value, we call
the operation a delete operation (Section 3.4).

Figure 8 presents the store/clear pair inference algorithm.
The algorithm takes as inputs the seed program SP , a set
of potential store/remove operations S , a set of potential
retrieve operations R, and the store/retrieve pairs SRP from
the store/retrieve pair inference algorithm (Figure 6).

The algorithm produces as output a set of store/clear pairs
SCP , with each pair of the form ⟨sop,k, i, j, sop′,k ′, i ′⟩. Here
sop is an operation with k parameters that stores a relation
that maps its i’th parameter (the key) to its j’th parameter
(the value). sop′ is an operation with k ′ parameters that
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Inputs:
SP-Seed Program
S = {sop1 p11 . . . p

1
k1
, . . . , sopn pn1 . . . p

n
kn
}

R = {rop1 p1 → q1, . . . , ropm pm → qm}

SRP = {⟨sop1, rop1,k1, i1, j1⟩, . . . , ⟨sopl , ropl ,kl , il , jl ⟩}
SCP = {⟨sop1,k1, i1, j1, sop

′
1,k

′
1, i

′
1⟩, . . . ,

⟨sopo ,ko , io , jo , sop
′
o ,k

′
o , i

′
o⟩}

Output:
SDP = {⟨sop1,k1, i1, j1, sop

′
1,k

′
1, i

′
1, j

′
1⟩, . . . ,

⟨sopo ,ko , io , jo , sop
′
o ,k

′
o , i

′
o , j

′
o⟩}

Algorithm:
SDP = ∅

for ⟨sop, rop,k, i, j⟩ ∈ SRP
choose distinct v1, . . . ,vk
for ⟨sop′ p1 . . . pk ′⟩ ∈ S
for 1 ≤ i ′ ≤ k ′, 1 ≤ j ′ ≤ k ′, i ′ , j ′

choose distinct u1, . . . ,uk ′
such that vi = ui′,vj = uj′
if ⟨sop,k, i, j, sop′,k ′, i ′⟩ < SCP
v = sop v1 . . .vk ; sop′ u1 . . .uk ′ ; rop vi | SP
if v = Nil or v = [ ]

SDP = SDP ∪ {⟨sop,k, i, j, sop′,k ′, i ′, j ′⟩}

Figure 9. Store/Delete Pair (SDP) inference algorithm

clears the stored relation from the map. To clear the relation,
the keys, specifically the i ′’th parameter of sop′ and i’th
parameter of sop, must have the same value.
The algorithm first uses the inferred store/retrieve pairs

SRP to iterate over all operations that insert relations into
maps. It then iterates over all potential operations that may
clear the stored relation, executing the seed program SP on
the two operations sop v1 . . . vk (the operation that stores
the relation) and sop′ u1 . . . uk ′ (the potential clear opera-
tion) in sequence. The algorithm then executes the retrieve
operation rop vi from the store/retrieve pair to determine
if the potential clear operation actually cleared the stored
relation. If the retrieve operation returns nothing (v = Nil)
after the seed program executes the store and potential clear
operation, the algorithm has found a store/clear pair that
it then collects into the output set of store/clear pairs SCP .
To avoid finding operations that delete relations based on
both the key and the value, the algorithm ensures that all of
the parameters v1, . . . ,vk and u1, . . . ,uk ′ are distinct (with
the exception of the key parameters vi = vi′) so that the
potential clear operation will not be given the value from
the stored key/value relation.

3.4 Store/Delete Pair Inference Algorithm
The store/clear pair inference algorithm (Figure 8) infers
operations that remove relations based on a given key re-
gardless of the value to which the keymaps. Some operations,
however, remove relations based not only on the key, but also

on the value. Such operations are often used, for example,
to delete specific values within a list of values accumulated
under the same key. We call such operations delete opera-
tions (as opposed to the clear operations from Section 3.3,
which remove relations based only on the key, not the value).
The add and drop operations from the example in Section 2
are one example of a store/delete pair. The store/delete pair
inference algorithm infers operations that delete relations
based on both the key and the value.

Figure 9 presents the store/delete pair inference algorithm.
The algorithm takes as inputs the seed program SP , a set
of potential store/remove operations S , a set of potential
retrieve operations R, the store/retrieve pairs SRP from the
store/retrieve pair inference algorithm (Figure 6), and the
store/clear pairs SCP from the store/clear pair inference al-
gorithm (Figure 8).
The algorithm produces as output a set of store/delete

pairs SDP , with each pair of the form ⟨sop,k, i, j, sop′,k ′, i ′,
j ′⟩. Here sop is an operation with k parameters that stores
a relation that maps its i’th parameter (the key) to its j’th
parameter (the value). sop′ is an operation with k ′ parame-
ters that deletes the stored relation from the map. To delete
the relation, the i ′’th and j ′’th parameters of sop′ must be
the same as the i’th and j’th parameters of sop, respectively.
Delete operations sop′ typically work with lists of values
stored under the same key to delete single list values while
leaving the other values in the list intact. The drop opera-
tion in Section 2 is an example of an operation that deletes a
relation based on both the key and the value.
The algorithm uses the inferred store/retrieve pairs SRP

(Algorithm 6) and S to enumerate the possible store/delete
pairs. It first runs sop v1 . . .vk , which inserts the relation,
then sop′ u1 . . .uk ′ , which may delete the relation. If then
runs rop vi and checks the return value to see if the rela-
tion was deleted. It collects pairs in which the relation was
deleted into the output set of inferred store/delete pairs SDP ,
skipping pairs with a corresponding store/clear pair in SCP
— the algorithm only collects store/delete pairs in which both
the key and the value must match for the operation to delete
the stored relation.

3.5 Map Inference Algorithm
The store/retrieve pair inference algorithm (Figure 6) finds
operations that insert relations into some map. It does not,
however, attempt to determine which operations insert rela-
tions into the same map. This information is critical for code
regeneration — if two different operations insert relations
into the same map, the code regenerator must ensure that
the regenerated operations access the same map.
The map inference algorithm finds operations that in-

sert relations into the same map. The algorithm enumerates
pairs of operations that store relations to find operations that
store relations into the same map. It finds these operations
by executing the seed program SP twice. The first execution
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Inputs:
SP-Seed Program
S = {sop1 p11 . . . p

1
k1
, . . . , sopn pn1 . . . p

n
kn
}

R = {rop1 p1 → q1, . . . , ropm pm → qm}

SRP = {⟨sop1, rop1,k1, i1, j1⟩, . . . , ⟨sopl , ropl ,kl , il , jl ⟩}
Output:

M = {{⟨sop11,k
1
1 , i

1
1, j

1
1⟩, . . . , ⟨sop

1
m1 ,k

1
m1 , i

1
m1 , j

1
m1⟩},

. . . ,
{⟨sopn1 ,k

n
1 , i

n
1 , j

n
1 ⟩, . . . , ⟨sop

n
mn
,knmn

, inmn
, jnmn

⟩}}

Algorithm:
M = {{⟨sop,k, i, j⟩} . ⟨sop, rop,k, i, j⟩ ∈ SRP}
for ⟨sop1, rop1,k1, i1, j1⟩ ∈ SRP
for ⟨sop2, rop2,k2, i2, j2⟩ ∈ SRP

choose distinct v1, . . . ,vk1 ,u1, . . . ,uk2
such that vi1 = ui2 , vj1 = uj2
v = sop1 v1 . . . vk1 ; rop1 vi1 | SP
u = sop2 u1 . . . uk2 ; rop1 vi1 | SP
if v = u
M = Union(M, ⟨sop1,k1, i1, j1⟩, ⟨sop2,k2, i2, j2⟩)

Figure 10. Map (M) inference algorithm

executes the first operation, then the corresponding retrieve
operation. The second execution executes the second oper-
ation, then again the corresponding retrieve operation for
the first operation (which retrieves the stored value from
the same map that the first operation stored into). If both
executions return the same value, the algorithm infers that
the two operations store into the same map. The algorithm
uses the output SRP of the store/retrieve inference algorithm
to find operations that store relations.

Figure 10 presents the map inference algorithm. The algo-
rithm takes as inputs the seed program SP , a set of potential
store/remove operations S , a set of potential retrieve opera-
tions R, and the store/retrieve pairs SRP from the store/re-
trieve pair inference algorithm (Figure 6). It represents each
map as a set of tuples KRL {⟨sop1,k1, i1, ji ⟩, . . . , ⟨sopm ,km ,
im , jm⟩}. Each tuple ⟨sop,k, i, j⟩ represents a store operation
sop with k parameters that stores a relation from its i’th
parameter to the j’th parameter.
The algorithm works with M , which is a set of sets of

tuples. Given a setT ∈ M , all tuples inT represent operations
that store into the same map.M partitions the set of tuples
(no tuple is in two sets inM). The algorithm initializesM to
contain singleton sets of tuples (representing operations that
store into a different maps), then unions these sets as it finds
pairs of operations that store into the same map. It uses the
operationUnion(M, ⟨sop1, i1, j1⟩, ⟨sop2, i2, j2⟩), which finds
the sets T1,T2 ∈ M that contain ⟨sop1, i1, j1⟩ ∈ T1 and
⟨sop2, i2, j2⟩ ∈ T2, then computes the union of T1 and T2 to
return (M − {T1,T2}) ∪ {T1 ∪T2}.

3.6 Regeneration Algorithm
Working with the inferred information, the code regener-
ation algorithm performs the following steps. The specific
details of each step depend on the precise characteristics of
the target computing environment. The code regeneration
algorithm encapsulates the knowledge of how to use the com-
puting environment for the target computation, with specific
implementation decisions about how to best use this environ-
ment, such as whether and where to insert caches, left to the
implementor of the regeneration code (potentially guided by
automated performance measurement experiments on dif-
ferent versions of regenerated code executing on the target
computing platform).
• Initialization Code:Many computing environments and
packages require complex initialization code sequences.
The code regeneration algorithm automatically generates
this code.

• Map Regeneration: Working with the output M of the
map inference algorithm, the code regenerator generates
a map for each set of tuples T ∈ M . The specific imple-
mentation of each map will vary depending on the target
computing environment. Examples of potential map imple-
mentations include Python data structures, Redis [Redis
2018] maps, and SQL tables.

• Command Loop Regeneration: The regenerated com-
mand loop reads each command and its parameters, then
invokes an (automatically generated) procedure that im-
plements the command. Depending on the characteristics
of the target computing environment, the code regener-
ator can systematically generate (potentially new) input
validation checks and recovery code for malformed inputs.

• Store Regeneration: For each tuple in the inferred keep-
/replace/list set KRL, the code regenerator generates code
that stores the inferred relation in the inferred map as de-
termined byM . Specifically, for each tuple ⟨sop,k, i, j, krl⟩
∈ KRL, the regenerated code for sop stores a relation that
maps the i’th parameter (the key) to the j’th parameter (the
value) in themap for the setT ∈ M , where ⟨sop,k, i, j⟩ ∈ T .
krl determines whether the operation keeps, replaces, or
accumulates in a list any existing relations with the same
key.

• ClearRegeneration: For each tuple in the inferred store/-
clear set SCP , the code regenerator generates code that
clears relations with the inferred key from the inferred
map (as determined by M). Specifically, for each entry
⟨sop,k, i, j, sop′,k ′, i ′⟩ ∈ SCP , the regenerated code for
sop′ clears relations whose key is the i ′’th parameter of
sop′ from the map for the setT ∈ M , where ⟨sop,k, i, j⟩ ∈
T .

• Delete Regeneration: For each tuple in the inferred
store/delete set SDP the code regenerator generates code
that deletes relations with the inferred key and value from
the inferred map (as determined by M). Specifically, for
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elif cmd == "nameByYear ":

id, year = list [1:3]

if years[id] >= year:

print names[id]

elif cmd == "addWithName ":

id, name , num = list [1:3]

if names[id] == name:

if not id in classes:

classes[id] = []

if not (num in classes[id]):

classes[id]. append(num)

Figure 11. Example Python seed program extensions with
boolean conditions

@app.route('/nameByYear ', methods = ['POST '])

def nameByYear__mapping ():

id = request.json['id ']

year = request.json['year ']

data = {}

for row in query_db('SELECT * FROM students WHERE id =

? AND year >= ?', (id, year)):

data['name '] = row['name ']

resp = Response(json.dumps(data), status =200, mimetype

='application/json ')

return resp

@app.route('/addWithName ', methods = ['POST '])

def add_mapping ():

id = request.json['id ']

name = request.json['name ']

num = request.json['num ']

for row in query_db('SELECT * FROM students WHERE id =

? AND name = ?', (id, name)):

classes = row['classes '] + str(num) + ';'

write_db('UPDATE students SET classes = ? WHERE id =

?', (classes , id))

return ('', 200)

Figure 12. HTTP request handlers for commands name-
ByYear and addWithName

each entry ⟨sop,k, i, j, sop′,k ′, i ′, j ′⟩ ∈ SDP , the regener-
ated code for sop′ clears relations whose key and value
are the i ′’th and j ′’th parameters of sop′ from the map for
the set T ∈ M , where ⟨sop,k, i, j⟩ ∈ T .

3.7 Extensions For Conditional Operations
Apart from implementing the algorithms in the previous
sections, we also implemented a preliminary version of an
extension that infers commands with conditional operations
that execute only when certain boolean conditions hold. For
example, this extension allows the seed program in Section
2 to have additional commands as in Figure 11:
• nameByYear (id, year) → name: Retrieve the name of
the student with the given id, but only when the student’s
graduation year is earlier than the specified year.

• addWithName (id, name, class): Add a class to the list
of classes for which the student is registered. The student
is identified by the student’s id and validated by providing
the correct name.

The nameByYear operation is conditioned on the year pa-
rameter being less than or equal to the corresponding value
stored by the enroll operation (Figure 1). The addWith-
Name operation is conditioned on the name parameter be-
ing equal to the corresponding value stored by the enroll
operation.

Figure 12 presents the regenerated HTTP request handlers
for these commands, in Python using Flask [Flask 2018].
Each request handler corresponds to a command in the seed
program. They contain the boilerplate code to convert inputs
from JSON and convert outputs to JSON. They perform the
inferred operations on the database using SQL queries. These
SQL queries contain WHERE clauses that enforce the inferred
conditions for an operation to execute.

The extended SRP inference algorithmworks with retrieve
operations that enforce boolean conditions of the following
form. Each input parameter may be compared against at most
one existing value stored in a map. The retrieve operation
may check if the input parameter is equal to, greater than,
greater than or equal to, less than, less than or equal to, or
unequal to the stored value. If all these boolean conditions
hold, the retrieve operation returns the corresponding value
from the map.
Figure 13 presents the extended SRP algorithm that in-

fers boolean conditions in retrieve operations. The algo-
rithm takes as inputs the seed program SP , a set of potential
store/remove operations S , with each operation of the form
sop p1 . . . pk , and a set of potential retrieve operations R,
with each operation of the form rop ⟨r1, . . . rt ⟩ → q. Each
retrieve operation takes a list of parameters r1, . . . rt and
returns a value q.

The algorithm produces as outputs a set of store/retrieve
pairs SRP , with each pair of the form ⟨sop, rop,k, t ,C, J ⟩.
Here sop is a potential store operationwithk parameters that
stores the J ’th parameter in a map. rop is a retrieve operation
with t parameters that, when given parameters that satisfy
the boolean conditions implied by C (see below), returns the
J ’th parameter (the stored value) of the sop operation. The
boolean condition C contains a set of pairs, with each pair
of the form ⟨ i,L,E,G, j ⟩ which describes whether the i’th
parameter of rop is allowed to be less than (when L is true),
equal to (when E is true), or greater than (when G is true)
the j’th parameter of sop. Only when these conditions hold
will the rop operation return the stored value.

The algorithm enumerates all potential store/retrieve pairs
to collect all pairs that exhibit the required store/retrieve
behavior over the same map. Specifically, it runs the seed
program SP (starting with empty maps) first on a potential
store operation sopv1 . . .vk , then on a potential retrieve op-
eration rop x1 . . . xt , and collects the resulting value v that
the potential retrieve operation returns. We use the same
notation as in Section 3.1. If the resulting value v matches
one of the parameters vj of the potential store operation,
then the algorithm has found a potential store/retrieve pair
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(that it then collects into the J variable for further analy-
sis). Here the rop parameters x1 . . . xt are chosen to differ
slightly (the ways they differ are specified by o1 . . . ot ) from
a subset of the values used for v1 . . .vk (the correspondence
is specified byw1 . . .wt ). The algorithm exhaustively checks
all potential comparison results and collects the observed
parameter relations in LEG . LEG contains a set of pairs, with
each pair in the form ⟨ i,oi ,wi ⟩ which describes that when
the i’th parameter of rop has the oi relation with thewi ’th
parameter of sop, the retrieve operation rop successfully
returned a value. Then, the algorithm enumerates the infor-
mation collected in LEG for each pair of parameters (one for
sop and one for rop). If changing their relation has any effect
on the execution results, then the algorithm infers that these
two parameters has a condition that must be satisfied for the
rop operation to return a value. Specifically, the algorithm
observes whether rop executed under three sets of different
inputs: when the i’th parameter of rop is less than, equal
to, or greater than the j’th parameter of sop. If these three
results differ, then the retrieve operation has checked the
relation between these two parameters. This result is stored
in C .

We next describe how to integrate the boolean condition
inference into other parts of the algorithm. In Section 3.1,
each retrieve operation executes when a given parameter
matches the key of an existing record. This key is the pa-
rameter of the corresponding store operation for uniquely
identifying a record in the map. After extending the algo-
rithm to support conditional retrieve operations, we note
that the retrieve operations may use more than one parame-
ter to identify records. In other words, keys may now contain
multiple parameters. Hence, the store operations need to be
extended accordingly. A key step is to infer the appropri-
ate set of parameters that comprise a key. For example, in
each store/retrieve pair, the key used by the store opera-
tion may differ from the retrieve operation parameters that
enforce the equal condition. To address this problem, the
algorithm calls the store operation twice, each time using
slightly different parameter values. The algorithm then calls
the corresponding retrieve operation to check whether the
first store operation was overwritten by the second store
operation. The algorithm repeats this process and concludes
with the minimal set of store operation parameters needed
to uniquely identify a record.
The KRL, SCP , SDP , and M algorithms can also be ex-

tended to support the additional functionality for boolean
conditionals and multi-parameter keys.

3.8 Discussion
The inference algorithms highlight the utility of working
with a seed program instead of a set of given input/output
pairs. The ability to repeatedly run the program on chosen
sets of inputs and pairs of operations (a form of active learn-
ing) enables the algorithms to comprehensively explore the

Inputs:
SP-Seed Program
S = {sop1 p11 . . . p

1
k1
, . . . , sopn pn1 . . . p

n
kn
}

R = {rop1 ⟨r11, . . . , r
1
t1⟩ → q1, . . . ,

ropm ⟨rm1 , . . . , r
m
tm ⟩ → qm}

Output:
SRP = {⟨sop1, rop1,k1, t1,C1, j1⟩, . . . ,

⟨sopl , ropl ,kl , tl ,Cl , jl ⟩}
Algorithm:
SRP = ∅

for sop p1 . . . pk ∈ S
for rop ⟨r1 . . . rt ⟩ → q ∈ R
choose distinct v1, . . . ,vk
J = Nil
for ordered subset w1, . . . ,wt of 1, . . . ,k
for o1, . . . ,ot ∈ {<,=, >}

choose x1, . . . ,xt such that
xi oi vwi for i = 1, . . . , t

v = sop v1 . . . vk ; rop x1 . . . xt | SP
if v , Nil
for 1 ≤ j ≤ k
if v = vj

J = j
for 1 ≤ i ≤ t
LEG = LEG ∪ {⟨ i,oi ,wi ⟩}

if J , Nil
C = ∅

for 1 ≤ i ≤ t , 1 ≤ j ≤ k
L = (whether ⟨ i, <, j ⟩ ∈ LEG)
E = (whether ⟨ i,=, j ⟩ ∈ LEG)
G = (whether ⟨ i, >, j ⟩ ∈ LEG)
if not L = E = G
C = C ∪ {⟨ i,L,E,G, j ⟩}

SRP = SRP ∪ {⟨sop, rop,k, t ,C, J ⟩}

Figure 13. Extended Store/Retrieve Pair Inference Algo-
rithm with Boolean Conditions

behavior of the seed program to infer the (conceptual) maps
that the program maintains and how the commands manipu-
late these maps. There is no need to deal with behavior that
is only partially exposed by given input/output pairs.
Because the inference algorithms interact with the seed

program only by presenting it with inputs and observing
the outputs, the seed program can be implemented in any
language and use any mechanism to implement the inferred
maps and operations. The approach therefore supports a
wide range of developers with a wide range of technical
preferences and skills. The inference algorithms also impose
essentially no scalability requirements on the seed program
— the generated inputs contain at most three operations per
execution of the seed program (Figures 8 and 9).
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4 Related Work
The closest related work uses gray box techniques to de-
rive models of program components that store and retrieve
data from either an external, observable database [Shen and
Rinard 2017, 2018a] or instrumented data structures [Wu
2018]. The research presented in this paper differs in that
(1) it uses black box techniques to work with programs with
hidden internal maps that are not accessible to the inference
algorithm, (2) it infers and regenerates programs that work
with maps, and (3) it works with computations that store and
retrieve data from maps, not computations whose behavior
is captured by sequences of data access behavior.

Model-Driven Engineering. In model-driven engineering
(MDE) [Brambilla et al. 2012; Schach 2007; Schmidt 2006], de-
velopers specify functionality in high-level models, often us-
ing domain-specific languages or formalisms such as Unified
Modeling Language (UML), which are then used to generate
low-level platform-dependent implementations. Use cases of
MDE include migrating software across different platforms
[Schach 2007] and automating the code generation for CRUD
(create/read/update/delete) applications [Albert et al. 2010;
Django 2018; Rails 2018]. Like the regenerators presented in
this paper, MDE code generators encapsulate the knowledge
of how to use specific computational platforms and enable
the automatic generation of code for multiple platforms. In
contrast to having developers work directly with high-level
domain-specific models, our approach starts from an existing
implementation, then infers the program functionality as a
black box and regenerates a new implementation.

Software Modernization. Software modernization [Cáno-
vas Izquierdo and García Molina 2014; Fuentes-Fernández
et al. 2012; Sánchez Ramón et al. 2014] analyzes the source
code of a legacy program, translates the program into a
high-level modeling language, then uses this representation
to generate a new program that implements the function-
ality in a more modern language. The translation strictly
follows syntactic cues and usually requires human interven-
tion. Our approach, in contrast, (1) works with the given
implementation without analyzing code and (2) regenerates
an augmented computation with additional error and se-
curity checks that implements the core functionality with
complex new software components that execute on modern
target platforms.

Partial Program Rejuvenation. Helium uses dynamic in-
strumentation to extract the functionality of computational
stencil kernels embeddedwithin production binaries [Mendis
et al. 2015]. It then replaces the stencil kernel with a com-
putation expressed in Halide [Ragan-Kelley et al. 2013]. The
goal is to replace the legacy implementation with a version
optimized for modern computational platforms. Program
fracture and recombination [Amidon et al. 2015] works with

multiple applications to automatically find efficient, sophis-
ticated, and/or robust implementations of subcomputations
across applications, then transfers subcomputations across
implementations to maximize efficiency or robustness. A
goal is to automatically replace simple code that executes on
a single machine with more complex code that operates on
parallel or distributed computing platforms. Our approach,
in contrast, (1) models the full computation and regener-
ates the entire application, augmented as appropriate, (2)
can work with incomplete or buggy implementations of the
original program, and (3) targets programs that store and
retrieve data in maps.

Stateless Model Extraction. Model extraction algorithms
use queries to construct representations for programs, where
the representations are stateless functions such as decision
trees [Craven and Shavlik 1995; Tramèr et al. 2016] or sym-
bolic rules [Towell and Shavlik 1993]. Model compression
algorithms [Buciluǎ et al. 2006; Hinton et al. 2015] use ma-
chine learning models, such as neural networks, to mimic a
machine learning model, often by generating inputs (train-
ing data) and observing the outputs from the given model.
Our approach, in contrast, (1) infers stateful models that
store/retrieve data across multiple queries and (2) regener-
ates a new program or programs, augmented as appropriate,
that implement the core functionality on new implementa-
tion platforms.

Partial Model Learning. Algorithms for learning black-
box state machines [Aarts and Vaandrager 2010; Angluin
1987; Cassel et al. 2016; Chow 1978; Fiterău-Broştean et al.
2016; Grinchtein et al. 2010; Isberner et al. 2014; Moore 1956;
Raffelt et al. 2005; Vaandrager 2017; Volpato and Tretmans
2015] construct partial representations of program function-
ality, using finite automata with states and transitions. State
fuzzing tools [Aarts et al. 2013; De Ruiter and Poll 2015] are
used to hypothesize state machines for given program imple-
mentations, which can help developers to discover bugs such
as spurious state transitions. These algorithms extract partial
models of the given programs. Our approach, in contrast, (1)
extracts a complete representation of the core functionality,
which, in turn, enables the regeneration (and replacement)
of the initial program, (2) can work with programs with de-
fects or that only partially implement the core functionality,
(3) regenerates a new program or programs, augmented as
appropriate, that implement the core functionality without
defects or security vulnerabilities on new implementation
platforms, and (4) represents the inferred programs as com-
mands and key-value maps, which can capture a wide range
of programs that store and retrieve data.

Program Synthesis. Program synthesis is currently an ac-
tive research area [Alur et al. 2013; Beyene et al. 2015; Ellis
et al. 2016; Feng et al. 2018, 2017; Feser et al. 2015; Gulwani
et al. 2017; Jeon et al. 2015; Polikarpova et al. 2016;Wang et al.
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2018; Yaghmazadeh et al. 2016]. The vast majority of this
research works with a given set of input/output examples
to synthesize a program that satisfies the given examples.
Because the examples typically underspecify the program
behavior, there are typically many programs that satisfy the
input/output examples. The synthesized program is there-
fore typically selected according either to the choices the
solver makes [Jeon et al. 2015] or according to a heuristic that
ranks synthesized programs (for example, ranking shorter
programs above longer programs) [Ellis et al. 2016; Feser
et al. 2015; Gulwani et al. 2017]. Our approach, in contrast,
uses active learning to reverse engineer a seed program (in
effect using the seed program as a specification). Because
this approach is not constrained by a given set of input/out-
put pairs, it can select the inputs to purposefully target and
resolve ambiguities.
[Alur et al. 2013] identifies a range of program synthesis

problems for which it is productive to structure the search
space as a domain-specific language and presents a frame-
work for this approach. Our approach similarly uses a do-
main to structure the search space. Unlike the examples
presented in [Alur et al. 2013], our approach exploits the
structure of the domain to obtain an inference algorithm
that uses active learning to progressively refine the knowl-
edge of the map structures and the store/retrieve/remove
operations.
Oracle-guided synthesis as implemented in Brahma [Jha

et al. 2010] interacts with a program to infer a model that
completely captures the behavior of the program. Our ap-
proach deploys an inference algorithm guided by assump-
tions about the store/retrieve behavior. Our approach main-
tains a structured representation that captures the inferred re-
lations between maps, parameters, and commands. Brahma,
in contrast, adopts a flat, solver-based approach that repeat-
edly 1) generates two programs that both satisfy the current
set of input/output pairs, 2) generates a new input that dis-
tinguishes the two programs, 3) queries an oracle to find the
correct output for the new input, and 4) adds the resulting
input/output pair to the current set of input/output pairs.
Brahma terminates when there is only one program that
satisfies the set of input/output pairs.

Inferring Models for Programs. [Gehr et al. 2015] present
an active learning technique for learning commutativity spec-
ifications of data structures. [Bastani et al. 2017] present a
technique for learning program input grammars. [Bastani
et al. 2018] present a technique for learning points-to speci-
fications. [Jeon et al. 2016] present a technique for learning
models of design patterns that Java computations implement.
Unlike our approach, all of these techniques focus on char-
acterizing specific aspects of program behavior and do not
aspire to capture the complete behavior of the application.

Mimic [Heule et al. 2015] traces the memory accesses of an
opaque function to synthesize a model of the traced function.

Our approach, in contrast, treats the seed program as a black
box. Mimic uses a random generate-and-test search over a
space of programs generated by code mutation operators,
with a carefully designed fitness function measuring the
degree to which the current model matches the observed
memory traces. Input generation heuristics are used to find
inputs that workwell with themutation operators and fitness
function to find suitable code models. There is no guarantee
that the generated model is correct or that the search will
find a model if one exists. Mimic was applied to infer models
for the Java Arrays.prototype computations, successfully
inferring models for 12 of these computations. Our approach
targets a different class of computations, which enables it to
deploy an algorithm that is guaranteed to infer a model if
the application conforms to the required domain.

Concolic Testing. Concolic testing [Cadar et al. 2006; Gode-
froid et al. 2005, 2012; Sen et al. 2005] generates inputs
that systematically explore all execution paths in the pro-
gram. The goal is to find inputs that expose defects. Buzz-
Fuzz [Ganesh et al. 2009] generates inputs that target defects
from coding oversights at the boundary between application
and library code. DIODE [Sidiroglou-Douskos et al. 2015]
generates inputs that target integer overflow errors. All these
techniques dynamically analyze the execution of the pro-
gram and use the resulting information to guide the input
generation. Our approach, in contrast, (1) works with the
given implementation as a black box, without analyzing code,
(2) extracts a representation of the core functionality, and
(3) regenerates a new program or programs, augmented as
appropriate, that implement the core functionality without
defects or security vulnerabilities on new implementation
platforms.

5 Conclusion
Modern software systems are characterized by the pervasive
use of complex components with arcane interfaces. Most
developers that work with such systems spend their time
constructing appropriate Google search terms to find previ-
ously developed code that they can copy and adapt for their
needs.
We propose to encapsulate the knowledge of how to use

modern complex systems inside a regenerator that works
with an abstract representation of the core functionality
of the program. This regenerator produces augmented pro-
grams that contain systematically generated security and
input validation checks and implement graphical web in-
terfaces. The abstract functionality can be inferred either
from existing programs or from simple text-based programs
implemented in simple computing environments. This ap-
proach promotes a more meaningful and powerful form of
code reuse and enables programmers to focus on the core
functionality that their programs implement.
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