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The problem of predicting ductile fracture under in-plane
loading from basic mechanisms or from specific tests is reviewed in
terms of inter-relationships between idealized stages, metallurgical
processes and scales of observation (inclusions to elastic-plastic
specimens). A fracture criterion is based on a stresgs-modified
critical shear strain (damage). The analysis of fully plastic straight
cracks subjected to in-plane loading indicates that such cracks should
zig-zag rather than remain straight. Since the surroundings of crack
tips are fully plastic and since we wish to predict elastic-plastic
behavior from fully plastic tests, the phenomenon of zig-zagging is
explored by looking at the slipline fields for four dog-leg crack
configurations. The fracture criterion is tested and found to work well
on 2024 aluminum in predicting the fracture surface shape. Finally,
elastic-plastic zig-zag cracks are analyzed using several numerical
techniques for zig-zags large comparced to the plastic zone. It is found
that stress intensity factors cannot be used as a fracture criterion
since there is so little variation in their values for different crack
shapes. The plastic zone shape coupled with approximate slipline fields
can, however, be used with the fracture criterion to suggest probable
directions of future cracking.
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A STUDY OF PLANE STRAIN DUCTILE FRACTURE

I. Introduction

In opening a conference on the fracture of solids sponsored by the
British Rheologist's Club in 1948, Professor N.F. Mott, the chairman,
remarked that ''quite apart from its practical importance, fracture was
the most interesting property of solids to the theoreticians because
it is the least understood property, no progress having been made beyond
the 1924 Griffith crack theory. It is not known how cracks exist nor
what causes them. Experimental work has made clear what happens during

fracture but not how it occurs." (c.f. Tipper, 1949,) Much progress
has been made since then but ~t the present time there is still no good
method of predicting the resistance of a specimen to in-plane loading
from the results of any small scale tests at high stress levels. One
would 1like to make such predictions any time the working stresses
approach general yield such as in highly loaded structures or any time
fracture occurs during general yield such as in metal-working processes.
Tougher materials require specimens of inordinate size in order to be
able to use the k-concept (c.f. Paris and Sih, 1965) to predict the
behavior of large structures in service.

Experimentally, it has been found that the fracture surfaces in
most of the ductile metals under in-plane loading, and even in some of
the metals which are not normally considered as being ductile, are
caused by zig-zag cracks (c.f. McClintock, 1969, 1970). What causes

these zig-zag cracks? Must they be the result of interactions between

cracks and individual holes or can they be predicted by more macroscopic
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criteria? First we need stress and strain fields for such cracks,
both in the elastic-plastic and fully plastic states. Meandering of
cracks caused by anisotropy and inhomogeneity makes the problem three-
dimensicnal. The first approximation that can be made is to two-dimensional
plane strain. Certainly an understanding of this in-plane crack
propagation shculd tell more about thres-dimenmsional cracking under in-
plane loading than does an understanding of Mode IIl1 (anti-pleme surain;
cracking. The second major assumption is that zig-zagging cracks can be
approximated by dog-leg cracks; 1.e., the interacting crack tips, regions
along the crack flanks near the tips, and material between the tips
(containing holes, grain boundaries, etc.) affect the fracture behavior
more than the rest of the crack flanks. This is, in a way, applying
St. Venant's principle to plasticity whereas it 18 only strictly
applicable to elasticity; this assumption will be discussed further below.

The following study is divided into four main sections, each being
as autonomous as possible to aid those readers who are only interested
in certain portions of the work. In the next section, Section II, a
description of the goals of studying fracture will be presented which
includes idealized fracture stages (crack formation in un-notched and
notched specimens and crack propagation), metallurgical processes, and
scales of observation (inclusions to elastic-plastic) and how they are
inter-related through their fracture criteria. A brief review of previous
work will be included with a discussion of areas in need of work.

Starting at the finest scale of observation, Section III %reats

the interaction between circular, rectangular, and hexagonal holes
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subjected to in-plane shear and tensile displacements. This Section
applies to the stage of crack formation in un-notched specimens.

Since regions around crack tips are fully plastic and since we
would like to predict elastic-plastic fractures from fully plastic
experiments, the following section centers on a fully plastic analysis
of crack formation in notched specimens. Slipline fields for the
interactions of dog-leg cracks will be investigated and the fracture
criterion proposed in Section II will be compared with experiments.

Finally Section V contains an elastic-plastic analysis of
dog-leg cracks during initiation of growth using several numerical
procedures for zig-zags large compared tc the plastic zone. Stress
intensity factors, plastic zones, and slipline fields will be analyzed

for several dog-leg configurations.
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II. Goals of Studying Fracture

The actual process of fracture, whether by hole growth or cleavage
in a polycrystal, is a very complex one involving three-dimensional
interactions among inhomogeneous, anisotropic materials. In any study
of this phenomenon, the ultimate goal of the analysis generally must
be the prediction of the elastic-plastic or fully plastic behavior of
engineering structures but there are different ways to attain this goal.
In this section the various stages, important processes, and scales of
observation will be described. It will be shown how these are inter-
related through the formation of their fracture criteria and that one
way to the goal is to predict fracture directly from the mechanics of
the processes. This method will be followed in the rest of the thesis.
Another method is to derive approximate degrading continuum relations
from the processes and use these relaticns for fracture predictions.
Some of the previous work in thig field will be reviewed and promising

approaches and needed work will be suggested.

A. Stages, Processes, and Scales of Fracture
1. Three idealized stages of ductile fracture

The process under study is primarily one of fracture by hole growth,
i.e., one in which large local plastic flow occurs prior to and during
fracture. This is contrasted to fracture by cleavage, where except for
ligaments, the local deformation is more nearly elastic. Fracture by
hole growth has been inveatigated by ceveral experimenters. Tipper (1949),
Crussard et. al. (1959), Puttick (1959), Rogers (1960), Rosi and Abrahams

(1960), Chen (1961), and Beachem (1963) all showed that a fibrous zone
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such as in the central cup of a necked tensile specimen is formed by
the gradual link up of cavities. It 1s possible to distinguish
between three idealized stages during the continuing rupture process,
the first two of which are alternative: crack formation in un-notched
or notched parts, and crack propagation. We next turn to the processes
for each stage as illustrated in Figures II-1, II-Z, and II-3,

respectively.
2. Processes for each fracture stage

During the stage of crack formation in an un-notched specimen,
several processes can occur as shown in Figure II-1, such as the
cracking of inclusions within a material and the subsequent growing
and running together of holes from these cracked inclusions. Holes can
also be formed by the separation of inclusions from the matrix material
or may be present due to entrapped gases during solidification. Several
different processes are involved in the stage of crack formation in a
notched specimen and are shown in Figure II-2. Normally, if the crack
opening angle is large, blunting of the crack tip occurs and this
causes regions of high strain and stress to be directly ahead of the
tip leading to a sharp crack (c.f. Hayden and Floreen, 1965) by sliding
off (McClintock, 1970). If blunting does not occur or once a sharp
crack forms, these regions do not lie ahead of the tip and cracks have
been observed to zig-zag and remain sharp (c.f. McClintock, 1969). A
sharp or blunt crack can interact with holes and this can cause the crack
to change direction. Holes coalescing ahead of a crack can create a new

crack which can interact with the original one. These latter processes
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Criteria based on processes:
a. Cracking of inclusions

b. Separation of inclusions
from matrix

¢. Homogeneous growth of
holes

d. Localization of flow

!

Criteria based on intermediate concepts:

Degrading continuum

Dilatational plasticity

d d -
-ag- Eg (0, fdep, P E)

o = a(de, [dEP, p, €)
Localization bands

f£(o, [dEP, p, €) = 1

t = t([u])

: It

Criteria based on fully plastic behavior

Fracture = £(g, [deP)

Figure II-1. Forms of Information about Crack Formation
in Un-notched Specimens.
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Criteria based on processes:
a. Blunting and sliding-off
b. Zig-zagging

c. Growth and coalescence
of holes

d. Interaction of cracks
and holes

Criteria from intermediate concepts:

Degrading continuum
pDilatational plasticity
including strain gradients
and size effects

Localization bands

Overall or directional strain
intensity factors

I T

Criteria from fully plastic experiments

17

Criteria from elastic-plastic experiments

I—-»k concept

—1

Figure II-2, Forms of Information about Crack Formation in Notched
Specimens.




Steady
state?

Strain
on crack
advance

Residual
stresses

Criteria based on processes:
a. Zig-zagging

b. Growth and coales-
cence of holes

c. Interaction of cracks

and holes

Criteria based on intermediate concepts:
Degrading continuum
pilatational plasticity including
strain gradients and size effects
Localization bands
overall or directional strain

intensity factors

] g

*14~eriteria based on fully plastié experiments

17

Figure I1I-3.

t{Criteria based on elastic-plastic experiments

_t k_ concept Ig__

Forms of Information about Crack Propagation.

19
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(i.e., zig-zagging, crack and hcle interactions, and hole coalescence)
also can occur during the stage of crack propagation, both in un-notched
and notched specimens as illustrated in Figure II-3.

3. Scales of observation

The finest scale of observation (size) at which continuum plasticity
can be applied is that of inclusions. As the size of the specimen or
structure is increased for a given material, first fully plastic and
then elastic-plastic fracture is observed. Fully plastic behavior is
more often present than elastic-plastic in structures made from most
engineering materials with the notable exception being carbon steel below
its transition temperature.

4. Inter-relationships between processes, experiments, analysis

and fracture criteria

Within the various stages of fracture, each process and scale should
have its own fracture criterion (a form of information). One would like
to predict elastic-plastic behavior from fully plastic tests or from the
mechanics of the processes. In frack formation by hcle growth from an
un-notched specimen (Figure II-1) the material in the vicinity of a
potential crack is in the fully plastic conditicn. The processes of
inclusion cracking, separation, and homogeneous growth of holes and
localization of flow operate at this stage. It may be possible to
predict the behavior of fully plastic specimens directly from idealizations

of these processes, such that
Fracture = f(g, [aEP) II-1

where g 1is the stress tensor, fdgp is the accumulated strain history

and f 1s a history dependent functionm. If this is not possible, an
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intermediate concept such as a degrading continuum approach might be
developed from these processes which provides for localization (shear)
bands to occur.

It would seem that in addition to the usual variables of continuum
plasticity (accumulated strain history (Idgp) and current strain increment
tensor dg), the porosity tensor (B , ratio of hole axes relative to the
strain tensor sor rotation does not appear), and the strain tensor (dg)
are important im a fracture criterion for a degrading continuum. These
must be followed in a region which is large enough so that the macroscopic
concepts of stress and strain encountered in elasticity and plasticity

are applicable. The stress tensor at any point can be expressed as

1Q

- g(e , p, [ae? , de) . 11-2

In addition, the change in porosity can be expressed as

oy
"

"ég' (E y P !dep -9 . I1-3

A criterion for the formation of localization bands should be of the

form
£(g, Je&? ,p,0) = 1 . 11-4

A very approximate condition for localization was suggested by McClintock

(1968¢c) as

/— (—) £- 11-5

for spherical holes of diameter 2b in a cubic array with spacing 2

Qi |-

where gf is an adjustable parameter of order unity. Once bands have
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formed, the criterion for their development can be stated as the traction
t that can be carried as a function of the displacement discontinuity
[ul by

t = t([u]) . 11-6
As the ligaments expand by a distance of, say, gg. times the hole spacing
at localizationr &E , the tractions between elements must drop from
whatever tractions were being applied before localization began to zero.
If the separation is purely normal, the normal traction tn is related

to the separation from the beginning of localization, u, - uﬁ , by
(c.f. Lee and Wang, 1954): )
£ = ::;(1-35‘;_7;2) : 11-7
£ 2
These above relationships could be developed from the mechanics of the
processes or may be suggested by fully plastic experiments.

McClintock (1956) solved the Mode II1 (longitudinal shear) crack
problem by basing his fracture criterion solely cn a critical accumulated
shear strain being attained at a distance p8 ahead of the crack.
Triaxiality is an important variable in 1n-;1;ne fracture since it varies
in front of the crack tip. It is zero in Mode III, however, so McClintock
did not include it as part of his fracture criterion. A simplified in-plane
fracture criterion based on a stress-modified critical accumulated strain
(damage) to fracture was first proposed by McClintock, Kaplan and Berg
(1966). Assuming that the rigid plastic, non-hardening theory of continuum
plasticity can be used, then, of all the strain components, only the
shear (distortional) strain can always be non-zero in any arbitrary dis-

placement field as well as being infinite at the apex of any centered fan.

It would seem logical, therefore, as a first approximation to consider the
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two variables affecting fracture as a critical accumulated shear strain
and triaxiality, neglecting other strain components, strain hardening, etc.
and assuming that porosity growth is a function of shear strain and tri-
axiality. Since an infinite shear strain over zero distance has no
physical meaning, the concept of a structural size, Pg (e.g. inclusion
spacing) must be used as introduced by McClintock (1;;6). If the shear
strain reaches some critical value at a distance Pg in front of a crack
and if the triaxiality is higher there than at any—;;int wvhere the shear
strain is at the same critical value, fracture should occur.

There are instances in the use of slipline theory when displacement
discontinuities are predicted leading to infinite shear strains. Such
discontinuities cannot be supported in any real strain hardening material;
instead the line of discontinuity will spread into a fan. The fracture
criterion could be expressed in terms of non-hardening variables (e.g.
displacement discontinuities) but to do so would obscure the effect of
hardening in spreading out such variables. The angular extent of the
fan formed by the displacement discontinuity should be some function of

at least the strain hardening exponent n and the ratio of inclusion

diameter to spacing (d/ps ) . For most engineering alloys, n has a value

of 0.1 to 0.5 and d/ps is of order of 0.1 (volume fraction of 10"3). As

a first approximation, let us say that

fan angle = Cl(n + g—-) 11-8
8

wvhere Cl is some constant. In strain softening materials and in
gradually fracturing materials such as steel which cleaves ahead of the
main crack, displacement discontinuities lead to shear band formation.

In Figure 1I-2, the inter-relationships for crack formation in

notched spcimens are shown. Here, both elastic-plastic and fully plastic
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behavior are possible. These can be studied directly from the mechanics
of the processes or by a degrading continuum technique such as dilatational
plasticity which must include strain gradients, localization bands and size
effects. Perhaps overall or directional strain intensity factors (analagous
to stress intensity factors) can be found by which fully plastic parameters
can be used to predict elastic-plastic behavior. This is possible in Mode
III but McClintock (1968e), using the results of two approximate analyses,
stated that such a relationship is dimensionally impossible for in-plane
loading. Experiments can be run in the fully plastic state and, by
observing the transition from initial to steady state crack growth as done
in Mode III (Walsh, 1958), one should be able to use the results of such
experiments to predict elastic-plastic behavior, contrary to McClintock's
claim. Because of different states of stress and strain, however, more
than two numbers (fracture strain If_and structural size ps) will be required
to make the fully plastic to elastic-plastic prediction i;_;ny general case.
Note that within the area of elastic-plastic experiments the k-concept can
be used from one elastic-plastic test to another.

Crack propagation, outlined in Figure II-3, can be studied usirg
approaches as in Figure II-2. However, there is a major difference in
what must be included between elastic-plastic and fully plastic analyses.
This difference 1s that the strain due to crack advance (which is of an
elastic order of magnitude) and residual stresses can be neglected in the
latter but must be included in the former. A major simplification of the
analysis would result if a steady state crack configuration could be found,
but for in-plane fracture, this seems to be impossible. Using fully
plastic behavior to predict elastic-plastic response through a degrading

continuum approach or experiments is still desired but perhaps not possible.
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B. Previous VWork and Areas 1n Need of Work

in the light of the above description of the field of fracture,
it is well to review what progress has been made by others toward the
goal of understanding this behavior. This discussion will be carried
from the fineat to the coarsest scale of observation. It should be
emchasized that this is not to be considered a complete review of
ductile fracture but rather a partial one within the structure presented
above.

1. Processes

a. Inclusion cracking

The role of inclusions in nucleating cavities has been stressed
by Tipper (1949) and Puttick (1959). Coleman and Hardie (1966) found
that below a certain inter-hydride spacing (160u) in zirconium under
notched slcw-bend tests, brittle fracture occurred whereas above this
spacing, the fracture was ductile. No particle size was stated. Barnby
(1967) studfed the fracture of chromium carbide particles in a stainless
steel and modeled the process by a dislocation pile-up. His model s at
too fine a scale for relatively large inclusidns. At the continuum level,
highly strain hardening materials can be modeled by the viscous analogy
of deformation plasticity (by replacing strains by strain rates and setting
Poisson's ratio to equal 0.5) to which the elastic results of Goodier (1933),
Donnell (1941) and Esghelby (1961) are applicable. Within ellipsoidal and
elliptically cylindrical inclusions, the stress is uniform and concentrated
by a factor of two in the limiting spherical case. At the same level of

observation, McClintock (1968¢c) analyzed an inclusion surrounded by a
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rigid-plastic, non-hardening matrix under longitudinal shear and
found stress concentrations of the order of two near roughly circular
inclusions.

One approach to the problem of in-plane loading of inciusions
would be to use a numerical technique with center-of-symmetry boundary
conditions (McClintock, 1968d). Care must be taken to find a technique
which can be pushed into the fully plastic regime. Some variables
which must be considered are: inclusion size and spacing, matrix-
inclusion adhesion, ratio of elastic moduli of matrix and inclusion,
and strain hardening behavior.

b. Hole growth and coalescence

More work has been done on this next process than on the previous
one. Several empirical analyses (Edelson, 1963; Gurland and Plateau,
1963; Beachem, 1962) have been presented but they assumed holes inter-
acting from the beginning and neglected to include triaxiality as a
variable. McClintock, Kaplan and Berg (1966) derived approximate
relations for the deformation of holes in shear bands for both fully
plastic and viscous (linearly hardening) materials. McClintock (1968a)
developed a criterion for ductile fracture by the growth of cylindrical
holes by assuming that the prescribed history of applied principal stress
and strain components did not rotate relative to the material. Extra-
polation was made to fully plastic materials acting under equiaxial
transverse stress. He estimated the fracture strain, Ef , for holes
with initial spacing lg and elliptical axis 2b° coalescing in the

b direction as

(1-n)2_ (L2/2b°)
ef - LS u — — . I1-9
sinh((1-n) (o, + 0, )/(20/V3)]
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The strain hardening exponent is n (0 = 9 en), 0 1is the Mises

oo o]
equivalent stress, and (caa + be) are the normal tractions being

applied in the a and b directions at = . Finally, Rice and
Tracey (1969) performed an analysis for a spherical hole in a remote
extension field and found results similar to those of McClintock (1968a).
In the last three analyses, only single holes were looked at and
coalescence was assumed when the hole size reached the current hole-to-
hole spacing.

More understanding of hole interactions and varying boundary
conditions is required. The center-of-symmetry boundary conditions
coupled with a numerical technique mentioned above would be enlightening
here also. The beginning of such an analysis for holes under shear and
tensile displacements (but without center-of-symmetry boundary conditions)
is presented in Section III.

c. Blunting and localization

Blunting has been mentioned by several authors (e.g. Rice, 1968;
McClintock, 1969) as one of the ways of focusing deformation into the
material directly in front of the crack tip. McClintock and Pelloux
(1968b) showed how a sharp notch in a singly grooved tensile specimen
could become blunted by simultaneou; shear. McClintock (1968e) showed
how a sharp notch in a doubly grooved tensile specimen could become
blunted by alternating shear. Joyce (c.f. McClintock, 1970) found that
flow localization near a blunted notch can occur at a machining nick or
other imperfection. Hayden and Floreen (1969) presented some outstanding
photographs of notched tensile specimens sectioned before final fracture.
They showed that a blunted notch became flat bottomed and then cracked

from one corner.
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d. Zig-zagging

Little work has been done to analyze zig-zag cracks. It seems
~that the scale of zig-zagging 1s affected by the size of the structure.
This is evident when one looks at a three inch diameter specimen shown
at no magnification in Miklowitz (1950). The zig-zagged fracture
surface was easily visible. Rogers (1960) described thae phenomenon
as it occurred in OFHC copper. Bands of intense shear formed at 30
to 40° to the tensile axis, and voids grew in this band. One band
failed, two more bands formed from the new crack tip, but the crack
"chose" the band which headed it back to the plane of minimum cross-
section. Bluhm and Morrissey (1965) sectioned an ordinary tensile
specimen of copper. The fracture surface was macroscopically normal
to the tensile axis but fracture on a 45° plane and delamination were
also pending. McClintock (1969) mentioned that the higher plastic
strains and triaxiality at +45° to the minimum section of a doubly
notched tensile bar could cause zig-zagging and that it is observed
experimentally. On tests of high strength steels, Brook (see Berg, 1970)
found that the wavelength of zig-zag cracks was emall compared to the
plastic zone size but large compared to the nominal structural dimension
(e.g. inclusion spacing).

It would be well to know if zig-zagging must be the result of
interactions between cracks and individual holes or if it can be
predicted by more macroscopic criteria. This will be investigated in

Sections 1V and V.
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e. Crack and hole interaccions

Little work has been done on this process although McClintock (1969)
studied holes near cracks. Working directly from the stress and strain
distributions of the flow fields of Wang (1954) for rounded grooves in
tension, he estimated the rate of coalescence of holes directly in front
of a rounded crack tip. He assumed that the stress acting on the hole
was the same as if the hole had not been there. Such interactions are,
of course, present in any real material. By neglecting them, his analysis
predicted too large an included crack angle.

One possible technique to analyze crack and hole interactions
(which would also aid in a study of blunting) is as follows: It has
been observed that the rigid plastic, non-hardening slipline and displace-
ment fields away from a round notch and a sharp crack are similar although
not identical. The far field slipline and displacements would then not
be expected to change much if a small hole (which would probably greatly
upset the local field) was present near the crack. If not, this region
(crack tip plus hole) could be modeled by a finite element grid, and
displacements could be imposed on the boundary corresponding to the fully
plastic flow fields of doubly-notched Mode I cracks, singly-notched, etc.
Several of the important variables which would have to be investigated are:
crack tip radius, hole dimensions and position, and far-field imposed

displacements.
2. Degrading continuum approach

One model of a degrading continuum is the decohering crack model

proposed by Barenblatt (1962) and a mathematically similar model proposed
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by Dugdale (1960). Basically it consists of a cohesive zone in front
of the crack tip and the pos*ulate that th2 influence of atomic and
molecular attractions is representable as a restraining traction
acting on (and a function of) the separating surfaces. Kostrov and
Nikitin (1967) chose to represent this cohesive force as a function of
the displacement discontinuity ahead of a Mode III crack.

Another and more general approach 1s that of Berg (1970) in which
a continuum medel of plastic deformation of microporous metal aggregates
was proposed. Instead of considering individual crack and hole inter-
actions or holes coalescing, he looked at the "cheesy'" material as a
whole and allowed plastic dilatation which is not possible with a
continuous plastic material. The appearance of singularities in this
field is the localization part of fracture. Once this occurs, the
model becomes similar to that proposed by Barenblatt and Dugdale except

that it is imbedded in a plastic rather than an elastic material.

3. Fully plastic behavior
a. Slipline theory

One tool which is useful in fully plastic analysis and will be
used in Section IV is the rigid-plastic, non-hardening slipline theory
(Hi11, 1950) but one may question its applicability to engineering
materials. Since real materials do harden and since they deform in an
elastic-plastic rather than a rigid-plastic manner, this question is
certainly a valid one. In addition, the partial differential equations
of equilibrium are hyperbolic for the non-hardening case and elliptic
for a real material. Against all these are several factors: 1) Near a

region of large plastic flow (e.g. a notch tip), the elastic strains are
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so small in relation to the irreversible plastic strains that they can

be neglected (rigid approximation). 2) Hutchinson (1968b) numerically
studied the stress and strain components inside the plastic zone of an
elastic-plastic material in Mode I plane strain loading. He found that
for a low strain hardening material (n = 1/13 where n 1is the exponent
in o= ol(ep)n), these components very nearly equalled those obtained
from the fully plastic, non-hardening, doubly notched solution of

Prandtl (1920). His analysis indicated no abrupt discontinuity between
non-hardening and strain hardening materials. This lack of discontinuity
was recently confirmed experimentally on wedge shaped specimens by
Devenpeck and Weinstein (1970). 3) Mest engineering materials can be
better represented by non-hardening (n = 0) theory than the viscous
analogy (n = 1). The similarity between the deformations in real materials
and those predicted by slipline constructions is such that some authors
(most notably Hundy, 1954; Green and Hundy, 1956a; Green, 1956b) have used
the etched deformation pattern in high nitrogen steel to suggest slipiine
fields. Hahn and Rosenfield (1968) used an etchant on iron-3% silicon
and found a pattern of deformation which was similar to the slipline
field for the configuration studied. Carson (1968) found that the
maximum shear stress directions inside a doubly notched plane strain
section of 6061-T6 aluminum using a numerical finite element approach
resembled the non-hardening slipline field for the specimen. McClintock
and Rhee (1962) defined an index of linearity of a stress-strain curve

in terms of the maximum and average stresses up to a given strain as

1. 11-10
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For materials with linearity index less than 0.3 to 0.5, they found
that for a number of theoretical and experimental cases, the strain
distribution could be more nearly approximated by non-hardening

plasticity than linear elasticity unless the non-hardening solution

indicated very high local strain gradients.
b. Mode III results

A macroscopic fracture criterion was proposed and used successfully
by McClintock (1956) to study the fully plastic initiation of crack
growth due to torsion of a longitudinal bar. It was necessary to
introduce the concept of a structural size, ps because the fracture
criterion was based solely on a critical she;;_;train to fracture,
and the shear strain at any crack tip went to infinity. This occurred
over a vanishingly small region. Fracture by void growth, however,
should require a critical strain over some distance comparable to the
spacing between voids. If fracture occurred by band formation in grains,
a critical strain should be present over some distance comparable to
the grain size. The linear size of such regions was denoted as pS
and should be approximately constant for any given material. Sev;;;l
experimentally determined values of pS for aluminum alloys are given
in Table II-1 (c.f. Hodges, 1967 and ;;;rington, 1969). In Mode III it
is also possible as noted above to go directly from fully plastic to
elastic-plastic behavior experimentally by studying small, fully plastic

bars in torsion and noting their transition from initial to steady-state

rates of twist.
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4., Elastic-plastic behavior

a. Finite element methods

In the absence of analytical solutions, the work on this scale
has been concentrated on obtaining stress and strain distributions
numerically and no attempt has yet been made to include a fracture
criterion. Several finite element techniques (e.g. Swedlow, Williams,
and Yang, 1965; Marcal and King, 1967) have been used quite successfully
to model two dimensional elastic-plastic behavior prior to instability.
In general, constant stress and strain components within small triangular
elements have been assumed, but the three-sided nature of these elements
has generally prevented the analyses from being pushed into the fully
plastic regime (Thompson, et.al., 1969). So-called "higher order
elements' are now being introduced, which will hopefully get around this
problem. One useful technique to study crack tip behavior, which will
be reported in Section V, is to model the material in the vicinity of a
crack tip with a finite element grid and apply tractions to the boundary
of this grid which are numerically equal to the stress found there from
the elastic solution for the crack. These tractions can then be
linearly increased to cause yielding to occur. As long as the plastic
zone does not reach such a size that it can influence these tractions to

a large extert, no problems seem to arise.
b. Path-independent integral

Rice (1968a) presented a path-independent integral, J , defined by

J = I(Wdy-T'g-;-:-ds) II-11
T



Table II-1 Structural Sizes for Some Aluminum Alloys

Material

Hodges

.0005

.0005

"

(1967

.001

.001

®

Harrington (1969)

.0015

0001 - 0002

.001

.003
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where T 1s some path around a notch tip, W is the elastic strain
energy density, T 1s the applied traction vector, and u the displace-
ment vector. For small-scale yielding, J can be related to the three

stress intensity factors by

2
l -v 2
J = R (KI + K

2 1+v .2
) t v K- 11-12

A finite element method, for example, could supply values of the
variables needed to compute J . If the loading could be separated
into Mecdes I, II, and III components, the stress intensity factors could
thus be obtained.

c. Stress and strain fields near Mode I and Mode II cracks

Hutchinson (1963a,b), using a total deformation theory of

plasticity along with two hardening stress-strain relations and
limiting his analysis to a small zone near a crack tip, obtained the
stress and strain distributions in this region for pure Mode I and
Mode II cracks. He also determined the dominant singularity of the
two-dimensional stress function using Rice's (1968) path-independent
integral. This methed is valid for crac! initiation but the inhomogeneous

hardness makes the method invalid on crack advance.
d. Mode III results

The first solution for elastic-plastic stress and strain distribu-
tions was that given by Hult and McClintock (1957) for Mode III cracks.
They found that the plastic zone is circular and just touches the crack

tip. Its extent is given by

R = (k3/k)2 I1-13
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where k3 is the Mode III stress Iintensity factor and k 1is the yield
strength in shear. Using as a criterion for crack initiation of growth
that a critical plastic shear strain Yg be attained at a distance Pg

ahead of the crack tip, they found the critical plastic zone radius for

initiation Ri to be

4 »
R, = ps(—f- + 1) 11-14

Ty

where ZZ. is the yield shear strain.
Rice (1968b) gave the equation for the critical plastic zone at

instability Rc' as

Y2 1
R, = b, expl(2 (%)+1]

/2 1
. - 1)
y

Considering the problem of crack growth in Mode III, McClintock

(1958) included the effect of strain due to crack advance but not the
effect of residual stresses. He found the stress levels for instability
after increasing loads and crack growth as a function of the ratio of

crack length to Pg and YE/Y .

Finelly, Chitaley (1970) presented an exact steady-state Mode III
solution for a crack growing with constant plastic zone size which
included residual stresses. Compared with the static solution, he found
that the thickness of the plastic zone was reduced by a factor of two
and the crack tip displacement by even more, but that the extent of the

plastic zone ahead of the crack tip was nearly unaffected.
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C. Summary

A description of fracture has been presented. Three idealized
stages of fracture are identified as crack formation in un-notched
or notched specimens, and crack propagation. Processes were mentioned
for each stage and scales of fracture, elastic-plastic and fully
plastic, were noted. Inter-relationships between the processes,
experimants, and analysis through fracture criteria were indicated
to ald in reaching the final goal of understanding elastic-piastic
or fully plastic fracture. Ultimately fracture criteria should be
developed for phenomena at both the process and degrading continuum
levels. It was proposed that fracture in metals be pradicted by
using rigid-plastic slipline fields and spreading out displacement

discoatinuities into 3 fan according to Eq, II-8.

fan engle = n + 4 . 11-8
0]
8
The fracture criterion of McClintock, Kaplan, and Berg (1966) based
on a stress-modified critical accumulated strain (damage) can then be
used.

Previous work in this field was reviewed and areas in need of more
work were roted. Promising approaches were presented for several of the
areas.

The next sections of the thesis will consist of predicting fully
plastic or elastic-piastic behavior directly from the mechanics of the

processes rather than through a degrading continuum approach. The scale

of observation will be increased in going from Section III to Section V.
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Section III will be at the level of hole interactions, Section IV
at the level of a fully plastic continuum and Section V at the

level of an elastic-plastic continuum.
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III., Some Plastic Flow Fields for Interacting Holes
A, Introduction

The early stage in ductile fracture during which holes grow
without interaction and the conditions for the localization of flow
in shear bands have been roughly discussed by McClintock (1968c),

Rice and Tracey (1969) and Berg (1970). The start of the next stage,
described in terms of the traction-displacement relations across the
localized plane of deformation with its holes, will be studied here.
These relations will be special forms of those presented in Section II.
In unnotched specimens it is appropriate to assume pericdic boundary
concditions corresponding to the arrangement of the centers of the holes
to be arranged in a regular periodic array. In general this array is
three-dimensional, but it becomes two-dimensional after the flow is
localized to one plane. For simplicity, consider plane strain so that
the ellipsoidal holes become a row of cylinders in the plane of
localization. Localization occurs only after the strain-hardening has
dropped to a sufficiently low value, and we shall here consider the
strain-hardening to be zero in order to use the usual slip line theory
of plasticity.

Slip line fields for plane strain plasticity problems sometimes
cannot be found by direct methods, so we shall use the results of
numerical calculations to suggest such fields and also to give some
insight into the effect of strain-hardening.

Because hole growth and coalescence involve large plastic strains,
the rigid-plastic approximation is appropriate although available computer

methods require elastic-plastic solutions.
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Just two modes of loading are considered here, shear and
tension. Round holes are first conzidered and then, because of
the finding of Joyce (1969) that round notches can become angular,
we shall consider the fields for rectangular and hexagonal holes
for which the geometry can be more readily solved during progressive
changes in shape.

Results ultimately include the traction displacement relation
across the plane of localization, which depends on the incremental
changes of shape of the individual holes. (Refer to figures in

Section II.)
B. Round and Rectangular Holes Interacting Under Shear

1. Computer analysis of plane-strain,round-hole interaction under shear

Only one boundary shape but two stress-strain curves were used to
analyze the above problem. In both, plane plastic strain (szz = J) was
assumed. Figure III-1 shows the grid for one quadrant (wigg-;imensions
of unity) of a square plate with center hole which was used. This was
loaded first with biaxial compressive and tensile tractions to simulate

shear at 45° for small strains. For this a stress-strain curve for

2024~T4 aluminum was used which can be described by

G = 106,000 (P + 0.0073)°-128

III-1
E = 10.8x10° psi, v = 0.33
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The quadrant was divided into 2( triangular elements joined by 121

nodes. The boundary conditions were

x = 0 : u = 0, Txy = 0

y = 0 v = 0, Txy = 0

x = 1 XX oappl'd ’ Txy = 0 He
YRl Ty 20 %y " “Tapp1'a

A finite element, elastic-plastic program developed by Swedlow,
et. al. (1965) was used. The applied traction was increased in 41
increments from 0.31 to 1.00 times the uniaxial tensile strength on
the net section. At the final load, the value of the stress at the
nominal strain divided by the yield strength was 1.51. Figure III-2
shows how the yielded region expanded with increasing tractions and
Figure I1I-3 shows the directions of maximum shear stress at the center
of each of the triangular elements. The directions of the total maximum
shear strains were similar to those in Figure III-3 and their magnitudes
were larger near the inclusion and along the 45° center band. This
indicates that either deformation or incremental plasticity is
appropriate for this problem. |

The second stress-strain curve that was used was an elastic,

non-hardening one, namely

g = Y = 22,5 psi
III-3

E = 10x10° psi, v = 0.33



Figure I1I-2.Growth of Plastic Zone in Square Plate with
Center Hole Due toc Tractions on the Boundary.

43
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For this, displacement instead of traction boundary conditions were

used.

x=0:u=90, Txy = 0

y=0:v=20, Txy = 0

x=1:um= uappl'd , vV = -y(uappl'd) IT1I-4
y=1l:u= x(u‘appl'd) : Vappi'd = "Yappl'd

The same grid was used as above (Figure III-1) but this time a
finite element, elastic-plastic program described by Marcal and King
(1967) was used. Slight differences have been noted between this
program and Swedlow's; however, Marcal and King's program can handle
non-hardening stress-strain curves and displacement boundary conditions
whereas Swedlow's cannot. The boundary displacements were increased in

(u/2)
five increments such that the quantity (Y/E)nominal increased from

0.45 to 1.04. At the end, the value of the stress in the outer elements
(near the boundary) divided by the yield strength on the net section was
0.62. Figure III-4 shows the size of the yielded region at each value of
applied displacement. Note that there is 1i£tle difference between this
figure and III-2, suggesting that the shape of the yielded region is
little affected by strain hardening and boundary conditions. It should be
fairly obvious from Figures III-2 to III-3 where the rigid regions are

and what the rigid-plastic non-hardening slipline field should look like.

For us, the obvious took several months of work!
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2. Slipline field for interaction of round groove roots under shear

The ccmputer-generated slipline fields suggested the solution
of Green (1954), who studied the plastic yielding of metal junctions
due to combined shear and pressure in order to estimate the forces
present in friction between two metal parts. Among others, he
presented slipline fields for strong (i.e. adhesion strong enough
to prevent sliding at interface) syﬁmetrical junctions between square
and round groove roots for a shear displacement with zero mean normal
stress, 0 , in the central region of the junction. Assuming the
values he gave are correct and then calculating the remaining values
from them, the slipline field is shown ir Figure III-5,.
For this field,
6, = 32°
63 - 62 = 3,3°
6, = 9.8°

21/R2= 0.542

o = 1,09k
p

14

R1/R2 0.117

R

R,/R 1.059

32

tmin/RZ = 0,23

where all the variables are defined in the figure except tmin which 1is

the minimum distance between the two holes which is necessary for this

field to apply, 0 is the triaxiality and k the yield strength in shear.
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It seems from Figures III-2 and III-4 that most of the yilelding is
taking place along the 45° line (which is the line which corresponds to
the 0° line in Figure ITI-5) and there is a region near the hole on that
line which is rigid. This 1is in agreement with the glipline field of
Figure III-5.

Finally, one can check the directions of maximum shear stress in
Figure III-3 with the slipline field and find that they match up quite
well. It is impossible, of course, to match exact details such as the
logarithmic spiral regions since the area over which they extend 1s of
the order of the finite element size. The stress within each element
is assumed to be constant so only one value and direction of shear
stress can be obtained for the whole element. This seems to illustrate
the role of computer analysis and theory in studying deformation and
fracture. The computer approach, although expensive, can provide answers
to questions which could not be obtained otherwise. When tried on
simpler problems, these answers sometimes suggest applicable theoretical
solutions. On the other hand, the theory is useful when the problem can
be simplified enough to make it applicable. It is probably less expensive
than the computer, when properly epplied, and can give us answers with

much more detail and exactness for the non-hardening case.

3. Slipline field for interaction of square groove roots under shear

a. Stress field

Green (1954) also presented the non-hardening, plane strain slip-
line field for the interaction between two square groove roots due to

a shear displacement with zero mean normal stress in the central region
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of the junction. The values of R, d, and y in terms of 2 which he
gave (see Figure III-6 for nomenclature) were found to be incorrect.

In order to solve this problem for the six unknowns (angles PAS

and POY, SR » R, d and &_), six independent equations can be found

from geometry, equilibrium and the Hencky relations,

do = 2kdd along a

I1I-6
do = -2kd$ along B
where Q. is the angle from the x axis to the o line. When considering
the forces and moments acting on the area APYY'QBA , the analysis is
simplified by assuming that PO, YO, QO' and Y'O' are sliplines and
therefore changing the area under consideration to APOYY'O'QBA . The
correct values are
PAS = w/8 - 1/4 = 8% = TBQ
POY = 1n/8 + 1/4 = 37° = QO'Y'
I11-7
UB k(rn/4 + 1/2) = cQ
R/L = 0.51
da/2 = 0.05
y/& = 0.74

The slipline field using these values is shown in Figure III-7.

b. Velocitv field

Green (1954) gave the following results for the velocity distribu-
tion in terms of w, the rotational velocity of the rigid regionms

(e.g. PYY'QED) about the instaneously stationary points C and C'
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(see Figure III-5), V ,the velocity in the rigid top and bottom regions,
and U the velocity discontinuity in going across line BQY'YPA
or APYY'QB .
v
r
I11-8
= I
\ U@ + 2R)

C. Interaction of Holes Under Tension

1. Interaction of two rectangular holes under tension

This interaction can be studied quite easily by considering the
glipline field shown in Figure III-8. The triaxiality varies from Q

to R as follows:

Region Triaxiality (o/k)
QL 1
LG 1+1+ 7 (linear)
GR 1+m

An admissible displacement field can be visualized by holding the bottom
rigid region fixed and displacing the top rigid region by 6U in the

vertical direction. Variations in the displacement increments (Gua along

@ line and GvB along B line) are related by the Geiringer equations

d(Gua) = Gde¢ along o
I11-9
d(GvB) = -Guad¢ along B
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Assume (following Neimark, 1968) a linearly increasing GVB along the

o lines and a linearly increasing GuOl along the B lines in the

e

central region AGF (Su = évg = 0 at F, Su = 1/V/2  at 6 ,0vg = 1/V2

at A ). By numerically integrating the Geiringer equations III-9, it
can be determined that the side NQI of the hole 1s displaced 1.84 SU
vertically as a rzsult of the applied displacement. Along PN the
horizontal and vertical (downward) displacements vary linearly from

zero at P to 68U/2 at N . The variation in going from E to I 1is

also linear. The vertical displacement varies from 6U to 36U/2 and
the horizontal from zero to 6U/2 . Green (1953) gave the equation

describing the increment in shear strain (§y_,) due to a displacement
aB

increment (Gua . EZQ? as

5y } l( B(GVB) B(GUu) )
aB R 3%, 3¢B B
where R is the radius of the o line and S is the radius of the 8 line.

1
+ 6u) + 3 (- + Sv I11-10
The shear strain increment distribution around point N is shown in

Figure III-9. For small changes in hole sizes and inter-hole spacings,

the whole field can expand or contract to accommedate the area available.

2. Interaction of two round holes under tension

The slipline field for this interaction follows directly from that
given by Wang (1954). It is shown in Figure III-10 and consists entirely
of logarithmic spirals. Wang also presented a hodograph from which one
field of displacement increments (vertical) can be obtained. This was

generalized by McClintock (1970) to include other admissible fields. A
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lower bound to the limit traction can be found by summing the forces
along the center line

S-R

JF. = 2 adp III-11

f

J R

where R 18 the radius of the hole and S 1is half the inter-diameter
spacing. The radius vector p to a point on the spiral can be

expressed as

(® -9
P = Re I1I-12

The triaxiality J can be expressed in terms of k , 6 and Gc as

o = k[l + 2(6 - ec)] III-13

The inter-diameter spacing 2S can be found from Eq. II1-12 when
8 =7/2 as

8

/2 _ o c I1I-14

2S = 2R(e

Therefore, for a given ratio of hole spacing to diameter, the necessary

value of Gc is

ec = 7/2 - 2n(S/R) III-15

Combining Eqs. III-11, III-12 and III-13, integrating, and expressing

the limit traction t_ as )F _/2S , we find
-4 D AN
R S
ty/k = 1+ 21 - §)[ n(i-- 1) - 1] .

Lee and Wang (1954) described the displacements for such a hole

configuration.




59

3. Interaction of two hexagonal holes under tension

Finally, this slipline field is given in Figure III-11.

Conceptually it is no more difficult than the others presented although
it may look to be so. The triaxiality (0/k) equals 1 + /3 along
center line VP , varies linearly from 1 + 7/3 to 1+ T in going

from P to H and is equal to 1 + T in the center constant state
region. As above, only a tensile traction can be supported but many
displacement fields are permissible. For illustration, assume the bottom
rigid region is fixed and the top displaced vertically by an increment,
0U . Assume a linearly varying GVB along the & line in going from H_

to _A (8v, equals zero at H , equals 1/v2 at A ) and a linearly
e - a

varying Gua in going along the B 1line from M to 5_(6ua equals
zero at M , equals 1/v2 at H ) . With this displacement increment
distribution, no displacement discontinuities are necessary. The

displacements of the sides and corners of the hole are as follows (all

variations along a side are linear):

Side Displacement Increment
Normal/SU Tangential/SU*
G to L 1l to 3/2 0 to 1/2
L*%* 1.87 0
LV 1.96 -0.22
VA' 1.47 0.65
ARk 0.18 ~-0.68
A' to C' 1/2 to O -1/2 to 0

The shear strain increment distributions around corners V and A' are

shown in Figures III-12 and III-13, respectfully.

*
Positive has been taken as that tangential displacement which would tend
to displace a material element from the first given point to the second
(e.g. GtoL, L to V, etc.)

« :
Normal and tangential referred to side GL for point L and side A'C'
for point A' .

*
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IV. Fully Plastic Plane Strain Crack Growth

A. Introduction

I1f sharp fully plastic Mode I cracks do not become blunted, there
is no reason for them to continue to grow along a straight path. This
is evident when one studies the slipline field for two long straight
cracks under a tensile displacement as shown in Figure IV-1. The shear
strain varies as 1l/f in any centered fan where r is the radial
distance from the crack tip (C in this case). The triaxiality is as
high along the 45° line CB (or AB , AF , and CF) as it is anywhere
else (equal to its maximum value of (1 + TM)k) and the shear strain
singularity is present there but not ahead of the crack. Therefore,
according to the fracture criterion proposed by McClintock, Kaplan and
Berg (1966), based on a stress modified critical shear strain (damage) to
fracture, one of the cracks should form a dog-leg at 45° to the main crack.
If blunting occurs, flow localization can cause a sharp crack to form (ec.f.
Hayden and Floreen, 1969), and the same arguments about a crack growing not
along a straight path apply whereas a lack of flow localization leads to too
large a notch angle (McClintock, 1969). 1In addition, zig-zagging of
cracks has been observed fractographically all the way from the scanning
electron microscope level of observation (Berg, 1970) to the matte
surface visible with the naked eye in an ordinary tensile test. The
reasons for the existence of these cracks have not been known. Must they
be the result of the interactions between cracks and individual holes, or
can they be predicted by more macroscopic criteria? To gein insight into

this problem (in particular, to find the stress and strain fields in the
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vicinity of these cracks) several simplifying assumptions will be

made. These will later be re-examined in order to assess their
influence on the results. The first is that the general three
dimensional, anisotropic, inhomogeneous fracture process can be
approximated by two dimensional plane strain involving continuous

and isotropic materials. This is a convenient way to reduce the
problem to one which can be solved. It is not too unreasonable

either, since most macroscopic cracking probably occurs in one plane
during in-plane loading. Second, it will be assumed that a zig-zag
crack can be approximated by a long straight crack with a dog-leg at
one end. In so doing, we are, in effect, saying that the interacting
crack tips, regions along the crack flanks near the tips, and material
between the tips affect the fracture behavior more than the rest of the
crack flanks. Because of the lack of solutions for elastic-plastic
crack growth, consider fully plastic non-hardening stress and strain
distributions. Since the strain due to crack advance is of an elastic
order of magnitude and hence negligible, crack propagation can be
investigated at the same time merely by keeping account of the strain
accumulation and the changing crack length. Near the tips of ductile
fracture cracks the strains are large compared to the yield strain.
Brook (see Berg, 1970) found on tests of very high strength steels that
the plastic zones were large compared to the wavelengths of the zig-zags
indicating a larger plastically deforming region than just the crack
tip. The solution for straight cracks as they start to grow (and zig-zag)
will be presented. The fracture criterion based on a stress-modified

critical accumulated damage will be used to predict where the next



increment of cracking should occur. As a more dramatic case for
experimental confirmation (to get rid of three-dimensional effects

along the leading edge of the crack), rhe interaction of three asymmetric
notches will also be investigated both analytically and experimentally

to test the fracture criterion.
B. Slipline Fields for Dog-leg Cracks

Slipline fields under tensile displacement or tensile traction are
shown for four types of dog-leg cracks in Figures IV-2, IV-6, IV-10, and
1IV-11. The tensile displacement turns out to be on a corner of the yield
locus; that is, the same traction could accommodate many other displace-
ment fields at infinity. These four cracks will now be discussed to see
where the fracture criterion predicts future cracking.

1. Interaction of a single dog-leg with straight crack

If two long straight cracks interact in Mode I and one of the cracks
starts to grow, the new configuration should look like that shown in
Figure IV-2. Altogether there are five fans in this field with shear
strain singularities at the tip of each. The various fan angles are

found by geometry and the Hencky relations,

do = 2k d¢ along o line
1v-1

do = -2k d¢ along B line

where 0 1s the triaxiality, k the yield strength in shear and [

the angle from the x axis to the a slipline.
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The fan angles are:

Fan HBI = /8
Fan FBD = T7/8

Fan DCE n/8 1v-2

Fan PQ0 = /2

Fan KQL = /2

The size of the region ahead of the dog-leg outlined by BCGB is set by
the length of the dog-leg BC although the angles do not change. The
size of the rest of the field is set by the minimum section BQ and is
usually larger than that shown in Figure IV-2.

The displacement field can be visualized by holding the bottom
rigid region fixed and giving the top rigid region a vertical displace-
ment increment, 8U . Variations in displacement increments are
related by the Geiringer equations,

d(Su) = (8v,)d¢ along a
@ B V-3

d(Sv = —(dua)d¢ along B

B)
Without strain hardening, the strain distribution is not unique.

Neimark (1968) added a small amount of strain hardening and used a
uniqueness principle described by Hill (1956) to find that the displace-
ment field can be represented by a term varying linearly with distance,
and displacement discontinuities, unless kinematically required, are
smeared out by strain hardening. - In any arbitrary displacement field

the only non-zero strain component is the shear strain. Green (1953)



gave the equation describing the increment in shear strain (6Ya§) due
to a displacement increment (Gua, 6v§) as
3(6v8) 1 3(5ua)

1
GYGB = E‘( —563——- + Gua) + §'(- —§$E—~ + GVB) V-4

where R 1s the radius of the o 1line and S 1is the radius of the B

line. A displacement discontinuity must exist along CEGKLM (equal to

8U/v2) and can also exist along AYIJKQ or BFGPON .

Asgsume (following Neimark, 1968) a linearly varying éua along the
P lines in the constant state region GPQK. (Gua equals z;;; at K and
1//5 at G with no displacement discontinuit;;;-unless required.) The
shear strain increments can be found by numerically integrating the Geiringer
equations IV-4 and are shown for the regions around the dog-leg crack
tfp C and point B 1in Figures IV-3 and IV-4, respectively. Around the
straight crack tip Q , the shear strain increment is equal to 6U/2/5(Pg)
in regions GKQP and OQN where PQ 1is the length of the slipline from P
to Q . The shear strain increments are singular in fans KOL and PQO
being equal in absolute value to 8U/¥2r and equal zero in region QLM .
Th; shear strain increments are even larger in fan DCE than in PQO or
KQL (the quantity r(ﬁYaB)IGU varies from approximately 1.4 to 1., in
going from D to E ). Also shown in Figure IV-3 are the shear, normal
and equivalent strains for a 45° dog-leg in a viscous material. (See
Section V.) Note that the direction of the next increment in fracture
is better predicted by the slipline strain distribution than the viscous
one but the viscous %90 would predict the crack to head back to the

plane of minimum section. In the fans, maximum triaxiality occurs at
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45° to the straight crack along lines KQ and ¥FQ and {8 equal to
(1 + 7)k . At the tip of the dog-leg along CE , triaxiality is

almost as high, being equal to (1 + 3n/4)k . Because of the high

triaxiality and displacement discontinuity present along CE , the
next increment in fracture should take place aleng CE forming a
double dog-leg at =7/8 to the horizontal axis. Fracture is also
possible at the straight crack tip along PQ or KQ because of the
high triaxiality and singular strain behavior there. There ie no
reason for the dog-leg crack ABC to continue awey from the plane of
minimum section, AEQN , since the material ahead of BC 1is rigid.

If the condition of vertical displacement increment is relaxed
to one of a tensile traction, & possible siipline is shown in Figure
IV-5. In this field, the fan angle DCE 1is adjusted so that the
resultant force along the net section is vertical. A displacement
discontinuity must exist only along CEGKMN and there are only four
fans where l[g_ shear strain singularities are present. Again, one
notes that dog-ieg crack ABC should head back toward the plane of
minimum section and crack tip L should head away from it. This same
conclusion would probably be reached if the interaction of non-45° single

dog-legs was studied.
2. Interaction of double dog-leg with straight crack

if the left-hand dog-leg of Figure IV-2 were to grow, the preceding
analysis indicated that it should proceed along the line CE which is
at 7/8 from the horizental axis. The new slipline field is shown in
Figure IV-6. In this configuration, the fan angle at the new bend GCE

is equal to m/16 and those at the straight tip are unchanged. By
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trigonometry and equality of triaxiality in the constant state
regions, fan angles IBM and QBR at the old bend are related

to lengths BC and CD by
V-5
-1 (CD) sin(57m/8)
[(30)2 + (cD)2 - 2(BC) (CD) cos(5m/8)1F

mT 1
IDM = QBR = 7 -7 sin 73
Similarly, the fan below the new tip IDJ (equal to EDF) can be found

from IBM by
IDJ = 7m/16 - IBM V-6

In Figure IV-6, BC was chosen equal to CD . A displacement discontinuity
must be present at the new bend along CGHLPVA'B' equal to li£3.° The
strain fields for this particular configuration (BC = CD) around the dog-
leg crack tip D and points C and B are given in Figures Iv-7,

IV-8, and IV-9, respectively. As in the case above, a displacement of

the top rigid region by &U , a fixed bottom rigid regionm, and a linearly
varying Gua along the ( 1lines in WYVP were assumed. Around crack

tip Y , the strain distribution is the same as around crack tip 0

above, namely:

Region or line r(GYaB)/GU
YA'B' 0
VYA' (at Y) 1/v2
WYVP r/2/2(WY) = 0 at Y
WYX (at Y) 1/v2

XYZ r/2/2(WY) = 0 at Y
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The next increment in fracture is harder to predict than in the
case above. The magnitude of r(GYaB)ISU is between 0.8 and 1.1 in
the dog-leg fans EDF and IDJ and equal to 1//2 in the straight
crack fans VYA' and WYX . Triaxiality and shear strain increments
are high along lines DF , DJ , YW and YV but there are no displace-
ment discontinuities. Such a discontinuity exists along CG but the
triaxiality there is low. It seems therefore that any of these crack
directions are possible. This latter path of forming a branch crack

has been viewed experimentally by Pelloux (1970).
3. Interaction of two symmetric single dog-legs

A straight crack interacting with a single straight dog-leg can
form another, symmetric dog-leg if displacement discontinuities are
not present. The slipline field for this interaction is shown in
Figure IV-10. As above, the fan angles are fixed and the various
regions get larger or smaller as the net section or dog-legs change

size. The angles are as follows:

Fan DCE = Fan PNO = 3n/8
Fan DBF = Fan HBI = T7/8 V-7

Fan OMQ = Fan TMS = 7/8

Triaxiality is highest along CE and NP . Displacement discontinuities
are present along AHIJKRPN and CEGKUTSL , both being equal to ggi{g .
The shear strain distribution is the same around crack tips C and N
as given in Figure IV-3 and the same around points B and M as in

Figure IV-4, Either dog-leg should head back toward the plane cf minimum
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gection. Note that if the dog-leg length, BC , is much smaller than the
net eection, CN , this field resembles the Prandtl flow field for two

straight Mode I cracks (Figure IV-1).
4. Interaction of two anti-symmetric single dog-legs

The final interaction to investigate is anti-symmetric eingle dog-
legs. The slipline field for this configuration is more complicated than
the preceding cases and is shown in Figure IV-11.

Given the restrictions of a vertical displacement increment in the
upper rigid region and a fixed lower region, it was necessary to continue
the flow field around each crack tip produciang a rigid region &t each
(CB'C'D'E'B and NL'M'N'0'M). The following fan angles are fixed at 7/8 :

HBI , DBF , QMO , and TMS . Fans B'CZ and J'NL' are equal to each

other as are DCE and PNO . The changes in ¢ in going from B' to c'
(L' toM') and C' to D' (M' to N') are equal. There are, however,
three unknowns: fan angle DCE , fan angle B'CZ and radius of the circular

arc C'D' (M'N'). These values must be computed from the two force and one

moment equilibrium equations applied to one of the two small rigid regions
near a crack flank.

Without going through this computation, several things are obvious.
Angle DCE must be greater than 3n/8 for this field to apply but
less than w/2 . There can be displacement discontinuities at each
crack tip but not along the lines of maximum triaxiality (CB and NP)
since these sliplines end in rigid regions. These displacement die-

concinuities are possible along CT'S'G'I'K'M'N'P' and its counterpart.

Shear strain singularities are, as always, present at the apex of each

fan. According to the fracture cirteriom, the crack should propagete along
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CT' or NQ' because of the high shear strains asad triaxiality. A
second but weaker possibility is for fracture to occur along CE or
NP because of the still higher triexiality and centered fans along
these lines. Displacement discontinuities are possible also along

AHIJG'KRR'GM and LSTUWVGS'FB .

The question may well be asked at this point of the uniqueness
of the solutions presented above. The facts of the uniqueness of
the stress fields and non-uniqueness of the displacement increment
fielde have already been noted. But what of the fields themselves?
These are not complete solutions; that is, they satisfy equilibrium,
the yield criterion, strain-displacement, ard stress-strain relations
in each deforming region but equilibrium and yield has not been checked
in each rigid region above and below the deforming field. Presumably
from the work of Bishop et.al. (1956), these regions ghould be rigid
(and hence the slipline fields complete) if sufficient triaxiality is
present. Otherwise, slip may break out to other parts of the specimen.
Hi11 (1951) stated that the stress distribution is unique in the
deforming region of any such complete solution.

What about the effects of the asaumptions made in the Introduction
on the results? Recall that the first assumption was that of plane
strain. It seems that little can be added here to the justifications
given in the Introduction. The second assumption was that zig-zag
cracks can be approximated by dog-leg crackz. In all the solutioms

presented, there was yielding on at least one side of each crack flank
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including part of the straight flanks of dog-leg cracks. If cracks were




continuously sig-zagging this yielded region (e.g. AHB in Figure 1v-2)
would have to be relccated along the crack flank causing some rearrange-
ment in the fields presented. If, on the other hand, each zig-zag
portion waz followed by 2 smill amount of cracking parallel to the groas
cracking plane, these fields would apply with no changss. It geems,
therefore, that the original statement about the importance of the crack
tips, crack flenks near the tips, and material between the tips in
determining fracture behavior was and still is valid. This is in spite
of the fact that the sliplinee are characteristics of the hyperbolic
partial differential equations of equilibrium and, as such, propagate
any small perturbation throughout the body, not juet in the region

near the perturbstion ¢° in an elastic solution.

C. Applications of a Stress-Modified Critical Plastic Strain
Fracture Criterion to Asymmetrically Notched Specimens

1. Fracture Criterion

McClintock (1956) solved the Mode III (longitudinal shear) crack
problem by basing his fracture criterion solely on a critical accumulated
shear strain heing attained at a distance pB ahead of the crack.
Triexiality is an importamt variable in in;;I;ne fracture since it varies
in front of the crack tip. It is zero in Mode III, however, 8o McClintock
did not include it as part of his fracture criterion. McClintock, Kaplan
and Berg (1966) proposed an in-plane fracture criterion based on a stress-
modified critical accumulated strair (damage) to fracture. Assuming that

the rigid plastic, non-hardening theory of continuum plasticity can be

used, then, of all the strain components, only the shear strain can always
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be non-zero in any arbitrary displacement field (aa well as being infinite
at the apex of any centered fen). It would seem logical, therefore,

as a first approximation to consider the two variables affecting fracture
as a critical accumulated shear strain and triaxiality,neglecting other
strain components, strain hardening, etc. and assuming that porosity growth
{s a fupction of shear strain and triaxiality. Since an infinite shear
strain over zero distance has no physical meaning, the concept of a
structural size, Py » must be used as introduced by McClintock (1956).

1f the shear strain reaches some critical value at a diatance Py

in Front of a crack and if the triaxiality is higher there than—;£ any
other point where the shear strain is at the same critical value, fracture
should occur.

There are instances in the use of slipline theory when displacement
discontinuities are predicted, leading to infinite shear strains. Such
discontinuities cannot be supported in any real strain hardening material;
instead the line of discontinuity will spread into a fan. The fracture
criterion could be expressed in terms of non-hardening variasbles (e.g.
displacement discontinuities) but to do so woﬁld obscure the effect of
hardening in spreading out such variables. The angular extent of the
fan formed by the displacement discontinuity should be some function of

at least the strain hardening exponent n and the ratio of inclusion

diameter to spacing (d/pe) . For most engineering alloys, n has a

value of 0.1 to 0.5 and d/pB is of the order of 0.1 (volume fraction

of 1073 ). As a first approximation, let us say that

fan angle = Cl(n + %—-) . V-8
s

where C1 is some constant.
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2. Specimens and slipline fields

The fracture criterion was tested on several asymmetrically
notched specimens for which slipline fields were given by McClintock
(1970). These specimens have several advantages: a) Three-dimensional
effects along the leading edge of the crack are negligible. These
specimens therefore present more dramatic experimental confirmation of
the plane strain theory. b) The slipline fields, like the notches
they represent, are asymmetric so that cracks should definitely initiate
from one side and not have a cheice as in symmetric cases. ¢) Once a
crack starts to grow, the geometry is such that it should continue to
grow in the same direction for many structural sizes. Constant zig-zagging
is not present.

Several possible notch configurations were studied. The three
which provided the most insight are shown in Figure IV-12 along with

their slipline fields. The definitions of 10 92 are the same as

used by McClintock (1970). Each of these fields consists c¢f a constant
state region (ABC) where the triaxiality O = k and a centered fan (DAC) .
In addition, the first two have a straight slipline (DE) along which the
triaxiality is constant and equal to the value at point D . For each

specimen, that initial triaxiality is

Specimen OD/k
1 1.40
2 1.68

3 2.57



87

Figure 1V-12. Asymmetrically Notched
Specimens with Slipline Fields
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The resultant force along the net section, AE (or AD for specimen 3)
is solely in the vertical direction.

The displacement field can most easily be visualized by holding
the top rigid region fixed and displacing the bottom region by 8ua .
Because siipline DE is straight, the only displacement mode wﬂ;:;'will
satisfy this is parallel to DE with a discontinuity acrosas DE of

[6ua]. This leads, of course, to an infinite shear strain increment

across that line. In the centered fans from Equation V-4,

(Su,]
GYaB = = V-9
which again leads to an infinite shear strain increment but only at
r=0 . If sufficiently flexible grips are attached to the specimen,
the vertical displacement increment O&U at a large distance from the
net section can be related to Gua by
U = [Gua] sin(ez + ¢£) Iv-10

where 02 and ¢2 are defined in Figure IV-12.
3. Fracture Buface predictions

For the moment, assume that the infinite shear etrain all along
line DE predicted from non-hardening theory is sufficient to initiate
cracking from the notch E rather than the notch A . This will be
verified later. Even before computing a value to use for the critical
strain to fracture, the fracture path can be predicted. Assuming that
the fracture process is quasi-static, the crack will grow by one

structural size, pB , at a time. At the end of each p8 , it is moving
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slow enough so that it can re-evaluate its condition to see if it
wants to continue in the same direction or not. Given this simplified
view of fracture propagation, fracture shonld begin at E and proceed
tovard D for specimens 1 and 2. When the angle between the net section
(AE) and the horizontal axis becomes zero for specimen 1 as cracking
proceeds, the triaxiality and current strain increments in the deforming
region are the same as they are initially in specimen 2. The same
is true when comparing the states of the material at point D in all
three specimens. That is to say when fracture has progressed to point
D in the first two specimens, the current state of the deforming region
is the same as it is initially in specimen 3. This is true because point
D changes in position as the crack grows in specimens 1 and 2. To
illustrate this point, the two new slipline fields are shown in Appendix
A for specimens 1 and 2, respectively when point E has reached point D .
When cracks have progressed to point D , several options are open.
Displacement discontinuities could develop along DC and DA causing
cracking along either of those lines. There also exists a centered fen
DAC with an infinite shear strain at A . It would seem plausible that
this strain infinity coupled with the displacement discontinuity could
cause the crack to start growing from A rather than continuing at D.
1f this happens, the slipline field changes agaia (as shown in Appendix A),
the active crack tip changes back to D and the minimum section DA 1is
fractured. The predicted fracture surfaces are shown as dotted line in

Figures IV-13 to IV-15.
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4. Experiments and results

Tests were made on 1 1/4 inch diameter, 6 inch long specimens
of 2024 sluminum, 1100 aluminum and normalized C-1117, a free-cutting
carbon steel with 0.16 inch (horizontal) net sections. Stress-strain
curves for all three materials are shown in Appendix B. They can be

represented by

0.212

G = 59,400 (EP + .00085) for annealed 2024 aluminum

0.186

G = 70,800 (EP + .0127) for normalized C-1117 steel 1v-11

5 = 25,700 (2P + .00232)°°%%% for annealed 1100 aluminum

Photomicrographs cf the grain structures for the first two materials are
given in Appendix C. The grains within the steel were equi-axed and of a
size approximately 254 across. The inclusions were aligned in strips about
25 to 50u apart. Within each strip, their size was 6y with a center-to-
center spacing of 7u. The inclusions within the 2024 aluminum were more
random and numerous than in the steel. They were elongated in the roll
direction to a size 3u by 12p and spaced 24y apart. The grain size of
this aluminum was about 100u wide, and 500u long. In the 1100 aluminum
the inclusione were 3y in diameter and 20u center-to-center. The testing
grips were made flexible (to ensure the proper displacement mode) by
attaching approximately two foot long steel rods to each end of the
specimen and then attaching the rods to a ball-joint arrangement at the
platens.

The fracture surfaces for these materials were photographed using a

light section technique on a stereo microscope and representative shapes
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are shown in Figures IV-13 to IV-15. The results with the 2024 aluminum
were better than with the 1100 aluminum or the C-1117 steel probably
because of its more uniform inclusion spacing, lower strain

hardening exponent and medium ductility. Since the inclusions within
the C-1117 steel were segregated into strips, less uniform sites for
hole nucleation were provided. Because of its high duvetility and
slightly higher strain hardening expenent, annealed 1100 aluminum acts
less like a non-hardening materisl than the other two.

Tests were also made of the effects of anisotropy due to rolling
and the data is given in Appendix D. In genéral it was found that
specimens cut parallel to the roll direction were slightly tougher and
more ductile than those cut perpendicular, Since inclusions are elongated
by metal working, they are more dangerous (hence specimen 1is less ductile)
the closer they are aligned to the direction cf crack propagation. Little
change was detected in the shape of the fracture surfaces.

Several photomicrographs of specimens 1 and 3 sectioned before final
fracture are shown in Appendix C. In three out of five tests on specimen
1, cracke were visible at both notches E and A although the crack at
the left-hand notch E was at least five times longer than the crack
at the right-hand notch A . This indicates that cracking initiated at
notch E as assumed above. In two out of three tests on specimen 3,
cracks vere again visible at both notches (D and A) but the crack at
notch D was at least equal to 1f not larger than the crack at A . It
was headed in general toward point C which is contrary to the assumed
mode of deformation; however, the cracks were 80 short in relation to the

root radius that slipline theory could not be properly applied.
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5. Fracture strain predictions

To predict the displacement necessary to cause fracture, something
must be known about the fan formed by the displacement discontinuity
and the value of the critical shear strain.

Equation IV-4 gives the shear strain increment distribution in
any fan, If the line of discontinuity is along an a line, the
radial segments of this fan have to consist of straight o 1lines and
only the §_ lines can have any curvature. Therefore, from Equation IV-4

the shear strain distribution in such a fan can be approximated by

[ua]
r(y) = ) -12

where [ua] is the displacement discontinuity. Using Equation IV-10

for the displacement discontinuity in terms of the vertical displacement

u at © , we obtain

v-13

Iyl = 0
r(A¢)sin(9£ + ¢2)

This is a zeroth order approximation (no dependence of strain on angle
within fan). Hutchinson (1968b) found that with strain hardening, the

shear strain distribution in the centered fans of a Mode I elastic-plastic
crack becomes approximately parabolic with fan angle rather than independent
of the angle. The only variable undefined on the right-hand side is ég .
the angular extent of the fan. This could depend on the strain hardening
exponent n &and the ratio of inclusion diameter to spacing %— in a
manner suggested by Equation IV-8. A more refined value coulagbe obtained

from Hutchinson's (1968b) Mode II strain distribution using a value of the

Iy

integral given by McClintock (1970).




g Aseume that the crack 1s currently at the position C . At

a position dc ahead of the crack, the shear strain ie

f 9
Y- | () de
‘S} u,xﬂcﬂ)s

so, for the crack to advance by dc , a strain increment of

|(%¥) de

u.x-c+p8

must be spplied. Substituting in ¥ = x-c = Py into Equation IV-13

and differentiating with respect to u ,

CAl dc = d du
- s 'Y-
( = )u’x_ms ps(M)un(el + ¢£)

1v-14

The value of a is found by integrating the strain
x u, X=c+p
1]
8

gradients produced by previous displacements. It is convenient to use

the previcus crack length £ as the variable of integration.

oy ay ¢ 4q Ay
> - (5;)14' g & () e

vhere the subscript i refers to the value at crack initiation.
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u
( Y ) 1

1 (etp)? (Ad)ein(8 40y

Combining the last three equatioms,

du u

i
5 = - p_(A9) sin(B, + ¢,) - [ +
de i R (c+p ) (Ab)atn(e, + 6,)
1V-16
€ 1
- f 5F . 5 \ aE
0 (c+p8-5) A¢ sin(ﬁz + ¢£)
The value of u, can be found from Equation IV-13 by setting 1 = Pq
and Yy = xf »
£ !
Y=y = .
pg?A¢)sin(92 + ¢£)

Combining the last two equations and rearranging we find

d[U/Ds(M)stin(ez + ¢p)] ) 1 .

d(e/p,) 2
B
Ps
1v-17
f
c/p d(u/p_(Ad)Y 8in(B, + ¢,)
8 1 8 L ') .A

Rename these variables as follows:

U = u/p, ()5° stn(@ + ¢,)

0

= c/p,
= &/p,
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Thea Equation IV-17 can be represented by the following Volterra
integral equation (which is similar to that for Mode III crack growth

derived by McClintock, 1965):

aw _ 1 ¢ 1 3U

= + [ - dE . Iv-18
@ " cn? b (c+1-mF *F

Integration of this equation by the usual iterative scheme converges
slowly. The kernel is largest as C approaches E . Calling the crack
growth rate constant provides a lower bound to dU/dC of 1/(C+l)
vhereas a trapezoidal approximation to the upper bound gives the useless
value of 1. Because of this, the equation was integrated numerically
and the results are shown in Figure IV-16 along with the results of

five experiments on specimen 1. To plot these experimental results,

a value of (A9)-(Yf) equal to 4. was used. With the exception of ome
point, the data seems to come close to the predicted curve. To determine
A¢ (and hence If), the following approach was used.

Triaxiality can vary in a fan as given by Equation IV-1. Since the
line ED 1is an & line and the fan must he centered at the left-hand
notch E , triaxiality must be higher on the right of the line ED .
Since the shear strain distribution is assumed to be only a function of
r (and not 6) in the fan, initial cracking should have taken place at an
angle A$/2 to the right of the line ED . It was hoped that this angle
could be measured from the actual fracture surfaces but, as can bs seen

in the photomicrographs in Appendix C, there was too much variation not

only from one specimen to another but also within the same specimen.
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Values of d/ps were measured and found to average between .l and .2.

Values of n varied between .19 and .25. Therefore, using the equation
for the fan angle IV-8 and assuming the constant C1 equal to

unity, A) should lie between .3 and .45. This g;;;s a value of

lf equal to 9. to 13, which seems high. Hayden and Floreen (1969)
measured local shear strains near a notch as high as 3.7 in a stainless
steel.

Numerically obtained viscous strain distributions are given in
Appendix E around both the left and right hand notches of all three
specimens. The maxima and minima of the shear strain distributions
occurred at nearly the same angle from the horizoental specimen (maxima
at 20° above and minima at 100° below the horizontal for the left hand
notch E or D , maxima at 30° below and minima at 160° below the
horizontal for the right hand notch A). Recall that around the left
hand notch E , the non-hardening solution predicted zero normal strains

but infinite shear strains at 38°, 45° and 68° above the horizontal for

specimens 1, 2, and 3, respectively.
D. Summary

The phenomenon of fully plastic plane strain crack growth has
been investigated. Using McClintock, Kaplan and Berg's (1966) fracture
criterion based on a critical zccumulated plastic shear strain to fracture,
the Mode I interaction between two straight double edge cracks suggested
that it should be easier for one of the cracks to form a 45° dog-leg
than to continue straight toward the other craci. Next, slipline fields

were presented for four different dog-leg crack configurations. Stress
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and strain fields were presented for thnse cracks and the probable
directions of the next increment in f cture were indicated. These
fields suggested that cracks which have grown away from the plane of
net section should head back toward that plane, and cracks which are
growing in that plane should head away from it. Zig-zags of the order
of the structural size p8 were predicted. History effects could cause
larger zig-zags to exisgj— It was noted that these slipline fields could
apply with little or no alteration to the more genaral case of zig-zag
cracks. Viscous and elastic-plastic solutions for similar zig-zag cracks
will be present in the next section.

The fracture criterion was next applied to some fully plastic
asymmetrically notched specimens by postulating that the angular extent
of the fan formed by a displacement discontinuity can be expressed in

terms of the strain hardening exponent n and ratio of inclusion diameter

to spacing d/p8 as

fan angle = Cl(n + dips) 1v-8

where C1 is some constant. It was found that the shape of the fracture
surfac;—;;uld be predicted quite well in annealed 2024 aluminum but not
as well in annealed 1100 aluminum or normalized C-1117 steel. Prediction
of the amount of displacement necessary for crack growth resulted in a
Volterra integral equation which was solved numerically. It was found

to be difficult to measure the angle of the fan caused by the displace-
ment discontinuity so a value of 0.3 to 0.45 radians was assumed. This
led to values of the critical plastic shear strain to fracture of 9 to 13

which seems very high. Viscous strain distributions were also presented

for these specimens. As a result of this work, it does seem that a
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macroscopic fracture criterion can sometimes be used successfully

to predict fracture without having to consider detailed interactions

between cracks and individual holes.
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V. Elastic-Plastic Analysis of Dog-leg Cracks During Initiation of Growth

A. Introduction

Fractographically, it has been observed that zig-zagging of cracks
is a process leading to fracture of ductile metals during in-plane
loading {(c.f. McClintock, 1969) but the reasons for its existence have
not been known. Must it be the result of the interactions between cracks
and individual holes or can it be predicted by a more macroscopic
criterion? A fully plastic analysis of zig-zag cracks was presented in
Section IV and indicated that straight cracks should zig-zag and that once
they do they should probably head back to the gross fracture plane. To
find the elastic-plastic stress and strain fields in the vicinity of zig-
zag cracks, several simplifying assumptions will be made. The first is
that the general three-dimensional anisotropic, inhomogeneous fracture
process can be approximated by a two-dimensional process involving
continuous and isotropic materials. This is a convenient way to reduce
the problem to one which can be solved. It is not too unraasonable either
since most cracking probably occurs in one plane during in-plane loading.
The two-dimensional assumption is that of plane strain. Second, it will
be @smsumed that a zig-zag crack can be approximated by a long straight
crack with a dog-leg at each end. Since only the maierial near the crack
tip is plastic, St. Venant's principle can be applied to the remaining
crack flanks.

A computer program was used to obtain the in-plane elastic stress
intensity factors at the tips of several dog-leg cracks. Next, assuming
that the zig-zag portion of the crack was large compared to the plastic
zone size, these stress intensity factors were used to find the initial

tractions on the boundary of a grid for a finite element, elastic-plastic
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computer program to study the vicinity of the crack tip. Both plastic

zones and slipline fields were obtained.
B, Stress Intensity Factors Near Dog-Leg Cracks
1. Actual values from computer analysis

Wieselmann (1969) developed a computer program with which one can
calculate the stress intensity factors at the tips of an arbitrary crack
under in-plane loading. In addition, he made a provision for the crack
to be placed in an infinite body and loaded with tractions at infinicy.
We used this latter option toc eliminate problems of the interaction
between the crack and the boundaries. The different crack configurations
which were studied are shown in Figure V-I. These were all loaded with
a traction at infinity, SZZ » of unity on a crack of unit half-length
on the straight portion. In Table V-1 the first two columns give the
stress intensity factors for the various configurations at the right-hand

tip of each crack. Stress intensity factors kl and k2 are,

respectively, the values of the opening and in-plane shearing modes for
each crack referred to the current direction of the crack tip.
For the straight crack in configuration a , the stress intensity

factors should be (Irwin, 1957)

k, = o Ve = 1.00

1

k2 = 0.0
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Table V-1 Stress Intensity Factors

for Dog-Leg Cracks

Wieselmann Dog-leg Approximated by
Semi-Infinite Internal
Crack Configuration Crack Crack
(See Fig. IV-1) kl k2 k1 k2 kl k2

a. Straight crack of 1.00  ~0.0 1.00% o.0% 0.65* 0.0%
half-length 1.0

b. 45° dog-leg of 0.74 0.38 0.78 0.33 0.50 0.21
length .01

c. 90° dog-leg of 0.28 0.36 0.36 0.36 0.23 0.23
length .01

d. double dog-leg of 0.79 -0.33 1.16 -0.70 0.74 -0.44
length 0.0075

e. double dog-leg of 0.78 -0.35 1.16 -0.70 0.74 -0.44
length 0.01

f. double dog-leg of 0.76 -0.37 1.16 -0.70 0.74 -0.44

length 0.02

*
These are extensions.




which are the values which were obtained from the Wieselmann program.

Note that for the 45° dog-leg, kl = 2k2 and for the 90° dog-leg,

kl ® k2 . In addition, kl for a short double dog-leg was slightly

greater than for the 45° dog-leg and it decreased slightly as the
length of the double dog-leg increased. The magnitude of g vas

approximately comstant for all crack configurations studied.

2. Approximate values
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Two approximate methods of determining the stress intemsity factors

at the end of a crack of length ¢ + Ac(Ac at any angle) when they are

known at the end of a crack of length ¢ are as follows (c.f. Paris and

Sih, 1965):

a) Find the stress distribution along the line Ac where

the new crack is to lie using the kl and k2 values

from the original crack.

b) Consider a semi-infinite crack loaded with tractions for
a length Ac near its tip or an intermal crack of
length Ac 1in an infinite body as shown in Fig. V-2,
Load the crack with the tractions found in step a and,
using the equations of Paris and Sih (1965), find the

stress intensity factors at the new crack tip.

The equations for the semi-infinite crack are:

Ac o
0 vYAc-r
/i- Ac Ore
k, = —5 f/ dr ,

0 vAc-r
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and for the internal cvack in an infinite body,

Ac
o = [ZoL 7 (Ac+2r)1/2d

1 () « !, 60 Ac - 2r t

2
V-3

Ac

2 J(ae) Tpae TO be - 2r
2

These methods were used for coufigurations b through f which were studied
and the results are also shown in Table V-1, Results are also given for
the straight crack case (configuration a) assuming it was extended straight
ahead by Ac. The results for the 45° dog-leg (configuration b) were
expected to be better than the rest since the crack flanks which are
neglected in step b should have less effect there than for a 90° turn.
The semi-infinite crack method, however, seems to be almost as good for
the 90° single dog-leg (case c¢). The internal crack method, on the other
hand, seems to be better for the double dog-leg crack configurations.
These two methods bound the possible kl valueg, the semi-infinite crack
method giving the upper and the internal crack method the lower bound.
The same does not apply for k2 . One way to get a better idea of the

magnitude of the error in kl and 2 would be to use Rice's (1968) path
independent integral. This_;;s not ;;;n done.

Note that both approximate methods give stress intensity factors
which are independent of crack length, Ac . Extrapolating the results
of configurations d through f back to shorter dog-leg lengths (which was

not possible in the Wieselmann program) might not therefore have given any

higher values of 1 and 2 than for configuration b. This would imply



that a crack would just as scon change direction (into softer material,
for example) since no change would result in the magnitude of the
stress singularities., Said another way, stress intensity factors cannot
be used as a ductile fracture criterion since their wvalues change so
slightly for large changes in crack configurations., It should be
remembered that the material in the computer solution was assumed to be
isotropic and continuous.

An approximate matrix representing the relations between the known
stress intensity factors for a crack at one position and those for the
same crack after it has advanced in a new direction by a small amount is

given in Appendix F.
C. Plastic Zones and Slipline Fields Near Dog-Leg Cracks

Four separate loading conditions were used on the finite element
grid shown in Figure V-3 in which there are 143 nodes and 242 elements.
A program developed by Marcal and King (1967) was employed. It was
assumed that the cracks and dog-legs were very long in comparison to the
region represented by this grid (§c << Ac). In that case, the tractions
on the boundaries for the elastic solution could be described by the Mode I
and Mode II solutions from Williams (1957). The four separate loading

conditions were as follows:

1) k1/k2 = o (Mode I crack)
2) kl/k2 = 2, (45° dog-leg)
3) kl/k2 = ], (90° dog-1leg)

4) kllkz = 0, (Mode II crack)
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The first three will now be described in detail., Details of the fourth
are in Appendix G, All were run with the assumption of plane strain using
a non-hardening stress-strain curve, Poisson's ratio of 1/3 in the elastic
region and 20Z increments in traction at each step. This scheme allowed
solutions even when the plastic zone reached the boundaries, To do so,
however, would result in non-valid elastic-plastic sclutions since the
boundary tractions could no longer be represented by a multiple of the
elastic tractions., The program was therefore stopped when the plastic
zone approached one-half of the crack segment length, 8§c . To make the
displacement field unique (which it would not be if only tra~tions were
prescribed) two nodes were tied down as shown in Figure V-3, This
eliminated any rigid body rotation or translation of the entire area under
consideration. This scheme was used for all but the Mode I crack where,
because of symmetry, zero normal displacements and shear stresses were
prescribed on the line ahead of the crack and zerc horizontal displacement
for one node along the crack flank,

1. Mode I crack. The purpose cf this study was to compare the

results with a program described by Levy (1969). He used the same scheme

as used here except he used a circular as opposed to a rectangular boundary.
In addition, he used 480 quadrilateral elements compared to 121 triangular
elements in this work. (Only the top-half of the grid shown in Figure V-3
needed to be considered because of the symmetry along the line ahead of the
crack,) Shown in Figure V-4 are the various yielded regions at successive-
ly increasing values of maximum observed plastic zone extent R , divided

by the crack segment length &6c . This value increased from 0.06 to 0.53 in
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10 inc:rements. For ease of calculation, R was taken as the radial
distance to centroid of element farthest from the crack tip. Shown

in Appendix G are the ratios of R to ki/Y2 . The faired steady state

value ot this ratio was 0.40. Using some limited values from Levy's
R
2 2\ ;o2
(kl + kz)/Y

resulzs, a value of 0.39 was computed. The values of R/Sc and

for eiach increment for this crack and the others studied are

given in Appendix G as are 95% confidence levels for the means of
R

al + k)Y

pure Mode II crack (1.70 + 0.52) to a pure Mode I crack (0.40 + 0.05).

3 as a function of kllk2 . This value decreasgsed from a

Since the most important area of interest is the plastic deforming region,
the data for the subsequent plots was taken from those elements which

are bounded by a square of size 38/4 centered at the crack tip. In

Figure V-5 the directions of maximum shear strain have been plotted as

x's by the computer using STANDUP (Carson, 1968b) and VECFLD (Carson and
Hornik, 1968c). The sign convention, shown on the figure, is that the
resultant of the vector points in the direction of extension of a square
element aligned with the vectors. The accompanying slipline field
constructed by joining up the x's resembles the correct elastic-plastic
solution (c.f. Hutchinson, 1968) which is shown in Figure V-6 along with

an enlarged schematic of the plastic zone. 1In this flow field, the only

two centered fans are located between 45° and 135° from the line of crack
extension (and from -45° to -135°). The other regions are all termed
"constant state'' meaning that the triaxiality is constant ‘herein. Assuming
this slipline field is correct and looking at the accompanying strain fields,

we find (c.f. Eq. IV-4) that the only strain singularity is of a 1l/r type in
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(b) Slipline Field

Figure V-6. Approximate Plastic
Zone and Slipline Field for
kl/k2=m (Mode 1)
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the shear strains (Yre) in each centered fan where r 1s the radius
from the crack tip. —;;;axiality (mean normal stress) is highest (and
constant) in the constant state region ahead of the crack from -45°
to +45° , It would seem, therefore, that if in-plane ductile fracture
is governed by high triaxiality and shear strain as proposed in Section II,
elastic-plastic Mode I cracks should tend to propagate at 0 = +4%5°
because of the

a) plastic zone shape,

b) high triaxiality and

£(6)
r

c) shear strain singularity (Yre = )

This is the same conclusion that was reached by looking at the fully

plastic interaction of two straight cracks (Section IV.A).

2. 45° Dog-leg crack. In this case, kl was set equal to 2k2 and,

by increasing the boundary tractions, the growth of the plastic zone was
observed. For this configuration, %E was increased from an initial

value of 0.07 to $0.48 in 9 increments. The faired steady-state value of
R
2 2
(k1 + kz)/Y

loading. Plots of the directions of maximum shear strain near the crack

5 was 0.68. Figure V-7 shows the yielded elements at each

and triaxiality as a function of angle round the crack are given in
Appendix G. Figure V-8 shows a possible slipline field for this con-
figuration based on the maximum shear strain directions. Something
was known about this field before looking at the directions of maximum
shear strain since it was expected to consist of constant state

regions and centered fans (the boundaries are all straight), and there
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(a) Plastic Zone (Not to Scals)

(b) Slipline Field (Not to Scale)
Figure V-8. Approximate Plastic
Zone and Slipline Field for
k1/k2-2 (45° dog-leg)




must be a constant state region adjacent to each active crack flank.
Combining these facts with the plot, the field shown in Figure V-8

was arrived at. Both flanks cannot be ylelding in tension with this flow
field, so one side must remain rigid. That side must be the top side
since |QJ < k there as seen in Appendix G. Contrary to the Mode I
crack, the centered fans (with their shear strain singularities) are
not symmetric, one being located between 30 and 45° and another between
-60° to -135° . Triaxiality is highest in the constant state region
between 30 and -60° . Therefore, the crack should turn 30° upward or
60° downward. In both cases, the triaxiality, shear strain singularity,
and plastic zone shape are combining to cause crack extensions.

3. 99° Dog-leg crack. The 90° dog-leg was approximated by assuming

kl = k2 . In this case, R/8c was increased from 0.06 to 0.47 in 10
R

(ki + k%) /Y

increments. The faired steady-state value of was 1.02.

2
The growth in number of the yielded elements,

the corresponding maximum shear strain field near the crack tip and
triaxiality as a function of angle are given in Appendix G. Figure V-9
shows the plastic zone and shows a bossible slipline field for this
problem. Again there are two centered fans (6 = 10 to 65°, -8G to -135°)
and two constant state regions. The crack should propagate along 6 = 16°
or -80° according to the maximum triaxiality and shear strain singularity
criterion but the plastic zone seems to tilt in favor of the crack changing

direction to -80°.

4. Mode II crack. Results for a straight crack under Mode I loading

are given in Appendix G. They indicate agreement with the elastic-plastic

gsolution of Hutchinson (1968b).




(a) Plastic Zone (Not to Scale)

(b) Slipline Field (Not to Scale)
Figure V-9. Approximate Plastic

Zone and Slipline Field for
kl/kz-l (90° dog-leg)
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D. Summary

Stress intensity factors have been found for several elastic-plastic
dog-leg cracks. The numerical value of kl from Wieselmann's computer
program can be bounded from above and be1;; by two approximate methods.
For a 45° dog-leg on a long straight crack kllkz = 2 and, for a 90°
dog-leg, kllkz = ] . For a double dog-leg, the magnitude changed by less
than 12% from those of the 45° single dog-leg. Little effect was found
on the stress intensity factors by changing the length of the double
dog-leg implying that stress intensity factors alone cannot be used as
a criterion for ductile fracture and that cracks would just as soon zig-
zag since in so doing, little change would result in their stress intenseity
factors. An approximate relation between the streess intensity factors
found for a crack at one position and those for the same crack after it
has advanced in a new direction by a small amount has been found to work
quite well. The area around the tips of several elastic-plastic dog-leg
cracks was investigated and the plastic zones and developing slipline
fields were determined numerically. Using as a fracture criterion a
stress-modified critical strain to fracture, these results indicated
several factors which tend to cause statically loaded cracks to turn
corners such as:

1) Plastic zones tilted in direction different

from advancing crack to promote zig-zagging.

2) Computer-suggested slipline fields indicate that
there are no centered fans directly ahead of
any of the cracks except in pure Mode II (see
Appendix G). Centered fans are important since
only there one can find strain singularities

(usually of the type 1/r) leading to stable crack




advance as in Mode I1II. 1In addition, triaxiality
(mean normal stress) is always higher on one side
of a fan than on the other, and the growth of

holes ic aided by this higher triaxiality.




V. Results and Conclusions

Because of the need for a clear statement of the goals of studying
fracture and how to attain those goals, definitions and a structure for
such a study were provided in Section II. Idealized stages of fracture
(crack formation in un-notched and notched specimens and crack propagation),
metallurgical processes for each stage, and scales of observation (inclusion
to elastic-plastic specimens) were identified. At each stage, studies of
the mechanics of the different processes can provide fracture criteria as
can experiments on fully plastic or elastic-plastic specimens. The
ultimate goal of fracture studies must be to inter-relate these fracture
criteria such that fracture of elastic-plastic specimens can be predicted
from fully plastic specimens and/or from the mechanics of the processes.
Sometimes neither of these methods is possible directly and an intermediate
concept, such as a degrading continuum model, must be used. Within this
structure, a review of previous work was presented and areas in need of
work and promising approaches were pointed out. Several of these areas
were investigated in the remainder of this study using the method of
predicting fracture directly from the mechanics of the processes.

Starting at the finest scale of observation, slipline fields for
the interaction of fully plastic round, rectangular, and hexagonal
cylinders under in-plane shear and tensile displacements were presented
in Section III, It was found that a numerical finite element technique
could be used to suggest slipline fields. Tractions and displacements
around holes were found from which traction-displacement relations for
flow localization could be determined. This study was at the stage of

crack formation in an un-notched specimen.
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At the next larger scale of observation, slipline fields were
presented in Section IV for the interaction of fully plastic notches
and cracks under in-plane loading ignoring the detailed interactions
between cracks and individuval holes., This work encompassed both the
stages of crack formation in notched specimens and crack propagation.
Using a fracture criterion proposed by McClintock, Kaplen, and Berg (1966)
based on a stress-modified critical accumulated shear strain (damage) to
fracture and looking first at the Mode I interaction between two long
straight notches under a tensile displacement, it was predicted that
the first increment of fracture should consist of one of the notches
forming a 45° dog-leg crack. Next, the slipline field for this new
crack configuration was presented and this indicated that the single
dog-leg should head back to the plane of minimum section at 22 1/2° to
the horizontal. Two other weaker possibilities were the formation of a
symmetric or anti-symmetric dog-leg from the straight crack. Slipline
fields for all three possible configurations were included, and they
indicated the formation of zig-zag cracks which could leead, for example,
to the semi-matte "cup' portion of the '"cup and cone" surface in an
ordinary tensilie test.

At the same scale of observation, the fracture criterion was
appiied to three asymmetrically notched specimens. Using slipline fields,
predictions were made of the shape of the fracture surface and the
required displacement as a function of crack length, and these were
compared with experiments on annealed 2024 and 1100 aluminum alloys and
normalized C-1117 steel. 1It was found that the fracture surface shape

could be predicted quite well in annealed 2024 aluminum but not as well
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in the other materials. This was probably due to its more random
inclusion distribution, medium ductility, and relatively low strain
hardening. Since the non-hardening slipline fields included
displacement discontinuities which cannot be supported in any real
engineering material, it was necessary to approximate the angle A9
of the fan by such a displacement discontinuity in order to predict
the required displacement as a function of crack length. A simplified
relationship was suggested in terms of the strain hardening exponent

n (0= 01(5p + so)n) and the ratio of inclusion diameter to spacing

d/ps as

ad = C (a+d/p) 1v-8

where C1 is some constant. This led to a Volterra integral equation
which was solved numerically. Results of five experiments on anneaied
2024 aluminum indicated a value of (Ad) - (Yf) of 4. where 15 is the

critical accumulated shear strain to fracture. Using average values of

.19 to .25 for n and .1 to .2 for d/ps in Equation IV-8 and assuming

C1 equaled unity gave the high values of 9 te 13 for xf .

Finally, oconcentrating in Section V at the largest scale of
observation which is the elastic-plastic behavior around cracks and
using the same stress-modified critical accumulated shear strain fracture
criterion, the Mode I loading of a long straight elastic-plastic notch
led to the formation of a 45° dog-leg crack, the same as predicted by
the fully plastic analysis in the preceding section. Unlike that section,
however, only the stage of crack formation from a notched specimen and not

crack propagation was investigated here. Strees intensity factors were
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found for this 45° eingle dog-leg crack, for a 90° singie dog-leg,

and also for 45° double dog-legs of various lengths. Little change

was found in the 45° single and double dog-leg stress intensity factors
suggesting that there is little to refrain a crack from zig-zagging at
this scale of observation and also that stress intensity factors cannot
be used slone as a fracture criterion. HNumerically-cbtained plastic
zones and slipline fields fof the 45° and 90° dog-leg cracks were
presented and they indicated as in Section IV that crack zig-zagging

is not only possible but probable under in-plane loading.
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Appendix A. Slipline Fields for Asymmetric Specimens During Fracture

Given the simplified vizw of fracture propagation as stated in
Section IV, fracture should begin at the left hand notch E and proceed
toward the right hand notch D for specimens 1 and 2. When the angle
between the net section (AE) and the horizontal axis becomes zero for
specimen 1 as cracking proceeds, the triaxiality and current strain
increments in the deforming region are the same as they are initially
in specimen 2. The same is true when comparing the states of the material
at point D in all three specimens. That is to say, when fracture has
progressed to point D in the first two specimens, the current state of
the deforming region is the same as it is initially in specimen 3 except
for history effects. This is true because point D changes in position
as the crack grows in specimens 1 and 2. To illustrate this point, the
two new slipline fields are shown in Figures A-1 and A-2 for specimens 1
and 2, respectively, when point E has reached point D .

When cracks have progressed to point D , several options are open.
Displacement discontinuities could develop along DC and DA causing
cracking along either of those lines. There also exists a centsred fan
DAC with an infinite shear strain at A . It would seem plausible that
this strain infinity coupled with the displacement discontinuity could
cause the crack to start growing from A rather than continuing at D .
1f this happens, the slipline field changes agein to that shown in
Figure A-3 for specimen 1 if some of the yielded regions can become rigid.
Next, the active crack tip changes back to D and the minimum section

DA 1is fractured.
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Figure &-1, Slipline Field for Specimen 1 when Point E
has Reached Point D.
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Figure A~2, Slipline Field for Specimen 2 when Point E
has Reachsd Point D.
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Figure A-3, Slipline Field for Cracking at Point A after E
has Reached D of Specimen 1.
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Appendix B. Stress-strain Curves for Two Aluminum and One Steel Alloys

True stress—-true plastic strain curves shown in Figures B-1
and B-2 were obtained for annealed 2024 aluminum and normalized C-1117
steel using standard 0.500" diameter specimens with two inch gage
lengths. These were machined from the 1 1/4 inch dismeter rods used
for the tests reported on in Section IV. An Instron testing machine
was used with .01"/min. cross-head speed. Shown in Figure B-3 is a
gimilar curve for annealed 1100 aluminum taken from Crandall and Dahl
(1959).

It is convenient to represent an equivalent stress (é)-equivalent

plastic strain (EP) curve by
G = olcép +eg)" B-1

where O, , €, , and n are three constants to be determined from

the curves. By using the yield point, the final point and one inter-

mediate point on each curve, the following equations were obtained:

5 = 59400 (P + .00085)°°21? fof annealed 2024 aluminum
- - 0.186 B-2
G = 70800 (P + .0127) ° for normalized C-1117 steel
5 = 25700 (P + .00232)°°2%% for annealed 1100 aluminum

Each of these curves is plotted on the applicable figure.
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Figure B-1. True-Stress-True Plastic Strain for Annealed 2024 Aluminum.
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Figure B-2. True Stress - True Plastic Strain for Normalized C-1117
Steel.
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Figure B-3., True Stress - True Plastic Strain for Annealed 1100 Aluminum.
(Crandall and Dahl, 1959).
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Appendix C. Photomicrographs of Asymmetric Specimens

In Figures C-1"and C-z is shown :he microstructure of anmealed
2024 aluminum and normalized C-1117 steel, respectively. Observations
about the grain size and inclusion size and spacing were given in
Section 1V.

Figures C-3 to C-10 consist of a series of photomicrographs of
three tests on specimen 1 sectioned before final fracture. The displace-
ment for these three tests, taken as the permanent set between the
platens of the testing machine or between two scratches approximately

0.04" above and below the left hand notch roots, was as follows:

Displacement, inches

Test Between Platens Between Scratches
1 .0275
2 .0123
3 .012 .0095

Note how each notch became less rounded (more flat bottomed) then
cracking progressed straight ahead sharpeniry the notch and then %he
crack headed off in the manner predicted by slipline theory. Cracks
were visible in two out of the three tests shown here at the right
hand notch (Figures C-5 and C-8 but net C-9). These cracks were near
the line of maximum triaxiality in the fan (AD) but were at least five

times shorter than the crack at the left hand notch.
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In Figure C-il is shown two photomicrographs of the left
and right hand notches of specimen 3 prior to final fracture. Note that
the crack at the left hand notch was about ten times longer than
that at the right hand notch; however, it was headed toward point C
(see Figure IV-12) rather than toward the right hand notch at A .
This could be a false conclusion since the crack was so short compared
to the radius of the notch root that slipline theory as used in Section

IV should not apply.
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(b)
Etched with 2% Nital.

a) 80x, b) 400x,

(a)
200

Microstructure of Normalized C-1117 Steel.
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‘ Loading
direetion

20/4.

Figure C-4. Photomicrograph of Notch E of Specimen 1 (8,=28°), Test 1
(Diaplaca-nnt-27.5ps) on Annealed 2024 Aluminum. Etched with Keller's
Etch. 400x,
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Appendix D. Anisotropy Tests on Asymmetric Notches

Several tests were conducted to sece what effect, if any, anisotropy
due to rolling had on the results. Specimens 1, 2, and 3 werec all
tested uzing annealed 2024 aluminum cut from a bar parallel and
perpendicular to the rolling direction. The results of load versus
vertical displacement between two scratches approximately 0.04' ebove
and below the 60° notch roots are shown in Figures D-1 to D-3. In general,
specimens cut parallel to the rolling direction were slightly tougher
and more ductile than those cut perpendicular. This seems reasonable
since, for those specimenc cut parallel to the roll direction, the
holes and inclusions should be elongated approximately perpendicular
to the direction of crack propagation thereby making the fracture process

more difficult.




Load/Limit Load

1.0

0.9.

0.8
J Cracks began to open

Cracking detected
0.74 at notch

Specimen cut perpendicular to

0.6 roll direction

pecimen cut parsllel to roll
direction

0.14

Specimen 1

0 .01 .02 .03 .04 .05 .06
Displacement/Ligament Size

Figure D-1. Load vs, Displacement for Tests of Anisotropy
on Specimen 1. (62-28 ). Annealed 2024 Aluminum.

156



Load/Limi.. Load

0.7

0.6 . Cracks began

Cracking detected at notch
0.5 |
Specimen cut parallel to roll
direction

Specimen cut perpendicular to roll

0.4 direction

0.3

0.2

0.1 A

Specimen 2

0 .02 .04 .06 .08 .10
Displacement/Ligament Size

Figure D-2. Load ys. Displacement for Tests of Anisotropy
on Specimen 2-(92'0 ). Annealed 2024 Aluminum.
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Load/Limit Load

0'7
Cracks began to open
0.6 4
0.5 -
Cracking detected at
notch
0.4 4
Specimen cut parallel to roll
0.3 direction
Specimen cut perpendicular to roll
direction
0.2 *
Ww‘
0.1 - ::>
Specimen 3
0 - v T T
0 .01 .02 .03 .04 .05
Displacement/Ligament Size
Figure D-3. Load vs. Displacement for Tests of Anisotropy

on Specimen 3. (92--22°L Annealed 2024 Aluminum.
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Appendix E. Viscous Solutions for Asymmetric Notches

It is of interest in studying plasticity problems to obtain
solutions for two limiting cases, non-hardening and lirearly hardening
(viscous). Real hardening materials behave between thegse limits so,
if a proper interpolation procedure was developed, it would be possible
to predict their behavior (McClintock, 1970). Such a procedure is not
presently available; nevertheless, viscous solutions will now be
presented for the three asymmetric notches studied in the previous
section since they shed some light on the behavior of materials like
1100 aluminum. These results were obtained from a program described
by McClintock and Miller (1970). The strain componente around notches
A and E (D for specimen 3) are shown in Figures E-1 to E-6. The
maxima and minima of the shear strain distributions for the three
specimens are at nearly the same value of 6 for each specimen
(maxima near 6 = 20° and minima at -100° for notch E and D,
maxima at -30° and minima at -160° for notch A). Recall that around
notch E the non-hardening solution predicted zero normal strains but
infinite shear strains at 6 = 38°, 45° and 68° for specimens 1, 2, and

3, respectively.




Strain Components/Nominal Strain
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-60 4

Specimen 1

"100 T 4 T Y Y Y
-200 -150 -100 -50 0 50 100

Angle from Worizontal,8 (degrees)

Figure E-1;. Strain Compcmemts vs. Angle from Horigzontal at
Notch E for Viscous Deformation of Specimen 1 at Radius/
Ligamsnt s ,00552. .
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Strain Componente/Nominal Strain

100

-80 9}
A

-100 T ¥ L] T 1§ W"——
-~200 -150 -100 -50 0 50 100 150

Angile from Horizontal, 6 (degrees)

Figure E-2. . Strain Compensats vs. Angle from Horizontal at
Notch A fer Viscous Deformation of Spacimen 1 at Radius/
Ligamane = .D0552.
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100

60 4

40 -

20 -

Strain Components/Nominal Strain
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-40 e

-60

-80 | >E£_e

e Tl e

~100 v - Specimen 2

-200 -150 -100 -50 0 50 100 150
Angle from Horizontal,0 (degrees)

Figure E-32. Strain Coaponents vs. Angle from Horizontal at
Neteh E for Viscous Deformation of Spacimen 2 at Radius/
Ligameat = ,00625.
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Figure E-%4. Strain Components vs. Amgle from Horizomtal at
Notch P for Viscous Deformation of Specimen 3 at Radius/
Ligament = ,00578.
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Figure E-€). Straim Componants vs. Angle from Horizontal at
Notch A for Viscous Deformation of Specimen 3 at Radius/
Ligamant = ,00578.
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Appendix F

Change of Stress Intensity Factors

with Crack Direction

It has been suggested that it may be possible to find a relation
between the elastic stress intensity factors found for a crack at omne
position to those for the same crack after it has advanced by a small
amount in a new direction. Such a relationship could be expressed in

matrix form as follows:

ky A A ) (M
b = a
ky b A ) (M
b a
where ki is the stress intensity factor at position a and k1 is
a b

the new value at position b . There should be a different matrix for each
angle the crack turns and for each amount it advances. It has been reported
in Section IV, however, that stress intensitv factors for dog-leg cracks
change very little with the amount of crack advance but depend more on how
the crack direction changes,

Several values of kl and kz were obtained for dog-leg cracks from
Wieselmann's (1969) comﬁgg;r proé;;ﬁ and several matrices were calculated.

The values of the terms are given below for different crack direction changes.

C.W. stands for a clockwise turn and C.C.W. for a counter-clockwise turn.
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A A2 A1 Y
90° C.W. 0.276 1.52  -0.258  -0.198
90° C.C.W. 0.276  -1.52 0.358  -0.198
45° C.W. 0.745 1.00  -0.378 0.571
45° C.C.W. 0.745  -1.00 0.378 0.571

Two checks were made in applying this method with Wieselmann's
program. Starting with a long straight crack in Mode II loading

(k1 = 0, , kz = 1.0), a dog-leg was added of length 0.01 times the
a a

original crack half-length which changed the direction of the crack tip

90° clockwise. The matrix method predicted k1 = 1,52 and k2 = -0.20
b b

and the program computed kl = 1,16 and k2 = -0.21 . Using the same
b b

scheme but with a 45° C.W. dog-leg, the matrix method predicted the same

value as that obtained by the program, kl = 1,00 and k2 = 0.57 .
b b

An additional test of applicability of this method was made using
data from Iida and Kobayashi (1969). Their cracks were initially oriented
at 60° and 45° to the axis of loading. Experimentally they deiermined
the directions of crack propagation in thin 7075-T6 aluminum plates under
cyclic tensile loading. They then computed the stress intensity
factors at different crack positions using a finite element technique.
Shown in Figures F-1 and F-2 are two of their plots with the values predicted
by two matrix approximatjons superimposed on each.
As can be seen in Figure F-1, the approximation for a 45° clockwise
turn was not too bad even though the crack initially turned almost 90°

and tben back to 45°.
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1.4
1.2 ¢+ Matrix value for 90o C#
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Figure F-1. Normalized Stress Intensity Factors for Tension

Plate with Initially Slanted 45° grack.
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Plate with Initially Slanted 60 Crack.
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It was not possible to determine exactly the angle that the crack
in Figure F-2 turned but it must have been between 60° and 70° based
on the data given. Perhaps this explains why the two matrix approximations

almost bracket their results.
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Appendix G

Details of Elastic-Plastic Computer Results

The values of R/6c and R/(ki + kg)/Y2 for all the increments

of the crack configurations studied in Section V are given in Table G-1.
In addition the means and standard deviations of the latter quantity are
given in the table. Ninety-five percent confidence levels for these means

are plotted versus kl/k2 in Figure G-1.

Shown in Figures G-2 and G-3 are two additional figures for the

45° dog-leg crack problem (kl/k2 = 2) . The first is a plot of the

maximum shear strain directions near the crack tip and the second a ploct
of triaxiality as a function of the angle 6 measured from the plane
of crack advance. Shown in Figure G-4 are various plastic zones for the

90° dog-leg crack (kl/k2 = 1) . Figures G-5 and G-6 display, respectively,

the maximum shear strain directions and triaxiality as a function of angle
from crack advance plane for the same problem.

A Mode II crack was studied using the same technique as described
in Section V. The value of R/8c was increased from 0.06 to 0.48 and

the faired steady-state value of k%/Y2 was 1.70 . The accompanying

plastic zone is shown in Figure G-7 and maximum shear strain directions in
Figure G-8. The Mode II elastic-plastic slipline field given by Hutchinson
(1968b) is shown in Figure G-9. This corresponds with the data shown in
Figure G-8. Triaxiality is highest along either +(mw/4 + 1/4) or

-(n/4 + 1/4) depending on which crack flank is yielding in tension and
which in compression. If the shear strain is constant within a fan, the

crack should progress along the radial line which has the highest triaxiality.



Table G-1 Data on Computer Output for Dog-leg Cracks

kl/k2 = ™ kllk2 = 2, kl/k2 = 1,
R R
2 .2 2 .2
- R R R (k1+k2) R (kl+k2)
Sc k2/Y2 Sc 2 Se YZ
i
1 0.059 0.36 0.065 0.72 0.057 1.00
2 0.061 0.26 0.114 0.88 0.059 0.71
3 0.170 0.54 0.114 0.64 0.110 0.98
4 0.172 0.41 0.114 0.49 0.166 1.14
5 0.177 0.33 0.224 0.77 0.168 0.91
6 0.230 0.35 0.265 0.75 0.222 0.97
7 0.375 0.48 0.270 0.61 0.290 1.07
8 0.380 0.40 0.336 0.65 0.295 0.89
9 0.456 0.41 0.475 0.78 0.415 1.07
10 0.526 0.41 0.471 1.06
Mean = 0.40 Mean = 0.68 Mean = 1.02

std. dev., = 0.05 Std. dev. = 0.12 Std. dev. = 0.11

172

kl/k2 =0

R i

8c kg/Yz
0.059 1.60
0.059 1.11
0.070 0.96
0.108 1.14
0.225 1.88
0.225 1.52
0.305 1.70
0.482 2.26
Mean = 1.70
Std. dev. = 0.42

Note: In calculating the faired steady-state value ("average') of

R
2 2
(kl + kz)/Y

2 ’

loads.

the values for the first three load increments were

neglected because of the effect of element shapes at these
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a) Plastic zone

b) Slipline field

Figure C-9. Approximate Plastic Zone and Slipline Field for
k /k,%0 (Mode II).
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