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Abstract
We present Bolt, a novel system for escaping from infinite
and long-running loops. Directed by a user, Bolt can attach
to a running process and determine if the program is execut-
ing an infinite loop. If so, Bolt can deploy multiple strategies
to escape the loop, restore the responsiveness of the program,
and enable the program to deliver useful output.

Bolt operates on stripped x86 and x64 binaries, dynam-
ically attaches and detaches to and from the program as
needed, and dynamically detects loops and creates program
state checkpoints to enable exploration of different escape
strategies. Bolt can detect and escape from loops in off-the-
shelf software, without available source code, and with no
overhead in standard production use.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Error handling and recovery; D.2.7 [Distribu-
tion, Maintenance, and Enhancement]: Corrections

Keywords Bolt, Infinite Loop, Error Recovery, Unrespon-
sive Program

1. Introduction
Infinite and long-running loops can cause applications to
become unresponsive, thus preventing the application from
producing useful output and causing users to lose data.

1.1 Bolt
We present Bolt, a new system for detecting and escaping
from infinite and long-running loops. Bolt supports an on-
demand usage model—a user can attach Bolt to a running
application at any point (typically when the application be-
comes unresponsive). Bolt will then examine the execution
of the application to determine if it is in an infinite loop.
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Once it detects a loop, Bolt (directed by the user) tries
multiple loop exit strategies to find a strategy that enables the
application to escape the loop and continue to execute suc-
cessfully. If one strategy fails to deliver acceptable continued
execution, Bolt uses checkpoints to restore the application
state and try another loop exit strategy. After the application
has successfully escaped from the loop, Bolt detaches from
the application.

To support the on-demand usage model, Bolt operates
on unmodified, stripped x86 or x64 binaries. This makes it
possible for Bolt to detect and escape loops in off-the-shelf
software without available source code. To use Bolt, the
user does not the need to recompile the application to insert
instrumentation and Bolt does not incur any overhead in
standard production use. Bolt can be installed and deployed
even after the application has entered a loop.

Escaping the loop enables the application to continue
executing and produce a result. This result may contain a
part of or even all of the result that a (hypothetical) correct
application (without the infinite loop) would have produced.
The user can evaluate the effects of escaping the loop and can
also, at his or her discretion, try several alternative strategies
to recover the application execution from the loop, at the end
selecting the result that best corresponds to his or her goals.

1.2 Bolt Workflow
Bolt consists of three components: a detector module, an
escape module, and a checkpoint module.

The Bolt detector module first runs a dynamic analysis
to find 1) the sequence of instructions that comprise one
iteration of a loop and 2) the stack frame of the function
that contains the loop. The detector module then monitors
the execution of the application to determine if the loop is
infinite: each time the application starts a new iteration of the
loop, the detector takes a snapshot of the current application
state and compares that snapshot to the last N-1 snapshots it
has taken. If one of the previous snapshots matches, Bolt has
detected an infinite loop.

After the detector module finds a loop (infinite or other-
wise) a user may decide to invoke the escape module to con-
tinue the execution outside of the loop. A user may escape



from any loop that he or she perceives to be unresponsive
(regardless of whether or not the detector module recognized
the loop as infinite).

The Bolt escape module obtains (from the detector mod-
ule) the set of top-level instructions—the set of instructions
that are both in the loop and also in the function that contains
the loop. The escape module can then explore alternatives
from the following two escape strategies:
• Jump Beyond Loop (Break): The escape module sets

the program counter to point to the instruction immedi-
ately following the top-level instruction with the highest
address. This instruction is outside the set of instructions
that comprise the loop—conceptually, it is the next in-
struction following the loop.
• Return From Enclosing Procedures (Unwind): The

escape module exits either the function that contains the
loop or any ancestor of this function that is on the current
call stack. Each function on the call stack gives Bolt a
distinct escape alternative.

Each escape strategy must also choose an escape instruc-
tion — an instruction inside the loop from which to escape
the loop. Because the state may be different at different es-
cape instructions, different escape instructions may produce
different results. Bolt is currently configured to escape from
the jump instruction at the end of the loop — i.e., the jump
instruction with the highest address among all of the jump
instructions in the top-level instructions. The Bolt imple-
mentation also has the capability to escape from any other
top-level instruction.

There is, of course, no guarantee that any specific escape
strategy will enable the application to continue to execute
successfully. Bolt therefore offers the user the capability to
explore multiple different escape alternatives. To provide
this exploration, Bolt offers the option to checkpoint the
application’s state and then automatically apply each escape
strategy in turn—if the user does not like how the application
responds to one strategy, Bolt can roll back to the checkpoint
and try another strategy.

1.3 Technical Challenges
Our previous work on Jolt [24] was the first to demonstrate a
tool capable of detecting and escaping infinite loops at run-
time. Jolt’s mixed static and dynamic analysis approach lim-
ited its applicability in that it forced developers to recompile
their applications with Jolt to enable loop detection and es-
cape. This had two negative consequences: 1) users could
not apply the technique on-demand (Jolt was available only
for binaries precompiled to use Jolt) and 2) Jolt’s inserted
instrumentation imposed a 2%-10% overhead on the appli-
cation even when Jolt was not running. Jolt also worked only
for single-threaded applications.

Bolt, in contrast, operates on unmodified binaries, incurs
no overhead during normal program execution, and works
on both single-threaded and multithreaded applications. To

realize Bolt’s fully dynamic approach to infinite loop detec-
tion and escape on stripped binaries, we had to deal with the
following key technical challenges:

• Dynamic Loop Structure Detection: The first step in
detecting an infinite loop in a running application is to de-
termine if the application is executing within a loop. Bolt
implements a novel dynamic analysis to automatically re-
construct the loop structure in unmodified binaries.
When Bolt attaches to an application, it records the cur-
rent instruction. Bolt designates this instruction as the
pivot instruction. Bolt identifies the loop by monitoring
all executed instructions and tracking the sequence of
function calls (via corresponding stack frames) between
two subsequent executions of the pivot instruction. Note
that the instructions in the loop may belong to multiple
functions or even dynamically loaded libraries. Bolt de-
tects the loop when the execution hits the pivot instruc-
tion in the same stack frame as when it first encountered
the pivot instruction. The instructions executed in be-
tween these two executions of the pivot instruction com-
prise one iteration of the loop.
• Exploration of Multiple Escape Alternatives: In gen-

eral, different escape strategies may produce different re-
sults for different applications. Bolt therefore enables the
user to explore multiple escape strategies which continue
the execution at different locations in the application.
Bolt uses a checkpoint to restore the application to the
state before any attempted escape, after which the other
escape strategies can be applied to fix the execution.
• Multithreaded Applications: Many interactive applica-

tions are multithreaded—for example, applications often
run the user interface and the core computation in sepa-
rate threads. Bolt detects infinite loops in multithreaded
programs on a per-thread basis. Bolt tracks memory
accesses for loop iterations in every thread separately,
but to better understand the synchronization behavior of
threads, Bolt also tracks other actions, such as writes to
shared memory and atomic instructions.

1.4 Experimental Results
We applied Bolt to thirteen infinite loops and two long-
running (but finite) loops in thirteen applications to evaluate
how well Bolt’s detector module detects infinite loops and
how well Bolt’s escape module enables an application to
continue its execution and produce useful results.

Detection. Bolt correctly classifies eleven of the thirteen
infinite loops as infinite.1 Bolt also correctly detects that the
two long-running loops change state at every iteration and
therefore reports that the loops may not be infinite.

1We note that Jolt can detect seven of these eleven infinite loops. The
remaining infinite loops are out of the scope of Jolt.



Escape. For fourteen of the fifteen total loops (both infinite
and long-running), Bolt can identify an escape strategy that
enables the application to terminate and produce an output.
These results include the two infinite loops that the detector
module could not identify as infinite; we treated these two
loops as additional long-running loops for this experiment.

For seven out of these fourteen loops, Bolt enables the ap-
plication to provide the same correct output as a subsequent
version of the application with the infinite loop error elimi-
nated via a developer fix. For the remaining seven loops, Bolt
enables the application to provide more output than simply
terminating the application would produce, but not all of the
correct output (see Section 4 for details).

1.5 Infinite Loop Patterns
An examination of the infinite loops in our set of bench-
mark applications indicates that they fall into one of two pat-
terns: missing transition infinite loops (the application enters
a state from which it cannot consume and process the re-
maining input) and missing exit condition infinite loops (the
application has processed its input but is missing the exit
condition that enables it to terminate after processing that
particular input).

These patterns help to explain why Bolt can enable appli-
cations to produce useful or even correct results. For missing
transition loops, using Bolt to escape the infinite loop typi-
cally enables the application to produce a partial result (in
some cases escaping the loop restores the ability of the ap-
plication to successfully process subsequent inputs so that
the application produces the correct result). For missing exit
condition loops, using Bolt to escape the infinite loop typi-
cally enables the application to produce the correct result.

1.6 Contributions
This paper makes the following contributions:
• Bolt: We present Bolt, which detects and escapes infinite

loops in (potentially stripped) single and multithreaded
x86 and x64 binaries. Bolt uses application checkpoint-
ing to explore multiple escape strategies. The goal is to
enable the program to continue its execution to provide
useful results to its users even in the face of infinite loops.
• Implementation: We present the details of the Bolt im-

plementation, including the mechanisms Bolt uses to 1)
detect loops in executing binaries, 2) determine if the
loop is actually an infinite loop, 3) escape the loop if di-
rected to do so by the user, and 4) roll back to the check-
pointed state to try different alternatives if the last alter-
native did not deliver a successful execution.
• Evaluation: We present an evaluation of how well Bolt

works for thirteen infinite loops and two long-running
loops in thirteen applications. Bolt’s infinite loop detec-
tion is successful for eleven out of the thirteen infinite
loops. Escaping the loops enables the applications to suc-
cessfully continue their executions for fourteen out of the

fifteen total loops. For seven of these loops Bolt pro-
duces the same correct result as subsequent versions of
the applications with the infinite loops eliminated via
a developer fixes. For the remaining seven loops, Bolt
provides more useful output than simply terminating the
applications.
• Case Studies: We present five case studies that illustrate,

in detail, the effect of using Bolt to escape infinite loops.
• Infinite Loop Patterns: We discuss two infinite loop pat-

terns found in our set of benchmark applications: missing
transition infinite loops and missing exit condition infi-
nite loops. These patterns help to explain Bolt’s success
in enabling applications to successfully execute once they
escape infinite loops.

We also note that Bolt currently implements the core sys-
tem building blocks required to address a much larger range
of anomalies and errors. Specifically, Bolt’s monitoring,
checkpointing, and search capabilities can be extended to
respond to a variety of detected errors, enabling a user to try
different recovery strategies until one allows the application
to continue successfully.

2. Using Bolt
The PHP script in Figure 1 performs a computation, adds
a small constant numerical value to the computed result
($result), and then outputs the result. A user might nat-
urally expect the script to print its results and terminate
normally. However, with PHP version 5.3.4, the PHP inter-
preter enters an infinite loop while processing the next to last
line (which adds a double-precision floating point literal to
$result).2 The script hangs and never prints the result.

Bolt. If the user observes that PHP has become unrespon-
sive, he or she can install and apply Bolt on-demand. To ap-
ply Bolt, the user would open the Bolt User Interface (pre-
sented in Figure 2) and perform the following steps:

• Detect: First, the user selects the php process from the
central box that lists running processes, sorted by CPU
usage; in this case the php process consumes almost
100% of the CPU time. The user next presses the “De-
tect” button, after which Bolt runs its infinite loop detec-
tion analysis and then reports in the status box below the
list of processes that it has detected an infinite loop; Fig-
ure 3 provides a more detailed presentation of this box.
Note that a user does not need to anticipate the existence
of the infinite loop in advance—it is possible to install
and apply Bolt even after the PHP interpreter becomes
unresponsive.

2PHP 5.3.4 has a known infinite loop bug when parsing source code
containing certain small floating point numbers or when string literals that
represent these numbers are passed as an argument to a string-to-float
conversion function such as floatval(). We discuss the technical aspects
of this bug in Section 5.1.



<?php

$result = 0

// ...

$result = $result + 2.2250738585072011e-308;

printf( "Final result: %.17e \n", $result);

?>

Figure 1: Example PHP Program

Figure 2: Bolt GUI Main Window

Figure 3: Bolt Status Messages

• Checkpoint: After Bolt detects the infinite loop, the user
has an option to immediately try one of the escape strate-
gies or to take an application checkpoint by pressing the
“Checkpoint” button. A checkpoint efficiently stores the
entire state of the program and allows a user to try mul-
tiple escape strategies—if the first strategy does not give
acceptable results, Bolt can use the checkpoint to restore
the state and try some other escape strategy.
• Escape: The user chooses an escape strategy from the

drop down menu above the “Escape” button and hits the
“Escape” button. In our example, the user first selects
the Unwind strategy (which exits from the function that
contains the infinite loop). This strategy does not produce
a desired result—the execution of PHP continues, but the
program returns a non-zero status code and prints an error
message reporting a parsing error on the line before the
last (on which the small floating point value is added to
the $result variable).
• Restore: If an escape strategy does not produce an ac-

ceptable result, then the user can press the “Restore” but-
ton to restore the application’s original state from the

checkpoint and execute a different strategy. In our exam-
ple, the user restores the application and then attempts
the Break strategy (which jumps to an instruction in the
same function outside of the observed infinite loop). In
this case the strategy is successful and the user can ob-
tain the output of the script.

Automated Bolt. Instead of manually selecting an escape
strategy, the user can press the “Search” button, which auto-
mates the process of executing escape strategies and restor-
ing from checkpoints. After trying one escape strategy, Bolt
checks if the application terminated gracefully (without er-
ror), and if so, presents the results to the user. If the program
terminated unexpectedly, did not terminate until a timeout,
or the user is not satisfied with the result, Bolt restores the
program from a checkpoint and tries the next escape strat-
egy. It repeats these steps until it finds a successful escape
strategy or explores all of the different strategies.

When encountering a non-responsive program for the first
time, we anticipate that users will typically elect to invoke an
automated search for the best escape strategy. On the other
hand, if a user encounters a loop in a program for which
Bolt previously found a successful escape strategy, a user
may select that strategy directly from the drop down menu.

3. Bolt Implementation
Bolt contains a detection module, an escape module, and a
checkpoint module. These modules are tied together with the
Bolt User Interface, but can also be used separately. Each of
the Bolt modules is implemented using the following tools:

• Bolt Detector: The Detector attaches to the target ap-
plication using the Pin dynamic instrumentation frame-
work [34]. The Bolt Detector uses Pin to monitor mem-
ory accesses and function calls.
• Bolt Escape Tool: The Escape tool uses ptrace system

calls to attach to the target application, set breakpoints,
and execute escape strategies.
• Checkpoint Module: The checkpoint module is imple-

mented using Berkeley Lab Checkpoint/Restart (BLCR),
a Linux kernel module for application checkpointing [2].

In addition to providing these modules, Bolt is also a
completely modular framework, enabling it to be extended
with additional error detectors and escape strategies.

3.1 Bolt Detector
The Bolt Detector performs two primary tasks: loop struc-
ture detection and infinite loop detection.

3.1.1 Loop Structure Detection
When the Bolt Detector attaches to the running application
using Pin, it must first detect if the application is inside a
loop. A loop is defined as a sequence of executed instruc-
tions that starts from a given stack frame and instruction and



then returns to the same stack frame and instruction. This
definition includes loops that may cross function boundaries
through function calls, but excludes recursion.

When the Bolt Detector attaches to the running appli-
cation, it saves the value of the instruction pointer at the
moment it attaches; we call this instruction the pivot instruc-
tion. The Bolt Detector then tests if the application’s execu-
tion is within a loop that contains the pivot instruction—
specifically, if the application executes a contiguous se-
quence of instructions beginning from the current stack
frame and the pivot instruction and returning to the same
stack frame and the pivot instruction.

To determine if the stack frame of a subsequently ex-
ecuted instruction is the same as the pivot instruction, the
Bolt Detector compares the calling context of the instruction
to that of the pivot instruction.3 A calling context is the se-
quence of executed call sites that create a given stack frame.

The Bolt Detector dynamically reconstructs the calling
context of both the pivot instruction and the instructions in
the loop by monitoring the execution of the application.
Calling Context Reconstruction. The Bolt Detector’s
calling context reconstruction algorithm exploits the obser-
vation that it is possible to construct the calling context of
the pivot instruction by observing the subsequent execution
of the application.

To make this more precise, we first abstract the execu-
tion trace of the application after Bolt attaches as a sequence
of only function calls and returns. The function call instruc-
tion i : call f is an instruction at address i that pushes the
address i + 1 onto the application’s stack and then transfers
control to the address of the function f. The function return
instruction ret is an instruction that pops the return destina-
tion address off the top of the application’s stack and then
transfers control to the return destination.

We classify a trace of the execution of the application
as matched if the trace is an element of the language of
balanced parentheses with grammar M:

M := ε | ( M ) M

In this grammar, left parentheses “(” denote call instruc-
tions and right parentheses “)” denote ret instructions. This
grammar therefore represents executions where each func-
tion call instruction is appropriately matched by a function
return instruction.

The calling context of a pivot instruction in an execution
trace is the given by the sequence of unmatched return in-
structions in the suffix of the trace beginning at the pivot
instruction. The suffix of a matched trace can be unmatched
in that it may contain return instructions “)” with no corre-
sponding call instruction “(”. If a return instruction is un-
matched in this suffix, then the corresponding call instruc-

3The option to compile an application without a stack frame pointer is
available in many widely used compilers. Therefore, the stack frame pointer
cannot be reliably used to identify stack frames.

tion must have occurred before the pivot instruction and is
therefore part of the calling context.

Algorithm 1 presents the pseudocode for the calling con-
text reconstruction algorithm. The algorithm updates the
calling context information for the pivot instruction after
each subsequent instruction step as follows. It takes as input
the current instruction address ic, the current stack pointer
sp, the current call stack S c, and the portion of the pivot in-
struction’s calling context that has been constructed thus far
Cp. In this presentation, S c is a standard stack data structure
whereas Cp is a standard list.

Algorithm 1 Calling Context Reconstruction
1: function update context (ic, sp, S c, Cp)
2: if is call ( ic) then
3: push ( S c, ic + 1)
4: else if is ret ( ic) then
5: if empty ( S c) then
6: insert ( Cp, ∗sp )
7: else
8: pop ( S c)
9: end function

The algorithm need only consider three cases:
• Call Instruction: If the current instruction is a call in-

struction, then the algorithm pushes the instruction ad-
dress plus one onto the current call stack of the applica-
tion S c (Line 3).
• Unmatched Return Instruction: If the current instruc-

tion is a return instruction, and the current call stack is
empty, then the return is unmatched and therefore part of
the calling context. The algorithm adds the return desti-
nation address to the calling context (which resides at the
top of the stack and is pointed to by sp) by inserting it
into the calling context Cp (Line 6).
• Matched Return Instruction: If the current instruction

is a return instruction and the current call stack is non-
empty, then the return is matched and not part of the
calling context. The algorithm therefore pops the top
element off of the current call stack (Line 8).

Each time the Bolt Detector reaches the pivot instruction
it compares Cp with S c. If these two structures contain the
same sequence of addresses, then both the calling context of
the pivot instruction and the current call stack are the same
and the Bolt Detector has identified a loop in the execution
of the program.

Applicability. The loop structure detection algorithm
identifies loops implemented using standard control flow
constructs (both structured and unstructured) such as for
and while loops, conditionals, goto statements, and function
call/return. It is not designed to recognize loops generated
using a mix of setjmp/longjmp and/or recursive function
calls. Note that the application must re-execute the pivot
instruction for the algorithm to detect the loop.



3.1.2 Infinite Loop Detection
At the end of each iteration of the loop, the Bolt Detector
takes a snapshot of the application’s register and memory
state. These snapshots enables it to determine if the loop is
infinite. Specifically, for any sequence of loop iterations and
corresponding snapshots, if execution returns to the same
state (as recorded in the snapshots), then the loop is infinite.
The Bolt Detector records any memory locations modified or
read in any previous loop iteration. When comparing snap-
shots, the Bolt Detector first compares the set of memory
locations and registers contained in the snapshots. If these
sets are equal, it then compares the contents of these mem-
ory locations and registers.

The Bolt Detector also has the capability to detect certain
semantic infinite loops in cases where changes to portions
of application’s state are independent of the termination of
the loop. For example, an infinite loop may produce outputs
to a console or file during each iteration through calls to
the application’s runtime library (e.g., fputs or fprintf in
the C standard runtime library). On each of these calls, the
standard library keeps track of the number of bytes written
or the current cursor position in the file in its internal state,
which is stored within the application’s address space. While
this state will change on each iteration of the loop, if this
state is never used within an iteration of the loop, then it can
be ignored (its value is independent of the termination of
the loop). To implement this functionality, the Bolt Detector
uses Jolt’s library routine abstraction technique [24].

In some programs that contain infinite loops, it may take
many iterations before the program returns to an earlier state.
The Bolt Detector provides a user-settable timeout, or a
minimum number of instructions to execute, after which it
will detach if it has not yet detected an infinite loop.
Multithreaded Loop Detection. When the Bolt Detector
attaches to a multithreaded application, it begins tracking the
memory accesses of each thread separately. When a given
thread completes one iteration of a loop, snapshots of mem-
ory accessed only by that thread are compared to determine
if there may be an infinite loop in that thread. In addition
to memory snapshots, the Bolt Detector tracks other actions
taken by each thread before reporting that there is an infinite
loop (it is possible for another thread to eventually take some
action to influence the execution of a thread suspected to be
in an infinite loop). Specifically, the Bolt Detector monitors
each thread for the following types of operations, which in-
dicate that threads may be communicating with each other:
• Synchronization/Atomic Operations: The Bolt De-

tector inspects the set of instructions executed by each
thread to identify synchronization and atomic operations.
• Volatile/Shared Memory Writes: The Bolt Detector

compares the read and write sets of each thread in the
application to find intersections between the read set of
a potentially looping thread and the write set of another
thread.

If the Bolt Detector observes any potential inter-thread
communication, then it reports to the user that the thread
may not be in an infinite loop (however, it still provides the
user with the capability to escape the loop).4

3.1.3 Analysis Result
The Bolt Detector’s produces 1) the set of top-level instruc-
tions (the set of instructions that are both in the loop and also
in the function that contains the loop) along with the stack
pointer observed at each instruction, 2) a determination of
whether the loop is potentially infinite, and 3) a report of
any patterns that may indicate inter-thread communication.
Before exiting, the Bolt Detector writes these results to a file
and then detaches all dynamic instrumentation.

For loops that do not read inputs from the outside world
and are within an application without asynchronous control
flow (such as signal handlers) or multithreading, the Bolt
Detector’s infinite loop detection strategy is sound—if it
reports that there is an infinite loop then the application is
in an infinite loop. If any of these qualifications are violated,
then the detection strategy takes a best-effort approach by
looking at additional information (such as the application’s
synchronization behavior). In these cases, the Bolt Detector
reports that the application may not be in an infinite loop,
but still offers the user the option to escape the loop.

3.2 Bolt Escape Tool
The Bolt Escape tool implements two infinite loop escape
strategies: Break (which forces the execution to continue at
an instruction that is outside the set of instructions executed
by the loop) and Unwind (which forces the execution to
return from the function containing the loop).

The Escape tool takes as input the results of the Bolt
Detector’s infinite loop detection analysis and the escape
configuration parameters provided by the user via the Bolt
GUI. If the user has elected to use the Unwind strategy, then
the Escape tool also takes as input the value to return from
the target function when unwinding the stack.

Given the analysis results and GUI parameters, the tool
proceeds as follows:

1. The escape tool first attaches to the application and places
a breakpoint at the escape instruction—the instruction
from which escape will be performed. The Escape tool
currently selects the top-level instruction with the maxi-
mum address as the escape instruction.

2. When the application hits the breakpoint, the escape tool
compares the current stack pointer of the application with
that provided as input with the top-level instructions.
This ensures that the breakpoint has been hit in the top-
level stack frame. If not, execution continues until the
application hits the breakpoint in the correct stack frame.

4Bolt’s analysis is inspired by the C++0x standard’s definition for
“empty” loops that can be removed by an optimizing compiler [18].



3. When the application reaches the breakpoint in the cor-
rect stack frame, the escape tool applies one of the two
escape strategies and then remains attached to the appli-
cation for a specified timeout. If the application termi-
nates within this timeout, then the Escape tool reports the
termination to the user. Otherwise, the Escape tool de-
taches from the application once the timeout expires, al-
lowing the application to continue its execution with no
instrumentation and no Bolt overhead.

The search function in the Bolt GUI provides an auto-
mated method to explore multiple escape strategies on a tar-
get program. To use the search function, a user must attach
Bolt to the program and take a checkpoint. The search func-
tion will then try each escape strategy in turn. For each strat-
egy, if the target program does not terminate after a time-
out, the user can attempt to determine if the escape strategy
was successful by observing the continued execution. If the
strategy did not succeed, Bolt will terminate the program (if
necessary), then restore execution from the checkpoint.

Implementation. The Escape tool attaches to the applica-
tion with ptrace, which is a lightweight alternative to attach-
ing to the application with Pin in cases in which one does not
need to perform heavyweight dynamic instrumentation.

The Escape tool implements the Break escape strategy
by using ptrace to modify the instruction pointer register
of the application to point to an escape destination instruc-
tion. This action forces the application to immediately jump
to the escape destination instruction. The Escape tool selects
the address of the escape instruction plus one as the escape
destination instruction. Because we set the escape instruc-
tion to be the top-level instruction with the maximum ad-
dress, the escape destination is therefore not in the set of
top-level instructions and must be on a different control flow
path. For example, if the escape instruction is a conditional
jump, then the escape destination is the fall-through of the
jump. Bolt also supports setting the escape instruction to be
any top-level jump instruction.

The Escape tool uses the libunwind library [6] to imple-
ment the Unwind escape strategy, which unwinds one or
more frames of the stack, effectively forcing the program to
return from the current function and continue execution af-
ter the function call-site. The Bolt GUI also enables a user
to explore different return values for the function call when
executing the Unwind strategy. The Escape tool implements
this by modifying the return value registers immediately be-
fore unwinding the application from the function.

The libunwind library uses a combination of excep-
tion handling information and stack walking to perform
call stack reconstruction. In particular, libunwind looks at
certain sections in ELF binaries, including the .eh frame,
and .debug frame sections. Depending on how the applica-
tion was compiled, these sections may not contain enough
information to reconstruct a call stack. In these cases, li-
bunwind uses a simple stack walking algorithm that looks

at the base pointer. In general, libunwind’s analyses are in-
complete. Therefore, in cases where libunwind is unable to
identify an unwind destination, Bolt reports to the user that
is is unable to apply the Unwind strategy.

3.3 Checkpoint Module
Bolt uses the BLCR (Berkeley Lab Checkpoint/Restart sys-
tem [2]), which is implemented as a kernel module. This
checkpoint saves memory and register state, file system
state, and works for single and multithreaded applications.
Some resources, including sockets and other resources, can-
not be checkpointed by BLCR.

One limitation of BLCR is that it requires an application
to have loaded the BLCR runtime library into its address
space before creating a checkpoint. To enable Bolt’s on-
demand usage scenario where the user downloads Bolt on
the fly, we therefore automatically force-load BLCR’s run-
time library into the application’s address space when the
user elects to take a checkpoint. Specifically, we use Pin to
inject calls to dlopen() into the application’s instruction
stream. This approach is similar to what others have done
in previous work on Process Hijacking [52].

3.4 Platform Compatibility and Extensions
Bolt’s current implementation best supports detecting and
escaping loops in x86 and x64 binaries on Linux. In prin-
ciple, it would be possible to extend Bolt for use on other
platforms in the following ways:

• Bolt Detector: The Bolt Detector uses Pin for its dy-
namic analysis. Pin can analyze binaries built for the
x86, x64, and IA-64 architectures on Linux, Windows,
and Mac OS. To support an alternative architecture or
operating system, one would need a different dynamic
instrumentation framework (e.g., DynInst [29] or Dy-
namoRIO [21]) that supported the desired platform.
• Escape Module: The escape module is x86/x64 Linux

specific. To extend the escape module to an alternative
architecture, one would need to provide Bolt with access
to the application’s stack pointer register. To extend the
escape module to an alternative operating system, the
operating system would need to provide functionality
similar to that of ptrace. So, for example, while Mac OS
X provides an implementation of ptrace, Windows does
not. Therefore, an implementation of the escape module
for Windows would need to obtain ptrace’s capabilities
on that platform.
• Checkpoint Module: The checkpoint module is a Linux

kernel module and is compatible with all versions of
Linux up to and including version 2.6.38. The module
fully supports x86 and x64 architectures, and has experi-
mental support for ARM and PPC.
To provide checkpointing on other architectures in Linux,
one would need to re-implement the small architecture
specific components of BLCR [3]. To provide check-



pointing on other operating systems, one would need to
use an alternative application checkpointing framework
that supported the operating system of interest.

4. Empirical Evaluation
We next present and discuss the benchmarks we use to eval-
uate Bolt, our experimental methodology, and the results of
our experiments.

4.1 Benchmark Summary
To evaluate Bolt, we collected a number of applications with
known infinite loops. We obtained eight infinite loops in
ctags, grep, ping, look, and indent that we used in our pre-
vious evaluation of Jolt [24]. In addition to these infinite
loops, we searched open-source project repositories and the
Common Vulnerabilities and Exposures database [4] for ad-
ditional bug reports that involve non-terminating program
behavior.

We used several general guidelines while searching for
additional bug reports to investigate. First, we only inves-
tigated bug reports that specified the steps required to re-
produce the infinite loop and provided an input that elicited
the infinite loop. Second, we attempted to collect infinite
loops from different application domains. Finally, we con-
sidered the perceived importance and popularity of applica-
tions when determining which bug reports to investigate.

We investigated nine additional bug reports: five of these
bugs are due to infinite loops, two are due to long-running
loops, and one is due to an infinite recursion. We were unable
to reproduce the remaining loop.

Benchmarks. Table 1 presents the benchmarks on which
we evaluated Bolt. Column 1 (Benchmark) presents the
name of the benchmark. Column 2 (Version With Bug)
presents the version number of the benchmark that contained
the infinite or long-running loop. Column 3 (Version With
Fix) presents the version number of a later version with the
bug eliminated via a developer fix. Column 3 (Loop Type)
indicates if the benchmark loop is an infinite loop or a long-
running loop.

We evaluate Bolt on fifteen benchmarks. Thirteen bench-
marks contain infinite loops and two benchmarks contain
long-running (but finite) loops. The applications range from
common utilities to large, multithreaded GUI applications:

• php: PHP is a general purpose scripting language, com-
monly used for web development and in server side appli-
cations [8]. The infinite loop occurs when the PHP inter-
preter parses certain floating point values from a string. It
occurs only in 32-bit builds of PHP, but presents a denial
of service (DoS) risk to server applications if they receive
these floating point value as input or parse a script that
contains these values [17].
• wireshark: Wireshark is a network protocol analyzer

which allows a user to capture and analyze traffic on a

Benchmark Version Version Loop
With Bug With Fix Type

php 5.3.4 5.3.5 Infinite
wireshark 1.4.0 1.4.1 Infinite
gawk 3.1.1 3.1.2 Long
apache 2.2.18 2.2.19 Infinite
pam 1.1.2 1.1.3 Infinite
poppler 0.11.3 0.12.0 Long
ctags-fortran 5.5 5.5.1 Infinite
ctags-python 5.7b (646) 5.7b (668) Infinite
grep-color 2.5 2.5.3 Infinite
grep-color-case 2.5 2.5.3 Infinite
grep-match 2.5 2.5.3 Infinite
ping 20100214 20101006 Infinite
look 1.1 (svr 4) - Infinite
indent 1.9.1 2.2.10 Infinite
java-vm 6.0 - Infinite

Table 1: Benchmark Loops

computer network [10]. The infinite loop occurs when
parsing certain network packets that contain malformed
attributes. The infinite loop can be triggered by opening
a previously recorded packet log file or by a remote user
sending corrupt network packets [14].
• gawk: Gawk is the GNU implementation of the AWK

pattern scanning and text processing language [5]. The
long-running loop occurs when attempting to parse an
input containing nested single and double quotes. This
loop occurs in the implementation of the regular expres-
sion engine in gawk [11].
• apache: Apache is an extensible web server [1]. The infi-

nite loop occurs in the Apache Runtime Library in a func-
tion used for matching URL regular expressions [15].
• pam: Pluggable Authentication Modules (PAM) are used

to provide authentication mechanisms for Linux pro-
grams [7]. The infinite loop is within the PAM module
that is responsible for parsing files that contain environ-
ment variables. It can be triggered when parsing a file
that has values that exceed the maximum internal buffer
size [16].
• poppler: poppler is a rendering engine for the PDF doc-

ument format [9]. It contains a long-running loop that oc-
curs when rendering PDF documents that contain JPEG
images with corrupt dimensions [13].
• ctags: We investigated two infinite loops in ctags:

ctags-fortran: The fortran module in version 5.5 has
an infinite loop when parsing certain declarations sep-
arated by semicolons.



ctags-python: The python module in version 5.7
has an infinite loop that occurs when parsing certain
multi-line strings.

• grep: We investigated three infinite loops in grep version
2.5. These loops occur as a result of a zero length match:

grep-color: Occurs when grep is configured to dis-
play the matching part of each line in color.
grep-color-case: Occurs when grep is configured
with case insensitive matching and to display match-
ing parts of each line in color.
grep-match: Occurs when when grep is configured to
print only the matching part of each line.

• ping: ping client is a network utility that checks for the
reachability of a remote host on a network. An infinite
loop occurs when parsing certain reply message fields.
• look: look is a dictionary lookup program. An infinite

loop occurs as a result of a dictionary entry not termi-
nated by a newline character.
• indent: indent is a source code pretty-printer. An infinite

loop occurs parsing a final line containing a comment and
no newline character.
• java-vm: Java virtual machine has an infinite loop that

occurs when converting certain strings to floating point
numbers [12].

Additional Infinite Loop Reports. In addition to the
benchmark infinite loops discussed above, we also inves-
tigated the following infinite loop bug reports:

• findutils: The bug reported in GNU findutils (GNU bug
tracker 13381) is an infinite recursion, not an infinite
loop. It is therefore outside the scope of Bolt (although
one can envision extending Bolt to handle infinite re-
cursions as well as infinite loops). The infinite recursion
is caused by symbolic references in the file system that
form cyclic paths in scanned subdirectories.
• gstreamer: The bug reported in the gstreamer audio li-

brary (Gnome bug tracker 120292) is an infinite loop in
the vorbis plugin. We were unable to compile the version
of the plugin package that contains the infinite loop.

4.2 Methodology
For each benchmark, we performed the following steps:

• Detection: We ran the application and allowed it to enter
the infinite or long-running loop. We then started Bolt
and evaluated if Bolt was able to identify the infinite loop.
• Checkpointing: We evaluated whether Bolt (using the

BLCR library) was able to take a checkpoint of the appli-
cation and restore from a previous checkpoint. We eval-
uated the efficiency of checkpointing by measuring the
time to take the checkpoint and size of the checkpoint.

• Escape: We used Bolt to force the application to escape
from the loop. We then observed whether the application
became responsive as a consequence of the escape. We
determined whether the resulting output was well formed
and used manual inspection or Valgrind to determine
if the continued execution incurred any invalid memory
accesses or leaks.
• Comparison with Termination: We compared the out-

put obtained from terminating the application with the
output obtained by applying each of the Bolt escape
strategies.
• Comparison with Manual Fix: We compared the out-

put produced by applying different Bolt escape strategies
with the output of a later version of the application with
the infinite loop manually corrected via a developer fix.
• Comparison between Strategies: We considered two

possible loop escape strategies: Unwind and Break. We
compared the effectiveness of each of these strategies by
comparing the output produced after using each of these
strategies.
• Reasons for Infinite Loops: We manually analyzed the

source code of the application to discover the underlying
reasons for the infinite loop and classify these reasons
into common patterns.

We performed our experiments on a 3.2 GHz Quad-Core
Intel Xeon with 6 GB of RAM running Ubuntu Linux. We
also used the Linux strip command to remove all symbols
from executables and relevant libraries before running Bolt.

We set two timeouts for how long to run the Bolt De-
tector: 10 seconds of execution time or 105 analyzed in-
structions; detection stops when one of the conditions is hit.
We did not constrain the Bolt Detector to maintain a fixed
number of snapshots—therefore, the number of snapshots
that we compare varies from application to application. The
Break escape strategy jumps out of the loop from the jump
instruction at the maximum address inside the loop. For the
Unwind escape strategy we used four possible return values:
-1, 0, 1, and the value previously stored in the CPU’s return
register (e.g., the eax register on x86). We applied both de-
tection and escape for up to three consecutive times for each
unresponsive loop to account for possible infinite loops in
the continued execution.

4.3 Detection Results
Bolt detected 11 out of 13 infinite loops. Bolt was not able to
detect the infinite loops in indent and java-vm. For these two
benchmarks the state of the application changes after every
iteration of the infinite loop that Bolt tracked.

For 9 out of these 11 loops Bolt was able to identify a
repeating state after a single iteration of the loop. Two loops,
php and pam, change the state of the application after a
single iteration, but the executions eventually return to one
of the previously observed states after multiple iterations.



For the two long-running (finite) loops in gawk and pop-
pler Bolt identifies that the state after every iteration changes
and thus does not report them as infinite loops.

In comparison to Bolt’s results, Jolt can successfully de-
tect seven of these infinite loops (ctags-fortran, ctags-python,
grep-match, grep-color, grep-color-case, ping, and look).
The remaining benchmarks are out of the scope of Jolt, ei-
ther because the benchmark is multithreaded (wireshark),
because the loops execute several iterations before repeating
the same state (php and pam) or because the loops occur in
library code (apache, pam, and poppler).

4.4 Numerical Results
Timing Results. Table 2 presents the time statistics for
infinite loop detection and escape. Column 2 presents the
amount of time that Bolt takes to detect an infinite loop,
starting from when the Bolt Detector has attached to the
application. Column 3 presents the amount of time required
to escape from the infinite loop and continue execution,
starting from when the Bolt escape module has attached to
the application. These times represent the median of five
repeated executions in which we used Bolt to escape each
infinite loop. The escape time for each benchmark is equal
to the maximum of the times for the two escape strategies.

For all benchmarks, median detection time was below 6
seconds and the median escape time was below 0.03 sec-
onds. Entries marked as “–” indicate that the Bolt Detector
did not detect an infinite loop until the timeout.

Loop Size Results. Table 3 presents the length of the in-
finite loop and the size of the snapshot of the program state
after each iteration for each benchmark for which Bolt de-
tected the infinite loop. Column 2 presents the size of a regis-
ter file in bytes (note that because php is a 32-bit application
its register snapshot size is smaller than the remaining 64-
bit applications). Column 3 presents the size in bytes of all
memory locations modified during the execution of the loop.
Column 4 presents the length of each detected infinite loop
measured in the number of instructions that the loop exe-
cutes. It is possible for different iterations of infinite loops in
our benchmark applications to have different sized snapshots
or lengths, depending on the location in the loop to which
Bolt attaches. In such cases we reported the maximum sizes
and lengths over all iterations of the loop.

We identified a positive correlation between the lengths
of each loop and the time to detect the loop (R-squared co-
efficient 0.78). This positive correlation suggests that loops
with more instructions will typically take longer to detect.
The short detection time for the smallest loop in Wireshark,
which is one instruction long (see Section 5.2), indicates that
the overhead of the initial setup of Bolt Detector is minimal.

Checkpointing Results Table 4 summarizes the check-
pointing results. Column 2 presents whether the checkpoint-
ing and subsequent restoring of the state was successful.
Column 3 presents the median time to create a checkpoint.

Benchmark Detection Time (s) Escape Time (s)
php 1.346 0.008
wireshark 0.0003 0.006
gawk – 0.004
apache 0.168 0.005
pam 5.856 0.011
poppler – 0.002
ctags-fortran 0.122 0.004
ctags-python 0.141 0.002
grep-match 2.458 0.013
grep-color 2.145 0.011
grep-color-case 1.348 0.006
ping 0.026 0.003
look 0.164 0.003
indent – 0.024
java-vm – 0.030

Table 2: Loop Time Statistics

Benchmark Reg. Size (b) Mem. Size (b) Length
php 128 688 7784
wireshark 192 0 1
gawk – – –
apache 192 8 106
pam 192 0 74606
poppler – – –
ctags-python 192 24 78
ctags-fortran 192 0 239
grep-match 192 1001 1575
grep-color 192 1001 1577
grep-color-case 192 1093 1740
ping 192 0 21
look 192 108 153
indent – – –
java-vm – – –

Table 3: Infinite Loop Memory and Length Statistics

Benchmark Success Time (s) Size (kb)
php Yes 0.221 2192
wireshark No – –
gawk Yes 0.139 484
apache No – –
pam Yes 0.269 943
poppler Yes 1.663 94548
ctags-fortran Yes 0.166 360
ctags-python Yes 0.136 448
grep Yes 0.147 408
ping Yes 0.177 360
look Yes 0.181 212
indent Yes 0.736 228
java-vm Yes 0.258 7116

Table 4: Results of BLCR Checkpointing



Benchmark Errors After: vs. Termination vs. Manual Fix Best
Unwind Break Unwind Break Unwind Break Strategy

php Parse† None Same Better None Same Break
wireshark None Parse† Better Better Same Same* Same
gawk None Memory† Better Same Partial None Unwind
apache None None Better Worse Same Worse Unwind
pam None Unresponsive Better N/A Same N/A Unwind
poppler None Unresponsive Better N/A Partial N/A Unwind
ctags-fortran None Memory Better Same Partial None Unwind
ctags-python None None Better Better Partial Partial Same
grep-match None Unresponsive Better N/A Partial* N/A Unwind
grep-color None None Better Better Partial Partial Break
grep-color-case None None Better Better Partial Partial Break
ping None None Better Better Same Partial* Unwind
look None None Same Same Same Same Same
indent None None Better Better Partial Same* Break
java-vm Unresponsive Unresponsive N/A N/A N/A N/A N/A

Table 5: Summary of Escape Results

Column 4 presents the median size of the checkpoint. The
results contain only a single entry for grep as all three infi-
nite loops occur in the same version of the program.

For 10 out of the 13 applications, restoring from the
checkpoint was successful. Restoring the state for Wireshark
and Apache was not successful because the BLCR check-
pointing system was unable to checkpoint open sockets and
certain open system files (such as /dev/urandom).

The time to take the checkpoint for all benchmarks was
less than two seconds and the maximum size of the check-
point files was 95 MB for poppler. For all applications except
indent the variance between checkpoint times was minimal.
Since the indent infinite loop continuously allocates mem-
ory, taking a checkpoint later in the execution of this pro-
gram records more program state, which requires more time
and produces a larger checkpoint file.

4.5 Escape Results
Table 5 presents the summary of the results of the continued
execution of benchmarks after using each escape strategy. In
addition to this summary, we present detailed descriptions of
escaping the loops in php, wireshark, gawk, apache, and pam
in Section 5. We previously presented detailed descriptions
of escaping the infinite loops in ctags, grep, ping, look, and
indent in the evaluation of Jolt [24].

Continued Execution Errors. Columns 2 and 3 of Ta-
ble 5 present errors in continued execution after applying
each of the two escape strategies. The errors include unex-
pected application terminations, latent memory errors, and
unresponsiveness. Entries marked as “None” did not exhibit
any error as a consequence of infinite loop escape.

For 14 out of the 15 benchmarks at least one escape
strategy enabled the application to execute without error in
the continued execution. Instructing Bolt to escape the loop

in java-vm with both the Unwind and Break escape strategies
kept the application in an unresponsive state.

Seven benchmarks had an error after applying one of
the escape strategies. Two benchmarks (php and wireshark)
reported errors in parsing parts of their inputs after exiting
the infinite loops. Two applications (gawk and ctags-fortran)
experience segmentation faults after escaping the infinite
loop with the Break strategy. Applying the Break strategy
on pam, poppler, and grep-match leaves the applications
unresponsive even after repeated escape attempts. A dagger
(†) on an error entry indicates that the error triggered the
application’s existing error handling code, which allowed the
application to terminate gracefully.

Termination Comparison. Columns 4 and 5 of Table 5
present the results of comparing the outputs obtained after
terminating the application with the outputs produced by
applying Bolt to escape the loop. For entries marked “Better”
Bolt helped the application produce more output or handle
more requests compared to termination. For entries marked
“Same” both Bolt and termination produced the same output.
If the escape strategy left the application in an unresponsive
state, we mark the effect of escape as “N/A”. We marked the
entry for apache and the Break escape strategy as “Worse”
because for some configurations of the server the continued
execution may grant unauthorized access to protected data
(see Section 5.4).

For 13 loops at least one of Bolt’s escape strategies pro-
vided better output than terminating the application. For the
remaining loop (look) termination and Bolt both produce the
same output because the infinite loop occurs at the very end
of the computation (this output is also the same as the output
of the correct program).

Manual Fix Comparison. Columns 6 and 7 of Table 5
present the results of comparing the outputs produced by ap-



plying Bolt to the outputs produced by a later version of the
application in which developers fixed the infinite loop. En-
tries marked “Same” indicate that the outputs from applying
Bolt are identical to the outputs from the fixed application.
Entries marked “Partial” produced some (but not all) of the
correct output. Entries marked “None” produced none of the
output that the manually fixed application produced. For en-
tries marked with an asterisk (*), the output after escaping
from the loop contained the complete or partial expected
output from the fixed version, but also included additional
output from code that is not executed in the fixed version.

For all loops except the java-vm, at least one escape
strategy enabled the application to produce a partial output.
For 7 loops, one of the escape strategies provided output
identical to that of the manually fixed application. For the
remaining 7 loops Bolt helped the application produce a
partial result.

Four benchmarks that produced additional outputs after
applying Bolt are wireshark, grep-match, ping, and indent.
In the case of the Break strategy for wireshark, the appli-
cation prints an additional warning message. In the case of
the Unwind strategy for grep-match, the application outputs
additional end-of-line characters. In the case of the Break
strategy for ping, the extra output results in displaying the
time stamp information of an input packet; the fixed version
of the program ignores this part of the packet. In the case of
the Break strategy for indent, the output (a C source file) is
semantically identical—it differs by only a single additional
whitespace character at the end of the file.

Comparison of Two Escape Strategies. Column 8 of Ta-
ble 5 presents which one of the two escape strategies, Break
or Unwind, was more effective for each infinite loop. We
evaluated the relative effectiveness of the strategies by com-
paring the output produced after applying each strategy to
the output produced by the manually fixed application. The
entries for which both escape strategies produced identical
outputs are marked as “Same”.

For 4 loops, the Break strategy gave the best output, and
for 7 loops, the Unwind strategy gave the best output. In the
remaining 3 cases both the Break and the Unwind produced
the same output. Both escape strategies were unsuccessful
for the java-vm loop.

4.6 Infinite Loop Patterns
Out of the thirteen infinite loops, eight loops perform string
pattern matching (look, apache, indent, and all ctags and
grep loops), two loops traverse complex data structures
(wireshark and ping), two loops perform numerical com-
putation (php and java-vm), and one loop performs string
substitution (pam). Within this diversity of computations,
we identified two main reasons for the infinite loops in our
benchmark applications:

• Missing Transition: While processing its input, the com-
putation inside a loop enters a state from which it can-

not proceed and consume the remaining input. Exam-
ples include unhandled zero-length string matches (the
three grep loops), unhandled nested character patterns in
a string (ctags-python), unmatched keywords in the in-
put source code file (ctags-fortran), unsupported optional
parts of the input message (ping), or undetected round-
off errors in arithmetic operations involving subnormal
floating-point numbers (php and java-vm).
• Missing Exit Condition: These loops have completed

processing their inputs, but the exit condition is not sat-
isfied. Examples include missing end-of-line character
checks (indent and look), missing return statements in
error-handling code (wireshark and pam), or missing
string length check (apache).

Each of these patterns also correlates with how well es-
caping the infinite loop emulates the developers’ manual fix
(Table 5, Columns 6 and 7). For loops with missing transi-
tions, escaping the loop produces a partial result in 5 out of 8
cases—the remaining two loops (php and ping) produce the
same result as the manual fix and java-vm does not produce
any result. The intuition behind this result is that the applica-
tion enters an infinitely looping state before processing the
entire input and, therefore, escaping such a loop curtails the
execution of the loop without processing the remainder of
the input.

For all loops with a missing exit condition at least one
of Bolt’s escape strategies produces the same result as the
manual fix proposed by the developers. This is again intu-
itive because the application will have already finished pro-
cessing the input by the time it enters a repeating sequence
of states.

5. Detailed Case Studies
We next provide a detailed analysis of Bolt for five bench-
mark applications. These applications include both client ap-
plications and libraries (Wireshark, Gawk, and the PAM li-
braries) and server-side applications (Apache and PHP).

5.1 PHP
We continue with the example infinite loop from Section 2.
PHP version 5.3.4 for 32-bit x86 processors when compiled
with the gcc compiler (which is the default compiler for the
binary distribution of PHP) contains an infinite loop when
converting certain strings into floating point values [17].

The error occurs in the zend strtod function in the file
zend strtod.c. The loop begins on line 2313. This function
takes as input a pointer to a string literal (which can be a
constant or an input that a user interactively provides as the
script executes) and returns 1) the floating-point value of the
largest convertible prefix of the string and 2) a pointer to the
end of the prefix. We presented an input that triggers this
infinite loop in Figure 1 in Section 2.

The infinite loop occurs when the loop continuously tries
to adjust the accuracy of the floating point result as it reads



additional characters from the string. The computation does
not make progress due to the interplay between the gcc com-
piler and the CPU’s floating point unit—the computation of
intermediate results inside the FPU is performed in 80-bit
extended precision registers, but the final result is converted
to the regular 64-bit IEEE double precision floating point
value. When the computation tries to add the adjustment to
the current result, due to rounding it leaves the value of the
result unchanged so that it misses the loop’s exit condition.

Infinite Loop Detection. Each iteration of the loop ac-
cesses over 20 local variables and executes several levels of
nested function calls. A closer examination of the compu-
tation reveals that 1) in each iteration of the loop the com-
putation allocates and frees temporary heap data structures
that represent unbounded integers and 2) the only state in the
loop that changes between iterations is the pointers to these
data structures, which are independent of the loop’s exit con-
dition. Because PHP uses a custom bounded-size allocator
for these data structures, the allocator eventually reuses the
same (previously allocated and freed) memory locations af-
ter four loop iterations. This loop therefore repeats the same
execution pattern every four iterations.

Effects of Escaping Infinite Loop. When using the Un-
wind escape strategy, PHP terminates and prints an error
pointing to the user’s source code: Parse error: syntax
error, unexpected $undefined in test.php on line 2.
Line 2 in the file test.php contains the floating-point string
literal. The error handling code is triggered by intermediate
values that are present in the registers at the time of applying
the Unwind escape strategy.

When using the Break escape strategy, PHP continues
its execution from an instruction still inside the loop that
is in a branch not taken by the original computation, but
which changes the values of the adjustment variables. This
branch does not change any of the digits of the resulting
floating-point value, but allows the computation to exit the
loop during the next iteration, at the same location and with
the same result as the manually fixed version of the program.
As a result, the user’s script is properly parsed and executed,
printing out a double value, without any visible errors.

For the Break escape strategy, we used Valgrind to check
for latent memory errors. Valgrind does not report any mem-
ory errors and a manual inspection of the application’s code
shows that the branch at which Bolt forces the application
to continue its execution ensures that the currently allocated
memory is properly freed.

Comparison with Termination. If the floating-point value
is passed as a constant (as in the example), then the infinite
loop occurs during PHP’s compilation phase and termina-
tion results in no PHP code being executed (PHP parses the
entire file before executing the code).

Although applying the Unwind escape strategy also
causes the code to not be executed, it still provides a parse

error that points to the line where the value appears in the
user’s code. The Break strategy, on the other hand, enables
the program to terminate and fully execute every instruction
of the code, including the instruction with the string literal.

The infinite loop can also be triggered when reading the
string literal from an input source, such as a file or an HTTP
request. In this case, termination prevents any code past this
point from being executed. The Unwind escape strategy will
terminate the script (but will log the location of the error).
And the Break strategy will allow the script to continue its
execution past this point.

We note that while PHP has the facility to detect and ter-
minate long-running scripts (specifically by setting a limit
on the maximum execution time), PHP cannot recognize
and terminate a script that contains this infinite loop because
PHP checks to see if the limit has been exceeded only after
executing (interpreting) complete PHP instructions. How-
ever, this infinite loop occurs in the middle of interpreting
a single PHP instruction, so PHP is unable to detect that the
script has exceeded its maximum time limit.

Comparison with Manual Fix. The developers manually
fixed the application by marking local variables as volatile,
which forces the compiler to store the intermediate values
of the computation in memory (thus implicitly converting
these values from 80-bit to 64-bit values). This avoids the
undesired rounding of these variables.

We compared the result of applying the Break escape
strategy to the faulty version of PHP with the result of
the manually corrected version of PHP (version 5.3.5). The
results of both executions had all digits identical.

5.2 Wireshark
Wireshark is commonly used for network traffic monitoring,
recording, and analysis. It provides a graphical interface
that enables a user to analyze network traffic in real time.
Version 1.4.1 of Wireshark contains an infinite loop in the
ZigBee wireless protocol module [14]. The infinite loop can
be triggered by reading a malformed packet log file or by a
remote user maliciously sending corrupt packets.

Figure 4 presents a simplified version of the loop. The
variable tree is a pointer. If tree is NULL, then no code
inside the loop is ever executed and the loop termination
condition will never be satisfied. This loop is located in
the function dissect zcl discover attr resp(). The loop
begins on line 1192 of the file packet-zbee-zcl.c.

while ( *offset < tvb_len

&& i < ZBEE_ZCL_NUM_ATTR_ETT ) {

if( tree ) {

// ...

i++;

// ...

}

}

Figure 4: Wireshark Loop in packet-zbee-zcl.c



Infinite Loop Detection. When gcc compiles the applica-
tion with optimizations turned on (with optimization level
-O2), the compiler executes a loop unswitching optimization,
which splits the original loop into two loops representing
individual branches of the if condition, and moves the if
(tree) condition outside to control which loop to execute. If
the tree pointer is not NULL, then the program executes the
loop that processes tree and increments the induction vari-
able i. If the pointer tree is NULL, then execution continues
in the one-instruction long infinite loop in Figure 5.

0x7f66ccc51136: jmp 0x7f66ccc51136

Figure 5: Disassembly of the Wireshark Infinite Loop

While this infinite loop is the simplest of all loops in our
benchmarks, it deserves attention because Wireshark is a
multithreaded application (see Section 3.1.2). In this case,
the infinite loop does not make any memory accesses and,
therefore, Bolt can be certain that a computation in another
thread will never cause this loop to exit.

Effects of Escaping Infinite Loop. With both the Unwind
and Break strategies, Wireshark becomes responsive after
Bolt escapes the infinite loop: it presents the network traffic
that caused the infinite loop and all subsequent traffic. The
function that contains the infinite loop does not contain any
code after the loop, so applying the Unwind strategy does
not skip any computation.

The Break strategy transfers the execution of the program
to the code within the if branch in Figure 4 (since the
compiler places this code below the infinite loop in the
program’s binary); this forces Wireshark to attempt to parse
a corrupted packet. However, every operation within the
body of this if branch has a redundant check to ensure
that tree is not NULL. Therefore, if tree is NULL (as in the
this case), execution simply exits the loop. As a result, the
computation returns a status message noting that the packet
is malformed.

Comparison with Termination. Terminating the program
results in lost log data as the infinite loop prevents the user
from saving the log data before termination. In contrast, both
of Bolt’s escape strategies enable the application to become
responsive again and continue analyzing traffic, including
the packet that caused the infinite loop.

Comparison with Manual Fix. The manual fix by the de-
velopers simply moved the check for NULL tree pointer val-
ues outside the loop, so no code inside the loop is ever ex-
ecuted. Since the function has no code after the loop, the
result of the manual fix is equivalent to the Unwind escape
strategy and the output of the manual fix is identical to that
of the Unwind escape strategy. When using the Break es-
cape strategy, the program presents all results that the man-
ually fixed program produced, but also outputs an additional
[Malformed Packet] status message.

loop.awk:
{sub(/’’(.?[ˆ’]+)*’’/, "<em>&</em>"); print}

input:
’’Italics with an apostrophe’’ embedded’’

’’No nested apostrophes’’

Figure 6: Script and Input that Cause the Long-Running
Loop in Gawk

5.3 Gawk
Gawk is the GNU implementation of the awk language. Awk
is a text processing language commonly used for manipulat-
ing files and data. Version 3.1.1 of gawk contained a long-
running loop in its regular expression library [11].

Figure 6 shows the awk program and the input file (de-
rived from the bug report) that cause gawk to become un-
responsive. The awk program contains a regular expression
designed to match pairs of double quotes (written as two sin-
gle quote characters) and surround them with <em> (empha-
sis) tags. The result of the substitution on each line is then
printed out. In this case, the loop is triggered when gawk
encounters a string with nested double quotes.

Long-Running Loop Detection. The long-running loop is
located in the file regex.c, beginning on line 5615. This loop
exits when a complete match is found or if a match fails. In
total this loop contains 1996 lines of code.

The developer’s response to this bug report was [11]:

This is a bug who-knows-where in the guts of the

regex.[ch] library. Unfortunately, I treat that

as a black box, and have no idea how to fix it.

Bolt identifies that the state after each loop iteration
changes and does not recognize this loop as infinite. Testing
gawk with smaller examples that we constructed by remov-
ing the letters from the beginning of the input from Figure 6
reveals that the loop is not infinite, but its execution time
doubles with any character added before the nested quote
symbol. The execution of gawk for the input from Figure 6
terminates after about one hour of execution.

Further examination of the loop shows that gawk attempts
matching the part of the string up to and including the nested
quote symbols. However, because the substring does not
fully match the pattern (i.e., there are additional characters
after the quote symbols), gawk backtracks the search and
tries to match all possible prefixes, often repeating some of
them multiple times. The number of prefixes gawk tries is
exponential in the size of the number of characters before
the quote symbols.

Effects of Escaping Long-Running Loop. If Unwind sets
the return value to 0 or uses the value residing in the return
register from the function that contains the loop, the pro-
gram terminates with a memory error. Gawk contains a sig-
nal handler that captures this type of error and prints the er-



ror message gawk: loop.awk:1: (FILENAME=input FNR=1)
fatal err: internal error.

If Unwind instead returns -1 from the function that con-
tains the loop, the program will continue to execute and will
produce the following output for the example input file:

’’Italics with an apostrophe<em>’’ embedded’’</em>

<em>’’No nested apostrophes’’</em>

We can see that a match is found on the first line, and a
replacement made, though it is not the first match on the line.
The match on the next line is then processed without any
problem. Valgrind detected no memory leaks when using
this escape strategy. A manual inspection of the loop shows
that the computation uses the value -1 as an error code
representing that no match was found.

After escaping from the loop with the Break strategy,
gawk terminates and prints the same error message as in
the case when Bolt applies the Unwind strategy with return
value 0.

Comparison with Termination. Terminating the program
prevents gawk from processing any lines in input files after
the line that elicits the long-running loop. The Unwind strat-
egy allows gawk to process the remainder of input, while
only affecting the result on the lines that caused the long ex-
ecution of the loop.

Comparison with Manual Fix. The developers fixed this
long-running loop as a part of a complete rewrite of awk’s
pattern matching engine for version 3.1.2 (in the bug report
response that we cited, the developer announced the new
version of the pattern matching library, which at the time was
in development). We used this version of gawk to process
this input file and it instantaneously produced the following
result :

<em>’’Italics with an apostrophe</em>’’ embedded’’

<em>’’No nested apostrophes’’</em>

In general, regular expressions match from left to right and,
therefore, the manually fixed pattern matcher inserts tags
around the first matched quotes. The Unwind strategy in-
stead finds the second match on this line. However, it pro-
duces legal HTML tag pairs, which do not affect rendering
of the remainder of the output file. The lines without nested
quotes in the output are identical in both cases.

5.4 Apache
Apache HTTP server version 2.2.18 contains an infinite loop
in string matching code in the Apache Portable Runtime
Library, version 1.4.4 [15]. The error occurs in the loop
starting on line 199 in the function apr fnmatch, in the
file apr fnmatch.c. This function takes as inputs a string,
a pattern to match, and a set of flags that controls properties
of the matching. It returns 0 if a match was found and 1 if no
match was found.

Access Policy:
<Location "/*/WEB-INF">

deny from all

</Location>

Request:
GET /test HTTP/1.1

Host: 127.0.0.1

Figure 7: Access Policy and HTTP Request that Cause the
Infinite Loop in Apache

Apache uses the apr fnmatch function as a part of com-
putation that, given a set of access policies, determines
whether to allow or deny requests that the server receives.
Figure 7 presents a sample access policy and HTTP request
that causes the infinite loop. This access policy is intended
to prevent clients from accessing directories matching the
regular expression "/*/WEB-INF". Apache treats slash char-
acters (’/’) is a special way in this expression: a string that
matches this pattern must have exactly two slash charac-
ters. The HTTP request contains the path /test, which does
not match the pattern of the policy. The infinite loop oc-
curs when the non-matching requested path has less slash
characters than the pattern.

Apache calls the function apr fnmatch with three argu-
ments: the requested path ("/test"), the access policy pat-
tern ("/*/WEB-INF"), and a flag to ensure the number of slash
characters in both the path and the pattern are the same. Af-
ter the first iteration, the infinite loop consumes the entire re-
quested path, but only partially consumes the access policy
pattern (the corresponding pointer is incremented to point to
the second slash-character). The following iterations of the
loop, however, do not recognize that the requested path is
consumed and try (unsuccessfully) to match the remainder
of the access policy pattern with the empty string.

Infinite Loop Detection. The loop does not change the
state of the application between iterations and the loop only
makes calls to the string library routines. This infinite loop
occurs in the Apache Runtime Library code, which is dy-
namically loaded at runtime (Bolt readily supports analyzing
code inside shared libraries).

Effects of Escaping Infinite Loop. Apache interprets the
effect of the Unwind strategy with a return value other
than 0 as returning a no-match—the requested path does
not match the access control policy pattern and the server
should not apply the policy. When Apache continues execu-
tion after the loop, it makes recursive calls to the function
ap process request internal and, for the same request,
the function apr fnmatch and the infinite loop will execute
again, in a different stack frame. We can again apply the Un-
wind strategy using a non-zero return value and Apache will
continue the execution and send a response to the client.

Using the Break strategy or the Unwind strategy with a
zero return value allows the server to continue execution
with a return value 0 of the function, indicating that the path



matches the pattern. This return value indicates that Apache
should apply the access control policy. The response of the
server depends on the policy’s rule. In the previous example,
the deny all policy instructs the server to deny access to the
path and instead send a “403 Forbidden” response.

A manual inspection of the infinite loop indicates that no
memory is allocated or freed during the loop execution—the
loop memory accesses include only pointer arithmetic and
comparisons of local variables.

Comparison with Termination. While the server is in the
infinite loop, a client will keep waiting for the response until
a timeout on the client side or until the server process is
terminated. Termination of the server process also terminates
the connection and as a consequence the client will not
receive any reply data.

The Unwind strategy with non-zero return value instructs
Apache not to apply the access control policy. This is a
correct behavior, as the pattern and the path does not match
the policy. The server eventually sends the correct response
to the client’s request.

The Break strategy and the Unwind strategy with zero
return value instruct the server to apply the access control
policy. As a result, depending on the body of the policy, the
server can send the correct response, send the permission
error instead of requested content (as for the input from Fig-
ure 7), or allow this policy to override the previously applied
policies (which may potentially lead to security issues by al-
lowing unauthorized access to protected paths on the server).

Comparison with Manual Fix. The developer’s fix, in
APR version 1.4.5 (Apache 2.2.19) added two checks to this
computation. The first check at the start of the loop body
ensures that the computation exits the loop if the input string
has been completely consumed. The second check after the
loop body ensures that the function apr fnmatch returns 0
(match found) only when both the requested path and the
policy pattern have been completely consumed. Otherwise
the function returns a non-zero value (no match found). For
the inputs from Figure 7, the fixed application will exit the
loop once the requested path is consumed and then return a
non-zero value (no match). This fix produces the same result
as our Unwind escape strategy with non-zero return value.

5.5 Pluggable Authentication Modules (PAM)
Pluggable Authentication Modules (PAM) is a shared library
that implements authentication mechanisms. Many Linux
programs and utilities, for example login, su, and sshd, use
PAM for authentication. PAM version 1.1.2 contains an in-
finite loop that can be triggered by a long environment vari-
able expansion [16]. The function that performs this expan-
sion is expand arg in the pam env module. The loop begins
on line 553 of the file pam env.c.

Because PAM modules are not standalone, we discuss the
loop in the context of the the su tool and the command ’su -
$USER’, which allows the current user to login with another

EF_255 DEFAULT=BBBBBBBB... [repeated 255 times]

EF_256 DEFAULT=${EF_255}B

EF_1024 DEFAULT=${EF_256}${EF_256}\

${EF_256}${EF_256}

EF_8191 DEFAULT=${EF_1024}${EF_1024}\

${EF_1024}${EF_1024}\

${EF_1024}${EF_1024}\

${EF_1024}${EF_256}\

${EF_256}${EF_256}\

${EF_255}

EVIL_OVERFLOW_DOS DEFAULT=${EF_8191}AAAA

Figure 8: Entries in .pam environment File that Cause the
Infinite Loop in PAM

while(*orig) { /* while there is still some input to deal with */
// ...
if((strlen(tmp) + 1) < MAX_ENV) {
tmp[strlen(tmp)] = *orig++;

} else {
/* is it really a good idea to try to log this? */
D(("Variable buffer overflow: <%s> + <%s>", tmp, tmpptr));
pam_syslog(pamh, LOG_ERR, "Variable buffer overflow: \

<%s> + <%s>", tmp, tmpptr);
}

// ...
}

Figure 9: PAM Infinite Loop Code in pam env.c

user name $USER. The tool first prompts the user for the pass-
word, which will be authenticated using PAM. After authen-
tication, PAM creates an execution shell and sets up the en-
vironment variables defined in the ∼/.pam environment file.
The pam envmodule reads this file and calls the expand arg
function. This function contains a loop that scans the input
string for variables to expand.

Figure 8 presents an input file for the .pam environment
file that triggers the infinite loop. Each entry is a single
environment variable, followed by the keyword DEFAULT
and the default value. The value of the environment vari-
able EVIL OVERFLOW DOS is constructed by concatenating the
values of the previously defined environment variables. Its
length exceeds 8192 characters.

Figure 9 presents the simplified version of the loop that
expands and assigns values to environment variables. PAM
limits the length of the value of each environment variable to
8192 characters (this is the size of an internal buffer used to
store the values). During every expansion, the current length
of the value is compared to the maximum size of the inter-
nal buffer. If this length is greater than the maximum size (as
in the case of the EVIL OVERFLOW DOS variable), the computa-
tion uses the pam syslog function to log this event. However,
the computation does not exit the loop and, instead, keeps
logging the same event in every subsequent iteration.

Infinite Loop Detection. This loop iterates through a large
number of states before repeating. The reason for the mul-
tiple states is the allocation and deallocation of temporary
buffers that PAM’s logging module creates every time it
prints data to the output file in the function pam syslog.



Effects of Escaping Infinite Loop. The Break strategy
does not escape this infinite loop. It instead continues the
execution inside the same loop along a different path, previ-
ously unseen by the Bolt Detector. The computation in this
execution path interprets one character ‘A’ from the input as
an unrecognized escape character. On subsequent loop itera-
tions, execution returns to the original path and the execution
remains in the infinite loop.

The Unwind strategy with non-zero values allows the ex-
ecution to escape the loop. The Unwind return value is com-
pared with zero (which represents success) and the caller
function returns an error code up the call stack. This error
code is handled by the clients of the PAM module. PAM
then continues the computation and invokes additional mod-
ules that again enter the same infinite loop. Escaping the
loop for the second time returns the error code to the client.
Each client may use a different strategy to handle this er-
ror code: su prints an error message ’su: Critical error
- immediate abort’ and terminates. Other clients, such as a
graphical login screen, may refuse to log in the current user,
but still enable logging in for other users.

The Unwind strategy with a value of zero (applied two
times, as in the previous case) also escapes the infinite loop
and allows the program to continue executing. A return value
of zero indicates the call to the function has been successful
and all variables expanded correctly, allowing su to create
and start a new shell process. However, after escaping the
loop with Bolt, the new shell remains in the background
and becomes unresponsive (the shell expects to run in the
foreground and have a direct access to the terminal). While
the current Bolt implementation leaves the new shell in an
unusable state, using gdb to manually simulate this escape
strategy does allow the shell to execute in the foreground
and a user to interact with it. The environment in this shell
contains all the variables declared in the .pam environment
file, including EVIL OVERFLOW DOS, which has the same value
as "${EF 8191}".

We note that this infinite loop does not cause privilege
escalation. The PAM module that performs authentication
part has already granted permissions to the user by the time
the application reaches the module with the infinite loop.
Manual inspection shows that no memory is allocated in this
function until the very end, but the program never executes
this code after applying the Unwind strategy.

Comparison with Termination. Terminating the process
when using su has the same effective result as using the Un-
wind escape strategy with non-zero return value. We note
that other clients that use the PAM libraries may handle an
internal PAM error in different ways. Some clients may ter-
minate as a result of the error code returned by the authen-
tication module (as in the case of su), but in other cases, the
client may print an error message and continue interacting
with a user on other tasks.

Comparison with Manual Fix. We compared the Bolt
execution with the manually fixed PAM libraries version
1.1.3. The result of invoking the su command with the fixed
version was identical to the Unwind strategy with the non-
zero return value: su prints an error message to the screen
and terminates the execution.

A manual inspection of the code reveals that the function
expand arg is private to the PAM module, and all calls

to this function are wrapped by the internal error handler
that returns to the clients of the module one of the defined
error codes. Applying the Unwind strategy and running the
manually fixed version of PAM return the same error code
to clients.

Using the Unwind escape strategy with value 0 presents
an alternative fix for this computation—the environment
variable that causes the infinite loop can be truncated or
discarded, and PAM can log a warning message and still
start the new shell.

6. Related Work
Infinite Loop Detection. Researchers have developed
several techniques that use symbolic program execution to
detect infinite loops [22, 28]. Unlike Bolt, these techniques
require the source code of an application and do not pro-
vide the user with the option to escape an infinite loop and
continue the application’s execution. Researchers have also
developed techniques for program debugging and verifica-
tion that ensure that a program does not contain any infinite
loops [19, 20, 25, 26, 49].

Jolt. Our previous work on Jolt [24] was the first to show
that a simple, lightweight technique for dynamically detect-
ing and exiting infinite loops at runtime could enable ap-
plications with infinite loops to produce acceptable outputs.
Jolt used a compiler to insert instrumentation into the pro-
gram. It therefore required access to source code, a build
environment, and ahead of time planning for infinite loop
detection and escape before executing the application. The
inserted Jolt instrumentation also imposed a 2%-10% over-
head in standard production use. Bolt, in contrast, is fully
dynamic and operates directly on stripped binaries with no
need for recompilation, no access to source, an on-demand
usage model, and no overhead in production use. Bolt also
handles multithreaded applications and can detect infinite
loops in which the loop state repeats only after multiple iter-
ations of the loop. Because Bolt operates on binaries, it can
detect and escape infinite loops that appear in any part of the
application, including loops that appear in external libraries,
which may not be available for recompilation.

Program Repair. Nguyen and Rinard have previously de-
ployed an infinite loop escape algorithm that is designed to
eliminate infinite loops in programs that use cyclic mem-
ory allocation to eliminate memory leaks [38]. The proposed
technique bounds the number of iterations of all loops in a
program. The bounds are determined empirically by observ-



ing the execution of the program on representative inputs. In
comparison to Bolt, Nguyen and Rinard’s technique is com-
pletely automated, but may also escape loops that would oth-
erwise terminate.

Like Bolt, ClearView [39] is designed to repair errors
in potentially stripped binaries. ClearView, however, targets
a different class of errors—specifically, errors that violate
learned invariants. ClearView is also designed to operate
without user interaction—it relies on a set of pluggable error
detectors to determine when the application is executing
incorrectly. Bolt, in contrast, relies on the user to determine
when the application has become unresponsive (although
it would be straightforward to extend Bolt to trigger its
loop detection and escape mechanisms based on a timeout).
Finally, ClearView uses a community approach—it learns
from past experience to favor repairs that have succeeded
in the past.

Failure-Oblivious Computing [43] enables applications to
dynamically identify and recover from out-of-bounds mem-
ory reads and writes. If the application detects that it is about
to read or write an out-bounds-memory location, then it will
synthesize a value for the read or expand the bounds of the
allocated array to encompass the write. Unlike Bolt, the cur-
rently implemented version of Failure-Oblivious Computing
uses a compiler to insert checks and therefore requires ac-
cess to the source code of the application. Like Bolt, Failure-
Oblivious computation enables applications to survive other-
wise fatal errors. The two techniques are potentially syner-
gistic in that they may, together, enable applications to sur-
vive combinations of errors that either technique would be
unable to handle separately.

The Rx system [40] takes periodic checkpoints of the pro-
gram state. When a failure occurs, it 1) reverts the appli-
cation to the checkpoint, 2) makes semantically equivalent
changes to the application’s execution environment (e.g.,
adding padding to allocated buffers), and 3) restarts the ex-
ecution. Not that Rx does not attempt to change the appli-
cation’s semantics—it instead attempts to search the set of
existing executions to find one that does not have an error.
Like Rx, Bolt combines checkpoints with recovery actions.
But one critical difference between the two systems is that
escaping infinite loops changes (purposefully) the semantics
of the original application to eliminate a bug. Such an ap-
proach is inherently required to eliminate infinite loops (or,
for that matter, many other software errors).

Researchers have also proposed a number of techniques
that automatically repair applications by statically manipu-
lating their code (or scheduler in the case of deadlocks) [27,
30, 31, 33, 39, 46, 47, 50, 51]. These systems operate in
an off-line fashion: they first observe the program failure,
and only after do they generate repairs for future executions.
Therefore, these systems cannot be used to recover an out-
put from a failed application. Bolt differs in that it focuses
exclusively on infinite loops and allows applications to re-
cover even the first time they encounter the error.

Loop Perforation and Task Skipping. Infinite and long-
running loop escape can be viewed as a form of loop per-
foration [36, 37, 48, 53], which reduces the execution time
or energy consumption of an application by skipping itera-
tions of time-consuming loops. Task skipping obtains sim-
ilar benefits by skipping tasks in time-consuming computa-
tions [44, 45]. Like loop perforation and task skipping, the
goal of loop escape is to enable the application to produce
an acceptable result in an acceptable time frame (although
the reduction in execution time is larger for infinite loop es-
cape than for loop perforation). Both loop perforation and
infinite loop escape are forms of acceptability-oriented com-
puting [23, 42] in that they are both mechanisms that enable
applications to deliver acceptable results within an accept-
able time frame.

Unsynchronized Parallel Computing. Unsynchronized
updates to shared data can often be coded so that the net
result of any resulting data races is simply dropping one or
more updates (which ensures that the updated data structures
still satisfy key data structure consistency properties) [41]. It
is possible to apply this principle to obtain parallelizing com-
pilers that produce parallel programs with data races [35].
Despite the presence of these data races, the automatically
generated parallel code produces accurate enough results of-
ten enough to be acceptable. Like infinite loop termination,
these techniques may improve a program by eliminating
computation.

7. Conclusion
Bolt enables users to escape infinite and long-running loops
in unresponsive applications so that the application can pro-
duce useful output or continue on to successfully process
additional inputs. Bolt operates directly on stripped x86 and
x64 binaries. It requires no access to source code, no recom-
pilation, imposes no overhead in standard production use,
works with multithreaded applications, implements multiple
loop escape strategies, and supports an on demand usage
model in which it attaches and detaches to and from running
applications. Our experimental results show that Bolt can
effectively enable applications to escape infinite and long-
running loops, produce useful output (in many cases the
same output as subsequent versions with the infinite loops
eliminated through developer fixes), and continue on to pro-
cess additional inputs and serve the needs of its users.
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