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Abstract 

Flow-enhanced nucleation of the crystal phase under shear and uniaxial extension for a 

monodisperse melt of n-pentacontahectane (C150H302, or C150) chains was studied by non-

equilibrium molecular dynamics (NEMD) simulation. The resulting acceleration in the crystal 

nucleation rate was correlated with macroscopically measurable properties of the flow field and 

with microscopic conformational statistics. Based on the fidelity of the observed correlations, 

several empirical models reported in the literature were evaluated for their abilities to account for 

the observed enhancement of the nucleation rate due to flow, and new models are proposed for 

data that do not comport with existing models. In agreement with prior reports, the nucleation 

rate was found to correlate well with first normal stress difference, the second invariant of the 

deviatoric conformation tensor, and the stretch ratio, albeit with some differences from the 

existing models. New models based on conformational invariants for Kuhn segments are 

proposed, and shown to describe the simulation data more accurately than those based on 

conformational behavior of entire chains. Within the applicability of the stress-optical rule, 

related models are proposed based on invariants of the extra stress tensor.  

 

Introduction 

 When a flow field is applied to a polymer melt, its constitutive chains may stretch and 

orient. For polymers that undergo crystallization, the extent to which stretching and orientation 

takes place has a dramatic effect on the rate at which crystallization occurs. It is often possible to 
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construct a rheological model for the effect of an applied flow field on chain conformations 

[1,2]. Similarly, if the kinetic rates associated with crystallization are known empirically, it is a 

relatively straightforward task to determine the evolution of crystalline morphology in a material 

[3,4]. It is not straightforward, however, to determine how changes in chain conformations 

influence crystallization rates, or how the development of a multi-phase structure affects the 

evolution of chain conformations under flow. Understanding these two relationships is the most 

challenging hurdle that researchers face when developing models for flow-induced 

crystallization (FIC). 

In this work, we consider the early stage of the crystallization process during flow, 

sometimes referred to as flow-enhanced nucleation (FEN). In this regime, it suffices to consider 

only how the response of the melt to the flow field affects the rate of crystal nucleation. There 

have been a number of investigations into this topic, typically involving a combination of 

experiments and modeling [5,6]. It has been suggested that the nucleation rate depends variously 

on strain rate [7,8], stress response [9–11], chain conformations [12–14],  and flow-induced free 

energy [15]. In the Appendix, an index is provided of the FEN models referenced in this study, 

organized by these four classes. The reason for the quantity and variety of these relationships lies 

in the difficulty associated with performing experiments to discriminate among them. Nucleation 

occurs at a small spatiotemporal scale, making it difficult to measure its rate directly [16]. This is 

especially true for the accelerated rates associated with strong flow fields. Additionally, it is not 

straightforward to measure all aspects of the response of a material to flow, often requiring 

researchers to rely on rheological models.  

Molecular simulation, on the other hand, does not suffer from these difficulties. It is 

possible to observe nucleation directly and to measure accurately its rate [17–19]. Furthermore, 

there is no ambiguity in measuring the response to the flow field, given the complete 

configurational and energetic description that molecular models provide. These qualities have 

inspired a number of molecular simulation studies of flow-induced crystallization [6,20], 

although relatively few that focused on nucleation kinetics [14,21,22]. Of these, only the coarse-

grained kinetic Monte Carlo study by Graham and Olmsted [14] was undertaken with the 

objective of drawing correlations between the nucleation rate and the response of a polymer to an 

applied flow field. 



3 
 

In this study, we use the non-equilibrium molecular dynamics (NEMD) method to 

observe nucleation and compute its rate under various conditions of flow field and strain rate. 

Factors that characterize the response of the melt to the applied flow field are drawn from the 

literature or formulated a priori, and their correlations with the nucleation rate evaluated and 

compared critically, given the resulting data for molecular conformations, field strengths and 

clustering kinetics. In this way, the better models and their associated physical interpretations 

can be validated to some extent, and new models can be proposed when existing models are 

found to be inadequate. We believe that these results may serve to guide future efforts to 

construct crystallization models that bridge the gap between melt rheology and crystallization 

kinetics.  

Methods 

 The simulations were performed with a monodisperse melt composed of 100 linear n-

pentacontahectane (C150H302, or C150) chains. This chain length was chosen because it is 

approximately twice the segment length of 60–90 carbons [23–26] between entanglements in 

polyethylene; it reflects a trade-off between chain length and simulation time.  The n-alkane 

chains were modeled using a realistic united atom (UA) representation for each CH2 or CH3 

group. The force field used was initially proposed by Paul et al. [27], and includes subsequent 

modifications from Waheed et al. [28,29]. It includes terms for bond stretching, angle bending, 

torsion, and non-bonded Lennard-Jones interactions. The functional forms and parameters for 

these terms are reproduced in Table S1 of the Supplementary Material. 

Simulations under steady-state shear and uniaxial extension were performed by 

integrating the SLLOD equations of motion [30] and applying the appropriate boundary 

condition for the type of flow field. For shear flow, the Lagrangian Rhomboid boundary 

condition [31] was used, which has been shown to be equivalent to the Lee-Edwards sliding 

brick condition [32,33]. For uniaxial extension, the boundary condition from Dobson [34] was 

used, along with numerical lattice reduction as proposed by Hunt [35]. All simulations were 

carried out in LAMMPS [36]. The implementation of the Hunt-Dobson boundary conditions 

from the USER-UEF package [22] was used for the extensional flow fields. For both types of 

boundary conditions the initial simulation box, H0, was cubic, with an average side length of 7.5 

nm (density r = 0.83 g/cc) at T = 440 K. In shear, H0 is coaxial with the coordinate frame of the 
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applied shear. In extension, H0 is rotated with respect to the coordinate frame of the applied flow 

field according to the condition identified by Dobson [34]. A constant true strain is applied 

according to the rate-of-deformation tensor ∇u, leading to a simulation box that evolves with 

times as H(t) = H0·exp(∇u t). As the simulation proceeds, the simulation box becomes elongated, 

requiring regular remapping to equivalent simulation boxes that are less elongated, through a 

lattice reduction method. Additional details about this procedure can be found in Hunt [35], 

Dobson [34] and Nicholson and Rutledge [22]. 

The external pressure, Pext, was set to 1 atm through a constant stress condition applied in 

directions corresponding to free surfaces in laboratory flows. For shear, the vorticity direction 

corresponds to a free surface. For uniaxial extension, the two compression directions correspond 

to free surfaces. The stress condition was achieved by scaling the simulation box isotropically in 

order to control the average stress in all free surface directions to Pext. Under this scheme, the 

total strain applied to the simulation box has a volume-preserving contribution from the applied 

flow field and a non-volume-preserving contribution due to the stress condition. Under steady-

state flow, where the average density is not changing, the non-volume-preserving contribution to 

the strain will fluctuate around an average value. In this case, the average strain rate associated 

with the pressure control scheme averages out to zero, leaving only the volume-preserving 

contribution to the strain rate from the applied flow field. All simulations were performed using 

the LAMMPS implementation of the Nose-Hoover thermostat and barostat, with time constants 

of 0.4 ps and 4 ps, respectively. The equations of motion were integrated using an rRESPA [37] 

scheme with a 2 fs time step for bonded interactions and a 4 fs time step for nonbonded 

interactions. 

 In order to simulate nucleation under steady-state flow, an 840 ns equilibration trajectory 

was first performed at 440 K under constant strain rate for each flow condition. From the last 750 

ns of each equilibration trajectory, 25 snapshots were selected in increments of 30 ns to serve as 

initial conditions for nucleation runs. This time increment is roughly equal to the Rouse time tR 

of the C150 melt at 440 K, thus ensuring that starting configurations for nucleation runs are 

essentially independent. Nucleation runs were performed by quenching the temperature to 280 K, 

while simultaneously reducing the strain rate  in a manner such that the Weissenberg number, 

, remained constant through the quench. This procedure was chosen in order to reduce 

!γ

Wi Rgt= !
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the transient adjustment of the melt to the quench temperature during the nucleation runs. The 

Rouse times at the equilibration and crystallization temperatures were obtained from the  vs. 

1/T data reported in Fig. 2a (inset) of Yi and Rutledge [38] by interpolation between the two 

nearest temperature points. At 280 K,  = 340 ns, and at 440 K,   = 26 ns. The 

crystallization temperature corresponds to 29% supercooling, based on the experimental melting 

temperature of C150, Tm = 396.4 [39]. This supercooling is deep relative to typical experimental 

values, but is necessary to observe nucleation at slow strain rates that approach the quiescent 

condition. At this supercooling, the quiescent critical nucleus size is small compared to the 

entanglement length [38], and an applied flow field further reduces the size of the nucleus [22]. 

For shallower supercooling and weak flow conditions, the critical nucleus size is expected to be 

larger, and may approach the entanglement length, at which point there may be an additional 

effect associated with the onset of entanglement dynamics in nucleation, as discussed by Yi and 

Rutledge [38]; by using deep supercooling, this effect was avoided in our simulations. 

 As nucleation proceeded, crystalline clusters were identified based on nematic order 

using a method outlined in a previous study [22], based in turn on the one proposed by Yi and 

Rutledge [40]. In the current study, the threshold value for the local nematic order was set to P2,tr 

= 0.7, compared to P2,tr = 0.52 used in the prior study of n-eicosane (C20) [22].  The larger value 

was necessary to discriminate crystalline UAs from noncrystalline ones in flow, due to the high 

level of local orientational order already exhibited by C150 in the melt state for the range of 

strain rates under study. From the results of the clustering method, the transient evolution of the 

largest cluster nlargest(t) was computed for each crystallization run and used to compute the first-

passage time for the largest cluster .  Nucleation rates were 

computed using the analysis method originally proposed by Shneidman [17], wherein it is 

assumed that Tlargest(n) obeys a shifted exponential distribution. From a set of crystallization runs, 

the standard deviation of Tlargest(n), , was computed.  is constant at large 

values of n, even as the mean of the distribution  is increased due to transients and post-

critical cluster growth. The nucleation rate can then be computed from , where V 

Rt

Rt Rt
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is the volume of the simulation box and . Additional details about 

this procedure can be found in Shneidman [17] and Nicholson and Rutledge [22].  

 

Results and discussion 

In this section, we report assessments of FEN models listed in the Appendix. 

Experimental procedures and additional features of the models such as growth rates, saturation 

effects, and rheological models are not discussed. For a more detailed overview of these features, 

we direct readers to reviews by Peters et al. [5] and Graham [6] . In some cases, the models 

invoke a constant nucleation density, Nq, for the quiescent melt (typical of heterogeneous 

nucleation), rather than a constant nucleation rate IS,q (typical of homogeneous nucleation). In 

this analysis, we focus exclusively on homogeneous nucleation, as prescribed by the simulations, 

with constant Is,q. Quantities that are referred to as constants in this section are independent of the 

applied flow field, but may depend on other conditions such as the temperature and 

hydrodynamic pressure. In each model IS,q appears as one such constant.  

In order to evaluate FEN models from the literature, averages of relevant properties of the 

melts, such as stresses and configurational metrics, are taken from the equilibration runs for each 

flow condition at 440 K. Each crystallization run takes place at the same Wi as its associated 

equilibration run, so that configurational metrics and their contributions to the stress are 

minimally affected by the change in temperature; across all flow conditions, the average end-to-

end distance over the first 5 ns of the crystallization runs is within 5% of the average value from 

the equilibration run. The correlation of relevant melt properties with the nucleation rate is 

evaluated and, where good correlation is observed, fits are performed to model expressions. Due 

to the large range over which the nucleation rate varies, non-linear least squares fits were 

performed to the logarithm of the nucleation rate. The quality of fit associated with a given 

expression is reported using the sum of log residuals, henceforth referred to as residual, which is 

the objective function of the fit.  

 

 

plateau largest 150 300
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Assessment of strain rate-based FEN models 

 For the purpose of comparing results under shear and extension, the strain rate is defined 

as , where the strain rate tensor is given by , and  

is the second invariant of tensor A. Employing this definition, a melt under flow has the same 

isothermal rate of energy dissipation at a given value of , or equivalently Wi, under both shear 

and extension in the Newtonian limit [30]. The dependence of the nucleation rate on Wi is shown 

for the monodisperse melt in Fig. 1. When the melt is subjected to strain rates with Wi < 1, IS is 

observed to correlate well with Wi. This result suggests that, in the absence of viscoelastic 

effects, the acceleration of the nucleation rate depends on the flow-induced rate of energy 

dissipation. For strain rates corresponding to Wi > 1, the nucleation rates for the monodisperse 

melt under shear and extension diverge, with a more rapid acceleration observed for extensional 

flow.  

Several FEN models depend only on the evolution of the macroscopic geometry of the 

melt as prescribed by . The model from Liedauer et al. [7], and used also by Isayev et al. 

[41,42], has a quadratic dependence of IS on the strain rate, 

  , (1) 

where aL is a constant pre-factor. Under steady-state flow, the model from Guo et al. [8] also 

depends only on  according to, 

  , (2) 

where ,  and  are constants. The divergence between extension and shear, observed in 

Fig. 1, implies that the strain rate alone is not a sufficient factor for correlating nucleation 

kinetics with an applied flow field in the viscoelastic regime, where Wi > 1. Relationships for the 

nucleation rate that do not include this viscoelastic response, including Eqs. (1) and (2), 

consequently fail to describe the results analyzed herein.  
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Figure 1 The NEMD nucleation rate as a function of the Weissenberg number for the C150 melt. 

The standard error in the nucleation rate was computed using the jackknife resampling technique.   

 

Assessment of stress-based FEN models 

Polymer chains respond to strong flows by stretching and orienting. At the macroscopic 

scale, stretch and orientation manifest themselves as anisotropy of the stress tensor. Following 

this line of thought, some researchers have constructed FEN models based on the development of 

stresses under flow. Using arguments from classical nucleation theory, Ziabicki [9] derived a 

flow-enhanced nucleation rate based on the first-normal stress difference, N1 = σxx – σyy, where x 

is the flow direction and y is the gradient direction in shear or the radial compression direction in 

extension: 

  . (3) 

In this expression, θZ1 is a constant. The model from Koscher and Fulchiron [10] also relates the 

FEN contribution to N1, but with a linear dependence, 

 , (4) 

where θKF is a constant. Using the Irving-Kirkwood formula for the stress tensor [43],  the 

NEMD dependence of IS on N1 is shown in Fig. 2a along with fitted curves to Eqs. (3) and (4). It 

appears that the  dependence of Eq. (3) is too strong to model accurately the NEMD 

( )2, 1 1expS S q ZI I Nq=

, 1S S q KFI I Nq= +

2
1N
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data, whereas the  dependence of Eq. (4) is too weak. In Fig. 2, we also include a new 

model expression, 

 , (5) 

where θM1 is a fitting parameter. Of the three models shown, Eq. (5) is the most consistent with 

the trend of the data. This consistency is corroborated by the residuals for the different models, 

which are shown in the Appendix along with the fitting parameters. 

In Eq. (5), the inverse of the fitting parameter,  = 3.92 MPa, can be considered as a 

critical first-normal stress difference for the onset of flow-enhanced nucleation. The quiescent 

C150 nucleation rate, IS,q = 47.4×1030 m-3s-1, is roughly three times as large as the value reported 

by Yi and Rutledge [38], IS,q = 14.7 ×1030 m-3s-1, and roughly seven times as large as the value 

reported by Anwar et al. [21], 7.2 ×1030 m-3s-1. We attribute the small nucleation rates obtained 

in the previous studies to the overly large time steps used. Yi and Rutledge used a time step of 5 

fs and Anwar et al. used a timestep of 5.26 fs, both of which are less accurate than the rRESPA 

scheme used in this study. In our previous study on C20 [19], we similarly observed that larger 

nucleation rates were obtained when the more accurate integration scheme was used. 

Additionally, use of the NVT ensemble by Anwar et al. may account for the lower nucleation 

rate observed there, compared to the NPT ensemble used by Yi and Rutledge and in this study, 

due to the extra dilatational stresses that accompany the changes of density associated with 

nucleation. 

Another stress-based FEN relationship was introduced in the microstructural model for 

flow-induced crystallization by Doufas et al. [11], and used in subsequent studies by Doufas and 

co-workers [44–47]. This model is based on the trace of the extra stress tensor τ = σ – PextI, 

where Pext = 1 atm is the stress applied by the barostat in directions corresponding to free 

surfaces. Unlike N1, the trace of τ is frame invariant and thus independent of the flow kinematics 

[11]. The model expression for the FEN rate is, 

 , (6) 

1SI Nµ

, 1 1exp( )S S q MI I Nq=

1
1Mq

-

( ), exp tr( )S S q DI I q= τ
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where θD is a constant. The dependence of IS on tr(τ) for the NEMD results is shown in Fig. (2b). 

As was the case with Wi, the dependencies of IS under shear and extension are non-overlapping, 

implying that Eq. (6) is not consistent with this study.  
  

 

Figure 2  The NEMD nucleation rate as a function of (a) the first normal stress difference, and 

(b) the trace of the extra stress tensor. The curves correspond to fits to different FEN models; 

fitting results are shown in the Appendix. 

 

 Assessment of conformation-based FEN models 

A number of FEN models have been constructed based on a presumed dependence of the 

nucleation rate on chain conformations. In the recoverable strain model introduced by Zuidema 

et al. [12], and used in subsequent studies by Peters and co-workers [48–50], the nucleation rate 

due to flow is related to the second invariant of the deviatoric elastic finger tensor,   for a e
dB
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representative mode in a multimode rheological model. For a given mode, the elastic finger 

tensor is proportional to the average conformation tensor, , for the associated 

chain segment length [51,52], where R  is the end-to-end segment vector and R0 is its 

equilibrium length. In terms of the conformation tensor, the flow-enhanced nucleation rate for 

this model is, 

 , (7) 

where θZ2 is a constant. Taking the slowest Rouse mode for the chain as the representative mode 

for the C150 melt (i.e., R is the end-to-end distance for the entire chain), the dependence of IS on 

the second invariant of the deviatoric conformation tensor is shown in Fig. 3a. The fit to Eq. (7) 

is shown also in Fig. 3a, and the fitting results are given in the Appendix. The FEN effect 

correlates well with the invariant quantity, and the correlation is described well by the form of 

Eq. (7). Based on the residual, the fit is similar in quality to Eq. (5) and yields a comparable 

value for IS,q.  

For a given segment length, the conformation tensor can be decomposed into 

contributions due to the stretch ratio, , and the orientation tensor , according to, 

. The orientation tensor is related to the nematic order tensor, P2, by, P2 = 1/2 (3S–I). 

Eq. (7) can be rewritten [5] in terms of the contributions from λ and P2, as follows: 

 . (8) 

In the model introduced by Steenbakkers et al. [13], and used in various studies by Peters and co-

workers [51,53–55], the enhancement of nucleation due to flow was ascribed solely to the 

dependence on stretching, rather than the combination of stretching and orientation that is 

implicit in Eq. (7), and explicit in Eq. (8). The expression of Steenbakkers et al. was, 

 , (9) 

where θS is a constant pre-factor. Steenbakkers and Peters [51] found that Eq. (9) provided a 

better description of their experimental data than an expression in which the enhancement in 

2
0/ R=C RR

, 2 2
tr( )
3S S q ZI I Jq æ ö= + -ç ÷

è ø
CC I

( )trl = C S

2

l=C S

( )4
, 2 2 2
4
9S S q ZI I Jq l= + P

4
, ( 1)S S q SI I q l= + -



12 
 

nucleation rate due to flow was assumed to be proportional to the orientation contribution, J2(P2). 

This observation was taken as an indication that the success of prior studies using Eq. (7), or 

equivalently Eq. (8), was due to the stretch ratio contribution. Using kinetic Monte Carlo 

simulation, Graham and Olmsted [14] corroborated the use of Eq. (9) for stretch ratios less than 

3.5, and found that an exponential expression was consistent with their data over a wider range 

of strain rates, 

 , (10) 

where θGO is a constant pre-factor. Moreover, using a modified Giesekus model for the melt 

component in blown film simulations, Doufas [47] observed a correlation between the trace of 

the dimensionless extra stress tensor, used in Eq. (6), and the argument based on stretch ratio in 

Eq. (10), suggesting that the two equations capture the same physics, at least for that model. 

 Again using the end-to-end distance of the entire C150 chain as the representative 

segment length, the NEMD dependence of IS on λ is shown in Fig. 3b along with fits to Eqs. (9) 

and (10). The nucleation rate is found to correlate well with the stretch ratio, and Eq. (9) is found 

to model the trend well. Eq. (10), on the other hand, is not a good fit for the NEMD results. This 

observation is corroborated by the residuals, which are shown in the Appendix along with fitted 

parameters for each model. Based on its residual, the fit to Eq. (9) is of similar quality to fits for 

Eqs. (5) and (7), and its value for IS,q is comparable to the values obtained from those two 

models.   

 The results of this section are surprising, given that Eq. (9) was originally developed as 

an improvement [56] upon Eq.(7), and Eq. (10) was previously reported to be a more accurate 

[14] expression than Eq. (9).  By contrast, we find that Eqs. (7) and (9) perform similarly well, 

and Eq. (10) performs poorly for our NEMD data.  In Fig. 3b, the NEMD data indicate a 

dependence of log (IS) on λ that is clearly concave, while Eq. (10) implies a dependence that is 

convex for all l. A closer look at Eq. (9) reveals that convexity of log (IS) versus λ depends on 

the parameter values. When IS,q/θS < 4/3, log (IS) is concave for all λ. When IS,q/θS > 4/3, log (IS) 

is convex for λ < λc and concave for λ > λc, where . For the NEMD data, 

IS,q/θS = 0.31 < 4/3, whereas the extraction of parameters from the master curve reported by 

( )2
, exp 1S S q GOI I q lé ù= -ë û

( ) 1/4

,3 1c S q SIl qé ù= -ë û
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Graham and Olmsted [14] yields the value IS,q/θS = 14 > 4/3.  Within the framework of Eq. (9), 

this analysis indicates that the strength of the flow-enhancement effect, as quantified by the value 

of θS relative to IS,q, is responsible for the different logarithmic convexities of IS between the two 

studies. Furthermore, the similarity between Eqs. (9) and (10) at small values of λ reported by 

Graham and Olmsted is only valid for certain parameterizations of Eq. (9).  

The reason behind this incongruity is unclear, but we suspect that it may be attributable to 

the comparatively short chains used in this NEMD study. Graham and Olmsted [14] modeled 

chains with entanglement strands of length NK = 100 Kuhn segments, whereas the model 

employed here is atomistic in resolution but with a length of only 150 carbons (about NK = 12–13  

Kuhn segments). Assuming Gaussian statistics in the absence of flow, full extension corresponds 

to a stretch ratio of . In Graham and Olmsted’s study, λ = 10 would correspond to full 

extension of entanglement strands, whereas λ ≈ 3.5 corresponds to full extension of chains in this 

study. Despite the similar range in λ explored in the two studies, the NEMD chains are more 

closely approaching full extension. We postulate that the logarithmic concavity observed in Fig. 

3 is a consequence of finite extensibility. Our expectation is that as chains become severely 

stretched, the nucleation rate will saturate, implying a concave dependence of IS on λ for values 

of λ that approach full extension.   

KN



14 
 

 

Figure 3 The NEMD nucleation rate as a function of (a) the second invariant of the deviatoric 

conformation tensor, and (b) the stretch ratio. The curves correspond to fits to different FEN 

models, with fitting results shown in the Appendix. 

 

Assessment of free energy FEN models 

 When a melt is subjected to flow, it undergoes an increase in free energy, ΔGf, due to 

chain stretching and orientation, which in turn increases the thermodynamic driving force for 

crystallization, DG = DGq + DGf, where DGq is the difference in free energy between melt and 

crystal in the absence of flow. If these free energies can be estimated, then the increase in 

isothermal steady state nucleation rate due to flow can be estimated within the framework of 

nucleation theory. This approach was used by McHugh [57,58] in early studies of FIC in 

solution. Using a nucleation expression from Ziabicki [59], the FEN rate takes the form  
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  , (11) 

where K is a constant and n = 1 or 2 for secondary or primary nucleation, respectively.  This 

approach was taken by Coppola et al. [15], who used the Doi-Edwards model to estimate DGf as 

a function of flow conditions. This approach has been used, with modification in some cases, in a 

number of other studies [60–63]. In a kinetic Monte Carlo study, Jolley and Graham [64] 

included a contribution from the change in elastic free energy arising from the reduction in 

entropy for a chain segment stretched in flow, from which they obtained semi-analytic results for 

the enhancement factor, IS/IS,q.    

Estimates of DGq and DGf directly from molecular simulations require thermodynamic 

integration, such as that reported previously by Bernardin [65], using a semi-grand canonical 

Monte Carlo (SGMC) simulation to obtain the reversible (i.e. lower bound) work of orientation 

for chains of length C24 to C400 at 450 K.  Such integrations were not conducted in the NEMD 

simulations performed here, but a rough evaluation of Eq. (11) is performed based on the 

relationship shown in Fig. 11 of [65], which exhibits a quadratic dependence of DGf  on the 

orientational order parameter for chord vectors P2,C. Chord vectors are chain segments that are 3 

UAs long, and P2,C is the largest eigenvalue of the nematic order tensor for chord vectors, P2,C. 

Under the assumption that this quadratic relationship is temperature-independent, DGf can be 

replaced with  in Eq. (11), where μ is a constant. For DGq, we use the value for DH = 467 

±17 kJ/mol for C150, reported by Yi et al. [38] and the usual relation,  = 137 

kJ/mol, valid for shallow undercooling.  Inserting these relationships into the primary nucleation 

(n = 2) form of Eq. (11) yields the following expression,   

 . (12) 

The NEMD data for IS versus  is shown in Fig. 4, along with the best fit to Eq. (12); the 

resulting parameter values and residual of the fit are given in the Appendix. The values of DGf 

obtained from fitting, shown as the top axis in Fig. 4, are two orders of magnitude larger than the 
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values obtained by Bernardin at Rutledge [65]. Based on the large residual, Eq. (12) apparently 

does not describe the NEMD data well.  

  

Figure 4 The NEMD nucleation rate as a function of the square of the nematic order parameter 

for chord vectors . The solid line corresponds to a fit to Eq. (12) with fitting results shown in 

the Appendix. The flow-induced free energy resulting from the fit was is shown as the top axis. 

Based on this axis, the fitted curve corresponds to Eq. (11) with n = 2. 

 

New FEN models based on Kuhn segments 

 During flow, stretching takes place over a range of length scales that correspond to 

different relaxation modes. In the conformation-based FEN models discussed thus far [12–14], 

the enhancement in nucleation rate due to flow is associated with stretching and orientation on 

the entanglement length scale. The flow-induced deformation of an entanglement strand involves 

the reorientation of its constitutive Kuhn segments [66]. Theoretical studies have established 

relationships between chain deformation and Kuhn segment orientation [67,68]. From a kinetic 

perspective, it is reasonable to consider that nucleation occurs more readily when Kuhn segments 

are already co-aligned in the melt, due to flow for example. Following this line of reasoning, we 

next examined the dependence of the flow-enhanced nucleation rate on Kuhn segment 

2
2,CP
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conformations, represented by the Kuhn segment conformation tensor, , 

where the subscript K is used to indicate explicitly that the Kuhn segment is the length scale 

used. For polyethylene, the Kuhn segment corresponds to 12 UAs, and the brackets denote an 

average over all segments that are 12 UAs long.  

The dependence of the flow-enhanced nucleation rate on the second invariant of the 

deviatoric conformation tensor, , is studied along with its separate 

contribution [5] due to orientation, J2(P2,K), where . These 

dependencies are shown in Figs. 5a and 5b. respectively. Due to the short segment length, the 

observed variation in λK is rather small (<6%), and may be ignored.  Each quantity shows good 

correlation with the nucleation rate; qualitatively, the correlations appear to be of higher fidelity 

than those shown in Figs. 1-4. The dependencies of IS on  and J2(P2,K) are 

similar, and are consistent with the following relationships, 

  , (13a) 

 , (13b) 

where θM2 and θM3 are constants. Based on Eq. (8), the similarity between Figs. 5a and 5b 

implies that it is the orientation of Kuhn segments induced by flow, rather than stretching of 

those segments (which as previously noted is quite minor), that accounts for the FEN effect. 

The fitting results for Eqs. (13a) and (13b), shown in the Appendix, indicate a higher 

quality of fit than those obtained using the previously discussed FEN models. The values  = 

0.0166 and  = 0.0298 can be interpreted as critical values for their respective second 

invariants corresponding to the onset of FEN. The values of IS,q agree reasonably well with 

values obtained from other models in this study. Under the condition of uniaxial symmetry about 

the primary axis of orientation, the quantity  that appears in Eq. (13b) is proportional 

to the Kuhn segment nematic order parameter, P2,K., which can be estimated by some rheological 

models and is accessible experimentally via the birefringence [68]. The dependence of IS on P2,K, 

2
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computed as the largest eigenvalue of P2,K, is shown in Fig. 5c. An exponential dependence is 

observed, corresponding to the relationship, 

 , (14) 

where θM4 is a constant. This observation suggests that the reorientation of Kuhn segments is 

approximately uniaxial about the largest principal axis of P2,K for both shear and extension. The 

fitting results are shown in the Appendix, wherein the quantity = 0.142 can be considered to 

be a critical value for P2,K demarcating the onset of FEN.  

  

( ), 4 2,expS S q M KI I Pq=

1
4Mq

-
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Figure 5 The NEMD nucleation rate as a function of (a) the second invariant of the deviatoric 

Kuhn segment conformation tensor, (b) the Kuhn segment nematic order tensor and (c) the Kuhn 

segment nematic order parameter. The curves correspond to fits to different FEN models, with 

fitting results in the Appendix. 
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Interestingly, a comparison of Eqs. (5) and (14) indicates that IS depends on the first 

normal stress difference, N1, in the same way that it depends on the Kuhn segment nematic order 

parameter P2,K, consistent with the stress-optical rule. Within the framework of the stress-optical 

rule [69], the extra stress tensor, τ, is coaxial with the nematic order parameter tensor P2,K. This 

coaxiality is demonstrated in Fig. 6a by a linear relationship between the largest principal extra 

stress, τ(1), and P2,K. The adherence of this model system to the stress-optical rule was also 

observed for various alkane chain lengths using SGMC by Bernardin and Rutledge [65]. Given 

that the correlations based on P2,K were found to be of higher fidelity than the stress models 

listed in the Appendix, the adherence to the stress-optical rule indicates promise for new FEN 

models based on the extra stress tensor. For systems that obey the stress optical rule, we expect 

that these models will prove to be useful in cases where the Kuhn segment orientation data are 

not available, but stress data are.  By substitution of τ for P2,K, in Eq. (13b), and τ(1) for τ in 

Eq.(14), we propose the following relationships, 

  , (15a) 

 , (15b) 

where θM5 and θM6 are constants. As is shown in Fig. 6, these relationships are consistent with the 

NEMD data, and the fitting results, shown in the Appendix indicate a higher quality of fit than 

the other stress-based models. 
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Figure 6 (a) The stress-optical rule, as indicated by the proportionality of the first principal extra 

stress and the Kuhn segment nematic order tensor. (b) The NEMD nucleation rate as a function 

of the second invariant of the extra stress. (c) The NEMD nucleation rate as a function of the first 

principal extra stress. The curves correspond to fits to different FEN models, with fitting results 

in the Appendix. 
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Summary and conclusions 

 Due to its fine spatiotemporal resolution and the capability to characterize completely the 

systems under study, NEMD is a useful technique for investigating the relationship between the 

response of a polymer material to an applied flow field and the resulting effect on nucleation 

kinetics. By selecting nucleation rate expressions from the literature and examining their 

consistency with the results obtained, the method offers insight into which forms are promising 

candidates for the construction of models for FEN kinetics. We demonstrate that accurate FEN 

models exist on both the macroscopic or microscopic scale.  For the majority of cases, only the 

quiescient nucleation rate and one empirical parameter are required to model nucleation kinetics 

under isothermal conditions. 

Based on our assessments, we find that flow conditions that lead to similar changes in 

chain conformations lead to similar nucleation rates. The unifying feature of the better FEN 

models is that the independent variable correlates with chain conformation, irrespective of flow. 

Of the FEN relationships taken from the literature, only the conformational models from 

Zuidema et al. [12] and Steenbakkers et al. [13] were found to be consistent with the simulation 

results. The nucleation rate correlated well with the first normal stress difference, but the 

dependence was exponential, rather than the functional forms proposed by Ziabicki [9] and 

Koscher and Fulchiron [10]. Our empirical approximation to the free energy model from 

Coppola et al. [15] was unsuccessful in capturing the trend of the data, and the strain rate-based 

models [7,8] were found to be fundamentally inconsistent with our results. 

An investigation of the correlation of Kuhn segment conformation with the rate of 

nucleation led to a new set of FEN models. These models were found to provide the most 

accurate fits to the NEMD data, suggesting that the degree to which Kuhn segments are oriented 

is the best measure among those studied for the acceleration in the nucleation rate due to flow. 

Given that Kuhn segment orientation can be computed for some rheological models and probed 

experimentally through melt birefringence, these models are promising candidates for future 

studies. In recognition of the fact that in some cases Kuhn segment orientation data is not readily 

available, the Kuhn segment relationships were transformed into expressions based on the extra 

stress tensor under the requirement that the stress-optical rule is in effect. For our results, the 

extra stress-based models were found to be more accurate than those based on the first normal 
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stress difference, but generally less accurate than the models based on Kuhn segment 

conformations. 

Supplementary material 

 The details of the force field used in this study are provided in the supplementary 

material.  
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Appendix Index of flow-enhanced nucleation rate models referenced in this work. 

Source Model 

Type 

Nucleation rate Parameters Residual 

[log (1030m-

3s-1)] 

Liedauer et 

al. [7]  

strain 

rate  
 - - 

Guo et al. [8] strain 

rate 
 

 
- - 

Ziabicki [9] stress 
 

 IS,q = 86.8×1030m-3s-1 

θZ1 = 0.0157 MPa-1 

1.58 

Koscher and 

Fulchiron 

[10] 

stress  IS,q = 23.9×1030m-3s-1 

θKF = 52.3 ×1030m-3s-

1MPa-1
 

5.24 

Doufas et al. 

[11] 

stress/ 

conf. 
 

 - - 

Zuidema et 

al. [12] 

conf. 

 
 

IS,q = 55.3×1030m-3s-1 

θZ2 = 239×1030m-3s-1 

0.603 

Steenbakkers 

et al. [13] 

conf. 
 

 IS,q = 42.3×1030 m-3s-1 

θS = 136×1030 m-3s-1 

0.618 

Graham and 

Olmsted [14] 

conf. 
 

 IS,q = 86.2×1030 m-3s-1 

θGO = 1.17 

2.62 

Coppola et al. 

[15] 

free 

energy 

 IS,q = 55.5×1030m-3s-1 

μ = 4.75 ×104 kJ mol-1 

K = 3.51 ×10-4 kJ2 K mol-2 

0.840 
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ΔGq = 137 kJ mol-1 

this study stress 
 

IS,q = 47.2×1030m-3s-1 

θM1 = 0.255 MPa-1
 

0.593 

this study conf. 
 
IS,q = 42.5×1030m-3s-1 

θM2 = 7.76 

0.222 

this study conf. 
 

IS,q = 38.5×1030 m-3s-1 

θM3 = 5.79 

0.191 

this study conf.  IS,q = 39.9×1030 m-3s-1 

θM4 = 7.02 

0.208 

this study stress 
 

IS,q = 39.3×1030m-3s-1 

θM5 = 0.275 MPa-1 

0.295 

this study stress  IS,q = 42.8×1030 m-3s-1 

θM6 = 0.271 MPa-1 

0.479 
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