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Abstract—To support various edge applications, a neural
network accelerator needs to achieve high flexibility and clas-
sification accuracy within a limited power budget. This paper
proposes a weight tuning algorithm to improve the energy
efficiency by lowering the switching activity. A flexible and
runtime-reconfigurable CNN accelerator is co-designed with the
algorithm and demonstrated with a feature extraction processor
on an FPGA. The system is fully self-contained for small CNNs
and speech keyword spotting is shown as an example. A fully
integrated custom ASIC is also being fabricated for this system.
Based on post place-and-route simulation of the ASIC, the weight
tuning algorithm reduces the energy consumption of weight
delivery and computation by 1.70x and 1.20x respectively with
little loss in accuracy.

I. INTRODUCTION

Smart edge devices that support efficient neural network
(NN) processing have recently gained public attention. With
algorithm development, previous work has proposed small-
footprint NNs achieving high performance in various medium
complexity tasks, e.g. speech keyword spotting (KWS), human
activity recognition (HAR), etc. Among them, convolutional
NNs (CNNs) perform well [1], which gives rise to the deploy-
ment of CNNs on edge devices. A hardware platform for edge
devices should be (1) flexible to support various NN structures
optimized for different applications; (2) energy efficient to
operate within the power budget; (3) achieving high accuracy
to minimize spurious triggering of power-hungry downstream
processing, since it is often part of a large system.

Both algorithms, such as quantization and model compres-
sion, and accelerator designs for energy efficient processing
of CNNs have been proposed. Quantization reduces the bit
precision. But some experiments show that quantizing NNs to
extremely low bitwidth, e.g. 1 bit, does not necessarily lead
to model size reduction, because the model structure needs to
be modified to retain the accuracy [2]. Model compression
algorithms focus on minimizing the model size with little
loss in accuracy. However, pruning-based algorithms mainly
need specialized hardware to exploit the resulting sparse
tensors for energy reduction. Previous work has proposed CNN
accelerators targeting edge computing. However, many of them
support limited flexibility for the NN shapes, are designed only
for a specific task or sacrifice the accuracy [3]-[5].

To address the challenges in flexibility, energy efficiency
and accuracy in CNN accelerator design, this work takes

an algorithm-and-hardware co-design approach. The key con-
tributions of this paper are highlighted as follows: (1) a
weight tuning algorithm that reduces the energy consumption
associated with weight delivery and computation by lowering
the toggle count of weight sequence; (2) the co-design of a
CNN accelerator that supports the proposed algorithm and
is flexible for a wide range of NN model structures; (3)
the demonstration of speech keyword spotting (KWS) as an
example on an FPGA and the design of a fully integrated ASIC
(being fabricated) with the proposed CNN accelerator and a
feature extraction processor’.

II. WEIGHT TUNING ALGORITHM

The weight tuning algorithm reduces the energy consump-
tion of the CNN accelerator with little loss in accuracy by
tuning the bit representation of weights. Fundamentally dif-
ferent from quantization and model compression algorithms,
the proposed algorithm is based on the theory that the dynamic
power of a CMOS gate is linearly proportional to its switching
activity, which is influenced by the toggle count (TC) of its
input sequence. In a NN accelerator, weights are read from the
memory, delivered through network-on-chip (NoC) and then
multiplied with input activations (IAs) following a sequence
set by the designer. The TC of this weight sequence affects the
switching activity of weight buses and the multipliers. And for
a memory that can do conditional pre-charge based on previ-
ously read data, e.g. [7], it also affects the pre-charge activity
of bit-lines. Therefore, minimizing the TC of weight sequence
can reduce the power consumption of those components. To
gain those benefits, we propose a weight tuning algorithm
that contains 3 sequential steps: (1) tensor decomposition with
retraining; (2) quantization and sign-magnitude representation;
(3) weight scaling and bit perturbation with retraining.

A. Tensor Decomposition (TD) with Retraining

TD with retraining [8] is a model compression method that
breaks a convolutional layer into 3 layers without activation
function in between and retrains to maintain accuracy as shown
in Fig. 1. The total parameters and computation of the resulting
layers are less than those of the original layer. Thus it is
favorable for reducing the energy per inference.

I'This unit was first designed by M. Price [6] and then modified by S.
Lauwereins from Prof. Marian Verhelst’s group at MICAS — KU Leuven.
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Fig. 1. An illustration of TD for CNN [8] and the shape parameters used in
this paper. The decomposed NN is then retrained as proposed in [8].
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Fig. 2. The flowchart of the bit perturbation algorithm. Relative error e =

ld‘dﬂi‘ , where d’ and d is the perturbed and original value respectively, of

weight is used to evaluate the deviation caused by bit perturbation.

B. Quantization and Sign-Magnitude (QSM) Representation

We then convert the model to 8 bit fixed-point numbers with
linear quantization as used in many NN accelerators. Instead
of 2’s complement (2C) format, we use sign-magnitude (SM)
representation of weights to reduce weight sequence TC [9],
[10]. The overhead of that is the implementation of adder.
Section III discusses in detail how we minimize the overhead.

C. Weight Scaling and Bit Perturbation (WSBP) with Retrain-
ing

The 4-D weight tensor of every layer is flattened to a 1-D
vector following the sequence that weights are read, delivered
and calculated in the NN accelerator. We sequentially apply
weight scaling and bit perturbation to it to further reduce the
TC and incorporate them with retraining to maintain accuracy.

1) Weight Scaling: Weight Scaling is to scale the weights
and biases uniformly in every layer to lower the TC of weight
sequence, which is inspired by the coefficient scaling for FIR

filters [11]. The scaling factor K of layer [ is determined by
K; = argming, ToggleCount (kW) k € (a,b),a > 0,
where W) is the weight tensor, ToggleCount is the function
to calculate the TC and a, b are the user defined bounds of K.
K is determined by an exhaustive search in the given range
with a predefined step size s. It can be applied to layers using
ReLU as the activation function without impact on the classi-
fication accuracy, given that ReLU (K;x;) = K;ReLU (x;).

2) Bit Perturbation: Inspired by the coefficient perturbation
for FIR filters proposed in [11], we apply the bit perturbation
to weight sequence as shown in Fig. 2 to reduce the TC. It
equally splits the weight vector D into n sub-vectors {D;}
and then replaces k LSBs of weights in every sub-vector Dj
with their average value. It loops through all possible n and &
searching for a bit tuned low-TC weight sequence with small
deviation from the original weights.

3) Retraining: Retraining is applied to restore the accuracy
loss caused by WSBP. The proposed QSM and WSBP are ap-
plied to the pretrained floating point NN as a wrapper function
of parameters in the forward pass. During back-propagation,
the straight-through estimator (STE) [12] is adopted, which
passes the gradients through the wrapper function as-is.

ITI. SYSTEM ARCHITECTURE

As shown in Fig. 3, we implemented a standalone system
with 80kB model parameter memory and 1kB configuration
buffer for storage and configuration of the entire NN with up
to 12 layers during the setup phase. All the data buffering is
done on-chip using a 2kB circular input buffer and a 48kB
activation memory without the need of off-chip DRAM.

The processing element (PE) array level dataflow is shown
in line 4 — 8 of Fig. 4. The PE array is logically treated
as having C1 columns and M1 rows as shown in line 7-
8. Reconfigurable NoCs are used to support that flexibility
with NoC controller adopted from Eyeriss [13]. Following
this logical mapping, weights are unicast to PEs, and thus
tree-structured NoC with a depth of 2 as shown in Fig. 3 is
used for weight delivery. The ID of every controller at each
level is unique and fixed. Activations are multicast across
multiple logical rows. To support that, only level 0 NoC
controllers are used. Their IDs, determined by M1s and C1,
are configured at runtime before the execution of every layer.
The delivery of bias, partial sum and output activations are
similar except that not every PE needs data. Thus the unused
controllers and FIFOs can be gated. Different from Eyeriss
which implements row stationary (RS) dataflow, the proposed
design follows weight stationary (WS) dataflow in the PE
array level considering that 1 x 1 or 1 X x convolutional
layers resulting from TD take up a large part of the CNNs.
Fully-connected layers can be organized as a special case of
convolutional layers where W =R, H=S,E=1,F =1

The PE level dataflow is shown in line 9 — 10 of Fig. 4 and
the PE structure is illustrated in Fig. 5. PE has local storage to
hold M0 x CO weights and C0 IAs to achieve temporal reuse
of £/ x F' and MO times respectively as shown in line 6 and 9
of Fig. 4. M0 and C0 are runtime configurable to balance the
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Fig. 3. System architecture of the NN accelerator and the micro-architecture
of the NoC controller.

workload between PEs given layer shapes. All PEs are chained
in a sequence for the inter-PE partial sum delivery as shown in
Fig. 3. That supports spatial sum with flexible configuration of
logical rows and columns, since partial sums can be spatially
accumulated across an arbitrary number of PEs.

As discussed in Section II-B, weights are represented in SM
format to reduce TC. Exploiting the fixed calculation pattern in
CNN, we implement a mixed-representation datapath. Weights
and IAs are multiplied in SM format using an unsigned
multiplier and an XOR gate that generates the sign bit. An
adder-subtractor is used to convert the SM product to 2C
representation with the sign bit of the product as the carry
bit, and do accumulation. The 2C outputs are delivered to
other PEs for spatial sum or buffered in memory for temporal
accumulation to generate the output activations. Only after all
the computation of this layer is finished, do we need to convert
them back to SM format for the next layer. Thus the energy
overhead of the conversion is mitigated.

IV. IMPLEMENTATION RESULTS

The CNN accelerator with a feature extraction processor
is implemented on Xilinx XC7K410T. The CNN accelerator
operates at S0MHz and consumes 68mW based on Vivado
power estimation. The FPGA demo for the KWS task and the
post place-and-route (P&R) resource utilization is shown in
Fig. 6.

The proposed system is also being fabricated using TSMC
40nm LP process with a core area of 2.16 mm?. Based on
the ASIC design, we evaluate the weight tuning algorithm
on several CNNs designed for KWS on speech command
dataset [14], including CNNs under 80kB (referred to as
CNN&80) and 200kB memory constraints in [1] and the fstride-
4 model in [15]. TD with retraining is applied to most layers
except ones that largely impact the accuracy, e.g. the last
layer. The resulting models in 2C format serve as the baseline.
QSM and WSBP with retraining is applied to the decomposed
layers with a step size s of 0.05, the scaling factor bounds
a=0.8,0=1.8, emnes = 0.15 and n,,4, equal to half of the

1) int i[C][WI][H]; // Input activations, C = C1*C0 <= 256
2) int w[M][C][RI[S]; // Filter weights, M = M1t*M1s*MO <= 256
3) int o[M][E][F]; // Output activations, E¥F*M <= 48k

// PE array level -- temporal

4) for (r1=0; r1<R; ri++) { for (s1=0; s1<S; s1++) {
5) for (m1t=0; m1t<M1t; mit++) { // R*S*M1t <= 2116
6) for (e1=0; e1<E; el++) { for (f1=0; f1<F; f1++) {

// PE array level -- spatial
7) parallel_for (c1=0; c1<C1; c1++) {
8) parallel_for (m1s=0; m1s<M1s; m1s++){ // C1 * M1s <= 64

// PE level -- temporal
9) for (m0=0; mO<MO; mO++) { // MO =1{0, 1, 2, 3}
10) for (c0=0; c0<CO; cO++) { // CO={3,4}
11) c=c0 +c1*Co;
12) m =m0 + m1s*MO0 + m1t*MOM1s;
13) r=rl;s=sl;e=el;f="f1;
14) w=U*l+r;h=V*1+s; //U,V:filter stride in width and height
15) o[m][e][f] +=i[c][w][h] * w[m][c][r][s]; // U,V <= 1024
b}
Fig. 4. The dataflow illustrated by loop nests. The tensor dimension

parameters are illustrated in Fig. 1. Bias is ignored for simplicity and batch
size = 1 for real-time application. For the first layer, where C' = 1, we replace
C with R and remove the original R loop to increase the PE array utilization.
The read, delivery and computation sequence of weight is as shown. PEs are
filled up with weights in sequence. The limits on supported NN shapes are
annotated.
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vector length. It reduces weight sequence TC by 1.79x-2.56x
with less than 0.75% accuracy loss on the testing set for those
cases. As shown in Fig. 7, the Hamming distance between
successive weights are reduced. To analyze energy reduction,
we implement a baseline CNN accelerator that uses 2C MACs
following the same procedures for synthesis and P&R as the
proposed accelerator using the same technology. Parasitics,
SDF and SAIF obtained after P&R are annotated during power
analysis. We simulate the execution of a tensor decomposed
CNNS8O on the dataset. Table I summarizes the total energy
consumption of different components during the execution,
and compares the accuracy and TC. E and E,qq. are the
total energy consumption of all the multipliers and adders
in the PEs respectively. Eyac is the sum of them. Eggmys is
the energy of weight buses between the weight memory and
PEs. It is obtained by summing up the internal and switching
energy of buffers inserted in between. As shown, the weight
tuning algorithm with the mixed-representation MAC reduces
the computation energy by 1.20x compared to the 2C baseline.
The energy of weight buses is reduced by 1.70x. Although
the energy consumption of memory and activation delivery
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Original Weights

12K = Tuned Weights

10k
8k
6k
4k
2k

Count

0 1 2 3 4 5 6 7 8

Hamming Distance between Sucessive Weights

Fig. 7. The weight tuning algorithm reshapes the distribution of Hamming
distance between weights with tensor-decomposed CNN80 as an example.

TABLE I
THE EFFECT OF THE WEIGHT TUNING ALGORITHM ON ACCURACY AND
ENERGY CONSUMPTION BASED ON POST-P&R SIMULATION

original 2C | bit tuned SM | loss/reduction
acc. (%) 89.3 88.8 0.5%
toggle count 154k 86k 1.79x
Enmuit. 1.58u) 1.11uJ 1.42x
Eada. 0.55uJ 0.66uJ 0.83x
Emac 2.13u) 1.77u 1.20x
EwgtBus 96.91nJ 56.89n] 1.70x
ElotalSwitch 8.94u] 7.68ul 1.16x

is not affected by the algorithm, 1.16x reduction in the total
switching energy of the entire system Equiswitch 1S Observed.

Compared with other digital ASICs for KWS, e.g. [3]-
[5], our design is flexible, accurate and achieves comparable
energy efficiency. The proposed architecture supports flexible
shape and stride of inputs and weights for up to 12 layers.
However, [5] is restricted to a fixed structure, [3] supports up
to 2 layers with up to 64 nodes/layer for LSTMs, and [4] is
designed for a fixed input stride and 3x3 1-bit convolution. Our
supported CNNs can achieve 91.6% accuracy with 12 output
classes on the public available dataset [1], while [3]-[5] only
report accuracy on custom designed dataset and [3] only shows
binary classification. Based on the post-P&R power analysis,
the proposed design achieves 24.38 pJ/MAC with 8bit weights
and 16bit activations at the worst case corner of 0.99V with
a latency of 10ms for real-time KWS processing.

V. CONCLUSION

We co-designed a weight tuning algorithm and a CNN
accelerator to improve energy efficiency with little loss in
accuracy. Furthermore, the accelerator features high flexibility
and runtime reconfigurability to support various applications.

It is demonstrated on an FPGA with a feature extraction
processor for KWS. Moreover, a fully integrated ASIC is being
fabricated. The post-P&R power analysis of the ASIC shows
the proposed algorithm reduces the energy consumption of
weight delivery and computation by 1.70x and 1.20x respec-
tively. For future work, the weight tuning algorithm can be
applied to other NNs, such as LSTM, co-designed with other
hardware architectures and dataflows, e.g. output stationary
dataflow, and exploited by data-dependent memory [7].

ACKNOWLEDGMENT

The authors would like to thank Foxconn Technology Group
for supporting this project and the TSMC University Shuttle
Plan for chip fabrication.

REFERENCES

[1]1 Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello Edge: Keyword
spotting on microcontrollers,” arXiv:1711.07128 [cs, eess], Nov. 2017.
[Online]. Available: http://arxiv.org/abs/1711.07128

[2] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence Beyond the
Edge: Inference on intermittent embedded systems,” in Proceedings
of International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2019, pp. 199—
213.

[3] J. Giraldo and M. Verhelst, “Laika: A SuW programmable LSTM accel-
erator for always-on keyword spotting in 65nm CMOS,” in Proceedings
of IEEE European Solid State Circuits Conference (ESSCIRC), 2018,
pp- 166-169.

[4] S. Yin, P. Ouyang, S. Zheng, D. Song, X. Li, L. Liu, and S. Wei, “A
141 uW, 2.46 pJ/neuron binarized convolutional neural network based
self-learning speech recognition processor in 28nm CMOS,” in IEEE
Symposium on VLSI Circuits, 2018, pp. 139-140.

[5] M. Shah, J. Wang, D. Blaauw, D. Sylvester, H.-S. Kim, and
C. Chakrabarti, “A fixed-point neural network for keyword detection on
resource constrained hardware,” in IEEE Workshop on Signal Processing
Systems (SiPS). 1EEE, 2015, pp. 1-6.

[6] M. Price, J. Glass, and A. P. Chandrakasan, “14.4 A scalable speech rec-
ognizer with deep-neural-network acoustic models and voice-activated
power gating,” in IEEE International Solid-State Circuits Conference
(ISSCC) Digest of Technical Papers, 2017, pp. 244-245.

[7] C. Duan, A. Gotterba, M. E. Sinangil, and A. P. Chandrakasan, “Re-
configurable, conditional pre-charge SRAM: Lowering read power by
leveraging data statistics,” in Proceedings of IEEE Asian Solid-State
Circuits Conference (A-SSCC), Nov. 2016, pp. 177-180.

[8] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin,
“Compression of deep convolutional neural networks for fast and
low power mobile applications,” arXiv:1511.06530 [cs], Nov. 2015.
[Online]. Available: http://arxiv.org/abs/1511.06530

[9] A.P. Chandrakasan and R. W. Brodersen, “Minimizing power consump-
tion in digital CMOS circuits,” Proceedings of the IEEE, vol. 83, no. 4,
pp. 498-523, 1995.

[10] P. N. Whatmough, S. K. Lee, D. Brooks, and G.-Y. Wei, “DNN engine:
A 28-nm timing-error tolerant sparse deep neural network processor for
iot applications,” IEEE Journal of Solid-State Circuits, vol. 53, no. 9,
pp. 2722-2731, 2018.

[11] N. Kasturi, “Power reducing algorithms in FIR filters,” Master’s thesis,
Massachusetts Institute of Technology, 1997.

[12] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
in Proceedings of International Conference on Learning Representations
(ICLR), 2016.

[13] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-
138, Jan. 2017.

[14] P. Warden. (2017) Speech command: A public dataset for single-word
speech recognition. [Online]. Available: download.tensorflow.org/data/
speech_commands_v0.01.tar.gz

[15] T. Sainath and C. Parada, “Convolutional neural networks for small-
footprint keyword spotting,” in Proceedings of Interspeech, 2015.



