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Abstract
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Stages Using High-Performance Parallel Computing Algorithms

by
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in Partial Fulfillment for the Requirements for
the Degree of Doctor of Philosophy

Abstract

The present work addresses a particular problem in Hydraulic Fracturing, i.e.,
characterization of gravity-driven motion of multiple stages of immiscible fluids, with var-
ious rheologies, within a narrow fracture cavity. The following capabilities were devel-
oped to address the present problem:

1) An analytical algorithm to predict the size and characteristics of encapsulated
multiple flnid layers;

2) A semi-analytical algorithm to predict effects on in-plane fluid motion due to
finite end-boundaries (e.g., the fracture perimeter), and wedging (crack-width
variation) for a two-stage flow;

3) A suite of numerical algorithms, named PARFES (acronym for PARallel
Finite Element Solvers) —designed specially to take advantage of highly par-
allel computer environments— based on an Euler-Lagrangian approach (e.g.,
nodes delineating the injection region are constrained while other nodes are
free to move, according to the coupling of flow field variables with the elastic
stress field). PARFES is composed of three modules:

3.1) PARFESI — tracks the interface motion and mesh nodal distributicn
of a given fluid stage;

3.2) PARFESAX — models the axisymmetrical multiple stage flow prob-
lem;
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3.3) PARFES2 — a modified nonlinear Newton-Raphson algorithm to
determine non-symmetrical motions.

4) An experimental apparatus, named TARG-DECH (acronym for 7est Appara-
tus for Response to Gravity-Driven Effects in Convective Hydraulics)
designed to study the gravity-driven flow regimes at low Reynolds
number. TARG-DECH is also used to experimentally verify the results from
algorithms /) and 2) above. In addition, a pumber of experimental measure-
ments were conducted to characterize properties (e.g., viscosity, density, sur-
face/interfacial tension, wettability and spreading) of the fluids and apparatus
used.

Based on results of the above projects, it is established that the following two phe-
nomena dominate the placement of fluids and solids (proppant) in uncontained fractures:

L Convective motion, due to gravity-driven forces, predominate over particle-
settling forces and (often) even over pumping-pressure-driven flows.

II.  The tendency of higher viscosity fluids to migrate to regions of lower shear
rates (and vice-versa) may dramatically alter the (wetting) conditions at the
fracture walls, often giving rise to a transverse instability termed encapsula-
tion, in addition to in-plane instabilities, usually referred to as fingering.

Both of these findings have direct practical relevance. Due to a lack of recognition
of convective motion, and without consideration of encapsulation, current designs for
(expensive) commercial oil and gas fracture treatments tend to greatly overestimate effec-
tive propped fracture length. To make this point clear: it is found, in many instances, that
all of the proppant-laden fluid goes very quickly to the bottom of (relatively uncontained)
fractures, insiead of being ideally distributed over the fracture length opposite the target
“pay” zone.

The work in this thesis should form the basis for correcting this primary (among
many) discrepancies in current practice.

THESIS COMMITTEE: Prof. Michael P. Cleary (Thesis Supervisor)
Prof. Herbert H. Einstein
Prof. Harry Kytomaa
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1 Background and Literature OQverview

1-1 Introduction

Hydraulically-driven fracture growth in porous-elastic media (e.g., underground
strata), can be found in various applications. Some of these applications include petro-
leum recovery, Barr and Cleary (1992), geothermal energy and nuclear waste disposal.

In such applications a liquid slurry is pumped into a wellbore, through producing
strata, forcing the growth of a fracture. This technique is used to increase access to the
strata (over half of oil and gas production wells in the US are hydraulically
fractured). Not only must the fracture achieve the desired dimensions but, proppant (a
mixture of solid particles within a fluid) must be pumped inside to keep the fracture open
against the high ambient confining stresses. Following a successful hydraulic fracture
operation, petroleum productivity may increase many-fold, especially in the early opera-
tional lifetime of the well. However, true optimization of the operation requires (real-
time) processing of large amounts of physical data, most effectively achieved through
simplified numerical algorithms, Cleary, Wright et al. (1991). In tumn, these simplified
numerical codes rely on results obtained through simulations performed with more
detailed and accurate numerical algorithms, Cleary and Junior (1992).

Although a variety of such detailed numerical models have been developed, the
level of realism has been completely unsatisfactory until recently, Barr (1991); Cleary,
Wright et al. (1991). Indeed, a number of issues still remain to be resolved, even in such
more realistic simulators. Primary among these issues is the complex problem of convec-
tive proppant transport within such fractures, driven by the gradients of density, created by
variation of injected proppant concentrations and also strongly affected by leak-off.

The proper placement of proppant laden fluids within a fracture is the ultimate
design goal in Hydraulic Fracturing. Due to a lack of consideration of convective gravity-
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driven motion and encapsulation, current commercial fracture designs often overestimate
final propped fracture length. In this regard the following two issues are the focus of this

work:

1.1) How fast the proppant-carrying fluid moves downward within a
cavity with variable length, height and width (crack opening).

2.1) To what extent encapsulation occurs and affects the process of
motion of multiple fluid stages.

These issues are addressed by means of: i) analytical and semi-analytical mathe-
matical models; ii) a suite of numerical algorithms named PARFES (PARallel Finite Ele-
ment Solvers); and, iii) experiments using an apparatus developed in our laboratory,
named TARG-DECH (Test Apparatus for Response to Gravity-Driven Effects in Con-
vective Hydraulics).

1-2 Mathematical Modeling of Hydraulic Fractures

Detailed mathematical modeling of hydraulic fracturing (See Figure 1-1 on
Page 29) requires a collection of submodels:

L partial differential equations (PDEs), e.g., describing fluid transport;

IA.  local and global volume conservation — the volume of injected fluid
stages equals to the volume of the channel, delimited, in the trans-
verse direction, by the crack opening, +&x,y,t)/2, and, in the fracture
plane, by the effective wellbore radius, Ry, and the crack tip perime-
ter, Rp(x, ). A, o, L, and H are, respectively, the characteristic
scales for crack opening, non-wetted crack-tip zone, length and
height, with typical ratios: A/@ ~ 1 and A/L ~ A/H ~ 10 4. The glo-
bal mass conservation provides a constraint for all possible configu-
rations of the fluids interface and crack front at any given time.

I.B.  momentum conservation — coupling of the local volume conserva-
tion with the momentum conservation, provides a set of PDEs that
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characterize the fluid stages motion within a planar Three-Dimen-
sional fracture cavity.

II.  integral equations, e.g., elastic displacement and fracture mechanics, and

history dependent equations, e.g., for fluid losses to porous strata;

ILA.

IL.B.

11.C.

elastic displacement — a set of integral equations relating the crack
opening displacement (displacement discontinuities) to the change in
the Three-Dimensional stress field. The change in the stress field
involves distinct contributions: from the fluid(s) pressure field
(within the fracture cavity); from the confining stresses; and from the
backstresses (due to fluid and heat exchange with the porous matrix).

stress intensity factor — Kjc the critical stress intensity factor in
mode I, which may be assumed of order zero for most large-scale
operations, nevertheless serves as an integral constraint to balance
the local distribution on the wetted (e.g., excess stress field), and
non-wetted (e.g., confining stresses) regions of the fracture
cavity. The effect of incorporating the K criterion into the model,
is to determine the ratio Rg(x,y,t)/Ry(x,y,t), where Rp(x,y,t) repre-
sents the perimeter of the outermost fluid stage. Both integral equa-
tions, described in II.A and here, have singular integral kernels, and
special numerical integration techniques are required to solve them.

fluid and heat exchange — the effective permeability (connected
porosity) of the stratum(a) surrounding the fracture, and a variety of
conditions (e.g., viscosities of fluids inside and outside the fracture,
BCs at the fracture walls, etc.) determine the amount of fluid and heat
transfer through the fracture walls (transverse direction—z plane) to
the adjacent stratum(a).

IIl.  a variety of boundary conditions (BCs) for flow and fracture perimeters,

fluid rheologies, and equations of state.

Il A. Boundary Conditions — BCs are, in general, either the weakest or
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the strongest point of a fracture simulator. A typical example is the
uncertainty about an adequate boundary condition for the near-the-
crack-tip region (which has been under scrutiny for many years). For
instance, in earlier models, Lam (1985), and some current industry
models, Clifton and Wang (1991), the excess stress field is assumed
to be zero at the fluid front, and to be the (negative) value of the con-
fining stresses within the non-wetted region. That assumption has
been shown to be erroneous, Barr (1991), and leads to unacceptable
results, Cleary, Wright et al. (1991).

HILB. Fluid Rheology (and Equations of State) — The most common fluid
rheology equations are the Newtonian linear approximation and a
Power-Law, for simple Non-Newtonian fluids. Although the Power-
Law equation is often used for any fluid that presents a Non-Newto-
nian behavior, it is doubtful, for instance, that it could adequately
simulate the flow of some more complex gels (and effects of associ-
ated breaker agent). Nevertheless, such a simplified fluid model is
adopted here for first-order characterization and, especially, for com-
parison with laboratory experiments (where such simple fluids are
employed).

1-2.1 Difficulties Associated With Numerical Modeling

Difficulties associated with the numerical solution of hydraulic fracture models are

related to the unique physical behavior of the system. For instance:

28

» change of fluid pressure, within the crack, at any point affects the displace-
ment field (crack opening) everywhere (global data structure);

* the integral constraint, K¢, is satisfied continuously in time, so pressure must
change throughout the crack when a local perturbation is introduced;

* one free external moving boundary, the perimeter of the fracture, and one par-
tially constrained internal moving boundary, the perimeter of the fluid front,
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FIGURE 1-1: Sketch of hydraulic fracture growth driven by muitiple fluid stages

are simultaneously controlled by mass conservation, fluid(s) rheology, the
critical stress intensity factor and elastic behavior of the porous matrix;

» chemical/kinetic characterization of the fluids, gels and proppants injected
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into the fracture is quite complex. In addition, fluid losses, to the surrounding
stratum(a), can alter the relative composition of an injected mixture;

e the convective motion of fluid stages within the fracture can be affected by
two instabilities mechanisms: fingering (in-plane — x and y directions), and
encapsulation (transverse — z direction). Although fingering can modify the
morphology of the fluid stages’ interfaces, encapsulation instabilities are more
important in the more common practical circumstances of increasing fluid vis-
cosity in successive stages. Encapsulation instabilities can substantially affect
the average velocity of the heavier fluid(s) carrying the proppant. For
instance, if most of the proppant is carried directly to the bottom of the frac-
ture, post-fracturing oil/gas production can be significantly reduced.

A hydraulic fracture simulator that can successfully handle :he above mentioned
numerical difficulties is still not available. Currently available simulators, Barr (1991);
Cleary, Wright et al. (1991), address, in detail, the first three items above and, in a simpli-
fied manner, the last two items.

1-2.2 Numerical Modeling — Parallelization Issues

Adequate numerical simulation of each submodel should take into account the
locality/non-locality of the data structure. By local data structure it is meant that the
immediate effect of perturbations in a certain degree of freedom at a particular node is
localized to the neighboring nodes; whereas in a global data structure the immediate effect
of perturbations is non-local, i.e., it can directly affect all degrees of freedom at all nodes
in the model, Junior (1989); Mathur (1989).

Equations in items I.A and I.B render good numerical discretization with local
data structures algorithms (e.g., Finite Element Method with low order interpolation base)
but, the coupling of the stress field with the crack opening (vide items ILA and I1.B),
requires a global data structure algorithm. However, there are ways to overcome this dis-
parity (one possibility is presented later in the description of PARFES2 in Chapter 3).
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1-3 Fingering, Encapsulation, Settling, and Convection

Fingering instabilities have been under scrutiny for many years, Bensimon,
Kadanoff et al. (1936); Chuoke, Mecurs et al. (1958); Coyne and Elrod (1970); Homsy
(1987); Saffman and Taylor (1958); Taylor and Saffman (1958); Weinstein, Dussan ct al.
(1990), but few of the results have been useful in hydraulic fracturc designs, Barr and
Cleary (1984); King (1985); Paterson (1981).

Encapsulation instabilitics were initially studied in multi-layer/stratified flows Yih
(1967); Yu and Sparrow (1967). Later they were addressed in polymeric flows, Everage
(1973); Everage (1975); Lee and White (1974); Lee and White (1975); MacLean (1973);
White and Lee (1975); Williams (1975), and, recently, in lubricated flows, Anturkar,
Papanastasiou et al. (1990a); Anturkar, Papanastasiou et al. (1990b); Hooper and Boyd
(1983); Hu and Joseph (1989); Joseph, Nguyen et al. (1984); Joseph and Preziosi (1987);
Joseph, Renardy et al. (1984); Pradhan and Tripathy (1986); Schwartz and Michaelides
(1988); Shibata and Mei (1986a); Shibata and Mei (1986b); Than, Rosso et al
(1987). However, to our knowledge, in hydraulic fracturing the onset of encapsulation
instabilities, its development, and quantitative characterization have been neither known

nor studicd.

Ir: typical hydraulic fractures, the average convective to seitlement (particles set-
tling within a fluid stage) velocity ratio can be shown (See Section 2-2 on Page 41) to be

of order

Viomection w]zz[ﬁ.]zzlozmlw‘
Viseutling article diameter D

Hence, the proppant settling velocity within the gel is few orders of magnitude
slower than the mixture’s overall convective drop velocity. However, curiously, only the
settling mechanism is well studied and characterized in hydraulic fracturing.

1-4 Convective In-Plane Motion
Assuming the displacement of a lighter and less-viscous bath of fluid, with density
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p; and dynamic viscosity f;, by a heavier and more-viscous blob of fluid (p2, 1), the in-
planc motion of the blob is associated to the pair of coordinates x-y, (vide Figure 1-2).

o(x,y,t)

convection

v

X

FIGURE 1-2: Convective motion —- heavier and more viscous (blob of) fluid 2, displacing lighter and less

viscous (bath of) fluid 1. Motion can be decomposed into two components: in-plane (x-y plane); and, trans-

verse (z direction), assuming that the ratio of the characteristic crack width to the in-plane blob dimensions
is small (less than 10 ~3)

Part of the work presented in Chapter 2 characterizes two boundary effects on the
in-plane convective motion:

» The presence of an end-boundary in the direction of motion (an arbitrary plane
with normal in the x direction, located at the “bottom” of the fracture, e.g., the
bottom fracture perimeter);

» The effect of varying the crack opening along the x direction (denominated
wedging effect).

In addition, the suite of algorithms, presented in Chapter 3, and part of the experi-
ments, described in Chapter 4, are designed to study in-plane interface(s) motion.
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1-5 Convective Transverse Motion

The transverse motion (associated to variations in the z direction - vide Figure 1-
2) is analyzed by means of an analytical algorithm, presented in Chapter 2. This algo-
rithm, devised to find the thickness of the encapsulated fluid layers in the transverse dirce-
tion, minimizes the total viscous dissipation energy and uses a criteria (based on
maximization of the flow field velocity of the displacing fluid) to predict the flow ficld
final transverse configuration. Causes leading to the onset of encapsulation instabilitics
are briefly discussed in both Chapters 2 and 4.

1-6 Wetting Conditions at the Fracture Walls

TARG-DECH, the experimental apparatus described in Chapter 4, provides a
basis for analysis of the influence of wall effects on the motion of the downwards fluid
blob. Among these effects, the wall wetting characteristics seems to play a fundamental

role on the onset and development of encapsulaticn instabilities.

By varying TARG-DECH’s container walls, dramatic changes on overall motion
behavior were observed (e.g., variations of two orders of magnitude on the downwards
convective blob velocities). In response to this experimental evidence (of the importance
of wetting conditions at the fracture walls) a number of tests were carried to characterize
the:

» wettability of the container walls, with respect to the fluids used;

» spreading rate of the displacing fluid for both dry and wet conditions, i.e.,
walls contaminated (wet), or not contaminated (dry), by the displaced fluid;

¢ surface tension of each fluid used;
* interfacial tensions for each displacing/displaced fluid combination.

The term surface affinity is used, throughout this work, to loosely describe adhe-
sion properties of the combined displacing/displaced fiuid system to the TARG-DECH’s
container walls.
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1-7 Literature Overview

A fascinating (but time consuming) task, during thc development of this thesis,
was to gather and relate information from completely different areas of rescarch to this
study. It would be rewarding to sce some of the initial interdisciplinary links established
herein, to be further developed and analyzed in future research work.

To facilitate the connection betweer. references cited in this thesis and different
rescarch areas, the following sections present a classification scheme. Also, the primary

review references for each area are noted.

1-7.1 Hydraulic Fracture

e Primary review references — Cleary (1988), Barr (1991), Cleary, Wright et
al. (1991), Barr and Cleary (1992).

Nilson (:981); Nilson (1986); Nilson and Griffiths (1982); Nilson and Griffiths
(1986); Nilson and Morrison (1986); Nilson, Proffer et al. (1985); Abé, Keer et al.
(1979); Abé, Mura et al. (1976); Bui and Parnes (1982); Cleary, Kavvadas et al.
(1983); Cleary, Barr et al. (1988); Griffiths, Nilson et al. (1986); Johnson and
Cleary (1991); Lam (1985); Clifton and Wang (1991).

1-7.2 Fingering and Hele-Shaw Flows

e Primary review references — Homsy (1987), Saffman (1986), Weinstein,
Dussan et al. (1990).

Barr and Cleary (1984); Ben-Amar, Hakim et al. (1991); Bensimon, Kadanoff et
al. (1986); Brener, Levine et al. (1991); Chuoke, Meurs et al. (1958); Coyne and
Elrod (1970); Howison (1986); Hu and Joseph (1990); Joseph (1990); King
(1985); Lacey, Howison et al. (1990); Park, Gorell et al. (1984); Park and Homsy
(1984); Paterson (1981); Reinelt and Saffman (1985); Reinelt (1987); Saffman and
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1-7.3 Potential Flows

 Primary review references — Hele-Shaw (1898c), Hele-Shaw (1898d). Stokes
(1898), Riegels (1938).

Bairstow, Cave et al. (1922); Bairstow, Cave et al. (1923); Hele-Shaw (1898a);
Hele-Shaw (1898b); Hele-Shaw and Hay (1900); Reynolds (1898).

1-7.4 Multilayer Flows

e Primary review references — MacLean (1973), Anturkar, Papanastasiou ct al.
(1990b), Everage (1973), Everage (1975), Williams (1975).

Apazidis (1985); Lee and White (1974); Lee and White (1975); Schwartz and
Michaelides (1988); Shibata and Mei (1986a); Shibata and Mei (1986b); White
and Lee (1975); Yu and Sparrow (1967).

1-7.5 Multilayer Stability

e Primary review references — Joseph, Renardy et al. (1984), Ripa (1991),
Anturkar, Papanastasiou et al. (1990a), Hooper (1989).

Chen and Joseph (1991); Hooper and Boyd (1983); Hu and Joseph (1989); Joseph,
Nguyen et al. (1984): Joseph and Preziosi (1987); Loewenherz and Lawrence
(1989); Pradhan and Tripathy (1986); Renardy (1989); Strykowski and Niccum
(1992); Than, Rosso et al. (1987); Yiantsios and Higgins (1988); Yih (1967).

1-7.6 Multiphase Flows

» Primary review references — Gray and Hassanizadeh (1989), Kataoka (1986),
Truesdell (1984).

Anderson and Jackson (1967); Bilicki, Dafermos et al. (1987).
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1-7.7 Meniscus and Contact Angles

e Primary review references — Dussan (1979), Dussan, Ram¢ ct al. (1991),
Brochard and dc Gennes (1991), Johnson, Kreuter et al. (1986), Li and Slat-
tery (1991), Merchant and Keeller (1992).
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1-7.8 Wetting and Spreading

» Primary review references — de Gennes (1985), de Gennes (1991), Brochard-
Wyart and de Gennes (1992), Zisman (1964).

El-Shimi and Goddard (1974a); El-Shimi and Goddard (1974b); Kwei, H. et al.
(1969); Padday (1969); Schonhorn, H.L. et al. (1966); Van Remoortere and Joos
(1991); Yang, Zografi et al. (1988a); Yang, Zografi et al. (1988b); Zettlemoyer
(1969).

1-7.9 Surface Characteristics

e Primary review references — Hamilton (1972), Lamperski (1991)

Ambwani and Fort (1974); ASTM-D1331 (1989); ASTM-D971 (1982); Christen-
son (1988); Krause and Kildsig (1972); Ramé-Hart (1992); Sacher (1988); Soma-
sundaran and Danitz (1974).

1-7.10 Bubbles and Drops

e Primary review references — Koh and Leal (1990), Saffman and Tanveer
(1989).
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Baker and Moore (1989); Burgess and Foster (1990); Burgess and Tanveer (1991);
Maxworthy (1991); Meiburg (1989).

1-7.11 Coating, Mold Filling and Polymeric Flows

e Primary review references — Ruschak (1985), Mavridis, Hrymak et al.
(1986a), Huh and Scriven (1971).

Behrens, Crochet et al. (1987); Coyle, Blake et al. (1987); Kamal, Goyal ct al.
(1988); Manas-Zloczower, Blake et al. (1987); Mavridis, Hrymak et al. (1986b);
Mavridis, Hrymak et al. (1987); Mavridis, Hrymak et al. (1988); Michael (1981);
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(1978).

1-7.12 Moving Meshes and Finite Element Analysis

* Primary review references — Lynch and Sidén (1988), Sullivan and Lynch
(1987b), Cuvelier and Schulkes (1990), Zabaras and Ruan (1989b); Zabaras
and Ruan (1989c).

Cuvelier and Driessen (1986); Derby and Brown (1986); Ho (1989); Sullivan and
Lynch (1987a); Zabaras and Ruan (1989a); Zabaras and Richmond (1990).

1-7.13 Parallel Processing and Nonlinear Algorithms
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(1984), Fellipa (1988), Hayes (1989); Hayes and Devloo (1984), Tezduyar,
Liou et al. (1988), Nour-Omid, Parlett et al. (1987).

Tezduyar and Liou (1987); Suarez, Ofiate et al. (1984); Strang (1980); Sgrensen
and Reffstrup (1986); Salinas, Nguyen et al. (1974); Plesha (1984); Nour-Omid
(1984); Nakazawa (1984); Muller and Hughes (1984); Marques (1986); Kamat,
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2 | The Physics of Convection in Hydraulic
' Fracturing

2-1 Introduction

The flow of two immiscible liquids of different viscositics, scparated by an inter-
face, presents a high degree of non-uniqueness, even for a steady low Reynolds number
flow in a simple bounded region. For instance, the study by Joseph, Nguyen et al. (1984)
of Couette flow in plane and circular layers, as well as layered Poiseuille flow, disregard-
ing gravity driven forces. To obtain the size of the layers, the viscous dissipation integral
was minimized (or the velocities maximized for a given flow rate). It was found that the

arrangement of layers in Plane Couette flow has no solution.

In addition to the well-known mechanism of viscous fingering instability (usually
associated to the displacement of a more viscous liquid by a less viscous liquid), a mecha-
mam, denominated encapsulation instability is identified. Higher viscosity fluids have a
tendency to migrate to regions of lower shear rates (encapsulated by a lower viscosity
fluid).

Encapsulation has been studied in the literature of Polymeric Flows, Everage
(1973); Everage (1975); Lee and White (1974); Lee and White (1975); MacLean (1973);
White and Lee (1975); Williams (1975), Multilayer Stability Analysis, Anturkar, Papanas-
tasiou et al. (1990a); Anturkar, Papanastasiou et al. (1990b); Hooper (1989); Jcseph,
Renardy et al. (1984); Ripa (1991); Than, Rosso et al. (1987), and transport in oil pipelin-
es,Chen and Joseph (1991); Hu and Joseph (1989); Yu and Sparrow (1967). However, the
analysis presented herein introduces novel algorithms and interpretation of the phenom-

€na.

Although the tracking of the interface between two immiscible liquids is very diffi-
cult to achieve (either by computational or analytical methods), some simplified analysis
can provide an insight on the basic mechanisms governing the motion of the liquids, as

39



CHAPTER 2: The Physics of Convection in Hydraulic Fracturing

well as on the order of magnitude of the velocities associated with the interface motion.
The gbjectives of this Chapter are to:

L provide a simplified analysis and model of the downwards motion of a mov-
ing fluid body, hereafter denominated blob, driven by gravity. The falling
blob displaces an involving fluid bath, and the fluids are assumed to be
immiscible. This study encompasses:

I.A.  acharacterization of the relative importance of three physical mecha-
nisms, i.e., convection (gravity-driven), settling (gravity-driven) and
pumping-pressure-driven flows, in hydraulic fracturing. Convection
being the mechanism describing the blob motion, and settling the
mechanism describing the relative motion of dispersed particles
within the blob;

I.B.  aphysical characterization of forces and boundary conditions;

I.C.  a dependence analysis of the transverse interface morphology, fluid
front location and velocity on the governing physical parameters
(i.e., viscosities, densities, crack opening distribution, and surface
tension).

II.  address two instability mechanisms, i.e., fingering and encapsulation, and
discuss how these instabilities affect the blob motion.

IIl.  quantify the influence of encapsulation instabilities on the overall convective
motion of fluid stages within a fracture.

In the following derivations it is assumed two immiscible fluids contained within a
fracture channel, where the displacing fluid blob is labeled stage 2 and the displaced fluid
bath is labeled stage 1. The variables are defined as:

p, — fluid stage 1 average density

U, — fluid stage 1 average channel (12*) viscosity

P, — proppant density
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¢, — proppant volume fraction

D — proppant diameter

p,” — fluid stage 2 density

p, — fluid stage 2 average density (p, = ¢, p, + (1 — ¢,)p,’)
U, — fluid stage 2 average channel (12*) viscosity

Vv = V — downwards blob velocity

convection

V.. = V., — dowr. -ards velocity of proppant within blob

settling

6 — channel aperture (crack opening)

g — gravity acceleration constant

P =p,+p,
Ap Epz_pz
U=, + 4,

0,, — blob interfacial tension
p — fluid stage 1 pressure field around blob
R — blob average radius

T — time scale

2-2 Convection versus Settling in Hydraulic Fracturing

From the Stokes’ approximation for flow past a solid sphere with very low Rey-
nolds number, the average settling velocity of the proppant (“sphere’”) within the gel (See
Figure 2-1 on Page 42) is V . = 2(p, — p,’)gD /31,, while the blob velocity can be
approximately given by the Darcy’s Law, i.e., V.. =(p, — p,)g 671, (assuming both
ends, at z = £8/2, attached to the walls). For the cases of interest: p, < p,’< 1.5p,, 2p, <p,
<4p, and 10-°86 <D<0.28 (i.e., 20/40 mesh proppant within a 1/4—1.1/4" channel
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aperture). Hence, the ratio of velocities is

Veomection ~ [L‘IC"_OM&_]Z z[i]z ~10% e 10* @-1)
Visenling particle diameter D

Even correcting the Stokes approximation for a smaller channel ratio (D ~ 0.29),
without even considering the role of encapsulation or fluid viscoelasticity, the proppant
settling velocity within the blob is orders of magnitude slower than the mixture’s overall
convective velocity. However, curiously, only the settling mechanism is well studied and
characterized in hydraulic fracturing (probably because most industry thinking focuses on
one-dimensional displacement of stages out along the reservoir).

» Y

convection "

v

X

FIGURE 2-1: Relative displacement (settling velocity) of proppants within fluid stage 2 (blob), compared
to the blob convective velocity (within fluid stage 1 bath)

Notice that:
 the pumping-pressure-gradient is not accounted in the derivation of Eq. (2-1).

e Settling and convection are driven by the same physical mechanism, i.e., grav-
ity forces.

42



Convection versus Pumping-Pressure-Driven Flows

* The dominant mechanism (convection) is separately compared to the pump-

ing-pressure driven flow in the next Section.

2-3 Convection versus Pumping-Pressure-Driven Flows

For typical hydraulic fracturing field operation conditions, the convective mecha-
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FIGURE 2-2: Convective and pumping-pressure-driven velocities as a function of the fracture length

nism is dominant after approximately a factor of one effective welbore characteristic

length (See Figure 2-2). An important practical consequence of this finding is the pre-
dominance of the downwards motion over the horizontal motion for uncontained frac-

tures.
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Notice that:

crack opening, flow rate, effective welbore radius, density differential and
effective viscosity values are, respectively, 1 cm, 20 bbl/ min, 10 m, 0.7 kg/m3 ,
1200 cp. The velocity ratio is qualitatively given as V,,,,crion / Voumping™ (P2 =
p)gR&*/qu, , where q is the flow rate.

result depicted in Figure 2-2 doesn’t assume encapsulation, i.e., displacing
fluid is assumed to touch both walls. If encapsulation occurs, the convective
velocity will greatly exceed the horizontal velocity (pumping-pressure

driven).

2-4 Physical Characterization of the Multi-Stage Fluids
Motion

A model is developed to study the injection of a more dense viscous fluid preceded

by a less dense fluid, into a narrow Hele-Shaw’s type cell. The model provides a physical

characterization of forces and boundary conditions on the movement of a well-defined
shape, which is called a blob. The following simplifications are assumed (see sketch in
Figure 2-3):

1)

2)

3)

4)

the two fluid stages are immiscible;

the channel (crack) opening dependence is limited to either constant,
&x,y,t)=46,, or wedged, &x,y,t)=x). General crack opening dependence on
y, and ¢ can be easily incorporated;

the blob formed by the injection of the second fluid stage has either a circular
or elliptical shape, in the in-plane directions (x and y), and it is delimited by
the fracture walls (z=% &x,),t)/2), in the transverse direction, in the absence of
encapsulation. General shapes can also be incorporated, but experimental
observation has demonstrated that circular and elliptical shapes are well suited
for a wide range of fluids;

if encapsulation occurs, then the blob will be delimited in the transverse direc-
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o(x) h

convection

Py Hq

v

X

FIGURE 2-3: Blob of heavier fluid (2) displacing fluid bath (1) at a height h. Height (k) based on center
of gravity of the blob

tion by fluid layers of the less viscous fluid.

Although the viscosity of the blob is higher than the viscosity of the displaced fluid
for the cases under scrutiny, the model can handle the reverse case (fingering will then be
the predominant instability mechanism, and the blob assume a non-symmetrical shape).

The heavier blob will sink against the following counteracting forces (See Figure
2-4 on Page 46):

* shear stresses at the walls (no encapsulation); or shear stresses at the interfaces
with the lighter fluid in the transverse direction (if encapsulated). This contri-
bution is integrated on dQ;

* buoyancy;

» shear stresses to displace the lighter fluid. This contribution is integrated
along 0Q2,;

 surface/interfacial tension. Although the quantitative contribution of surface
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tension can be shown negligible for the cases of interest, its incorporation in
the model is done via the wetting conditions at the wall, i.e., if encapsulation
occurs the interfacial tension between the two fluids is used, otherwise esti-
mated values (from experiments described in Chapter 4) for the moving con-
tact angle (meniscus) and surface adhesion properties are used.

For convenience, the blob is assumed to behave like a “solid” (maintaining its
shape) with respect to in-plane deformation, due to gravity and buoyancy, and to behave
like a fluid with respect to shear in the transverse plane, i.e., the “solid” and fluid behavior
are associated to energy dissipation modes based, respectively, on the velocity of the blob
and gradients of velocity within the blob. Shape instabilities are addressed separately—
fingering in Appendix H, and encapsulation in Section 2-6.

FIGURE 2-4: Balance of forces for moving blob

2-5 Modeling the In-Plane Motion

In practice (for instance, in using TARG-DECH—vide Chapter 4) the formation
of a heavy well-defined shape blob can be achieved by injecting a higher viscosity and
higher density fluid (stage 2) within a bath of lower viscosity and lower density fluid
(stage 1). Factors contributing to unstable motion can be listed (in order of importance)
as:
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1)

2)

3)

surface affinity/wettability — although surface/interfacial tension measure-

ments are useful for characterization of fingering, TARG-DECH results have
demonstrated that surface affinity is the determining physical parameter char-
acterizing fluid motion within a narrow channel. Unfortunately, there is not
an obvious way to quantize the values of surface affinity for a given set of flu-
ids and channel walls, e.g., contact angle measurements are misleading (a
more detailed analysis of wettability issues is presented in Chapter 4). For
instance, the same injected fluid blob presents very different patterns of
motion by changing the fluid bath (although two distinct fluids used for the
bath have similar values of viscosity and density). Low surface affinity of the
injected fluid (stage 2) to the walls (for a given fluid stage bath) seems to be
the leading cause of encapsulation instabilities.

viscosity and density contrast — large contrasts of viscosity ratio, {4, = (I, -
W)/ (U, + L), and/or density ratio, p, = (p, — p,)/(p, + p,), can trigger either fin-
gering or encapsulation instabilities. In the present work it is assumed that
both p, > 0 and u, > 0.

surface/interfacial tension — seems to control, solely, the morphology and
shape of the blob, e.g., low surface/interfacial tension can leac to fingering.
Surface tension can be almost neglected as a parameter when modeling encap-
sulation instabilities. Fingering instabilities can be shown, Homsy (1987), to
be relevant for negative or small ratio of viscosities, i.e., (11, — (1, )/(i, + 1) =0
or (1, — u)/(, + 1,) <0, but of secondary relevance for most cases of interest,

e, (U,—pu ), +pn)=1.

The model introduced in this section has the following features/limitations:

a

it can predict the effects of crack opening variations and the presence of a
finite channel “wall” (the crack tip perimeter at the bottom of the fracture),
represented by a series of doublets;

it cannot predict the onset of instabilities. A subsidiary set of calculations
based on energy dissipation arguments can be performed to predict the onset
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of instabilities, however its accuracy is dependent on parameters that are sel-
dom available in practice, e.g., surface contamination, variations of the sur-
face asperity ratio. For instance, assuming the values of the interfacial tension
polar and non-polar components known, the surface free energy could be
estimated. A criteria could be developed—the decrease in energy due to shed-
ing the higher viscosity fluid from the wall balanced against the free surface
energy. The applicability of this criteria is very limited, unless the full
dynamics of the meniscus movement can be modeled;

O once encapsulation happens, a set of algorithms (vide Section 2-6 on Page 54)
has been devised to find the thickness of the fluid layers in the transverse
direction. These algorithms minimize the viscous dissipation energy (subse-
quently maximizing the flow gain velocity), and provide the means to find the
key variable of interest, i.e. the blob downwards velocity.

In this Section a physical analysis of the process is addressed. Also, some results
are discussed (comparisons between this model and experimental results is presented in
Chapter 5). Details of the derivation are presented in APPENDIX B on Page 157.

2-5.1 The Hele-Shaw & Stokes Potential Flow Field Paradox

A curious diversion is presented. While searching for the origina! work of Hele-
Shaw, I found interesting personal correspondences among H.S. Hele-Shaw, O. Reynolds
and G.G. Stokes.

When Hele-Shaw introduced his cell to provide a visualization of streamlines,
Hele-Shaw (1898a); Hele-Shaw (1898c), he gained an immediate opponent:
Reynolds. Reynolds claimed that Hele-Shaw’s experiment was plagiarizing his ideas and,
moreover, it was useless, since it only dealt with very slow flows, Reynolds
(1898). However, Reynolds didn’t predict he would face a formidable foe: G.G. Stokes.

Stokes was interested in contirm some of his theoretical predictions, i.e., the poten-
tial flow theory. Hele-Shaw’s experiment provided him with a unique capability, except
that his predictions were (physically) valid for flows in which inertial effects dominated
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viscous effects. Few weeks after Hele-Shaw’s initial article, Stokes presented a simple,
and physically sound, proof that his theories could be scrutinized by means of the Hele-
Shaw’s cell, Stokes (1898) and Hele-Shaw’s accompanying article Hele-Shaw (1898d).

The idea behind Stokes proof was: in the limit of a highly-viscous motion, the flow
field can be shown to be irrotational (also know as the Viscous-Irrotational Potential Flow
Paradox). Hele-Shaw’s reply to Reynolds, Hele-Shaw (1898b), made that point very
clear.

Later, corrections to Hele-Shaw’s derivations were presented—see Bairstow, Cave
et al. (1922); Bairstow, Cave et al. (192%). In particular, there is an interesting critical
work by Riegels (1938) that seems to be unknown in the current literature on Hele-Shaw
flow and fingering analysis (it extends some of the limits of applicability of the “slow
flow” approximation to Reynolds numbers of order 1 using an Onseen’s type asymptotic
expansion).

Recently, Hele-Shaw type flows have received a renewed research interest, in
areas ranging from fingering to chaotic/fractal behavior, Ben-Amar, Hakim et ... (1991);
Brener, Levine et al. (1991); Burgess and Tanveer (1591); Hu and Joseph (1990); Lacey,
Howison et al. (1990); Meiburg (1989); Saffman and Tanveer (1989), and multilayer sta-
bility analysis, Anturkar, Papanastasiou et al. (1990a); Chen and Joseph (1991); Hooper
(1989); Hu and Joseph (1989); Ripa (1991).

With respect to the present work, in APPENDIX B on Page 157, an analysis of
the validity of Hele-Shaw’s approximation for wedge shaped cells (as well as, the usual
parallel walls cell) is presented. It is shown that under the very low Reynolds numbecr
assumption, an additional condition has to be satisfied:

* the tapering (wedge) angle must be small, i.e., the magnitude of the crack
opening variation along any direction should be negligible when compared to
the crack opening times the in-plane velocity field gradient.
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2-5.2 A Semi-Analytical Algorithm for In-Plane Motion

The set of solutions derived in APPENDIX B on Page 157—unbounded/bounded
container walls & parallel/wedged plates—are utilized here as coefficients for a semi-ana-
lytical algorithm. This algorithm models both the dynamic (excluding the nonlinear con-
vective components) and steady-state in-plane movement of the blob.

Equation (B-28) is solved using a modified fourth order Runge-Kutta procedure.
If inertia effects become negligible the eigenvalues will present a behavior characteristic
of stiff ODE problems and limit the time step size. To avoid this problem, results from the
parallel plate solution are used as a lower bound for the time step size as follows:

o Or tpopa >> (1 + p;)/(n, + U, ny) inertia effects are neglected and the reduced
1st. order ODE problem is solved;

o {Or tpapax = (1 + p;)(n, + Yy n;) the full 2nd. order problem is solved.

where the r.h.s. is 74, and Zp,.., is how long the center of the blob would take to reach (1
— R,)—values in nondimensional form—(See Section B-3.1 on Page 162). Other useful
terms are: Up,uae, the “terminal” velocity of the blob; Rep,u..» Reynolds number based on
the “terminal velocity of the blob; ty,a., is how long the center of the blob would take to
reach (I — R,) for wedged plates; Ay the effective distance travelled by the blob
(accounting for the dilation rate) for wedged plates.

Eigenvalues for the parallel plates problem are: E; =0 and E;, =~ (n, + u,n;)/(1 +
p;). For time steps At > 5/1 E, | the solutions are approximated by the 1st. order reduced
system. Otherwise, the full 2nd. order problem is solved.

A priori ty,.. is unknown. However consistent results should be obtained for val-
ues of 1 < Ay,aac» and 2p,4a. €an be used, initially, as a lower bound for ty, ..

The doublet power series solution introduced in Appendix B converges very fast
when R,,/(1 — h — R,,) is small with respect to the unit, i.e., the blob is relatively far from
the end-boundary. An adaptive integration procedure is utilized to add more terms to the
power series as the end-boundary effects dominate. For instance in Figure 2-5 the effect
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of the end-boundary is preponderant for the wedged plates.
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FIGURE 2-5: Squeeze shape function as a function of dimensionless height (NG = 0.0533 and TAU =
0.4). The lower curve is for parallel plates and bounded cell, the mid-curve for wedged plates and
unbounded cell, and the steeper curve for wedged plates and bounded cell. Squeeze shape coefficient values
are scaled by the parallel plates and unbounded cell coefficient

In Figure 2-6 end-boundary effects are excluded. The shear shape coefficient is
compared against the squeeze shape coefficient for the wedged case (taking a set of values
of the modified Darcy-Raleigh number and time scale). The dilation rate is shown in Fig-
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FIGURE 2-6: Shear vs. squeeze shape functions for unbounded cell with wedged plates, as a function of
dimensionless height (NG = 0.0533 and TAU = 0.4). The lower curve is the shear shape function. Values
are scaled by the parallel plates and unbounded cell coefficient
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ure 2-11.
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FIGURE 2-7: Squeeze rate as a function of time (NG = 0.0533 and TAU = 0.4). From left to right the
curves represent: parallel plates & unbounded cell; parallel plates & bounded cell; wedged plates &
unbounded cell; wedged plates & bounded cell. Compare against the following figure
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FIGURE 2-8: Squeeze rate as a function of time (NG = 0.00312 and TAU = 0.0126). From left to right
the curves represent: parallel plates & unbounded cell; parallel plates & bounded cell; wedged plates &
unbounded cell; wedged plates & bounded cell. Difference between bounded and unbounded cells almost
indistinguishable—low Darcy-Raleigh number

The squeeze rate shown in Figures 2-7 and 2-8 is a measure of the percentage of
fluid stage 1 “column” to be displaced as a function of time. For lower Darcy-Raleigh
numbers (i.e., highly viscous) the end-bounauary effects are reduced.
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FIGURE 2-9: Velocity as a function of time (NG = 0.0533 and TAU = 0.4). From top to bottom the
curves represent: parallel plates & unbounded cell; parallel plates & bounded cell; wedged plates &
unbounded cell; wedged plates & bounded cell. Compare against the following figure
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FIGURE 2-10: Velocity as a function of time (NG = 0.00312 and TAU = 0.0126). From top to bottom the
curves represent: parallel plates & unbounded cell; parallel plates & bounded cell; wedged plates &
unbounded cell; wedged plates & bounded cell. Difference between bounded and unbounded cells almost
indistinguishable—low Darcy-Raleigh number

Velocity (in m/sec) dependence with time (in seconds) is shown in Figures 2-9 and
2-10. Notice the importance of end-boundary effects in Figure 2-9.

The result of various simulations is presented in Figure 2-12. The upper bound on
Reynolds number is given as 0.33 for parallel plates and the rightmost point. The time
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Radial dilation
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FIGURE 2-11: Dilation rate (wedge) as a function of dimensionless height (NG = 0.0533 and TAU = 0.4)

ratio is a comparison of the time it takes the blob to reach the end-boundary for wedged
plates and bounded media, versus parallel plates and unbounded media (for the parallel
plates the end-boundary is just a reference point). The dilation ratio expresses the func-
tional dependence of the blob radius on the wedge shape and time the blob takes to reach
the end-boundary.

Again for Figure 2-12 the two rightmost points were obtained through a dynamic
analysis (they didn’t satisfy the eigenvalue criteria given at the beginning of this section),
the remaining points through a steady-state analysis.

2-6 An Analytical Algorithm for the Transverse Motion

The viscous dissipation criteria and a recursive relationship for the n-stage flow
problem are derived in Appendix C. Two cases of interest are presented:

1) bi-layer

2) symmetrical tri-layer

The formulation, introduced in Section C-4 on Page 186, is applied to fluids of interest.
Measured values of viscosity and effective flow rate are used as input.
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FIGURE 2-12: Time and dilaticn ratios —wedged crack opening and bounded fracture bottom versus
constant crack opening and unbounded fracture bottom— for blob to reach the bottom of the fracture.
RePar (Reynolds number based on parallel cell —conservative upper bound- crack opening) and Ng (Modi-
fied Darcy’s-Raleigh number —also known as Archimedes number) are dimensionless numbers characteriz-
ing the relative importance of viscous, inertia, and gravity forces.

The transversal velocity profile is shown as a function of various encapsulation
flow ratios in Figures 2-13 through 2-16. On TARG-DECH-2 experiments, Mineral Oil
was utilized as the displaced fluid (bath) and the following as the displacing fluids: Glyc-
erol, Hershey’s and Karo—their chemical composition is discussed in Chapter 4. The
following analysis incorporates the physical characteristics of these fluids. Out of the
three displacing fluids, results pictured here are for Hershey’s and Karo.

In Figures 2-13 and 2-14 a bi-layer analysis is presented. Notice that the steeper
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FIGURE 2-13: Velocity distribution (transversal) for bi-layer analysis—using properties of Karo (higher
viscosity) and Mineral Oil. Crack opening is 2mm. Table of numbers represent encapsulation flow ratio g,/
g, values, and its influence on the layer (thickness) ratio
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FIGURE 2-14: Velocity distribution (transversal) for bi-layer analysis—using properties of Hershey’s
(higher viscosity) and Mineral Qil. Crack opening is 2mm. Table of numbers represent encapsulation flow
ratio q;/q, values, and its influence on the layer (thickness) ratio
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FIGURE 2-15: Velocity distribution (transversai) for symmetrical tri-layer analysis—using properties of
Karo (higher viscosity) and Mineral Oil. Crack opening is 2mm. Table of numbers represent encapsulation
flow ratio ¢,/g. values, and its influence on the layer (thickness) ratio
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FIGURE 2-16: Velocity distribution (transversal) for symmeirical tri-layer analysis—using properties of
Hershey’s (higher viscosity) and Mineral Oil. Crack opening is 2mm. Table of numbers represent encapsu-

lation flow ratio g,/q, values, and its influence on the layer (thickness) ratio
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velocity gradient occurs on the left side (Mineral Oil). The overall configuration should
minimize energy by reducing shear dissipation for the higher viscosity fluid. Also, more
fluctuation (for a given encapsulation flow ratio) is seen in Figure 2-14, due to a lower
viscosity contrast (Hershey’s vs. Mineral Oil). An jmportant characteristic in both cases is
the back-flow to match a low (or zero) integrated volume flow rate for the Mineral Oil. In
addtion, notice that the layer ratio, §,/8—representing the transversal space occupied by
fluid stage 2 relative to the crack opening (2mm in this case)—is maximum for an encap-

sulation flow ratio value of approximately 0.0390.

Results for the symmetrical tri-layer analysis are presented in Figures 2-15 and 2-
16. The tendency for back-flow is reduced in this case, and the layer ratio is maximum for
an encapsulation flow ratio value of approximately 0.0260. Notice the tendency for a
plug-flow type behavior (more pronounced in Figure 2-15).

Per se the velocity profiles, shown in the previous figures, do not provide a criteria
to pick an encapsulated flow configuration. As described in Appendix C the criteria uti-
lized to select the encapsulated flow configuration is based on maximizing the flow gain
ratio, i.e.,

» given possible encapsulation scenarios that already minimize total shear dissi-
pation, it is assumed that the two fluid stages will assume a configuration that

will deliver the maximum flow rate of the heavier and more viscous fluid blob.

Figures 2-17 through 2-20 show the effect of varying the flow rate ratio on the: flow gain
ratio; effective viscosity; and, layer (thickness) ratio. This effect is analyzed for a given
viscosity ratio and overall configuration (e.g., bi-layer or symmetrical tri-layer).

Notice that: Figures 2-13 through 2-16 are presented in terms of the encapsulation
flow ratio, Figures 2-17 through 2-21 are presented in terms of the flow rate ratio. The
flow rate ratio definition imposes a dependence on the overall configuration (e.g., bi-layer
different than tri-layer), while the encapsulation flow ratio definition is configuration
independent. The use of this artifact to represent the different flow configurations is easily
pictured in Figure 2-21—the 10 points used to generate each curve have a very different
spread for the bi-layer when compared to the symmetrical tri-layer.
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FIGURE 2-17: Flow gain ratio, effective viscosity, viscosity ratio (single number) and layer ratio as a
function of the flow rate ratio—gq,/(g, + g,). Bi-layer analysis using properties of Karo (higher viscosity)
and Mineral Oil. Crack opening is 2mm
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FIGURE 2-18: Flow gain ratio, effective viscosity, viscosity ratio (single nurnber) and layer ratio as a
function of the flow rate ratio—q,/(g; + ¢;). Bi-layer analysis using properties of Hershey’s (higher viscos-
ity) and Mineral Oil. Crack opening is 2mm
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FIGURE 2-19: Flow gain ratio, effective viscosity, viscosity ratio (single number) and layer ratio as a
function of the flow rate ratio—q,/(2q; + ¢,). Symmetrical tri-layer analysis using properties of Karo
(higher viscosity) and Mineral Oil. Crack opening is 2Zmm
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FIGURE 2-20: Fiow gain ratio, effective viscosity, viscosity ratio (single number) and layer ratio as a
function of the flow rate ratio—g,/(2q, + g,). Symmetrical tri-layer analysis using properties of Hershey’s
(higher viscosity) and Mineral Oil. Crack opening is 2mm
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FIGURE 2-21: Flow gain ratio versus flow rate ratio. Comparison for: Karo in Mineral Oil—bi-layer and
symmetrical tri-layer; Hershey’s in Mineral Oil—bi-layer and symmetrical tri-layer

Analyzing Figure 2-21

* the symmetrical tri-layer configuration offers a higher flow gain ratio when

compared to the bi-layer (roughly 2 orders of magnitude!);

 the flow gain ratio for the bi-layer is roughly a factor of 3 over an attached
configuration flow rate, and roughly a factor of 40-170 for the symmetrical

tri-layer;

 the flow rate ratio associated to the maximum value of flow gain ratio for the
bi-layer configuration is approximately (.96 for both 2-stage scenarios;

 the flow rate ratio associated to the maximum value of flow gain ratio for the
symmetrical tri-layer configuration is, approximately, 0.85 for the Hershey’s/
Mineral Oil set, and 0.81 for the Karo/Mineral Oil set.

Analyzing the layer (thickness) ratio in Figures 2-17 through 2-20, it’s obvious
that an attached blob would not occur (even for ¢, = 0). This point shows a clear short-

61



CHAPTER 2: The Physics of Convection in Hydraulic Fracturing

me of the theor rived h

Refering to item 3) in Section C-1 on Page 183, the transition process from attach-
ment to encapsulation is not addressed in this work. Consequently, the analyst (making
use of this theory) has to decide if encapsulation is present and, if practical conditions will
enhance the detachment cf the blob from the walls. This decision process is by no means
easy and, very often, misleading—a typical example is discussed below.

Surface characteristics, fluid-solid wettabiiiiy and surface roughness play a key
role on determining the attachment of a blob to the walls (while displacing another fluid
stage). For instance, experiments described in Chapter 4 have demonstrated that a
rougher surface enhances the adhesion of a blob to the walls. If this fact is extrapolated to
field conditions in hydraulic fracturing, it seems obvious that the expected fracture inner
walls (rock) roughness would enhance adhesion of the fluids and gels to the walls. How-
ever, such inference is misleading. Most of the fracture surfaces created underground are
very smooth, due to the guasi-static characteristic of the hydraulic fracturing operation.
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Solvers

3-1 Introduction

PARFES (acronym for PARallel Finite Element Solvers) performs detailed track-
ing of multiple fluid interfaces motion within a fracture.

PARFES differs from standard finite element method implementations in the fol-

lowing aspects: i) data structure—it accommodates parallelism, avoiding the conventional

build up of connectivity arrays, or assembling the stiffness matrix, Junior (1989); ii)

solver—an iterative solver is used, exploiting matrix sparsity and nonlinearity; and, iii)

symbolic mathematics—the coefficients of “stiffness” are automatically generated by a

program written in the symbolic programming language Mathematica.

PARFES is composed of three modules:

PARFES1 — used for tracking the interface motion and distortion between
the multiple fluid stages, is based on an Euler-Lagrangian approach, i.e., nodes
at interfaces in contact with solid regions, such as the fracture walls, are
assumed to be at rest, while nodes located within fluid fronts are free to move,
based on the coupling of flow field variables with the elastic stress field. A
finite element algorithm with a local data structure is employed, utilizing an
elliptical conjugate-gradient-type iterative solver. Matrices are sparse and not
assembled

PARFES2 — this modified nonlinear Newton-Raphson algorithm incorpo-
rates the important physics governing the multiple fluids flow motion. The
nodal movement and the fluid flow velocity fields are coupled with the pres-
sure and crack opening distribution fields. Although the algorithm’s data
structure follows the same ideas implemented in PARFES], its results depend
on the 3-D elastic field and fracture criterion coupling performed by R3DH—
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a general fracture simulator developed in a separate project, Cleary, Barr et al.
(1988); Cleary, Kavvadas et al. (1583). R3DH is used to synchronize the glo-
bal variations in crack opening distribution with the predicted pressure flow
field given by PARFES2. The coupling of the two algorithms would represent
a serious computational bottleneck (due to the physics of the problem), if cal-
culations were performed for both algorithms in very refined meshes. How-
ever, a better use of the computational resources is obtained by immersing the
very refined meshes needed in PARFES2 with somewhat coarse discretiza-
tions done in R3DH (the global data structure surface integral scheme
employed in R3DH, although computationally intensive, doesn’t require

refined meshes, except near the crack tip perimeter)

PARFESAX — contains all the intrinsic physical modeling capabilities of
PARFES2 combined with the mesh motion of PARFES], but it is limited to
track the movement of multiple fluid stages for axisymmetrical cases. In spite
of this simplifying symmetry, the accurate solution of cases of interest is also
computationally intensive. By comparing the resuits of this code with the few
available analytical solutions of one fluid stage problem, a great amount of
physical insight has been gained.

There are two versions of PARFES1. The first version was initially designed to

exploit conventional vector supercomputers (e.g., CRAY Y-MP). The algorithm was opti-

mized to run at close-to-peak performance. The second version of PARFES1 was

designed for Massively Parallel Processors (e.g., Connection Machine 2)—it handles

larger meshes.

3-2 Parallelization Issues

Implementation of a Finite Element Method for parallel computers requires an

analysis of the following issues (see Junior 1989):

Local/global connectivity for the physical and computational mesh and its
embedment in the machine topology—see Figures 3-1 and 3-2;



Parallelization lssues

FIGURE 3-1: Physical mesh topology embedded in the machine topology — convex geometry

FIGURE 3-2: Possible partition of non-convex geometry for immersion in the machine topology

2) Development of a splitting strategy of shared nodes (used for mesh wrap-

ping)—see Figure 3-3

3) Packing nodes, elements and degrees of freedom as a function of the proces-
sors distribution and support functions—see Figures 3-4 and 3-5.

The implementation discussed here utilizes virtual processor addressing and direct nodal
mapping. Nodes are not split, except for end-of-the-boundary shifts to allow the mesh to
wrap around itself. A bi-linear isoparametric base is used.
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FIGURE 3-3: Node split among neighbor elements
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FIGURE 3-4: Communi cation cost: 1/1 node and element packing using a bi-linear isoparametric element

3-3 Error, Convergence and Performance Analysis

The tendency of higher viscosity fluids to migrate to regions of lower shear rates
may dramatically alter the wetting conditions at the fracture walls (vide sketch in Figure
3-6). This (transverse) migration mechanism, previously termed encapsulation, may sub-
stantially affect the average velocity of the heavier proppant-laden fluid(s) and, conse-
quently, the placement of proppant particles within the fracture cavity. Although fingering
(in-plane instability—modelled by PARFES1), can modify the morphology of the fluid
stages’ interfaces, encapsulation instabilitics are more important in hydraulic fracturing.
For instance, experiments conducted for different fluids, vide Chapter 4, have demon-
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1 element 1 element

: : : ./ processor

FIGURE 3-5: Communi cation cost: 1/1 node and element packing using a bi-quadratic isoparametric ele-
ment

strated a spread of about two orders of magnitude on the downwards blob velocity.

The downwards motion of multiple, immiscible, fluid stages is far more compiex
than the 2-stage problem, specially when modelling in-plane distortion. Excluding fluid
losses through the fracture walls, the various stages compete against each other when fill-
ing the fracture, i.e., the lighter fluid when displaced upwards is also constrained to move

within the fracture boundaries.

The tracking of one interface motion was verified against derived analytical solu-
tions using PARFESAX. An error analysis for various physical variables of interest, is
shown in Figures 3-7 through 3-10.

Multiple interface tracking was verified in two ways: i) imposing exactly the same
boundary conditions and fluid characteristics of the 1-fluid stage analytical solution to the
various fluid stages—Figures 3-11 through 3-24 show an error analysis for 1, 2 and 5 fluid
stages; ii) doing a convergence analysis in the general case (no analytical solution avail-
able), vide Figures 3-25 through 3-29 (except Figure 3-27).

With respect to the suitability of the algorithm(s) to parallelization, optimization
results for PARFES]1, using the NCSA’s CRAY Y-MP, show a good parallel scale-up when
the number of mesh points is increased, see Figures 3-30, 3-31 and 3-32. Also, perfor-
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Onset of instability

Crack Opening | @—8{" .. .

FIGURE 3-6: Onset of encapsulaticn instability

mance is good for larger meshes (215 MFlops out of a 330 MFlops theoretical peak per-
formance)—See Figure 3-33 on Page 84. The fine grained implementation, using the
Connection Machine-2 (at various locations), confirmed the expectations, e.g., large prob-
lems run with almost 98 percent processes utilization.

For more details refer to Appendices D and E. Additional results presented in
Appendices G, Hand L.

68



Error, Convergence and Performance Analysis

— T PW ]
—— T VW
erﬂf ...... "T_W
Jﬂlq ——  em_RFDOT
lzﬁ'!k cemee e RF
1E1 \
1E2 . err_1OL
1E3
1E-4 N
1E5
1E-6
~—
1E.7 S S
1E8
3 P A oot A PO v ) L * N
1E-9 = a P g
3 - . i
1E-10 . s
IE- 11
1124 Portf? A ! m Ry el
m-u'%"!v';'_ AR AT A ™ KA TR T T
1 i & § § '
1E-14 £
1E-15+
1E-16 —— et v e .
0 1000 2000 3000 4000 s0co 6000
Time (seconds)

FIGURE 3-7: PARFESAX results for 100 mesh points and 101 time steps. Numerical error (comparison
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mesh velocities at the fluid front; fluid front position; and, total volume conservation
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FIGURE 3-13: PARFESAX error analysis for the final predicted wellbore pressure versus the total num-
ber of time steps. Same boundary conditions and fluid characteristics of the 1-fluid stage imposed on both
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boundary conditions and fluid characteristics of the 1-fluid stage imposed on both the 2-stage and 5-stage
problems. Result for 50 time steps

10E+0

1.0E-1

10E-2

1.0E-3

10E4

1.0E-5

1.0E-6

1.0E-7

1.0E-8

1.0E-9

1.0E-10

Front Velocity Error

T - S e —@— Velocity_1-Fluid_T-50
] ~@-  Veloaty_2-Fluids_T-50

N

4 Velocity_5-Fluids_T-50

3

3 .

El

0 TS

3 .

B

T

. :

T =TT PP SEPRSURI: N
<4

T T T i

1.0E+0 10E+1 10E+2 1.0E+3 1.0E+4

Total Number of Mesh Points

FIGURE 3-15: PARFESAX error analysis for fluid front versus the total number of mesh points. Same
boundary conditions and fluid characteristics of the 1-fluid stage imposed on both the 2-stage and 5-stage
problems. Result for 50 time steps

73



CHAPTER 3: PARFES — PARallel Finite Element Solvers

RFDOT Error
10E:0 ¢ 77l @~ RDOT.1-Auid T-50
LOE1 . il -®  RDOT_2-Fluids 150
- 4 RDOT_5Fluids_T-50
10E-2
10E3
1064
10ES
10E6
1.0E7 : R .
1.0E8
L0E9
10E-10  —~—r—r-rvrrry T ]
10E+0 10E+1 1.0E+2 10E+3 L0E+4
Total Number of Mesh Points

FIGURE 3-16: PARFESAX error analysis for nodal front velocity versus the total number of mesh points.
Same boundary conditions and fluid characteristics of the 1-fluid stage imposed on both the 2-stage and 5-
stage problems. Result for 50 time steps

Injected Flux Error
10E+0 PR
‘i‘: -
.
1.0E-1 TN
. S A
1.0E-2 . \ \‘\«:
10E-3 . N '
1.0E4 . - \-\
—8- Flux_1-Awd_T-200 \
1.0E5 R
-@-  Flux_2-Rwds_T-200 !
10E-6 - --d-  Flux_5Fuds_T-200 1
\ .
10E-7 R . - \ .
1005_8 - - - . .. "“"“"%I P -‘f’“- e
1069 - - S i ~~~~~~~~~~~~~~~~ :
10E-10 +— - - : . vi
10E+0 1.0E+1 10E+2 1.0E+3 1.0E+4
Total Number of Mesh Points

FIGURE 3-17: PARFESAX error analysis for injected flux versus the total number of mesh points. Same
boundary conditions and fluid characteristics of the 1-fluid stage imposed on both the 2-stage and 5-stage
problems. Result for 200 time steps
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Front Velocity Error
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FIGURE 3-18: PARFESAX error analysis for fluid front velocity versus the total number of mesh points.
Same boundary conditions and fluid characteristics of the 1-fluid stage imposed on both the 2-stage and 5-
stage problems. Result for 200 time steps
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FIGURE 3-19: PARFESAX error analysis for nodal front velocity versus the total number of mesh points.
Same boundary conditions and fluid characteristics of the 1-fluid stage imposed on both the 2-stage and 5-
stage problems. Result for 200 time steps
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Front Velocity Error
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FIGURE 3-20: PARFESAX error analysis for fluid front velocity versus the total number of time steps.
Same boundary conditions and fluid characteristics of the 1-fluid stage imposed on both the 2-stage and 5-
stage problems. Result for 50 mesh points
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FIGURE 3-21: PARFESAX error analysis for nodal front velocity versus the total number of time steps.
Same boundary cenditions and fluid characteristics of the 1-fluid stage imposed on both the 2-stage and 5-
stage problems. Result for 50 mesh points
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Injected Flux Error
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FIGURE 3-22: PARFESAX error analysis for injected flux versus the total number of time steps. Same
boundary conditions and fluid characteristics of the 1-fluid stage imposed on both the 2-stage and 5-stage

FIGURE 3-23: PARFESAX error analysis for fluid front velocity versus the total number of time steps.
Same boundary conditions and fluid characteristics of the 1-fluid stage imposed on both the 2-stage and 5-
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RFDOT Error
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FIGURE 3-24: PARFESAX error analysis for nodal front velocity versus the total number of time steps.
Same boundary conditions and fluid characteristics of the 1-fluid stage imposed on both the 2-stage and 5-
stage problems. Result for 1000 mesh points
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FIGURE 3-25: Convergence analysis for fluid front velocity versus the total number of mesh points track-
ing 5 fluid stages. The injected flux/density/viscosity are increased as x 2x 3x 4x 5x, for each stage (x is the
flux/density/viscosity for the first fluid stage)
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FIGURE 3-26: Convergence analysis for nodal front velocity versus the total number of mesh points
tracking 5 fluid stages. The injected flux/density/viscosity are increased as x 2x 3x 4x 5x, for each stage (x

is the flux/density/viscosity for the first fluid stage)
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FIGURE 3-27: PARFESAX error analysis for the final predicted wellbore pressure versus the total num-
ber of time steps. Same boundary conditions and fluid characteristics of the 1-fluid stage imposed on both
the 2-stage and 5-stage problems. Result for 1000 mesh points
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FIGURE 3-28: Convergence analysis for the final predicted wellbore pressure versus the total number of
mesh points tracking 5 fluid stages. The injected flux/density/viscosity are increased as x 2x 3x 4x 5x, for

each stage (x is the flux/density/viscosity for the first fluid stage)
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FIGURE 3-29: Convergence analysis for the final injected flux versus the total number of mesh points
tracking 5 fluid stages. The injected flux/density/viscosity are increased as x 2x 3x 4x 5x, for each stage (x

is the flux/density/viscosity for the first fluid stage)
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FIGURE 3-30: PARFEST1 optimization results for a 100x100 mesh, using the NCSA’s CRAY Y-MP.
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81



CHAPTER 3: PARFES — PARallel Finite Element Solvers

Seeed Up

o N & n®

—
| il
SULEDD m______”“”ﬂ
Parallel Reglons
B = Serial Nork O = Parallel Nork
sunasry of residl; reaidiQ4y /‘/
/

FIGURE 3-31: PARFES]1 optimization results for a 150x150 mesh, using the NCSA’s CRAY Y-M

82



Error, Convergence and Performance Analysis

o J ]
: ]
ST A | | lililn
2 Wl Jll
) PL ol e doomcn e i
Porallel Regions
U = Serial Work O = Perallal Hork
residl! rex!diQds - 2000 8.0
4
8 |- [X) xay_shet 7.9
Key v/
andahls aes 7.0,/
- AdXimum cavnns /
? overhoad snvem . - 6.3
dedicated —_— 5.0 ,/
naximun variable —
6 ninlmon varleble w— 27 5.3
lincor speed up -«-o- 5.0
Speed progroa specd Up sevem . s
up B It .
4.0
4,0
4 - ,,
3.0,/
3 Y
AZA
2.0
2 | 2.0
1.0
1.0
t F 0.3 o
oot 0.1 B
0.9 0.9 we"™ee 0. 0 03 91
1 2 3 4 H 3 7 8
o CPUs

FIGURE 3-32: PARFES] optimization results for a 150x150 mesh, using the NCSA's CRAY Y-MP.
Result for most computationally intensive subroutine. Program presents a good parallel scale-up (even in its
coarse grained implementation) when number of mesh points is increase

83



CHAPTER 3: PARFES — PARallel Finite Element Solvers

250 ; 1000
[ [ —e— MFLOPS (No-Inlinig) i
200 .| —a— MFLOPS (Inlining 3) § . y o ”,""g 800
150 I 660
£ - & &
s 0 2
<3 i § / ’ . :D
- H P A S SN—— Pt
= 100 ... i/ ............. r A s S gt s -» — 400 ©
I z 5 .
I ' IR
50 |- .. ,' b e o1 200
H PR 4 --m-- CPU (No Inlining)
r _—:.'-7‘". ---¢---CPU ( Inlining 3)
L A EE B e e b B
0 50 100 150 200 250 300 350 400
Mesh Size

FIGURE 3-33: Performance results for vectorized version of PARFES]1 as a function of the mesh size.
Number of degrees of freedom is 2m?, where m is the mesh size



4 TARG-DECH — Gravity-Driven
Convective Hydraulics

4-1 Introduction

Two apparatus named TARG-DECHI1 and TARG-DECH2—acronym for Test
Apparatus for Response of Gravity-Driven Effects in Convective Hydraulics—were
designed and constructed to study various flow regimes at low Reynolds’ numbers. Such
flows are induced by variations of density between ditferent fluid stages (immiscible
phases) contained within a cavity. A variety of instability mechanisms (such as fingering
and encapsulation instabilities) and, sometimes, chaotic behavior can be observed.

In their study of fingering instabilities, using a Hele-Shaw cell, Bensimon,
Kadanoff et al. (1986) pointed out that: i) the prediction of the motion of the interface sep-
arating two fluids is still an unsolved problem, despite the apparent simplicity of the low
Reynolds’ number flow regimes; ii) a chaotic behavior (“turbulence”) is often observed in
the limit of small surface tension.

Hele-Shaw cells were initially designed to permit potential flow visualization,
Hele-Shaw (1898a); Hele-Shaw (1898b); Hele-Shaw (1898c¢); Hele-Shaw (1898d); Hele-
Shaw and Hay (1900); Reynolds (1898); Stokes (1898). More recently they became an
excellent tool to study the growth and development of fingering instabilities, Bensimon,
Kadanoff et al. (1986); Homsy (1987); Park, Gorell et al. (1984); Paterson (1981); Saft-
man (1986); Taylor and Saffman (1958). On the other hand, the TARG-DECH was devel-
oped to canvass a different class of instability phenomena—named encapsulation
instabiliry —that leads to transversal viscosity stratification, i.e., in-plane flow of immisci-
ble fluid layers stratified across the gap width.

The encapsulation instability is the tendency of lower viscosity fluids to encapsu-
late a higher viscosity fluid—detaching the higher viscosity fluid from the walls and con-
siderably reducing its apparent viscosity. The encapsulation instability phenomena has
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been previously addressed in the following areas: multilayered flows, White and Lee
(1975); Yih (1967); Yu and Sparrow (1967), pelymer flows, Everage (1973); Everage
(1975); Lee and White (1974); Lee and White (1975); MacLean (1973); Williams (1975),
and lubrication, Coyne and Elrod (1970). Also, in the initial studies of fingering, Chuoke,
Meurs et al. (1958); Saffman and Taylor (1958); Taylor and Saffman (1958), addressed
the possibility of a displaced fluid to form a layer between the walls and the displacing
fluid. Nevertheless, the thickness of the fluid layers and its formation from a stable con-
figuration were not pursued.

Recently Weinstein, Dussan et al. (1990), taking advantage of developments in
moving contact line modeling over the last decade, tackled the formation of multiple fluid
layers as a moving boundary-value fingering problem. Though, their analysis had to be
restrictecd to the limit of small capillary numbers (directly proportional to the average
interface velocity and displaced fluid viscosity, and inversely proportional to the interfa-

cial tension).

There is a clear distinction between fingering and encapsulation—in-plane versus
transversal instability. Yet Saffman (1986), in a literature review of fingering, classified
possible boundary conditions in the transversal direction as; i) idealized, ii) realistic static;
and iii) realistic dynamic. Saffman’s realistic dynamic boundary condition corresponds to

a reversed encapsulation instability.

Curiously, the fingering literature addresses only an effect opposite to the encapsu-
lation instability, i.e., a less viscous fluid (the displacing fiuid) being encapsulated by a
more viscous fluid (the displaced fluid). The incorporation of the reversed encapsulation
instability phenomena into the study of fingering proves to be a difficult task, and only
simplified analysis exists that assimilate the size of the fluid layers as a parameter.

4-2 Design of the TARG-DECH

The physical situation of interest is the displacement of a lower viscosity and
lower density fluid(s) by a higher viscosity and higher density fluid(s). Since in hydraulic
fracturing the movement of different fluid stages, driven by density variations within the
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fracture cavity, is of paramount importance, the TARG-DECH was developed to study:

» how fast the fluid layers carrying proppant move within a cavity

* how thick they are.

Also, to verify experimentally the viscous energy dissipation criteria and corresponding
algorithms from Chapter 2 (predicting the thickness of each fluid layer and the speed at
which they move).

Although studies on the stability of multi-layer flows are available, Ripa (1991);
Yih (1967), there is no agreement on the criteria used to establish the conditions for the
onset of the encapsulation instability, as well as its properties (e.g., thickness of each
layer). Consequently, the TARG-DECH provides direct experimen:al evidence on the
accuracy and suitability of part of the theoretical and numerical developments presented in
Chapters 3.

The design of the TARG-DECH relied on preliminary calculations that estimated
the magnitude of the forces affecting the fluid flow —surface tension, friction (viscous
dissipation), gravity and buoyance— obtained with the simulator described in Chapter
2. Ultimately, the apparatus’ physical dimensions should provide an adequate time range
to record the data, and take pictures of the fluid stages motion. Also, to permit the forma-
tion of a well defined blob, the injection rate of each fluid stage should be fast relative to
the downwards flow field velocity.

Henceforth, the fluid stage initially filling up the TARG-DECH cell is denomi-
nated the primary fluid-stage. The first fluid-stage blob injected is denominated the sec-
ondary fluid-stage, the second fluid-stage blob injected is the tertiary fluid-stage, and so
on.

Two apparatus were built:

1) TARG-DECH1 - first apparatus built. Used to understand the qualitative
behavior of multiple fluid stages motion within the cell. TARG-DECH1 pro-
vided an invaluable insight on the existence of the encapsulation mechanism
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and the importance of wetting conditions.

2) TARG-DECH?2 - all quantitative results presented in this Chapter (Figures 4-6
through 4-56) were obtained from TARG-DECH2.

4-3 TARG-DECH1

TARG-DECHI1 consists of two square parallel plates, with varying spacing
between them, measuring 43.18 cm each, and made out of Plexiglass (PMMA) for flow
visualization. It is similar to a vertical Hele-Shaw cell (transversal gap width much
smaller than in-plane width or height), with a back plate radial source to simulate a wel-
bore (See Figure 4-1 on Page 89). The back plate is 2.54 cm thick with a groove, measur-
ing 1.27 cm wide by 1.91 cm deep, and cut 5.08 cm from the outside perimeter (See
Figure 4-2 on Page 90). The front plate is 1.27 cm thick with a protruding spacer that fits
snugly within the back plate groove, permitting a variation of the transversal gap width
with respect to the front plate. An O-ring seal (running along the spacer outer surface),
and a Foamex gasket (affixed to the base of the groove and reinforced with silicone seal-
ant) obstruct fluids from leaking outside the cell. Two configurations of interest can be
simulated; a vertical parallel cavity, and a vertical wedged cavity.

Spacing between the two plates is controlled by a system of screws, clamps and
metal spacers. The transversal gap widih can be made either constant or wedged, along
the in-plane coordinates, by changing the top and bottom spacers. The apparatus is held
together by a set of four bolts, and aluminum reinforcements are used to prevent warping
of the plates due to unequal tension applied to the bolts. The front plate aluminum rein-
torcing frame (See Figure 4-3 on Page 92) is hinged to an horizontal bottom wood plat-
form, which supports the whole apparatus. The back plate is supported by a heavy metal
block and an aluminum frame, both bolted to the same platform. To avoid large deforma-
tions, a secondary set of small spacers is located at convenient positions between the two
plates. Measured variations of spacing—using an indicator table—are less than 10% of

the separation gap.

The following set of gap spacers—all with a machining tolerance of less than *
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FIGURE 4-1: Sketch of the assembled TARG-DECH1

0.08 mm—were built: 25.4 + 1.02 min, 25.4 + 2.03 mm and 25.4 + 10.16 mm. For each
spacer: the first number (1") represents the back plate groove top-to-bottom distance; and
the second number is the gap space between the two plates.

A set of four holes, of different sizes, were drilled in the backplate. A central hole
0.85 cm in diameter, is connected to a cross-connector. Two Swagelock bidirectional
valves and one unidirectional valve are linked to the connector allowing the injection of 5
different fluid stages, in addition to the primary fluid stage (See Figure 4-4 on
Page 94). A hole on the upper right corner is used for air drainage during the primary
fluid-stage filling, and a hole on the lower right corner is used for drainage after the exper-
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iment is completed. Both holes are obstructed during the experiment. A fourth very nar-
row central hole, located 22.86 cm down from the injection hole, is used for injection of
dyes or coloring agents, which permits visualization of the streamlines around the falling
blobs. Usually a mixture of the primary fluid stage and dyes at a temperature higher than
the temperature of the fluids used in the experiment, is employed. This mixture tends to
flow to the top of the cell, encountering the falling blobs on its way upwards, and creating
an approximate streamiine path around the blobs.

FIG. 2a: BACK PLATE
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FIGURE 4-2: TARG-DECH]1 back (a) and front (b) plates

One of the concerns during the design phase was on how easily would the appara-
tus be cleaned after each experiment. An easy setup for assembling, disassembling and
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cleaning would considerably reduce the turnaround time. The assembling and disassem-
bling turns out to be relatively fast (3-5 minutes each), however the cleaning takes much
longer — between 20-25 minutes.

In hydraulic fracture the mix of proppant particles to the injected fluids/gels is nec-
essary in order to maintain the crack opened after the fracturing treatment. The ideal
proppant would be a reasonably sized particle (of order one millimeter in diameter, e.g.,
20/40 mesh size), extremely resistant, very cheap and with specific weight close to the
unity. Unfortunately, the above combination is very difficult to achieve.

The most used proppant particles are: sand for shallow reservoirs; resin coated
sand or Clay/Silica/Alumina for intermediate depths; and Alumina/Bauxite for deeper res-
ervoirs. Also, Zirconia and Silicon Carbide are used for special purposes. Sand has the
advantage of being cheap and its specific weight is of order 2.7, although not very resis-
tant. The intermediate compounds are more resistant against crushing, but present a
higher specific weight — between 3.0 and 3.2. Pure Alumina has a specific weight of
3.98, and the Alumina/Bauxite mix is about 3.7.

The solely purpose of mixing particles to the fluid stages while running experi-
ments with the TARG-DECHLI is to increase the specific gravity of the mixture (ergo con-
trolling the driving force). Although the particles (mixed to fluid and/or gels) used in the
TARG-DECH]1 will be loosely referred as “‘proppants”, a series of observations ought to
be made:

* convective velocity vs. settling velocity — In hydraulic fracturing treatments
typical average crack opening sizes are in the range of 1 to 10 cm, and prop-
pant sizes of order 1 mm. Except for unusual situations, such as very tight
crack openings or the use of large proppant particles, the convective motion is
the dominant physical mechanism, responsible for proppant transport within
the fracture. So, the “proppant” movement within the fluid/gels—proppant
settling—in the TARG-DECHI1 is disregarded. Since the TARG-DECHI1
minimum gap size is 1 mm, the diameter of the “proppants” used should be
scaled down. A variety of small diameter particles have been used—=80 um
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FIG, 3a: ALUMINUM REINFORCING FRAME
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FIGURE 4-3: TARG-DECH1 aluminum reinforcing frame (a) and gap spacers (b)

Silicon Carbide, 15 pum Zirconia, 5 pm  Tungsten and 10 um
Alumina. Hereafter, for the TARG-DECH1 experiments, the word proppant
means particles sizes of at most 100 ym.

dispersion — The above referred particles don’t dissolve in water without the
use of dispersants, however they disperse very well in Silicone fluids and Eth-
anol based Cellulose gels. This is a plus for running the experiment, since we
can use water as the primary fluid and variations of the Silicone fluids and
Celluiose gels to contain the proppants.

injection velocity vs. convective velocity — To permit the formation of well-
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defined blob shapes, the injection velocity should be always higher than the
convective average velocity field. This is particularly important in the TARG-
DECHI since it also relies on visual data acquisition (pictures) to track down
the movement of the fluid blobs. Based on the TARG-DECH physical dimen-
sions and used gap sizes, the projected injection rate velocity should be faster
than 0.07 m/s, and the estimated average convective velocity should not
exceed 0.01 m/s. The use of proppants usually increases the apparent viscos-
ity of the fluid blobs, and, in tum, allows a better control of the downwards

fluid movement.

non-abrasive particles and non-corrosive liquids — One of the drawbacks of
using PMMA as the cell container is its susceptibility to abrasion (by large
mesh particles) and corrosion (by acetones and most of the petroleum based
chemicals). Hence, the use of particles with diameters 100 um or less is a
necessity. As a matier of fact, those fine particles behave like a polisher when
in contact with the cell surfaces.

cleaning — Although finer proppant particles are easier to disperse and needed
to operate the TARG-DECHI, they impose a small handicap; cleaning of the
injection lines and injection instrumentation is cumbersome.

In summary, the TARG-DECHI1’s design goals are the following: i) use of a grav-

ity driven —as opposed to pressure driven— fluid motion; ii) ability to track the various

fluid-fronts and interfaces; iii) provide a quantitative measurement of multiple fluid stages

motion and dispersion within a narrow channel; iv) offer a qualitative understand of the

parameters affecting the fluid motion, i.e., when, why and how encapsulation will occur;

and, in case an encapsulation instability develops, v) provide a quantitative measure on

how fast the fluid blob will move, due to the detachment of the heavier and more viscous
fluid from the cell walls.

4-4 Operation of the TARG-DECH1

Three physical propertics measurements, described below, are required for the
operation of the TARG-DECHI1
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I
O-SEAL STRAIGHT THREAD CONNECTOR
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FIGURE 4-4: TARG-DECH]1 back plate (supported) and fluid injection gear

density — Using distilled water and Dow 200 Silicone a container was cali-
brated to measure the density of fluids and mixtures. An accurate scale, with
readings of 1/10000 of a gram, is used to weigh the container and its
contents. In average an accuracy of at least 0.5% is expected. The two main
causes for inaccuracies are; variations in room temperature, and the depen-
dence on visual acuity to read the fluid/mixture volume level from the con-

tainer.

surface tension — Initially the Wilhelmy slide method. Adamson (1967), was
employed. This method consists on; balancing a very thin lamina (for
instance a microscope glass cover) by means of a lever based scale, introduc-
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ing the lamina inside of the fluid/mixture, and adding weights to the other side
of the scale until the lamina withdraws from the fluid/mixiure. Using distilled
water for calibration, the error range was 3-10%. Since a rudimentary scale
(built in-house) was used, it was difficult to control the accretion of weights to
the balancing side of the lever. Moreover, the Wilhelmy method does not pro-
vide any information about surface tension measurements of multi-fluids
interfaces. Another methcd—the Drop method—was adopted. The Drop
method consists in introducing a probe (such as a pipet with known inner and
outer diameter) holding a fluid A, within a pre-weighed container filled with a
fluid B. Then, a counted number of drops of fluid A are injected into the fluid
B container, and the container’s final weight is measured. Utilizing a chart
that correcis for variations of drop shapes as a function of the probe drop wet-
ted diameter and the drop volume (and accounting for the specific weight of
both fluids), the fluids A/B interfacial surface tension is obtained. Using dis-
tilled water and Dow 200 Silicone fluids for calibration, the achieved error
range for the Drop method was 2-4%.

* viscosity — A set of two Cannon-Fenske 1600-8000 cSt viscometers were cali-
brated using the ASTM S2000-Cannon standard in the range of 20 to
40°C. Since the S2000 siandard is strongly dependant on temperature varia-
tions (1/100°C), a variety of special procedures had to be employed during
calibration, e.g., room controlled temperature and a “constant” temperature
bath. Also, a small Mathematica™ algorithm was written to find the best fit to
the values of viscosity as a function of temperature in the range of 20 to 40°C
(the S2000 standard is provided with viscosity values only at 20, 25, 37.78,
40, 98.89 and 100°C). Figure 4-5, shows the resulting equation and its
coefficients. To obtain the above results a modification of the ASTM D341-74
charts, assuming kinematic viscosities above 3.0 cSt, was employed. A pro-
cedure described in ASTM D445-88 was then used to obtain the calibration
constants for each viscometer — 6.26 and 7.99 cSt/sec. The resulting calibra-
tion constants were estimated to within 0.3%.

One drawback of the method employed for measuring the kinematic viscosity is
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the inaccuracy introduced when utilizing opaque liquids — the method is only accurate
for clear liquids with kinematic viscosities in the viscometer original range. However,
tests made with various opaque fluids and mixtures indicate that a 2-3% error can be

achieved.
Viscosity - Cannon S2000 - ASTM Standard
Wo T T T T T T
) ] ] ] |
‘1." visco = - 0.7 + exp( exp( mi+ m2°In(T+273) + m3*(In(T+273)A2) ) )
t Value Error
8000 : m1 -8.5645481618 0.078403
— 1 m2 6.7422179866 0.00978643
] ' m3 -0.85212481789 0.00051058
= A Chisq 0.35127640752 NA
> | . T
= 6000 L R 0.99999999504 NA
° ° 1 1 V '
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FIGURE 4-5: Viscosity versus temperature for ASTM Cannon S2000 viscometer standard. Coefficients
and best fit equation included

The procedure to operate the TARG-DECH]1 (parts are described in Figure 4-1) is
tne following:

1) The top aluminum spacer (B) and the upper reinforcement frame (A) are put
together. Subsequently, the bottom aluminum gap spacer (B) is inserted
inside a cavity under the back plate. The bottom spacer rests against a vertical
aluminum reinforcement plate that supports the whole apparatus. The spacer
selection will define the test to be run, i.e., the cavity will be wedged if spacers
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2)

3)

4)

5)

of different size are used for top and bottom siots. The cell channel can be
wedged either with increasing or decreasing downwards slopes. Though, only
constant channel and decreasing downwards wedged gaps were tested. Then,
the other aluminum reinforcements (C and F), and the smaller gap spacers (E)
are simultaneously clamped (G). Finally the bolts (D) and the front large
screw (H) are tightened.

Before final assembling, a paper marked with a total of 11 horizontal cqually
spaced lines (2.54 cm apart), is taped to the posterior surface of the back
plate. The paper grid layout provides a set of markers used for pictures, i.c.,
each picture is taken when the leading edge of the falling blob(s) is about to
cross one of the horizontal lines. Also, a chronometer, taped against the front
plate, is used to register the elapsed time since the beginning of the cxperi-
ment. Hence, in the resulting pictures, the velocity and the shape of the
blob(s) can be obtained as a function of time.

Pictures taken from different experiments can be digitized and compared,
since a fixed frame sets the distance and height of the camera with respect to

the apparatus.

After the apparatus is assembled, the cell is filled with the primary fluid
through the central injection hole. A permanent pressurized reservoir stores
the primary fluid, and the injection rate is controlled by a pressure gauge. The
secondary (tertiary, etc.) fluid(s) is injected with a syringe. In order to insure
repeatability, the dead volume within the injection gear is subtracted from the
total volume of fluid to be injected.

Once the experiment is finalized, the cell is emptied by aitaching a pressure

line to the top air-drainage valve and opening the bottom fluid-drainage
valve. Disassembling takes less than 5 minutes, but to clean the injection
lines and the inside walls it takes about 25 minutes.
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4-5 TARG-DECH2

TARG-DECH?2 is an improved design version of TARG-DECH1, with two major

modifications:

1) Higher energy surfaces for the inner walls—glass instead of plexiglass. Also,
able to vary the wall roughness, i.e., two different plates used, float giass and

frosted float glass (approximately 1/120" asperity);

2) Top part of the cell is open—allowing much easier handling and maintenance.

Figure 4-6 shows TARG-DECH2. The design is even simpler than TARG-DECHI.
Except for wetting, surface and interfacial tension measurements utilizing 2 goniometer,

all the remaining Figures demonstrate results from TARG-DECH2.

FIGURE 4-6: TARG-DECH?2 container
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FIGURE 4-7: Experimental values of velocity vs. viscosity ratio—float glass/parallel plates/2mm
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FIGURE 4-8: Experimental values of velocity vs. viscosity ratio—float glass/parallel plates/3mm
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FIGURE 4-9: Experimental values of velocity vs. viscosity ratio—frosted glass/parallel plates/3mm
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FIGURE 4-12: Glycerol in Mineral Oil contact angle spread—float vs. frosted glass
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Hershey's in Air
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FIGURE 4-13: Hershey's in Air contact angle spread—frosted glass
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FIGURE 4-14: Hershey’s in Mineral Oil contact angle spread—float vs. frosted glass
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Karo in Mineral Oil
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FIGURE 4-15:

Karo in Mineral Oil contact angle spread—float vs. frosted glass
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Wedge Thickness (Float Glass)
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FIGURE 4-17: Measured wedge variation for float glass—prior to test
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FIGURE 4-18: Measured wedge variation for frosted glass—prior to test
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FIGURE 4-19: Sequence of blob movement—Hershey’s in Mineral Oil, 2 mm gap. Attached blob

FIGURE 4-20: Sequence of blob movement—Hershey’s in Mineral Oil, 2mm gap
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FIGURE 4-22: Sequence of blob movement—Karo in Mineral Oil. Wedged plates
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FIGURE 4-24: Sequence of blob movement—Karo in Mineral Oil. Wedged plates
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FIGURE 4-25: Sequence of blob movement—Karo in Mineral Oil. Wedged plates
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FIGURE 4-26: Sequence of blob movement—Hershey’s in Mineral Oil, 2 mm gap. Frosted Plates
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4-27: Sequence of blob movement—Hershey’s in Mineral Oil, 2 mm gap. Frosted Plates
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FIGURE 4-28: Sequence of blob movement—Hershey's in Mineral Oil, 2 mm gap. Frosted Plates
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FIGURE 4-30:

Sequence of blob movement—Hershey’s in Mineral Oil, 2 mm gap. Frosted Plates
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FIGURE 4-32: Sequence of blob movement—XKaro in Mineral Qil, 2 mm gap. Frosted Plates
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FIGURE 4-34: Sequence of blob movement—Glycerol in Mineral Oil, 2 mm gap. Frosted plates
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FIGURE 4-36: Sequence of blob movement—Glycerol in Mineral Oil, 2 mm gap. Frosted plates
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FIGURE 4-38: Sequence of blob movement—Hershey’s in Mineral Oil, 3 mm parallel plates. Frosted
glass
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FIGURE 4-40: Sequence of blob movement—Hershey’s in Mineral Oil, 3 mm parallel plates. Frosted

glass
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FIGURE 4-42: Sequence of blob movement—Hershey’s in Mineral Oil, 3 mm parallel plates. Frosted

glass
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FIGURE 4-44: Sequence of blob movement—Hershey’s in Mineral Oil, wedged plates. Frosted glass
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FIGURE 4-45: Sequence of blob movement—Hershey’s in Mineral Oil, wedged plates. Frosted glass
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FIGURE 4-46: Sequence of blob movement—Hershey’s in Mineral Oil, wedged plates. Frosted glass
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FIGURE 4-48: Sequence of blob movement—Hershey’s in Mineral Oil, wedged plates. Frosted glass
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FIGURE 4-50: Sequence of blob movement—Hershey’s in Mineral Oil, wedged plates. Frosted glass
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FIGURE 4-51: Sequence of blob movement—Kare in Mineral Oil, wedged plates. Frosted glass

FIGURE 4-52: Glycerol displacing Mineral Oil over float glass
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FIGURE 4-54: Glycerol displacing Mineral Oil over float glass
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FIGURE 4-55: Glycerol displacing Mineral Oil over float glass

FIGURE 4-56: Hershey’s displacing Mineral Oil over float glass
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FIGURE 4-57: Hershey’s displacing Mineral Qil over float glass

FIGURE 4-58: Hershey’s displacing Minerai Qil over float glass
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GURE 4-59: Hershey's displacing Mincral Oil over float glase
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FIGURE 4-60: Karo displacing Mineral Oil over float glass
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FIGURE 4-62: Glycerol displacing Mineral Oil over frosted glass
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FIGURE 4-63: Glycerol displacing Mineral Qil over frosted glass

TARG-DECH2

FIGURE 4-64: Glycerol displacing Mineral Oil over frosted glass
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FIGURE 4-65: Glycerol displacing Mineral Oil over frosted glass

. _ — . N

FIGURE 4-66: Karo displacing Mineral Oil over frosted glass. Notice a precursor film
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FIGURE 4-67: Interfacial tension measurements utilizing a goniometer. Glycerol in Mincral Oil

FIGURE 4-68: Interfacial tension measurements utilizing a goniometer. Glycerol in Mineral Oil
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FIGURE 4-69: Interfacial tension measurements utilizing a goniometer. Hershey's in Mineral Oil

FIGURE 4-70: Interfacial tension measurements utilizing a goniometer. Karo in Mineral Oil
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FIGURE 4-71: Surface tension measurcments utilizing a goniometer. Glycerol in air

FIGURE 4-72: Surface tension measurements utilizing a goniometer. Hershey’s in air
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FIGURE 4-73: Surface tension measurements utilizing a goniometer. Karo in air. Notice formation of gel

FIGURE 4-74: Surface tension measurements utilizing a goniometer. Mineral Oil in air
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FIGURE 4-75: Surface tension calibration utilizing a goniometer. Distilled waltcr in air
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l‘ 5 Conclusions and Future Work

The main contributions of the present work are the following:

1) Demonstrate that gravity driven convection is the dominant flow mechanism
in poorly contained hydraulic fractures.

2) Demonstrate that encapsulation instabilities can dramatically accelerate the
movement of proppant laden fluid towards the bottom of the fracture.

3) Introduce a novel set of highly-parallel algorithms (PARFES) to handle the
movement of immiscible fluid stages within a cavity.

4) Build an inexpensive and simple (repeatability was the design goal) experi-
mential apparatus (TARG-DECH) to verify the models developed herein.

The mathematical simulators currently used by industry do not incorporate the
convective mechanisms referred above. Current designs for propped fracture dimensions
are typically entirely unrealistic. For example, shorter fracture dimensions may often be a
more cost-effective alternative to unattainable (and more expensive) massive fracture jobs

commonly employed.

In order to quantify this important issue more fully, PARFES needs to be inte-
grated in codes like R3DH to provide a complete simulation of the hydraulic fracture pro-
cess. The results of such simulations can then be downloaded to more practical field
oriented systems, Barr and Cleary (1992); Cleary (1988); Cleary, Wright et al. (1991), for

routine use on commercial jobs.
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APPENDIX A

~ Basic Equations for Multiple Fluid Phas-
es and Stages

A-1 Introduction

The movement of an arbitrary number of fluid phases can be described through an
extension of a single fluid mass and momentum conservation equations, disregarding tem-
perature and further general properties variation (e.g., electromagnetic, ete.). 1f' N fluid
phases arc present within a certain volume, their respective volume fraction is represented

by 'v (i fluid phasc indicated by the upper prescript i) such that
N

The region of interest £2 (sce Figure A-1), circumscribed by d €2, contains cach phase i

(the i phase occupies a volume 'Qwithin boundary 9'Q2
p p y

FIGURE A-1: N fluid phases within region £2and delimited by @ €2 (# phase occupying volume '€2 within
boundary 0'Q)
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The balance of mass for ecach phase is

‘or + (plw) g = 's (A-1)

where: the comma denotes partial differentiation; the subindex k double summation on the
spatial variables (k =1, 2 and 3); the prescript i, which is not a double summation index,
the % fluid stage; 'u, the velocity components of each phase; 'p the density of cach phase; 's

the mass source per unit of volume.

Equation (A-1) is expressed for an orthogonal system of coordinates. Mass conservation
should be satisfied for each phase i, as well as for the summation over all phases in Q

Pr+ (Pw)k =0 (A-2)

where u,, the volume fraction averaged velocity, is given by

we = =L (A-3)

the sum of the source terms over all phases is assumed to be zero (no external sources),
and p is the volume fraction averaged density, analogous to Eq. (A-3) above. Further, the

momentum conservation (volume fraction averaged) in £21is

N
(Puk)'[ + (P Um uk),m = Tokm + Z lbk + Ska (A-4)

1=1
'b, are the body force components acting on the i“ phase; S, are the interfacial force com-
ponents per unit of interfacial area; a is the interfacial area per unit of volume; and, T,
(T _, being the sum over all phases) is given for Newtonian fluids as

ika = - ip Omk — -g— i[-l iW,I Omk + l#( iukm + ium.lc) (A-5)

where: § , is 1 if k=m, and 0 otherwise; 'p is the i# phase hydrostatic pressure; and, '/ is the
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i phase viscosity.

Although the above set of equations, combined to appropriate boundary condi-
tions, forms the current analysis general framework, few remarks should be made:

» The interface between phases has measure zero in three-dimensions, attempts
to average mass conservation and/or momentum at the interface leads to a sin-
gularity if we use the notion of Lebesgue integration. To overcome this
restriction, limits are taken in the sense of the distributions, weighted by
appropriate functions (e.g., Dirac 8-function). For instance in Kataoka (1986)
the space or time averaged values of the local instant void fraction (either 0 or

1) corresponds to the volume fraction (any value in [0,1]).

» The tracking of the interface movement poses a challenging mathematical
problem, even under very simplifying assumptions. For instance Pelcé (1988)
provides an overview of current rescarch on the dynamics of interface motion
in various fields (Bubbles Movement, Flame Propagation, Fingering and
Crystal Growth). In the context of this thesis numerical algorithms are
devised to track the movement of multistage flow fields within a narrow chan-
nel of variable height. To control the movement of each stage, even for

motions that are clearly physically stable, is difficult.

e In the literature various approaches to tackle the multiphase problem are
available. The basic model, the homogeneous mixture model —vide Ander-
son and Jackson (1967), assumes completely mixed phases moving with the
same velocity. The drift flux model, which can be viewed as an extension of
the homogeneous mixture model, allows different speeds among phases. For
finely dispersed suspensions a rational thermodynamics based approach by
Truesdell (1984) is applicable. Local instant formulations—Kataoka
(1986)—and averaged theorems for interface transport—Gray and Hassaniza-
deh (1989)—provide a theoretical formulation to handle the interfaces. How-
ever, several difficulties, as pointed by Bilicki, Dafermos et al. (1987), arise,
even in the simplest cases, when the interface motion is to be tracked.
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In what follows phases are assumed to be contained within a narrow channel, i.e.,
A << L, where A represents the characteristic height of the channel (along the z direction)
and L both the characteristic length (along x) and width (along y) scales. The in-plane
directions are x and y; the transverse direction is z. Mass and momentum will be averaged
along the transverse direction, positing symmetry with respect to the plane
z=0. Depicted in Figure A-2 is the channel height (crack opening for the hydraulic frac-
ture problem), 8 = &(x,y,t), a function of the coordinates x and y, and the time ¢.

-
-~
-
-~

o(x,y,t)

\<

FIGURE A-2: Sketch of vertical channel geometry

B e O N ket 3

X

A-2 Mass Conservation

To obtain the mass balance of the i* phase (using a Cartesian set of coordinates),
presuppose that its density is independent of z, and sources of mass (e.g., chemical reac-
tions) are absent. The volume element is 8 Ax Ay, the in-plane components of velocity are
‘u, and ‘u, and the average fluid leakage velocity (through both walls at z=%4§2) is
'V,..- Therefore, the time and coordinate components of the mass fraction can be

loss®
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expressed as

im, = ‘pliv§Ax Ay

im, = ip(iv iu) Ay At (A-6)
im, = ip(iviu) 6Ax At

imgn = ip iv Vi Ax Ay At

where the averaged velocities are

« 2z
¢ é

1

J‘ by iy dE (A-T)
0

1

j ty iu dE
0

Notice that: the upper prescript i is not a double summation index; velocities are

—_
: l
o

<

~
1]

~
<
5_.

~
]

averaged according to their respective volume fractions.

I

e * \q
= dl \"'- '\\ /
\ ~
Ax Ay X A

FIGURE A-3: Sketch of z-averaged control volume

The mass flux through the control volume in Figure A-3 is balanced below
( imuAl - iml) + ( Mxeax - imx) + ( imy+Ay - iﬂly) +2'mspz = 0 (A-8)
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In terms of a generic subindex a, the first order expansion of m,,,, is

Maraa = 'Ma + aalm“ Ao + O(Ad?) (A-9)
a

Taking the limit of Aa — 0 and substituting Egs. (A-7), (A-6), and (A-9) in (A-8) leads to
the averaged i* phase mass balance

Qpive) + L(p(vu)s) + Z(p(vin)s) + 20"V Vi = 0 (A-10)
ot ox ay

The above equation can be interpreted in the distribution sense. For instance at the inter-
face between two phases (vide Figure A-4 below), the boundary condition jump can be

X

FIGURE A-4: Normal and tangential components of a two-phase interface, where for the i phase 'n =
(n,'n,,'ny) and ‘t=(t,'t, 1))

obtained by integrating Eq. (A-10) weighted by a Dirac §-function. The resulting mass
balance is

o (lue ~ U)o + 2 (2w — UE“™) e = 0 (A-11)

terface

such that: Ui
of phase 1 (or phase 2) velocity components at the interface; 'n, and 'z, are the unit normal

are the absolute interfacial velocity components; 'u, (or “u,) are the limit

and unit tangential components describing the interface from phase 1 n,=-'n,and 1, = -
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't). Equation (A-11) is only valid for a two fiuid interface. For an intersection line
between more than two phases (e.g., tricuspids etc.), a more elaborate extension of the
above equation (except for the z-averaging introduced in this Appendix) can be found in
Gray and Hassanizadeh (1989).

If the fluid phases are immiscible, control volumes can be conveniently introduced to track
their movement. Hereafter, an immiscible macroscopic phase with in-plane dimensions of
the order of the characteristic length scale L will be denominated stage.

For instance, in Figure A-5 each control volume with in-plane characteristic length scale
L is delimited by at least one immiscible fluid phase interface and the channel height.

y
I”
’I
- -~ ‘“
S(x,y,t)
]
V x
FIGURE A-5: Downward movement of three immiscible fluid stages contained within a channel of vari-
able height &{x,y,1)

Equation (A-10) can be simplified for the multistage fluid motion as follows
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aa—l(‘pr?)+5‘:’;(‘p"ﬁx5)+%(‘p‘iy6)+2‘p“’m=0 (A-12)
Using the notation introduced in Eq. (A-1), equation (A-12),with the index k=3
already expanded ( 'uicsn = Vies + %5‘,| ~=a1 ), €an be expressed as

(p6)s + (pwb)r + 20 Vs =0 (A-13)

In the absence of mass exchange between the two stages, Eq. (A-11) is simplified

b e = U Ny = - 2 g (A-14)

and interpreted as a kinematic boundary condition between two fluid stages, i.e., continu-
ity of normal components of velocity. On the other hand, continuity of tangential compo-
nents of velocity may be imposcd as a kinematic boundary condition, if we assume the

“no-slip” boundary condition at the interface

e e = - 2w (A-15)

A counterexample would be the interface between two fluids with a very large difference
in viscosity (e.g., oil/air): tangential components of velocities may be assumed to be dis-
continuous (as a kinematic boundary condition), but continuity of normal velocities can-
not be violated.

Performing an order of magnitude analysis on Eq. (A-12), gives

a A
(s ~ b2
8t(p) =

ai(ip W8) o~ &_Z;V
* (A-16)

9 (ips) ~PAV
dy L
2ip ivlas's ~ pvloss

where p, A and T are, respectively, the characteristic density, crack opening and time
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scales. V is the in-plane characteristic velocity (both x and y) and V,,, the characteristic
fluid leakage (z). Consequently, the characteristic velocities are scaled as

(A-17)

Vln:.\’ o~ vA -
L (A-18)

A-3 Momentum Conservation

The balance of momentum for the multiphase flow is not as straightforward as the
mass conservation presented in the previous section. An interfacial, unknown, force S,
was introduced in Eq. (A-4) to account for interactions between multiple fluid stages. In
the macroscopic scale, at a given point of an in interface with normal components n, and
with mean surface curvature k, S, can be associated to the surface tension o as follows

Sk =o K (A-19)

Although the addition of the interfacial force to the momentum equation provides
a formulation that, theoretically, accounts for all the relevant forces, experimentally it
poses a challenge: Is it possible to measure the interfacial forces? In general, the answer is

no.

At the interface between two phases (See Figure A-4 on Page 142) Eq. (A-4)

reduces to

2 , 4 :
Y ('p itm (um - UZ=) ipy — T ') + Sk = 0 (A-20)

i=1
The above jump condition follows the same interpretation given to Eq. (A-11). In
addition, at the interface, notice the following: the interfacial force per unit of interfacial
area, S,, may be viewed as a source term; and, the normal stresses, as well as the hydro-
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static pressure, may be discontinuous. The discontinuity of stresses is an important point
to be observed while implementing numerical schemes to track the interface
movement. For instance, vide Mavridis, Hrymak et al. (1987), a “double-node” technique
should be used for implementations based on the finite element method.

Consider the problem of interest, depicted in Figure A-2, and assume the same
simplifications introduced in the previous section. Below, the general expression for the
momentum balance, Eq. (A-4), is expanded and simplified based on the control volume in
Figure A-3. To keep the derivation short, only the x direction contributions to the

momentum equation are presented.

3

"M, ;= 'p'v 'ux Ax Ay dz 'p (v 'u) 8 Ax Ay

th_x'_' 1p Vo, Ay At ‘uxdz = ip(iv iux2) SA_)‘ Al
J-N (A'21)
o2

Mo= [ v iuayaiwd = p(v u w) say a
-2

. . . _

lM_:= 2 lp 'V Vies Ax Ay luxlz:&fz =0

‘M

x_t?

through the x plane, y plane and z plane. Symmetry in the z direction is assumed, and the

‘M
x_x?

'M, , 'M,, are, respectively, the instantaneous x momentum, X momentum

“no-slip” boundary condition at the channel walls (z = * &2) leads to Uy IF 50 =0. The

net forces in the x direction are the following
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.m . B
Fo = ?_(__[_T_E‘.l Ax Ay dz
ox
J.a
’m . N
By = | 2 To) 4y arg (A-22)
v dy

Fre =2 v i'I‘xz |z=812 Ax Ay

g Tt = 'p'v g 6Ax Ay

1Fi1ydrw'mlic = _a(iav lp) S Ax Ay (A-23)
X

iF;melfacml = z_s;T)-an Ay

The net forces in Eq. (A-22) are viscous forces. The hydrostatic pressure contribution to
the stress tensor has been decoupled as follows

1 i 0 'Ux 2 i aiux aiuy Biu)
T =2u—=- 4% + + 2
# ox 3 #(ax dy oz
. i (s , Ou (A-24)
T, = e S __._y.]
i “(ay ox
i [d'u o'u
T, = g |9 Me O U
= “[az o )

In order to balance the x momentum (change of x momentum = sum of net x
forces), Eq. (A-24) is inserted into Eq. (A-22) and expanded. The resulting expression

ai(iP(iV 0)8) + —a—(ip(‘v 12)5) + O (ip("v 'y u)s) = —5—3—(‘v ip) + (S:a) 8 +
! ox ay ox

4_ﬁ{,u iva(i;,a)] _ ;ai(iﬂ iVa(*ﬂ,«s)) (i) |
X y

3 9x ax 3 0 3 ox

i(iﬂ iv?_(Exi)J . i(i# , 305 5)) | (429
% ay dy ox

i i (9'u du
2ty | =X ¢ 22
# (az ax)

+ p'vdg
2=6/2
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relies on the subscquent issues:

¢ due to continuity of stresses (zero at the walls).

iTx"|Z=¢&‘2 = ‘T‘ylt-ﬂ:m = O

due to the *‘no-slip” boundary condition at the walls.
YUeletsn = Uy|eesn = 0

by definition 'V, is the fluid leakage velocity.

u,

&2 = Vi + %a.tlz%
e symmetry with respect to the nlane z=0.

For the multistage problem Eq. (A-25) can be reduced to

i(‘p U ) + —Q—(‘pvfé) + —a—(ip(‘ux igy) 5) = _5ﬁ +
ot ox ay ox

41(, a(iaxa)) 2i(i a('aya)]_ 2 d(im ul_)
p B0 20y RO 2207 Ham) o
ox ox 3

5

3 ox 3 ay ox

_ _ (A-26
@(, a('u,a)) i[ (', )) (A-26)
U ———=1 + y———| +
oy ay ay ox

2 iy(@"‘_x + M]

+ pdg
0z ox

2=8/2

An important difference between Egs. (A-25) and (A-26) is the absence of the
interfacial force term. Although surface tension effects are also relevant for the multistage
problem, they are incorporated via the boundary conditions, as opposed to the expression
for the multiphase problem. Also, notice that the y-momentum can be obtained by switch-
ing x ¢« y everywhere.

An order of magnitude analysis of Eq. (A-26) gives
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oo 2 . i
9(ip . 6) _pAV zi(wa(u,a)) _pAv
ot L 3 ox dy g
9 (ipT2s) _pAV? 200k wlesn)  _pAv
ox L 3 ox L2

. 2 - i"x
—a—('p(‘u, IUy) 8) ~EAV ‘a‘(|ﬂ (u 5)) ~l| sz
oy L dy ay L

(A-27)
523 ~ O(1) i(i#a( “y5)] ~EAV
ox ay ox L2
'0 8 g ~ 0(1) 2 ipd ~ Y
aZ =87 A

$2,0E0) _way _uav
3 9x ox 2 ox s 12

where 1 is the characteristic viscosity, and the results (and characteristic scales) of the
mass conservation order of magnitude analysis, i.e., Eqgs. (A-17) and (A-18), have been
used. The hydrostatic pressure and the gravity force terms are assumed to govern the scal-
ing (order 1) of the equation.

The key assumption behind most of the simplifications to be done hereafter is

With this assumption in mind several important simplifications to Egs. (A-25) and (A-26)

= >

are possible. By the same token, the z-momentum contributions are negligible when com-
pared to the x and y momenta.

Two nondimensional numbers result from performing a dimensional analysis on
Eq. (A-26)—identically for Egs. (A-25) and (A-4)
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(A-29)

(A-30)

Re’ is the scaled (by A/L) Reynolds number, G™ a modified Darcy-Rayleigh number. They
represent, respectively, the ratio of inertia and gravity to viscous forces. In addition, the
balance of normal stresses at the interface between two stages leads to

(A-31)

the inverse Capillary number, where o is the surface tension, representing the ratio of sur-
face tension to viscous forces—vide Egs. (A-19) and (A-20).

A-3.1 Darcy’s Law and the Hele-Shaw Cell Approximation

Assuming that Re’ << 1 and A/L << 1, the following simplification from Eq. (A-
26) is obtained

_ 6(‘17),/( + 2 i#aluk + |p5gk =0 (A-32)
0x3 |sy=an2
or similarly from Eq. (A-25)
-6(vip)r + 2y ’uiﬁL + plvég=0 (A-33)
ax3 3=8/2

with k=1,2. The interfacial force term is set aside and may be introduced through an anal-
ysis of the boundary conditions.

Again applying the same conditions assumed in the previous paragraph to Eq. (A-
4) leads to
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~(vp)e+ (v iuCu)a)s + plva =0 (A-34)

Notice that Egs. (A-32) and (A-33) being the z-averaged restrictions of (A-34), the
viscous force term appears in a reduced form as a shear stress at the walls (z=%6/2).
Observe, also, that 'v, 'p, ', ‘p are assumed not to be a function of x, (x,=x, x,=y, x,=2),

consequently Eq. (A-34) can be rewritten (with k=1,2) as
k33 = i—%—((iV ip)k — 'p'v k) = filxy)
v i
Hence the general dependence on z for 'u, is
ug = ﬂ-(x,y,t)lzi + g(x,y,0) 2 + ha(x,y.0)

If the i* phase is in contact with the walls, then the above equation reduces to

w = BT (4(af 1)

Averaging 'u, in z
a2
l_L;Ic = ‘%j iude
-2

12 Uk
2

gives
fk(-x,y:t) = -
Hence the local and averaged velocities are
i = .iz— i i - ini 4 A 2 —_
ue= 2= ((v'p)x pvgk)( (%) 1)

— 2 . ..
‘llk= _ ) 4 ((lvlp)‘k _ lplvgk)
12'v'u

In the absence of spatial variations of the volume fraction
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P 2 . .
== _(‘pi - pex) (A-35)
12'u

Equation (A-35) is widely used in the literature of porous media, and known as
Darcy’s Law—vide Homsy (1987), as well as in the study of Fingering instabilities,
known as Hele-Shaw cell approximation—vide Saffman (1986); Taylor and Saffman
(1958); Weinstein, Dussan et al. (1990).

A-3.2 Surface Tension and Curvature

The interpretation for the interfacial force as an expression involving surface ten-
sion and curvature has variations in the literature—vide Ho (1989); Homsy (1987); Mavri-
dis, Hrymak et al. (1987). Below, through a short derivation based on chapter 4.5.1 of the
book by Pearson (1983), the distinction between different curvatures of a surface is pre-
sented.

Assume a 2-D surface S in an Euclidean 3-D space, such that any point x, x = (x,,
X,, X,), in the surface is expressed as x = x(§',€%), §' and &’ being the contravariant compo-
nents of the surface coordinates. An arbitrary vector emanating from the surface at a point
x can be expressed by a triad of base vectors (€,,€,,N), such that

o= 9% o =12
E”

and N being the unit normal vector to the surface S at x (vide Figure A-6).

An infinite number of planes coatain N at x and intersect the surface S forming a
plane curve C in §. Assume s and 6 to measure arc length and inclination along C, and
t(s) to be the unit tangent vector to C at x. Then the curvature x’and its reciprocal, R, the
radius of curvature of C at x are defined as

K,l_de_l— Nd_t=ég__§§_(atﬂ

ds R ds 3" &’

The curvature tensor (symmetrical)
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FIGURE A-6: 2-D surface with base vector (g,,€,,N) at X; intersection of plane containing normal N to
surface S forming path C

bag = ON  dx
= T 9K

og" e
here expressed ia terms of its covariant components, can be used to describe the surface
curvature at x. On the other hand, by extremalizing the curvature tensor with respect to the
surface coordinates & the resulting two roots k; and k,, named the principal curvatures,

- . . . . o o« . . .

are obtained. The principal directions & and &, associated to the principal curvatures,
form an orthogonal base. Along the principal directions the mixed components of the

symmetrical curvature tensor are

bllz K‘1=L
R:
b}: K2=_1-
R2

R, and R, are the principal radii of curvature. Finally, the mean curvature, an invariant of

the curvature tensor, is

2 2\ R Rz

The curvature x introduced in Eq. (A-19) is the mean curvature, i.e.
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()

A-4 Boundary Conditions

The imposition of boundary conditions (BC’s) seems to be the Achilles heel of for-
mulations dealing with the movement of multiple fluid stages within narrow walls, i.e.,
Hele-Shaw’s cell. For instance, browsing through the literature of viscous fingering since
its inception, approximately 30 years ago—vide Chuoke, Meurs et al. (1958); Saffman
and Taylor (1958); Taylor and Saffman (1958), one can find that slight variations of math-
ematically imposed BC’s dramatically changes the predicted fingering growth
behavior. As pointed out by Saffman (1986) ““...Bad physics produces bad mathemat-

123

ics...”.

The behavior of the interface between multiple fluid stages, as well as the fluid/
solid transversal interface (i.e., the channel walls) for the problem under scrutiny, can be
adequately represented by BC’s similar to the ones used in viscous fingering—vide
Homsy (1987), stratified multiphase flows—vide Mavridis, Hrymak et al. (1987), and
moving boundary problems—vide Ho (1989). In addition, extra sets of BC’s are neces-
sary in order to represent the presence of a source (at the welbore) and the fluid front (con-
tained by the crack tip).

Typically the source BC is either a specified flow rate or specified pressure as a
function of time. On the other hand the fluid-front BC is very intricate since the fluid front
position and the velocity field are intrinsically dependent on the mechanics of the propa-
gating fracture. A balance of the stress intensity factor, balancing loads over the non-pen-
etrated zone (“vacuum” region between the fluid front and the crack tip) against loads over
the remaining of the fracture (region between source and fluid front), is the underlying
physically governing phenomena. This balance introduces a global dependence between
BC’s at the fluid front and the stress/crack-opening fields everywhere.

Per se the study of the BC’s at the fluid front as a function of the crack tip growth, is a prob-
lem yet to be fully addressed. Some attempts have been made in the past to couple the fluid
flow and fracture propagation—vide Abé, Mura et al. (1976); Bui and Parnes (1982); Grif-
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fiths, Nilson et al. (1986); Lam (1985); Nilson (1981); Nilson (1986); Nilson and Griffiths
(1982); Nilson, Proffer et al. (1985), however the assumptions imposed in those models ei-
ther neglect relevant physics or oversimplify its interrelationship. Recent studies conduct-
ed by Barr (1991) produced encouraging results in the axisymmetrical limit, which can be
extended, without loss of generality, to non-symmetrical geometries as long as the charac-

teristic length of the non-penetrated zone scales as A.

155



APPENDIX A: Basic Equations for Multiple Fluid Phases and Stages

156



APPENDIX B

A Semi-Analytical Algorithm for In-
Plane Motion

B-1 Modeling the In-Plane Motion

This appendix models the effect of external in-plane flow ficld on the motion of an
idealized blob (described in Section 2-4 on Page 44). The very low Reynolds number

approximation, derived in Section A-3, is assumed.

Two important boundary effects on the blob motion are introduced: crack width
variation (wedged plates) and finite crack perimeter (bounded container walls). Also,
constant crack opening (parallel plates) and unbounded container wall solutions are

derived as a reference.
Solutions arc obtained for the following scenarios:
1) Unbounded container walls and parallel plates.
2) Unbounded container walls and wedged plates.
3) Bounded container walls and parallel plates.
4) Bounded container walls and wedged plates.

In what follows bath fluid properties are represented by the subindex /, and blob
properties by the subindex 2.

B-2 The Viscous-Irrotational Paradox

Assuming the usual approximation for the scaled Reynolds number (Re* << 1), the
velocity field can be derived (vide Section A-3.1 on Page 150) as

157



APPENDIX B: A Semi-Analytical Algorithm for In-Plane Motion

N
1

- Tuen (1-4(3))
- Luen (1-4(3))

v, = 0

<
<
|

where uy and uy, are the area-averaged velocities (the overbar is dropped).

Cross-differentiating Eq. (A-35) on Page 152 results on

P o 12987 _ 124 ue
dyox ay 5% oy
Y~ _1ap uyaa-z _ 12 duy
dxdy ox 8§ ox
Hence, if we assume both
98 << SBu‘
ox oy !
and
‘QI << Sau’
oy ox
then

dyox  0xdy 52 \ox ay

The important consequence of the above equation is

Q"_’_Q"_xgo
ox ay

(B-1)

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)

which represents an in-plane irrotational flow field. The stringent assumption here is to
take both | 96/9x | and | 36/3y | very small or zero, i.e., very small slope or constant crack

opening.
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B-3 In-plane External Flow Field

In this section the external potential flow field for fluid stage I is derived. It is
assumed that Eq. (B-6) holds and Re” << 1.

Without loss of generality the moving blob is assumed to:

1) have an in-plane (x-y plane) circular shape;

2) be transversely delimited by the crack opening.

Experiments discussed in Chapter 4 have demonstrated that the first assumption is mor-
phological in nature and does not substantially affect the downwards velocity of the biob.
On the other hand, the second assumption has to be dropped when addressing encapsula-
tion effects (vide Appendix C). The solution obtained for the circular shaped blob can
also be mapped into other shapes by transformations in the complex plane, e.g.,
Joukowsky transformation between circular and elliptical shapes.

The scalar potential field for a cylinder of cross-section radius R, moving with
average velocity U (See Figure B-1 on Page 160) within media originally at rest is

2
y = UR f sin@ (B-7)

where u; and uy, the in-plane flow field velocities, are related to the scalar and complex
potential fields as follows

d ¥
x = — Uy = — — -
u 3y y % (B-8)
%:ux—iu, w=0¢+1¥ (B8-9)

Notice that:

* the sign given for the r.h.s. in Eq. (B-7) varies in the literature—for instance, it
is the opposite to the one given by Milne-Thomson (1968). The sign has to
match the definition of the velocities as expressed in Eq. (B-9).
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 the movement of the cylinder is simulated by a doublet of strength

pu=UR (B-10)

 doublet strength and flow average velocity can be related as

- e
(zzf R* (B-11)

dw.
dz

* the complex potential for this motion, assuming a doublet located at z, and
rotated by an angle a with respect to the x-axis, is given as
ia

wo=-p-~ ]
P— (B-12)

» for the derivations that will follow the coordinate system was placed at the

center of the blob and « set parallel to the x-axis (i.e., zg = 0 and & = 0).

A

160

FIGURE B-1: Sketch of in-plane blob motion and external flow field
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Thé resulting velocity field is given as

URI(-x+y) ., , 2URIxy
ey T ()t T
=_URzz(—x2+y2)

ux,y) = -

Uy (x2 ; y2)2 (B-13)
Uy = 2UR; x 22
(x2+y?)

Assuming the irrotational flow condition, i.e., Eq. (B-6), and substituting the above cqua-
tion into Eq. (A-35) on Page 152 leads to

a_p +12#1UR22(—.1‘2+y2)

= 3 2 + P18«
ox 5 (x2+y?) (B-14)
2
B __Mm UREY |,
9% 8 (x2+y?)

To obtain the pressure field, § is assumed to be a function of x and y, however the variation
of 8 with x and y is disregarded, i.e., assuming the very small slope condition expressed by
Eq. (B-3) and Eq. (B-4). Then, the result of integrating the above equation is

12mU R¥x

2

+ p1(gxx + & y) + constant (B-15)

pxy) = -

(x?+ y?)
Excluding the gravity contribution (to be addressed separately), the equation can be
expressed in polar coordinates as

p=m/,11 d_hRgzcose‘iL where UE‘l’l

82 dt r dt (B - 16)

h is the change in height of the blob with respect to its initial reference position, and n, the
viscosity flow channel coefficient for fluid stage I, i.e., n; = 12.

The force exerted on the moving blob due to the squeezing of fluid stage / is given
as
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dA
FV] = 2". (7“&@122 COSG)QQ_LQ‘SRZ de (B-l?)

§ d R
where R, = Ry(h (¢)) and 8= 6(R,(h (¢)), h(¢), 6,¢)

Equation (B-17) can be expressed in terms of a squeeze shape coefficient f; as fol-

lows

Fy, = m i dh'fl (h@.1)
(B-18)
N (h(t),t) = 2R2 J' QL_dg

The force exerted on the moving blob due to the shear against both walls (z=2+6/2)

1s

Fv,

napa 40 5 (1))
dt

Ra x
- B-19
2J- J-lrdrd() (B-19)
0 (] 5

where: f, is denominated the shear shape coefficient; n, = 12 is the viscosity flow channel
coefficient for fluid stage 2; and the force Fy, results from the integration of

JECIOR)

Vs
0z

_ S dn

lszl = U2 — . *_8 5 di (B-ZO)

For both f; and f;, the integration of & with respect to r and € (or x and y) is relevant. In
contras', to obtain Eq. (B-15) local variations of & with respect to r and 6 are neglected
when compared to the far field potential dependence.

B-3.1 Balance of Forces

Disregarding surface tension and surface effects, an integrated balance of forces
for the blob (see Figure B-2 below) can be expressed as follows
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In-plane External Flow Field

2
(M2 + M;)‘-;—'; = Fw - (Fs + Fy, + Fv,)
t

(P2 + p1) J ®-21)

n

dvﬁ; - pgngV—p|ngV—f pdA—J 2TdA
dt a Q My a0,

where: €2 represents the volume of the blob; 9€2,, the surface of the blob in contact with
fluid 1; 32, the surface of the blob in contact with the walls (assuming no encapsulation);
F,, the weight of the blob; Fj the buoyancy; Fy, the viscous force on the blob due to fluid
stage 1; Fy, the viscous force on the blob due to the interaction with the walls; M, the mass
of the blob; M, the virtual mass (associated with the kinetic energy to displace stage 1); h
the height of the center of the blob with respect to an initial position 4 = h,. The volume of

¥

FIGURE B-2: Balance of forces for moving blob—disregarding surface tension and surface effects

the blob and scaled Reynolds number are given as
o=

R * = __dr él
¢ H Rz) (B-23)
The scaled Reynolds number is based on the external flow (stage I} around the blob, a

crack opening upper bound &,, and velocity (of order dh/dt).
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Nondimensionalization of Eq. (B-21) is expressed as follows

e P

et et

55 R, (_Rz ' (B-24)
& L
r el Kb
L L
g «& 1 <L
G T
j @ I Q@
. 8 ey O J dav
J. a“a o i j a o —ii— j dvV « £ (B-25)
a0, 8 (y_ a0, O (_L_’ a L&
& 8o
2 2
[%%—} (pr + PZ)VO‘—% = [P—%ll-r-(%)] (2 -p)gVo - (mumfs + m#lﬁ)‘fi—’t’ (B-26)

A time scale and nondimensional number are obtained, i.e.,

N~

PE 1 & =08
e # (B-27)
o E) (5")

T the time scale associated with the flow’s unsteady inertia, and N; a modified Darcy-
Raleigh number (ratio of gravity to viscous forces). Equation (B-26) can be rewritten as

2
(o + Pz)Vodd—lﬁ - No (p2 - p1) g Vo + (mpfo() + m #1f1(h))‘—% =0 (B-28)
2

This Ordinary Differential Equation incorporates: viscous effects spatial dependence by
means of the two coefficients, f; and f,; gravity-driven effecis; and dynamic effects. To
solve for h two initial conditions, h(0) and dh(0)/dt, and the dependence of R, on h and ¢
are needed.
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B-4 Unbounded Cell and Parallel Plates

Assuming a constant crack opening and no boundaries (vide Figure B-3) on the x

<+ —— {0 «————

FIGURE B-3: Sketch of unbounded container with constant crack opening. Blob moving with down-
wards velocity U = dh/dt

and y planes, Eq. (B-28) reduces to

d’h _ - dh -
1+ p1) . Ne(1 -p1) + 121 + p1) o 0 B-29)
where the nondimensionalization constants, p and u, were arbitrarily chosen as

p=p2
(B-30)
Ko=4

The solution for Eq. (B-29) can be obtained in closed-form and it’s rather simple,
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ie.

_ _ 12+ )
oy = Ne(=p)t  Ne(l p‘z)z (1-c ) ®-31)
20 +m)  2( + wm))

the velocity, steady-state velocity and scaled Reynolds number are derived from above

Nc(l _ Pl) 121 +;q)r)
U=dh = 260 “FU\ _ e (1>
d 12(1 + [,11)( g

v = Nell-p) o (B-32)
R +m) T
Re” = p1 V""Rz _&_’)2
H R2

Dynamical effects will prevail for time scales such that z < z,,,, where
o = L P (B-33)
120 + m)

These solutions are used as a reference (compare against bounded and/or wedged solu-
tions).

B-5 Unbounded Cell and Wedged Plates

The difficult for this case is the evaluation of the squeeze and shear shape func-
tions, respectively, f;(h(z),t) and fy(h(t),2). In order to evaluate the shape functions it’s first
necessary to find the dilation rate, i.e., R, as a function of k.

The dilation rate of a blob within the wedge can be modeled as long as the crack
opening is a known function of the in-plane variables (sketch shown in Figure B-4). Vol-
ume conservation is used to track the blob dilation rate (no leaks through the container
walls).

Assuming a wedge shape independent of Y and symmetric with respect to X (vide
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Unbounded Cell and Wedged Plates

FIGURE B-4: Sketch of unbounded ¢ontainer with variable crack opening

Figure B-5), and a blob with initial radius R,, the foilowing volume dependences are
obtained:

1) volume dependence for h=0

Yo

n R2
ZJ J (1 - (1 - 68x)|h + rcos6|)rdrdd
0 Q

s 3R ek (B-34)
TRE-1 - 2(1 — &m) J- j rcos@rdrdd + J j —rcos@rdrdf
0 0 X 0

TRE — %(1 ~ &) R3,
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'
X

X X

FIGURE B-5: Three possible height (k) positions of a blob (initial radius R,) with respect to wedge cen-
ter

2) volume dependence for h < R,

Ra VR3-n2 g0
j (h +rcos6) rdrdé + j J- (h + x) dxdy +
0 0 —h

[SYF

Vo = nR?1 - 2(1 = 6a) J'

0

Ry 0 VRE-R2  -h
j‘ J. (h + x) dxdy +J j (- - x) dxdy
VRE_hiﬂ (B-36)

2 2 2y
nR -2 (1—5,,.)[’”?2—2” + REVRE-W - (ﬁ;—")_z -~ Rih arcsin( -
2

(B-35)

Vo =

3) volume dependence for h 2 R,

Yo

n R2
ZJ- j (1 - - 8n)(h + rcos6))rdrde
o Jo (B-37)

=R - (1 -38n)h)
where: &, is the crack opening at X = 0; &, is the crack opening at X = L; §, is the nondi-
mensionalization variable for 8, 8, (and &,); L is the nondimensionalization variable for

X,r,R;,h(and L), 1e.
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Unbounded Cell and Wedged Plates

o =1 X
X = h + rcos@ (B-38)
§=1-(1 - 8x)h + rcosé|

Experimentally it is easier to start tests with a blob positioned at h 2 R,. Hence,
only the dilation rate for h 2 R, will be analyzed.

Expressing Eq. (B-37) in terms of the initial volume (expressed below both in
dimensional and nondimensional form) and initial blob position A,

Vo=aRE(1 - (1 = 8m)hy) S=1- (1~ 8n)(h + rcos6)
(B-39)

(80 = 6m) ho 2 _ Yo
) ] i R CR R PO

leads to a straightforward dependence of R, on h, i.e., inverse square-root. Substituting
the above equation in Eq. (B-28) and expanding for the shape functions

Yo = TRi|&

1+ pl)Vo% - Ng (1 - p1) Vo +

n(1-(1-6)R)|J, 1-(1-6m)(h+R2cosO) | dr (B-40)

n oR2
2,,2“'." rdrda ]4}1 - 0
L g, 1-(1-6x) (h+rcosB)|dt

Recasting Eq. (B-40) in standard form

2 Vo [J cos20d9 }d_l_z_ +
0

a1+ pl)Vo‘% - Ne(1 = p1)Vo + (mmAR®L) + n2 ;.tzfz(h(t),t))%l =0 (B-41)
2

where the squeeze and shear shape functions are given as
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fi = 2R} COS’ o849 = 2R} | —<0s20 g
b a + bcos 8
= 1,drde =2 — 1 rdrdo
£ J‘ j J. '[ a+ crcose (B-42)
a=(00-(-26n)h) II II
c=-(1- 6m)

Integrating the r.h.s. of Eq. (B-42) for the squeeze shape function leads to

(-a+b) )”
P — 2 arctan
cos’ 6 de = (Vaz—bz(l + cos 6)
, a + bcos 8 Vaz—bz )
_|({2a , 2)8 _ 6 _siné (B-43)
b? b)2 b b

arctan( (-axb) )
Va2-b% (1 + cos 6)

+ (-2 + 24
b’ a* - b*

For 6 = 0 the first term on the r.h.s. of Eq. (B-43) is zero. For 8 = 7 the following limit

applies

arctan[ (-a+b) )

lim Va-6 (1 +cos8))| _ _1_ = (B-44)
6->n Va? - b? “Ya? - b’

Hence, the squesze shape function is given as
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Correction for Boundary Effects

h = 2R227I.’—a-2-
b

(a— v/a—z-_b_’]
a-b*
1-Q-268n)h)
=-(1-06mwkR:

= VO
(1 - Q- 6n)h)

fi = 2R§,;_a_[l_“_£@j_]

Analogously, the shear shape function is given as

(B-45)

(S 1SY S I

-
f

a+ crcosé

R2 n
2 J j —1  rdrde
0 0

ZJRZ__NL_dr
b Va2-c2r?
27r—“—(1 - 41— (BLe) ) (B-46)

CZ

a=(1-Q0- 6n)h)
c=-(1 - 6n)
(1 - (1 - 8n)h)

w2y

R

To test the limit behavior of both functions

. forf,,lakingl%' << | leadstof; = nR%

. forfz,takingIR%Tc| << 1leadstof, = 7 R?

B-6 Correction for Boundary Effects

A doublet in an unbounded media can be expressed as
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WOn= ~ L™ (B-47)
Z—2n

where: I, is the doublet strength—same as u in Eq. (B-12); &, is the angle of the doublet
dwy,
dz

with the x-axis; @, = ¢n + iy, is the complex potential; = uy — luy the in-plane

velocity field.

A cylinder with cross section radius R moving in an infinite medium with velocity
U can be represented by a doublet with strength I, = UR?, see Eq. (B-10). If, in addition
to the moving cylinder, there is another doublet with strength I'; outside the cylinder, the
boundary condition for | z - z, | = R would be violated, unless an additional image (with

respect to the cylinder radius) doublet is introduced, e.g.

_ L™ _ Lel™ , R? Ne'™ (B-48)
z z2-fio  flo(z = fwo)

W =

The equation above expresses the circle theorem—vide Milne-Thomson (1968). The first
term represents a cylinder located at z, = 0, strength I and angle ¢, with the x-axis. The
second term a doublet at z; = f;, with strength I';. The last term, an image of the doublet

. 2
I, with strength I, = RT Iy atz, =fo (fa - fro=R2).
fio
The introduction of boundaries can be simulated by a variety of sources, sinks and

doublets. In particular, the following is the configuration of interest

 attime t = 0, assume a cylinder with initial cross-sectional radius R, = Ry,
moving with velocity U along the positive direction of the x-axis at position
—-s = —(L —ho);

* at X =0 assume an end-boundary;
« the movement of the cylinder is characterized by a doublet of strength I}

* to simulate the presence of the end-boundary at X = 0, an image cylinder is
introduced at z; =s. Its doublet strength is I'; = I'; and the direction o, = 7.

The complex potential associated to the two doublets is
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Correction for Boundary Effects

2
R
) (B-49)
w = + UR2
FAR )

The two doublets above correctly account for the presence of the end-boundary at
X = 0. However, the boundary conditions at | z + s | = R, and | z — s | = R, can only be
attained if image doublets with respect to the cylinders are introduced, i.e.

w2 = - Lp:
2+ x
w3 = I3
Z - X3
2 p 2
n= R - R yrt - yr2 R (B-50)
(2s) 2s) (2s)
=
2
X2 = X3 = § - R3
2s

The boundary conditions at | z + s | = R, and | z— s | = R, are then satisfied, but another set
of doublets is needed to correct for the presence of the end-boundary, i.e.

g = _—L
Z+ xa
ws = I3
Z - X
2 2 2 4
I = R7 D= R3 R; o = Ry UR22 -
(s + x2) (s + 22 (s + %) REV o 12 (B-51)
2s - ==} (2s)
2s
Is = I,
2 2 2
X4=xs=s—__@2—’= —sfzx = sfzx
2s - R2 2 ’
2s
To compensate for both the ¢cyli ndaries and the end-boundary an infinite

series of (decreasing strength) doublets, as a function of powers of R,/s, is introduced.
Restricting interest to the values of s such s > R;, contributions of the higher order dou-
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blets to the series should become negligible as the power exponent grows. A sketch of the
doublet series is shown in Figure B-6 below.

A
Y Image of R, with
respectto X =0

\ 4
[ Y
s

- —3§

FIGURE B-6: Doublet series simulating the presence of an end-boundary at X = 0 and a cylinder moving
with velocity Uatx=-§

The potential @ and the velocity field can be written as

- Iy - I (B-52)
0 = - —_ + EEE—
Z’o 2+ xu Z‘o 2 ~ X2+t
Iy = UR{
n = UR?
. R?
I = ——=—— T2
(s + xu-2) ®-53)
2
I'j.: = Rz Iy
(s + x20-1)
Iy = TIus
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Xx =S
X1 =S
_._ R}
xao = S + X21-2 (B-54)
2
X2l +1= S - __RZ__
S + X2-1
X2 = X2+1
Ue — iUy
i( Ly _ Iy )
i=o\(z +xu)  (z -xu)
i Ry (Z + xu) _ (z —xu) )
=0 (2 +xa)(Z +xu)? (2 -xa)(Z -xu)
ir 2+ 2xu7 + X3 2 - 2xu7 + X3
21 -
- - 2 - - 2
t=0 (zz + xu(z+2) + x%l) (zz - xu(z+2) + x%:)
ir (x2 = y2) = i2xy + 2 xu(x—iy) + x3 (B-55)
21 5
=0 (Jc2 + 9+ 2xux + x%,)’
(x} = y?) —i2xy - 2xu(x—iy) + x3
(x2 + y2 - 2xux + ch,)2
bt 2 2 2 2
251[[(x+x212 —y2 _ (x — xu) —yﬂ]
1=0 ((x + x2)° + )’2) ((x - x) + )’2)
2y 4+ xu) o 2y(x - xu) ]
((x + x0? +y) ((x - =0 + )
o i 2 2 2 2
W o= Y, M| X xzzz —yz_ (x—xzzz —yz}
i=o0 2 _ 2
_((x + x20)” + y) ((x xa)" + y) B-56)
w = 3 Iu 2y(x + xa) - - 2y(x — xu) .,]
Bo{((x + 2 + ¥ ((x - xu)? + YY)
The hydrostatic pressure term is obtained by integrating the following
ap _ 12#xu
3 2
ox ) (B-57)
ap _ 12wy
2 = - Uy
ay 8
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ie.
p = - 2m i 1-21( X-Xu X +Xxy ) (B-58)
5§ i=o (x —xa)’ + y2 (x + xu) + y?

To facilitate the integration of p (needed for the squeeze shape function), Eq. (B-
58) is recasted in terms of a polar system of coordinates, centered at z = — s

p gz 2 I -Ss—Xu+ R22c059 —
6" I=0 (- s —x21+ Racos6)” + Ry"sin”6 (B-59)
_ - 5 + x21+ Racosf
(- s+ X2+ Rocos6)’ + R’ sin’@

Thence, integrating p to obtain the contribution of the squeeze shape function leads to

haid .4
Fvi = 2mmR S T _J‘ 1 (—S—x21+chzos6)cos6 s
=0 5(—S—X21+R26059) + Rzzsin“e

(B-60)

n

+ J' 1 Cs+xu+t R>cos6) cosO 40
0 & (- 5+ x2+ Racos6) + Ro’sin’6

These integrals can be rewritten as

x (Z—s-ﬂ + cost)) cos@ x (Zil{ﬂ + coso) cos@
_j 1Ry R, de + I 1R Ry do

2 2 ? ’
o OR; ("___s‘x21+cos0) + sin’0 o OR] (—s—f—ﬂ+ cose) + sin’@

R2
n
= — _1_-.‘ 1 acosfde J' cos20de (B-61)
0 5@+1) + 2acos0 o 8@ +1)+2acosd

4

+ _I_J- 1 b cos& do + J c0s’0d8
o 5B +1) + 2bcos® Rz Jo 6 (b* + 1)+ 2bcos8

where
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Reexpressing Eq. (B-60)

Fy, =

B-7 Bounded Cell and Parallel Plates

2mm Yy, I'n)-
1=0

[

o T
1
05

o

1
0o O

(s +xu)
Ry

_ (s = xw
Ry

—acos0d6  _

@+1) + 2acosé

b cos0 dé

(b2 + 1) + 2bcosB

<+

(B-62)
o X
c05%0 do
o 6@ +1) + 2acos8
(B-63)
cos*0 do 1

o

+1) + 2bcosBJ

Assuming the nondimensional value of 8 = 1 for parallel plates, the viscous force

=4

<+ ———0

|
|
-

FIGURE B-7: Sketch of bounded cell (at X = 0) with parallel plates
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contribution due to the squeezing of fluid stage I (in the presence of an end-boundary

located at X = 0) is

(SRE

Fy, = mpu d—h-fl(h)
ar
> 2
fih = mREY Iu (_&— + 1]
i=0 (1-h+xu)
where
o =1
I = A2
UR?
— 2
Iy = ———ﬁ—z—l"zz-z
(1—h+x2u-2)
xo = 1-h
2
xu =(1-h)- — R
(1-h+3xu_2)
a] > 1
N S o—
14
I acosf do = __I
o @+ 1) + 2acos6 a*-1
n
cos*8 dé - r_a‘+1
¢ @+1) + 2acosé 2a*@*-1
|b] <1 b =0
T
j b cos0do _ _ _xb?
0 (b> +1) + 2bcosd 1-b°
n
j cos*0de = zr1+b®
0 (b2+ 1) + 2bcos9 2 1-p2

i.e., the shape functions are given as
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Bounded Cell and Wedged Plates

n = n = 12
Vo = ﬂ.’Rzz -1
L = nR (B-68)
fity = =Rt
— hai 2
Aty = Zrzz( R; +1)
o\ ((1-h) + x)’
B-8 Bounded Cell and Wedged Plates
Again, assuming the nondimensional crack opening variation as
8§ =1-(1=06mn)(h + rcosf)
=1-35 (B-69)
r = R

o(x)

- ——

FIGURE B-8: Sketch of bounded cell (at X = 0) with wedged plates

or in terms of two extra coefficients, ¢ and d
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6 =c + dcos@
c=1-(1=8u)h (B-70)
d=-(1-6n)R
where
L (L+a)d
2a
g = (S *xu) (B-71)
R>
b = _ (s —xZI)
R
Forlal>1
1 acos6 db - ma a+1 _ __ ¢
0o 6 (@ +1) + 2acosh) (1+add -2acl| a*-1 A_d* : (B-72)
1 cos’0 db N n _ @+ c?
o 6(@*+1) + 2acosH) 2ad (1 +a?dd-2ac 2@-Da gV -4°
ForO<lIbl<1
JL b cos08 do = rb (1+b2 _ c )
o 8((02+1) + 2bcos®) (A +bHd - 2bc\1-0> V-4
=0 ; b=0
(B-73)
I 1 05?8 dé R n ( 2 1+bY )
o 8(@*+1) + 2bcos®)  2bd  (a+bHd-2bc\dVcP-d® 20-b)b
= M( 4 _1) ;i b=0
& \Ve2-d?

Then, assume
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b # 0
2
P 1+ a>d
2a (B-74)
lel > |d|
2
- 1+ b7)d
2b
leads to
FV] =ﬂn1u1ir2[ (__1__-_]_)_ a2+1 _ b2+1
o bd ad/) a{Q+add-2ac) b(Q+bHd-2bc)
(B-75)
+ 2c(ad-c) _ 2¢c(bd-c)
dV?—d* (1 +ahd-2ac) d¥c*-d> (A +bHd-2bc)
otherwise assuming
b = 0
L1+ add (B-76)
2a
le| > |dl
leads to
- i a*+1
Fy, = z;;.;;:;ZI‘y - 2 -
=0 ad  4((+add-2ac)
B-77)
e
d'trcz—dz((l+u2)d—2ac) & Ve -d’
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APPENDIX C|

An Analytical Algorithm for Encapsulated
Multilayer Analysis

C-1 Modeling Encapsulated Flows

The previous Appendix presented an analysis of the in-plane blob motion. In con-
trast, this Appendix will focus on characterizing the transversal blob motion. There are
four cases of interest:

1) Blob tully attached 1o both walls:

2)  Blob auached to one wall only;

3) Blob in transition to detachment from the walls;

4) Blob detached from both walls.

Item 7) was already studied in Appendix B. Item 3) will not be addressed in this work—
albeit its importance very litile progress has been made 10 date to characterize and quan-
tify the various parameters influencing the transition process. Items 2) and 4) arce

addressed here.

C-2 Matching Velocities, Flow Rates and Shear Bound-
ary Conditions

Assuming a multiple n-layer flow field within a narrow channel, and for each layer
i, with thickness d; , an independent set of coordinates z; —vide Figure C-1. The velocity

flow field for each layer is

W) = az + bz + ¢ 1<i<n (C-1)
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FIGURE C-1: Multiple fluid stages flow. Each layer i characterized by system of coordinates (x.y,z,) and
thickness d;

Boundary conditions (BCs) can be expressed as follows:

L Velocity boundary conditions at both walls
wla=0) = (C-2)
Un(Za=dn) =
II.  Velocity boundary conditions for each fluid interface
w(2=0)= w1 (zici=dic) 2<i<n (C-3)
III.  Shear boundary conditions for each fluid interface
,Uiaui(Zi:O) = #t—laui-l(Zi—-l=di-l) ;7 2<i<n (C-4)
0z 0zi -1
In addition, mass conservation leads to
I3
J- uidzi= q ; 1<i<n (C-5)
0

where g; is the volume fiow rate per unit of channel length for stage i.

Substituting BCs 1, II, and III in Eq. (C-1) leads to the following recursive rela-
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The Energy Balance

tions

aq =

bi = Z [2%;_*@_,@_1] s By 2sisa 6
o = i[ak Vi1 + Doy de-n) ; 2<i<n
and integrating Eq. (C-5)
q = Lad® + Loid? + cid: 1<i<sn (C-7
3 2
The previous two set of equations can be recasted as a matrix problem like
Ma=gq C-8)

where: q is the array (¢}, g, ..., g, ), @ is the array (a;, ay, ..., a,), and M is the matrix of
polynomial coefficients in Eq. (C-7) collected in terms of a. To form the matrix M, the
coefficient b; is expressed as a function of the remaining coefficients b; (2 <i<n) and ¢;
(1<i<n).

C-3 The Energy Balance

The energy equation—vide Dussan (1979) and Joseph, Nguyen et al. (1984)—
governing the flow of immiscible incompressible fluids can be expressed as

% [p|u|2+pgz]dV +-d-§0'd5

(C-9)
J. dogs + § o tUdl + J u (T-n)d(@V) +j trace(TD)dV
s dt & v v

The terms on the 1.h.s. express, respectively, variations on kinetic energy, potential energy,
and surface energy. Whereas, the terms on the r.h.s., surface tension path depengence,
contact line dissipation, traction boundary dissipation, and stress volumetric dissipation.
Assuming the simplifications described in Appendix A, only the last two terms on the
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r.h.s. are of interest, and they can be simplified as follows

Zi

n 4 oui Q n (C-10)
i du o= -2 i )
Suf (e =225

The surtace affinity effects are neglected in the derivation. As demonstrated in the
experiments presented, surface affinity and wetting conditions play a key role in the devel-
opment of encapsulation instabilities. However, the goal is to characterize the final thick-
ness and flow raie of encapsulated layers, not their development. Very little progress has
been made to date to characterize and quantify the transition process.

C-4 Minimizing Energy Dissipation and Maximizing
Encapsulated Flow

The formulation derived in Sections C-2 and C-3, is applied to the following cases
of interest:

 symmetrical tri-layer (two equal outer layers of fluid 1, one inner layer of {luid
2) with known fluid properties, i.e., densities (p;, p2, p1) and viscosities (1,
L, [7); unknown layer thicknesses (8;, 82, 6;); unknown volume (per unit of
length) flow rates (g;, g2, q;)—the total volume flow rate (2 q; + gq) is

known.

« bi-layer (one layer of fluid 1, one layer of fluid 2) with known fluid properties,
i.e., densities (0}, p) and viscosities (i;, /7); unknown layer thicknesses (6,
8,); unknown volurae (per unit of length) flow rates (g;, g)—the total volume
flow rate (g; + g7) is known.

For instance the velocity field for the tri-layer (26, = §- &) can be expressed as fol-
lows

a,=12(-48, 2i,q, - 1286,,9, + 128, Hbq, + 362 1o, - 686,11, + 36, * 1)/
(8- 8) *8,@ 8,4 + 361, - 36,40)) (C-11)

4, = 241,38, - 82 + 8:g)I(8 - 8) 8, > 8y + 361z - 38:14)) (C-12)
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a,;=12(-48 24,9, - 1266,11,9, + 126, 2p,q, + 38 2,q, - 668,1,q, + 38, 2 11,q))/

(8- &) 38,(@ 8, + 384, - 35,48)) (C-13)

by, = -12(-48, 2i,q, - 688 10,q, + 68, 2pLaqy + 8 2 112G; - 268,112 + & *aqo)/
(8- &) *8,(4 8, + 384, - 38,41)) (C-14)
by =241,(38,9, - 8g; + 8,q)/(8,(-8+ )4 &,1, + 364, - 36,415)) (C-15)
by =2411,(36,9, - 64, + 6:4)/((8 - 8,) (4 o4y + 3612 - 38, 4)) (C-16)
=0 (C-17)

=348 21 q, + 82 2qy - 288,412 + & 2pag (8- 8) &,(4 8o, + 364 - 36,41)) (C-18)
c;=3(46, 2#1‘11 +6 2#2(12 -268:41,q:+ O, 2#242)/((5‘ 8 8 (48,14, + 301, - 35, 442)) (C-19)

and the total energy as

partl] =24(-48, 2p1,g, - 12885, + 128, *1rq1 + 38 2 1sqs - 658,120, + 36, 2 o)’/
(8- 8) 38, 248, + 361, -38,16) ) (C-20)

partl2 =768, 2(38.q, - 8q,+ 8.q) (8- &) 28,88, + 381, - 384 ) (C-21)

partl3=24(-48,7p,q, - 1268,4,9, + 126, 2,q,+ 36 2Uyq; - 686:41,0, + 36, *11,G2) 2
(8- 8) %8, 2@ & + 361,38, ?) (C-22)

pari2l = -72(-48, 2 gy - 688,143, + 68, 2y + 8 21agy - 268,124, + &, 21,2
(48, 21,q, - 1288,1,q, + 128, 2p,q, + 36 11,0, - 688,129, + 36, * [ go)!

((6-8) 38 2@&u +38u,-38 1) %) (C-23)
pari22 = -115241, *(-38,q, + 6g2 - 82q5) Y(S- &) 28,48y + 384, - 3841 7) (C-24)
pan23 = 144142(35141 - 542+ 52(]2)(‘462 2#!‘1! -1266,m,q, + 126, 2,“2‘]1 +

38 21,q; - 688, 10qx + 38 1L @)(5- 8) 28 @& + 38, - 36,4 ) (C-25)
part3] = 72(-48, 2 j1,q, - 6 88 1rq, + 68, 2p1aqy + 8 1 qs - 288,402 + 6, *q) 7

«(56-68) 3 5 24 52111 +361,-3 1) 2 (C-26)

part32 =576, (38,9, - 6@, + 8:q2) M, (-8+ &) 248t + 364, - 38,4 ?) (C-27)

part33 =288, 2(35,q, - 8g, + 8:q2) U(5- 8) & (48t + 3641 - 38,41) 7) (C-28)

energy 3 = partll + partl2 + part13 + part21 + pant22 +part23 +pan31 + part32 + part33 ~ (C-29)

To obtain the thickness of the layers, the flow rates are assumed fixed and Eq. (C-
29) is solved by a numerical nonlinear minimization procedure, i.e., minimizing the total
energy dissipation.
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For each set of fixed flow rates, a difierent flow gain (q2.encaps/d2-no_encaps) 1
obtained. The selected set of flow rates is the one that maximizes the flow gain ratio (and

minimizes the total energy dissipation).

The flow gain ratio, flow rate ratio, encapsulation flow ratio, viscosity ratio, layer

ratio, and effective viscosity are defined as

q2-encaps 6 q (C-30)
q 2-no_encaps Ibll 52 m

q?2

g2+2q (C-31)
q1
92 (C-32)
ng_
o (C-33)
&»
5 (C-34)
Heffective = M (C'35)

6q

where b; is given, for instance, in Eq. (C-14). The flow rate ratio is dependent on the
layer configuration, e.g., for a bi-layer the flow rate ratio is g,/(q; + g;). The effective
viscosity serves as a single lumped value of viscosity (representing the encapsulated mul-

tiple-viscosity system).

C-5 Effective Viscosity Derivation—Symmetrical Tri-
Layer

Equation (C-35) is derived as follows: assume that the blob has encapsulated and
moves down with a given positive flow rate g, (the primary fluid has a flow rate g, —posi-
tive or negative). Disregarding surface effects, a simplified balance of forces (see Figure
C-2) leads to
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P(x + dx)

FIGURE C-2: Simplified balance of forces for encapsulated blob

am

21 12

p2g82dxL + 2p1gddxl + Px) 6L = P(x+dx)SL +2mdxlL

8 = 8, + 26, and u, is known from the derivations presented in Section C-4, i.¢e.,

ur =ui(&, &, i, 2, q1, q2)
such that
our = b
021y =0

where

b1 =bi(81, &, w1, 2, q1, 2)
Equation (C-36) reduces to

Pa+d)-PO) _ 082 4 9p g8t _ b1
o p2g5 nga 5

If the blob is attached to the walls (see Figure C-3)

P28 odxL + P(x) 0L = P(x+dx) SL + 2 Ueffective dx L auegeclive
Z z=0

where

(C-396)

(C-37)

(C-38)

(C-39)

(C-40)

(C-41)
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P(x +dx)

FIGURE C-3: Simplified balance of forces for attached blob

Ueffectve = — % 22 +bz C-42)

<
=9
()

Qeffective = (C-43)

6

are the effective velocity and the effective volume flow rate per unit of channel length.
The coefficient b in Eq. (C-43) is unknown. Equation (C-41) can be expanded as

P(x+d(2—P(X) =p2g_2[£ﬁecgveb (C-44)

Two assumptions are made to obtain the effective viscosity:
1) pressure drop for encapsulated and attached cases are the same—r.h.s. of Egs.
(C-40) and (C-44);

2) the effective volume flow rate per unit of channel length (for the attached
case) is equal to the total volume flow rate per unit of channel length (for the

encapsulated case), i.€., @ paie =g = g2 + 24;

The resulting expression is given below

Heffecnve = Ib]l s+ (P2 —pl) g 51

62

(C-45)
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Notice that Eq. (C-45) differs from Eq. (C-35). The additional buoyancy term in Eq. (C-
45) can be dropped if the hydrostatic pressure drop is substituted by the overall pressure

drop—including gravity effects.
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APPENDIX D

PARFES]1 Governing Equations — Deri-
vation

D-1 The Mesh Tracking Algorithm

The wracking of the interface motion and distortion between the multiple fluid
stages is performed by PARFES!. A finite clement algorithm with a local data structure is
employed and an elliptical conjugate-gradient-type iterative solver utilized. Matrices are

sparse and not assembled.

The mesh movemenvstretching assumes a simple clastostatic formulation

Ty, =1 in Q
u, = u, in 042, (b-1)
T,n, = { in 942,
a-Quua.Q( = 8.(2
(D-2)
aﬂuma.Q; = @
Ty = Ay byurs + Ax(uy, + u) (D-3)
j [/11 Sy + Aa(ui, + u,.,)]w,,,d.Q = J fiwdQ2  + j 1w, d(3Q2) (D-4)
Q Q B1o
where
A = Ev
(1-v?)
D-5
. E (D-5)
2(1+v)

Assuming that the local approximation for displacements are given as
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N
ul = Y Uintn D-6)
n=1

the resulting integral formulation is

J’nh[x, Sjult + A(uli+ ul))whidQ = th.-w."da + jmh tiwld(392) ©-7)

Expanding the above integral gives

ALty +uda) + AaQubas uf)Iwty + [Ae(ufor udi) ]l +
Q

[aQuty + uf) + Ao(ubz+ ufa)]whs + [ ubi+uf2)]whi } d =

(D-8)
J . (Aiwl + fowh)de + j :.(tl wilt + nwi)d(32)
Q leh
To simplify derivations the following notation is used
_[ abd = (ab) ®-9)
nt

Expanding Eq. (D-8) in terms of a Finite Element local basis functions ¢ leads to

i:, { (11+2/12)(¢,._1 I ¢m.1>U1n + /12<¢n.1 | ¢m.l)UZn + lx(¢n.2 | ¢m.1>Uzn + /12(¢n2
(M+22.2)<¢,.‘2 ¢m,2)U;r_n + /11(4),.,2

¢m.l)U1n +
¢m.z>U1n +A (¢...1 | ¢m.z)U|,. + /‘lz(gp,,,, | ¢m,2>Um} = D-10)
(A+r] om) + _Lﬂ (11 9m+120m)d(322)

Breaking Eq. (D-10) in terms of its components

[ Gu G [ Uin
Un

} = (alon)+ [ nmdo)

(D-11)

Gu
G2

(Ai+ 2/12)(4’".1 | ¢m.1) +12(¢n.2 I ¢m,2)

O-12)
11<¢n.2 | ¢m.1)+ 12(¢n.{ I ¢m.2)
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[ Gu Gl [ Uin J = (fz l ¢m) + J 1¢md(022)
a2

U (D-13)
G = 7~1<¢n.1 ¢m,2)+ 12(¢n.2 ¢m,1)
D-14)
Gn = (A 242)(¢nz | Gmo)+22(na | 9.
Simplifying Eq. (D-10) in light of the above leads to
(/11 +222) = A3 D-15)
<f1 ¢m> = Flm
(D-16)
<f2 ¢m> = Fom
J' 110nd(@R2) = Tim
62
D-17)
J. 1¢md(@R2) = Tom
o)
Uin = Un
(D-18)
Uy =V,
(¢n.l ¢ml> = dnm
<¢n,1 ¢m.2> = bnm
(D-19)
(¢n.2 ¢m.l) = Cnm
<¢n,2 ¢m,2) = dnm
A3amn +12dlm Alcnm + llbmrl} |:Un] _ |: Flm + 1'im :l - |: le ] (D-ZO)
ALbam + A2Crn A3 dnm + A2 G Vn Fom + Tom Rom

Equation (D-20) above, expresses the relationship among displacements, driving
forces and the geometry—the term in the r.h.s. is the residual. The goal is to solve Eq. (D-
20), satisfying the constraints imposed by the physics of the displacing fluids.

The terms in Eq. (D-20) can be further expanded utilizing an isoparametric Finite
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Element formulation, i.e.

(x,x) € Q2 - (n,n)e [-1,1] X [-1,1]

(1 =12
O = Q(_) = J‘-‘Ila(_'); <« n=r
ox1 on
L =S
J = [ Xr X2 |
X1,s X2,s |
detJ = X1,rX2,s — X2,r X1.s
1 1| X -x2,: |
I delJ[ “X1,s Xi,r J
(¢'M ¢mJ) = j ¢n,l¢m,jd-(2
Qt
=J Jul%?i ,“%det]dndrz
e r r
= [_],;'Qﬁ..._]é‘ M][L;'%+inl?ﬂ'"_]de; Jdrds
o or os or as
(#] on) = J"fi¢mdetldrds
Q
j L¢-d(0R2) = J L gmdri
1o aa’
e _ _ [ 0n _,, Ofm
rm = \@n1 | Om1) = 1 \x - X2, }[ - }drds
( l ) .QedEIJ i r—
bim = Y On , 5, ,20n
(%,1 I ¢m.2> dggdet.l - J[x e LU <2 = drds
€ = = [ _1 -_ a a¢m _ a¢m
Crm (¢n,2 | ¢m‘l) ) &7 | X1, r—+ x1 rs;}[ X2, —22\drds
& = - a¢n 3n ][ 3¢m |
(¢n,2 | ¢'m.2> ] Q.det.l - =+ Xy o x; In 4 x,,90m ) Jdrds
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N Xy = i xu%
%= L o v ‘; ©-27)
Xis = g’xusg-
Finally, the previous system is simplified as follows
Aaon+ dadm  Arcin + azb:,n] [U] _ [ Rim ] D.28)
Mbam + A2Cin A3dom + A2aSn] LVa Rom

Notice that the forcing terms, on the Lh.s. of Eq. (D-20), were dropped—assuming that ail

interactions are governed by displacement constraints.

To formulate and to solve Eq. (D-28) is not difficult, if done in a conventional way,

ie, utilizing direct methods as solvers. Also, various programs, currently available, are

able to solve the above system.

However the approach utilized here is different. In order to track the development
of fingering patterns and folding, a special implementation of Eq. (D-28) was required.

The following are the major characteristics of the implementation developed herein

coefficients generated in symbolic form (to reduce computational time);

conjugate-gradient-iterative solver with a local data structure (tuned for a
massively parallel implementation);

nearest neighbor communication optimized to reduce communication over-
head (in parallel processing), and reduction on the number of wasted cycles
for boundary updates;

the mesh is able to wrap around itself.

For instance each local contribution (from one of the four local neighbor elements to a

node) is given below
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k06 kEVED kU0 k0D ke L kEWED L k00 L k{00 Zo

(0 Iy 0. )+x(° )y 0-) +K(0 Dy +K(O ) +K(o Iy00) (0 )y 00) +x(° )y +.0) *K( 9y 60 _
+K( 0y o)”{( 0y, €0) (O)U(oo) +K( )y, 0.0) +K( Oy +K( T (O)U(0+) ( 0y 04) _ (D-29)

(00) L 0.0), K(OO)V(oo) (OO)U(+0) K(OO)V(+0) x(°°)Lr(°+)+ K(OO)V(0+)+ K(OO)U(H“ A(oo)v(m -0

A special control mechanism was developed to handle updates at the boundaries, as well
as to handle end of array shifts—to allow the mesh to wrap around itself.

Two different implementations of the algorithm were developed to run at top speed
in different architectures, i.e., a vector machine (e.g. CRAY Y-MP), and a massively paral-
lel processor (e.g. Thinking Machines CM-2).

The resulting implementations were considerably successful: approximately 240
MFlops/processor out of a peak performance of 330 Mflops/processor on the CRAY Y-MP
for a 130,000 degrees of freedom problem; 98% utilization of the CM-2 (for a 1,000,000
degrees of freedom pioblem) roughly in the GFlops range.

The need for this kind of performance (possibly better in the future) is fundamen-
tal. To track complex structures the most time consuming computational task is the itera-
tion needed to locate the final mesh configuration.
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APPENDIX E

PARFES2 & PARFESAX Governing
Equations — Derivation

E-1 Multiple Fluid Stages and Interfaces Modeling

The mass and momentum conservation formulation (assuming an aspect ratio of
order A/L ~ A/H ~ 107%), for both PARFES2 and PARFESAX, can be expressed as

J' [(‘p‘v 8) s+ (p'vém)e+ 2iptv Vioss ) vdQ =0
Q)

v 'y e L2['on)

— 2 . ]
J‘ [’uk - [ (vp)s+ipval I'gyd'2 = 0
i 12°'u’v J

E-2)
v '¢; e Hi['Q)]

where for each fluid stage (prescript i): 'v is the volume fraction; 'p the density; ‘i the vis-
cosity; * u, the average (in-plane) velocity component in the direction k; ' V,, the (trans-
verse) fluid loss velocity (through both fracture walls); g, the gravity acceleration
component in the direction k. The crack opening field & is coupled to the fluid(s) pressure
field p by means of a surface integral scheme, Barr (1991), encompassing the elastic stress
field around the fracture walls, and the stress intensity factor in mode 7. The finite ele-
ment basis function ¢ and y are assumed to be square integrable in £2 for any instant of
time ¢. The first derivative of @ is, also, assumed to be square integrable with support zero

at the boundaries.

Assuming the following notation for integration in £2 and its boundaries 902
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(al I bm) = I albmdg
o
(E-3)
[a1|nm] = J- ai nm d0Q)
a0
the previous Egs. (E-1) and (E-2) can be combined as follows
%( P ‘vb‘l W) +["p'v 8 Cux - Xp) ‘w,-'mc]

- (iin ) (illk - Xk) I a—‘&) + (2iPiV i‘/lo:s
OXk

4
) = 0 (E-4)

For the highly viscous fow limit case discussed in Appendix A, the Navier-Stokes equa-
tions reduce to

o 8 (_3('V )

oy gk)
12'u'v axk

(E-5)
Substituting Eqg. (E-5) into Eq. (E-4) and assuming
xp ’V - iﬁ
2ulv - I (E-6)

iy - ¥
leads to

ﬁ(ibcsl 9’) - [:—_‘—_)—53'1’;—17 | ] o+ [%53 ¥ gk l ni |
M Xk m

i= s i—=2
_[536%x p 5 op oFy 4P & oY )
[ klnk]+(‘ﬁ anl axk) <‘ﬁ gkl Bxk> €D
[ 7 ¥ =1
0X —)-(2 Vioss
¥ ( POk I BJCk> ( P

b d > = 0
In addition the elastic behavior of the fracture is characterized by the following equation
(Pi - 0.) = f(E,v) Dj§ (E-8)
Nondimensionalization—analogous to Egs. (B-24) and (B-25) in Page 164 of
Appendix B—of Eqs. (E-5), (E-7) and (E-8) results on the following
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wo (Brate(m)) By, (a)E2 e
Oc Lz 'ﬁ Lr 'ﬁ Xk
6 = —-___Akf‘fv”u.-,-a,- (E-10)

-— 2 . -— 3 o
{erdeliyd 5wy - [LAPRARORY P 5 IOy,
Tr dr Lg ur T Oxx

{BRAZRgLR}[L53ng|"k] +{ERARO'RLR} _9_5380'|3'P>

T L Oxx = OXk
_ 5 -2 .3 2 =2 E-1
_ [ PRARGLR VG swX | n] - [ BRARELRV P 5, | 0¥
T Hr Lz o oXk
B2 (22t vs o

Tr Lz
where the excess pressure variation o, is assumed to be equal to the hydrostatic pressure

variation (spatial variation of the confining stresses can be easily introduced though), i.e.

ap _ od(p - o)
oP - 9P — Cc) -12
OXk oxk €12

The previous equations can be combined as

deps|w> - [ LY m] + ayaf[ L6 o] ni]
dat '# oxx 'l_[,

_[iﬁa‘FXklﬂk] +a§<%53376'%;}—;>+<i55kk g::) (E-13)
- aBa§<2538kla‘y> +2< P Vi | ¥> = 0
u
where
0 = &
ap = &2 Ly =
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are the non-dimensionalization variables; o the excess pressure field (o =p — 0)); o, the
confining stress field; X; the nodal velocity component in the direction k; ¥the finite ele-
ment weight function. The terms in X, arise from passing the time differentiation out of
the integral (first term in the Lh.s.) in Eq. (E-1).

For the implementation of PARFES2, two implicit A-stable, Sand and @sterby
(1979), linear multistep schemes are used to time integrate. An Adams-Moulton of sec-
ond order is used for the first time step and a Backward Differentiation, also of second
order, for the subsequent time steps. For the axisymmetrical problem (the gravity term is
dropped in PARFESAX), after the second time step, implicit adaptive variable order (up to
fifth order) Backward Differentiation schemes are used.

Identitying terms for Eq. (E-13) as follows

da 4 f(g 1) = 0 (E-15)
dt
a = <'p 6| v >
fCan) = ;;i<‘ﬁ5| v> - a§[£53‘1“§2|nk] vayod[ L6 vl m]
T g
—[p6*Ika|ru] +as<-£63ac|a¥l>+<p5xx 31}/ (E-16)
X,
- o as<£53g | -> + 2< D Vioss | ¥ >
n
allow the following time approximation using linear muitistep formula
k
2 Qja(n+j) = AtZ@ﬁn+1> (E-17)

Various methods can be derived from the above equation. Though the interest here will
focus in a particular class, i.e., A-stable.

Using BD2 (Backward Differentiation of order 2) to approximate Eq. (E-13) in
time gives
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3(polw) + 285" = a(ps| ¥y - ("ps| ¥) (E-18)

Notice that for the initial time step this formula cannot be applied. Hence, the algorithm
of choice for start-up is the AM2 (Adams-Moulton of order 2), i.e.

(n=1) (n=0)

2(ps| w)"=" - as"md = 2(ps| w)"" + arg=” (E-19)
Applying Newton-Raphson to Egs. (E-18) and (E-19) and taking increments on the

crack opening and excess pressure as follows

6§ = d+ Ab o
o = p+ Ao (E-20)
leads to
3(pas| ) + 2476.0) =
= n i= n—1 i—= n-2 (E'Zl)
—3<pd|‘f’) +4(p5|'1’> -(p5|‘1’>
2(pas|w) =" - afN60) =
. (n=1) . (n=0) (n=0) (5-22)
—2('pd|‘}’> +2(‘p5l?’> + Alf
Term-by-term expansion of the f” function follows
[z(d+A6)3TM|nk] =
IZZ xk
[:gd3 W§£—| ne] + 3[_:Bd2 w2 A5 | nk | (E-23)
l/.l Oxk 'ﬁ Oxk
+ [_:Bd3 w048 | ] + O(A&, A840)
‘i oxk
[i—lé(d+A5)3‘}’gk ’ nk] =
K - ~ (E24)
[Bd o | m] +3[ Ld*a6%a | m] + 0(48)
H ‘u
[p(d+a8)¥x | m] = [powke | m] +[pasw x| m] (E-25)
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<B(d+asydprdo) | o¥
u Xk axk

<P | A5 4 3 PR 45| LE

! m oxx ox ‘_ Oxy oxi

+<Ed3a_A£| atp> + O(AS8% A6 40)

i—

7 Xk OXk

< B(d+ a5y 2p249) | 3
u BXk an

<i',_%d3gk aa?'> + 3<-P—d2A5g aalf'> + 048

Xk 'u Xk
<Pd+a % | > = <'paxy | WS i <pasx | E>
oxk oxx
2< P Vs | ¥ >
Again, f" can be split as
f'(8.0) = f (A8,48) + [ (d.p)
where
= al<Lg*d4c | 1", 342 <L p5 | L
M oxk oxk TR oxk
i~2
e B gas | LES 4 <pReas 2w
n OX OX
_a;[£d3waﬂ[ T 3a§[l_@d2 'Pg_l’ms | el
+ 3050 2[ dz'ngA&'nk] —-[‘p‘PXkASInL]
u
fiy = - a2 [L2d ‘Pgﬂ I ] + ozBotsz[‘-gd3 ¥ gk I ne] -1 7d¥Xe I ni |
u X I

oxx oxi

n 1_2 oo
s ai< P | LE —aaa§<4°:d3gkl e
# X

J¥

+ < ‘Ed}ik
oxxk

> +2<pvla.ss
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(E-27)

(E-28)

(E-29)

(E-30)

(E-31)

-> (E-32)
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Inserting Eqs. (E-31) and (E-32) in Eq. (E-21) leads to

3<pas | ¥>" v 24, =
a<ps|v>U o <ps|ws"? (E-33)
-3<pa | ¥>" —2mr)

Expanding the above equation and applying Newton-Raphson for time steps (superscript
n)n =2, with §=d + Ad and o= p + Ao, gives the following incremental equation

3<'5a5 |¥> - 24 [2a>wdAC | m] - 6410 [Jld w3 a5 | m]
$ # a an

+2Mal< pd‘dAcl ally> + 6Atas<—3d‘ 9p A8 | a_f>
/J OXk Oxk ,Ll ox o

n

+6Ara5(xsz[[—p:d2'i’gkA5| ] - 24:[‘;3ka4\5| ni |
‘H

—eaagai<ldgas| s v2a<prias | Es
u X Xk
iz " E-34
= 2Ata§[—£d3‘}’a—p| ] - 2Atag o [ d Yo | m] 39
’ﬁ Xk
L 1= Y N
+ 2A1ag of < d’ g > -2M4<’'pd Xe | =—
'u Xk
+240['pd ¥ X | w] - 24t i< La? P | 2F
17 oxk Oxx
7
S AM<D Vi | ¥> -3<pd | ¥>
n-1 n-2
+4<’ps|¥> -<ps|¥>
Analogously for Eq. (E-22) leads to
2<'pas | w>"TV o a2 aptP m2<'pd | WS
I | (E-35)

+2<'pd | s =0 g p(n=0

or in expanded form
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1
2<'pAs | ¥> + Azas[l’.dwaa“l n,,] + 3Aza2[_ﬂd waap 46 | ﬂk]
X, X,
-3 A a asz[J?:d W gk A6 | nk] + Az[‘,’;kaA5| nk]
u

— i i— 1
- arai<La?d49 | ¥ 3mal< LaP P 45| ¥

n oxk oxk i oxk Xk
+ 3Ata5a32<-£—d2gk.45 -ai> —At<i;_))ka6| atP>
'ﬁ o0Xk o0xXk
j— 1 =2 1
= - Ataf[—ﬁd“!ﬂaﬁ | m] + Aoy asz[-%cf ¥ gr l ne |
T u
1 = 1
—At["ﬁdwikl ni | +Aza§<£d3§11| CRAN
'ﬁ Oxk ox (E-36)
=2 . 1
—AtaBa52<-B—d3gk| o +At<‘;—)ka| ¥
u Oxk Xk

1 1
+2M< P Vi | ¥> -2<'pd | ¥>
0 — 0
+ 2<'}35|‘P> —Atasz[—253'i‘a—6| n |
g oxk
0 0

1—2 .
+AtaBasz[—%53‘1’gk| n | —At[‘ﬁ5'1’Xk| ni |
m

1 =2 0
+A1a§<p53aol —AtaBasz<-&53gk| ¥ 5
U axk u Oxk )
+Ar<‘7)5)fk| alP> +2At<pv1m| v>

Isolating similar terms from Eq. (E-34) and Eq. (E-36) gives
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=2
T\ = <'pAé ' ¥ > T = [—i%ds‘}’gk l n |
i—2
In = <'pd | ¥ > I = <Ld2gk45| @_'}:>
u ox
D 3 gd 4 >’ ik
75 = [2d° lP—-——| ni | T, = <-.&d3gk| —>
— X i O
Ts = [:édJ ‘P.@.‘D_I ﬂk] T3 = [iﬁq’XkAEI ’lk]
" Ox
Ts = < L4949 | ¥ T = ['pd ¥ X | ] (E-37)
n Oxk Oxx
Te = <T‘Bd3a_P| a_q;> Tis = <‘;3XkA5| §£>
'/_7 oxx Ixx Oxk
T = [—l—edz‘}’ﬂ)—Aﬁl i | T = <'/_dekla—ly
o o Xk
T =<aﬁf§245|if> Ty = <'p Vies | ¥>
n ox oxx

Ty = l’ll—)_;dz'f’gkﬂ5| e |
m

The incremental terms in the Newton-Raphson expansion can be numerically

approximated as

A8 = A8 ASn On

(E-38)
Ac = Ac" =

N
))
n=1
N
Y, AC, ¢n
n=1

Finally each one of the terms in Eq. (E-37) can be expanded as follows
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1= (5as|v) = Z(Pen]om)as

T1 = J "D On Om (det T} drds| AS,
Lo/ $2°

Tirm (E-39)

T2 = 'f "0d ¢m (det )y drds| ASn
ﬂ!

T2m
Boundary terms are only accounted, when flux boundary condition is non-zero. Hence-

forth, a generic non-zero boundary term integrated along the direction ¢ is assumed—
where ¢ may represent either r or s, depending on what edge the flux is prescribed

T3 = jdf*a(ﬂ).tylnk = Ef(?.@f_)_ ,-;,+a_(4_")n)tp]
m ox oy ¢ )

m a.x k

U :—E’ @ (Gnx N+ Gny 1y) O [line(der J)) dl| Ao, (E-40)
Q¢ H

T3mn

1
1= J¢ 2
£ 4 J;,lt a_¢ ne(r,s) + J';,lk 9¢. Ay (1,8) | Pm (d_x)z +(,‘_1_'__) d
¥ 1E T Brk d

1 - bl
T4, = .{1 %d*”];‘ aTF:n,» b (Z—-;)ﬁ(%)"d (E-41)

TS

iéds(a_Agaz . @A_qa_?_)
m ox dx dy dy

= J L & (9nx $x + Gy $my) (der J) drds| Ao, (E-42)
ne M

L & Tk nse Iyl $ma (der J) drds
Jn e l/'l

T5mn = J L & Lk onx il Om (der J) drds +
[Jae ‘U

i

e U X Jac M X1

T6m = L& @.J;} Om1 (det J) drds + 1—_2 & Tk —gg—ly}l by (det J) drds (E-43)
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T7 [-de ( ne+ %P, ny)ASJ
ox
[ _de xk &L n, + J;;‘;SB n,) O On [line(det J)] dl]
fo] e

_gdzda(apaw apavf)
I ox ox dy dy

T8, = U P d‘(f‘ 9Pyt %n ]q),.(detl) drds + J‘ P dZ(J;,' Pyt Qgﬂ)@(detj) drds
e oe 'l on " on

Ti1 <.&d2A5( v, g,a_‘f’)>
m ax dy

Tl = [ -& & $n 8:(r,5) Ji} a¢,,. (det J) drds + L & b 2,(r,5) S5} a¢,,, (det])drde

e 1 Q

i—2
Ti2 = { L & gur5) I} a¢,,, (derdydrds + | L= & gr,5) Iy} O (det ) drds
e ‘U e 'u or

TI5 = <pA5( x¥, Y”’D
ox ay

T15m = [ f ' 0n X(1,5) Ji} 99m a¢”‘ (det J) drds + f D o Y(r,5) J;} %‘p—'" (detJ) a%dsJ
feld Ield i

(rufeiz. vie)
ox ay

“ "pd X(r,s) J; ‘a¢m (dezj)drduj de(rs)Jyla‘?’m (detJ)drdsJ
€ QC

T16

e
2
[

T17

(0] )

T17; = J- "D Vioss $m (det J) drds

The other boundary terms T9, T10, T13 and T14 are expanded analogously to T3.

(E-44)

(E-45)

(E-46)

(E-47)

(E-48)

(E-49)

(E-50)
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Finally rewriting Egs. (E-34) and (E-36)

3(Tm A + 2 At 0 (TS)mi Aot + 6 At o (T8)m ASI' — 6 At ap o (T11)m AST
+ 2 At (TIS)M AST = -2 At (T18)m — 2 At o (T6)m + 2 At a o (T12)

- 2 A (T16)m - 4 At (T17)n - 3 (T2)m

+ 4(T2)R" - (T2

(E-51)

2 (T ASP™' — At a2 (TS)mi* Acf™" - 3 At o (T8)nd AS™!
+ 3 At ap af (TIL A8 — A (TIS)ni A8 =
Ar (T18)n™ + At a2 (T6)n™" - At ap a? (T12) (E-52)
+ A (TI6),™ + 2 Ar (T17)5™ — 2 (T2)a™" + 2(T2)5™° + ar (T18)n™

+ At a2 (TO)R® — At ag o (T12)5° + A (T16)7™° + 2 At (T17)5”°
E-2 The Axisymmetrical Simplification

For the axisymmetrical case the integrand in Eq. (E-1) and Eq. (E-5) can be simpli-
fied to

a('p 5) + l_a(rlpaii;r) + 2 ip ivloss =0

ot r or
(E-53)
l;r = - 52 8_11
12'u or
Notice that the gravity effects are dropped (non-symmetrical). A word of caution should

be said. The absence of gravity effects here have nothing to do with the derivations in
Chapter 2 and Appendices B and C.

In Chapter 2 the analysis was aimed at a blob that is capable to maintain (approx-
imately) its shape (circular) under the effect of gravity. The objective there was to charac-
terize the overall flow behavior, specifically encapsulation effects. In Chapter 3 and
Appendix E the gbjective is different:

* accurately track the fluid interfaces (study morphological changes)

The weak variational formulation of Eq. (E-53) is
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! Ra(1)

iR

IRy , , .
4 I "pé2nrodr| + ';_)21rr6['u,—R] ¢
a{Jirne

: , (E-54)
Ra) a3 R
- j ‘p 627tr[‘ur—R]£dr + J- 2'p'Viess 2rr ¢dr = 0
RO or g0
uor
or combining both equations
d(%s s (P59, (5s,k | 20

L(par| o)+ (B2 | 80y« (Bork] 5
. (E-56)

= i Qr 1R

+<2leos.\‘r! ¢>+¢p[—-r5R] =0
2 iRy
Nondimensionalizing Eq. (E-56) results on
d (55r| ¢) + a? o (L8r20 | 2y 4 (Gsri | 22)
dt g or ' or or
: (E-57)
i= = Q -1 k2
+2(pvlassr|¢>+¢p[~—-r-—r5R] =0
2 Ry
where

@ = 4&; o = [ROR (E-58)

Lr Hr

To facilitate the numerical expansion of Eq. (E-57) the following terms are defined
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Al” = (‘psr| o)

A2(n) = (253ra_°'l B—Q>(n)
‘n o or

r

. . (n
A" = (perk | %‘;1) (E-59)
A4(n) = ( i‘_) Viess T | ¢ )(n)
ip (1)
As(n) = (b ‘5[2’. -ré R] fa
2r iRy

Repeating the same time integration procedures (described in the previous section), the
resulting AM2 and BD2 formulations are

—2A177Y — Arol? op A2V - ArA3TED - Ar2 A4TED - ArASTTD =

_ (E-60)
~2A17 & Ar ol o, A2 & ArA3TY 4 Ar2 A4TT0 4 AT AT

3AI™ + 24102 0 A2 + 2 A1 A3™ + 4 AT A4™ + 241 A5 = 4 A177D - A1UP (E-6D)

where

AL = (por| on)”
A = (B 20| )"

fﬁ or or
A3 = ('ﬁark| %‘Brﬂ)(") (E-62)
A% = (PViur | o)

) TR (O]
ASD = ¢m’5[-Q-£— raR] ’

2n iR,
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or collecting the terms in Egs. (E-60) and (E-61)

[- 4t 02 0 2207 60 = 2 (CALE® + ALST) + A1 ad g A2 o
+ A (A3 + A30TD) 4 240 (A4S & A4GTY) & ar(ASEO + ASETY)

[2 410 0p A2 6 = (<3 A1) + 4A15) ~ AISD)
—2 At A3 — 441 AAP — 2 At ASY

The isoparametric linear base is very simple, i.e.

= -1

where

- Rga1 — Rk Dg
det J = Dg = dr
Dx
9 __1 9
or det Jos

For each element K the coefficients in Eq. (E-62) can be expanded as

.] (r)
KA1 = 05(s) (Dx s + Rx) ¢m Dx dS}
L0

[ ol i )
K2l = L 5%s) (Dxs + Re)29.99m 146
L0 lﬂ ds ods Dg

)
K A30 = j i58() (Dx 5 + RK)R(s)a—gﬂds}
LJo §

ra ()]
KA4§,’:) = J‘ l—g Vioss (8) (DK s+ RK) om Dk ds}
LJo H

(E-63)

(E-64)

(E-65)

(E-66)

(E-67)

(E-68)
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IASYI) - _ iﬁ

LasS? = iﬁ[QéﬁFl - Rr 8(RP) RRF
m

(n)
)

2n

where the coefficients C;; are defined below
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e
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®ez!
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}(")
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[ 0g,

(K)0'1

Bg,

- Atad ap VN
- At ad op VA212
_ At a? op mA221
- At op VA2

2 At o ap VA21
2At 0l op MA2;,
2 At o ap VA2
24108 op A2,

- Aral a, ®A2;
-Aral ap ®A21,
~ At o o, A2,
-Atal o ® A2

2 At a? o PA2),
2 At a? ap ©A2)
2 At a2 ap ®A2,
2 At a? o ©A2

[Q(Rw) ~ Ry 5@ it(Rw)](")

() =011
E,

(K)»(n=0.1)
E;

n = ()()El(n,n-l,n-Z)
(K)Ez(n.n-l,n-Z)

|

(E-69)

(E-70)

(E-71)

(E-72)

(E-73)

(E-74)
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W=D _ o (CWAI 4 DALD) - A 02 @ VA2 01 + A1 0? 0, PA2G o
+ a0 (VA3 4 a1 VA30") + 2 41 (VA4 + Dag(™)

+ At (VA5 4 Dpsm=)

D=0 _ 5 (COA + VA) - a1 ol ap VA2 0 + Ar 0 VA2E o

+ Al ((1)A3(n-‘) At (1)A3(n-1))+ 2 At ((”A (n=0) (1)A4§n=l))

Oprrad _ 3 WM g WAL _OA™D g 4 D A3
4 At VA" _ 2 A D A5
(1)E2(n,n-l.n—2) =_13 (1)A1§n) +4 (1)A1gn-2) _ (I)Algn-l) —2 At (1)M§n)_ 4 At (l)A4§n)

RO o g (LWAL"0 L ®ALD) - Ar g 4, AT 01+ 41 a? 0, PA2G o
+ a0 (PA3=" 4 41 ®a3D) 4 2 ar (Pad"= + B4 1’)
+ Ar (BA5=0 4 Kip5n=D)
WEDD = o (L WAL ®ALD) - A 0 o ©A2™ 01+ A1 e 0 PAS0 o

+ A (PA30 4 A ©A3" D) 4 2 Ar (BAL= 4 BIpqlm=Y)

o N SN N LN T T ¢

— 4 At A4 _ 2 A1 A5

B OALD 2 A OA3 - 4 A POAY

W7D o 3 OAYY + 4 PAY

(E-76)

E-7T7)

(E-78)

(E-79)

The axisymmetrical problem consists in resolving the above set of equations, and a

numerical minimization procedure, coupled to the above equations, to accurately track the

movement of the boundaries
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APPENDIX F
An Axisymmetrical Elasticity Algorithm

F-1 Numerically Removing Tip Singularities

Singularities for the crack opening and stress intensity factor, in the axisymmetri-

cal case, can be numerically removed if the following transformations are assumed

(a7 y
LT ety + a)di

0<y<l1
(b~a)l"7 y 1
- dt

J. erfh - 1!

The crack opening is given as
R ]
5(r) = (l)éf dl J. 20 4o
TPE) NP - b VP - o

R

sin = ¢ | -89 g4
A TE

(I*-1)

(I--2)

(I°-3)

(F-4)

217



APPENDIX F: An Axisymmetrical Elasticity Algorithm

(a) = o o(a)
: Vi-aVl+«a
!
20 = [ feoda
AT o5 R (F-5)
= 1 105‘.‘ 11-05 (] — (1-03)dt
-05J

o - [2=Det-o,

V21—t

where the transformation given in Eq. (F-2) is used. Rewriting the above equation leads
to

R
o) = G —&ydl
’ r YI=rVl+7r
mrd F-6)
sy = oo 280+ udu
Jo V2r + u?
JEZT g h(u)
o(r) = 4COI fu, t;r)dtdu
0 0
h(u)
G(u;r) = I flu, t;ryde
0
JE
5(r)y = 4C0J. G(u;r)du &7
0
h(u) = Vr+ u?

fu1ir) = (r+ ul=tHo(r+ u?-12)
Vor+ u? Yor+ 2u?2 - 12

This integration transformation gives excellent results. Convergence to square root of

machine precision was achieved in average for approximately 20 integration points. Var-
ious load distributions were tested.

In addition the stress intensity factor in mode / can also be obtained
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K(o) = LLJ L0 _ar
VR R -r?
(F-8)
= 41 (R—t)a(R-t)
K(o) = W/__V—J- 2 dt

219



220



APPENDIX G

PARFES Simulation Results—Part 1

G-1 Half-Crack Simulation

Figure G-1 represents the initial configuration of a half-crack. The number of cle-
ments used is a function of the motion complexity—meshes are usually more refined than

the one below. A downwards motion is shown in Figures G-2 through G-8.

\
]
71T
IIIIIII'I'I'I'
2/

LLT7777
2

FIGURE G-1: Initial nodal location for elliptical crack
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FIGURE G-3:

Downwards displacement series—2




Half-Crack Simulation
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FIGURE G-4: Downwards displacement series—4
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FIGURE G-5: Downwards displacement series—35
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FIGURE G-6: Downwards displacement series—35
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FIGURE G-7: Downwards displacement series—6
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FIGURE G-8: Downwards displacement series—7
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APPENDIX H

PARFES Simulation Results—Part 2

H-1 Blob Distortion Simulation

The following scrics—Figures H-1 through H-10—of blob oblation and prolation

motions, is used w predict boundary eftects as a function of the external forees.
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FIGURE H-2: Series of blob prolation displacements—2
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APPENDIX 1

PARFES Simulation Results—Part 3

I-1 Axisymmetrical Interface Tracking

{ Pressure vs. Radi — Fluid Losses with

1x-2x-3x-4x-5x Rate of Injection

PRESSURE 8.0e+05

+06
1 Ox107 6 Oe+05

+05 4.0e+05
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0 0e+00
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L

0.0 200.0

FIGURE I-1: Axisymmetrical pressure distribution and interface tracking—one fluid stage
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Pressure vs. Radius - Fluid Losses with 1x Rate of
Injection
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FIGURE I-2: Axisymmetrical pressure distribution and interface tracking—one fluid stage with fluid
losses as a function of the rate of injection
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Axisymmetrical Inferface Tracking

Pressure vs., Radius - No Losses with

1x-2x-3x-4x-5x Rate of Injection
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FIGURE 1-3: Axisymmetrical pressure distribution and interface tracking—>5 fluid stages. Valleys in Cut
C-C represent the front location for each fluid stage
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