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We study a multi-period dynamic pricing problem with contextual information where the seller uses a mis-

specified demand model. The seller sequentially observes past demand, updates model parameters, and then

chooses the price for the next period based on time-varying features. We show that model misspecification

leads to correlation between price and prediction error of demand per period, which in turn leads to incon-

sistent price elasticity estimate and hence suboptimal pricing decisions. We propose a “random price shock”

(RPS) algorithm that dynamically generates randomized price shocks to estimate price elasticity while max-

imizing revenue. We show that the RPS algorithm has strong theoretical performance guarantees, that it is

robust to model misspecification, and that it can be adapted to a number of business settings, including (1)

when the feasible price set is a price ladder, and (2) when the contextual information is not IID. We also

perform offline simulations gauging the performance of RPS on a large fashion retail dataset, and find that

is expected to earn 8–20% more revenue on average than competing algorithms that do not account for price

endogeneity.

Key words : revenue management; pricing; parameter estimation; endogeneity; model misspecification;

fashion retail

1. Introduction

Motivated by the growing availability of data in many revenue management applications, we con-

sider a dynamic pricing problem for a data-rich environment. In such an environment, a firm (i.e.,

seller) observes some time-varying contextual information or features that encode external infor-

mation. The firm estimates demand as a function of both price and features, and chooses price

to maximize revenue. By including features into demand models, the firm can potentially obtain

more accurate demand forecasts and achieve higher revenues.

In this paper, we are especially interested in the consequences of model misspecification, namely,

when the firm assumes an incorrect demand function on features. In practice, features may contain

various kinds of information about demand such as product characteristics, customer types, and
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economic conditions of the market. A mixed set of heterogeneous features can affect demand in a

complex way. The seller may assume an incorrect demand model either because it is unsure how

demand is affected by features, or because it prefers a simple model for analytical tractability.

In fact, several recent works on dynamic pricing with features often make the assumption that

demand is a linear or generalized linear function of features (Cohen et al. 2016, Qiang and Bayati

2016, Javanmard and Nazerzadeh 2016, Ban and Keskin 2017).

We observe that when the demand model is misspecified, model parameters estimated from

demand data may become biased and inconsistent. This phenomenon is illustrated in Fig. 1 below.

In this figure, the inner oval represents a parametric family of demand models assumed by the

seller. The white “x” mark represents the seller’s initial parameter estimation. The triangle mark

represents the true model, which lies outside the oval region, since the model assumed by the seller

is misspecified. Over time, as the seller collects past demand data and updates demand model

parameters, one would expect that the updated parameters would converge to the best approxi-

mation of the true model (denoted by a solid “x” dot on the boundary, i.e., the projection of the

triangle mark to the oval region). Under some assumptions, the model with the best approxima-

tion is also the one associated with the highest revenue performance within the assumed model

family (see Proposition 1). Somewhat surprisingly, we find that this is not always true, as the

model parameters may converge to another estimate (denoted by a circle dot) with worse revenue

performance. Sometimes, the updated model parameter (circle dot) may even have worse revenue

performance than the initial model estimation (white “x”)!

Figure 1 The dynamics of parameter estimates under model misspecification.

The reason why the estimated parameters are inconsistent is because model misspecification can

cause correlation between the price and demand prediction error. We refer to this correlation effect

as price endogeneity. If an estimation method ignores the endogeneity effect and naively treats the

assumed model as the true model, it would produce biased estimates. Note that we use the word

“endogeneity” here in a pure statistical sense, indicating that an independent variable is correlated

with the error term in a linear regression model (Greene 2003). In this paper, we will mainly

focus on the price endogeneity effect caused by model misspecification; however, a discussion of all

possible factors that may cause price endogeneity is beyond the scope of this paper.
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1.1. Overview

To illustrate the price endogeneity effect caused by model misspecification, we specifically consider a

dynamic pricing setting where the true demand model is quasi-linear, in that the expected demand

is linear in price but nonlinear with respect to features. The seller does not know the underlying

demand function, and incorrectly assumes that the demand function is linear in both price and

features.

To address the issue of model misspecification, we propose a “random price shock” (RPS) algo-

rithm to get an unbiased and consistent estimate of the model parameter while controlling for the

price endogeneity effect. The idea of the RPS algorithm is to add random price perturbations to

“greedy prices” recommended by some price optimization model using biased parameter estimates.

The variances of these price perturbations are carefully controlled by the algorithm to balance the

so-called exploration-exploitation tradeoff. Intuitively, using a larger variance can help explore and

learn the demand function, while using a smaller variance can generate a price that is closer to

greedy prices, which can exploit current parameter estimates to maximize revenue.

The RPS algorithm is related to three types of methods in econometrics and operations manage-

ment for demand estimation. First, the RPS algorithm is in some sense similar to the randomized

controlled trials (RCT) method, which offers randomly generated prices to eliminate selection bias.

For example, Fisher et al. (2017) applies RCT in a field experiment to estimate an online retailer’s

demand model. However, it is important to note a key difference between RPS algorithm and the

RCT method: the price offered by RPS algorithm is not completely random, because it is the

sum of a greedy price, which is endogenous, and a small perturbation. As a result, the sum of the

two prices is also endogenous; therefore, standard analysis for randomized control trials cannot be

applied to the RPS algorithm. Moreover, Fisher et al. (2017) implemented RCT in two phases: a

first phase where random prices are offered, and a second phase where optimized prices are tested.

In contrast, the RPS algorithm does not have these two phases, and it estimates the demand model

while optimizing price. The benefit of estimating demand and optimizing price concurrently is

discussed in Besbes and Zeevi (2009), Wang et al. (2014). The analysis of the RPS algorithm is

also significantly different from that of RCT, and the proof idea for the RPS algorithm is built on

the analysis of the least squares method in nonlinear models (Hsu et al. 2014).

The second type of method that is related to the RPS algorithm is the instrumental variables (IV)

method. IV method is a widely used econometric method to obtain unbiased estimates of coefficients

of endogenous variables. The IV method aims at finding the so-called instrumental variables that

are correlated with endogenous variables but are uncorrelated with prediction error. In the RPS

algorithm, the randomly generated price perturbation serves as an instrumental variable, because

it is correlated with an endogenous variable, i.e., the actual price offered by the firm (recall that
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the actual price is the sum of a greedy price and a perturbation), but is obviously uncorrelated

with prediction error since it is randomly generated by a computer. This connection to the IV

method allows us to use econometrics tools in the design of RPS algorithm, more specifically the

two-stage least squares (2SLS) method.

Lastly, the RPS algorithm is related to the family of “semi-myopic” pricing policies that has

been studied in the revenue management literature more recently (Keskin and Zeevi 2014, den

Boer and Zwart 2013, Besbes and Zeevi 2015). A semi-myopic pricing policy keeps track of whether

there has been sufficient variations in historical prices; if not, an adjustment is made such that

the actual price offered would deviate from greedy or myopic price. Our proposed RPS algorithm

belongs to the family of semi-myopic policies. However, it is important to note that most existing

semi-myopic algorithms make deterministic price adjustments to the greedy prices, whereas the

RPS algorithm makes randomized price adjustments. This is a major difference since our ability to

perform unbiased parameter estimation in the presence of price endogenous heavily relies on the

fact that those price perturbations are randomized.

In Section 3, we show that the RPS algorithm accurately identifies the “best” linear approx-

imation to the true quasi-linear model in the presence of model misspecification. The algorithm

achieves an expected regret of O((1+m)
√
T ) compared to a clairvoyant who knows the best linear

approximation, where m is the dimension of features and T is the number of periods. Our regret

bound matches the best possible lower bound of Ω(
√
T ) that any non-anticipating algorithm can

possibly achieve. Moreover, RPS improves the O(
√
T logT ) regret bound proven by Keskin and

Zeevi (2014) for a special case of linear models without features (i.e., m= 0).

Two extensions of the RPS algorithm are considered. In the first extension, we consider the case

where prices must be chosen from a discrete set. We establish a O(T 2/3) regret bound for this

generalized setting. In the second extension, we remove the assumption that feature vectors are

drawn IID, and allow them to be sampled from an arbitrary distribution. Again, a O(T 2/3) regret

bound is shown.

We test the numerical performance of the RPS algorithm using synthetic data in Section 4. The

experiments demonstrated how the RPS algorithm obtains unbiased estimation in the presence of

price endogeneity. We also compared the RPS algorithm with other pricing algorithms proposed

in the literature.

In collaboration with Oracle Retail, we performed simulation experiments to gauge the perfor-

mance of the RPS algorithm in a real-world setting. These experiments were performed on a dataset

provided by Oracle Retail, consisting of three years’ worth of data on customer transactions and

product feature information at an anonymous chain of brick-and-mortar department stores. Based

on this dataset, we built a “ground truth” demand model. Then, using the ground truth model as
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a stand-in for the true demand, we simulated the performance of the RPS algorithm, allowing it to

price the items in the historical dataset based on their features. The procedures we used to build

the ground truth model and the results of our experiments are reported in Section 4.2.

1.2. Background and Literature Review

Demand model misspecification is a common problem faced by managers in revenue management

practice (Kuhlmann 2004). Cooper et al. (2006) have discussed several reasons why model mis-

specification can arise, including revenue managers’ lack of understanding of the pricing problem,

or their preference for simplified models for the sake of analytical tractability.

Several previous papers study the consequences of model misspecification in dynamic pricing.

Cooper et al. (2006) study a problem where an airline revenue manager updates seat protection

levels sequentially using historical booking data. The revenue manager incorrectly assumes that

customer demand is exogenous and independent, but because the true demands for different fare-

classes are substitutable, the booking data is affected by the manager’s own control policy. Cooper

et al. show that when an incorrect demand model is assumed, the firm’s revenues would system-

atically decrease over time to the worst possible values for a broad class of statistical learning

methods, resulting in a so-called “spiral down effect.” On a high level, the spiral-down effect dis-

covered by Cooper et al. (2006) is analogous to the phenomenon we illustrated in Fig. 1: As more

data is collected, ignoring model misspecification in the estimation process increases bias in param-

eter estimates over time, and the seller’s revenues deteriorates. Besbes and Zeevi (2015) consider

a single product dynamic pricing problem in which the seller uses a linear demand function to

approximate the unknown, nonlinear true demand function. The authors have proposed a learning

algorithm that would converge to the optimal price of the true model. Cooper et al. (2015) con-

sider an oligopoly pricing setting where firms face competition from each other, but their demand

models do not explicitly incorporate other firm’s decisions. The authors have studied conditions

under which the firms’ decisions would converge to Nash equilibria. We note that in these three

papers, demand function is assumed to be stationary. Instead, our paper considers a setting where

demand function is affected by features, which are changing over time.

The effect of model misspecification on decision making has also been studied in other operations

management applications. For example, Dana Jr. and Petruzzi (2001) study a newsvendor problem

where the customer demand distribution depends on the inventory stock level chosen by an inven-

tory manager, but the manager incorrectly assumes that demand distribution is exogenous. Cachon

and Kök (2007) consider a newsvendor model where the salvage value is endogenously determined

by remaining inventory, while the inventory manager assumes the salvage value is exogenous.
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Our paper considers a setting where the demand model contains unknown parameters that are

being estimated dynamically from sales data. In such a setting, the firm faces an exploration-

exploitation tradeoff : towards the beginning of the selling season, it may test different prices to

learn the unknown parameters; over time, the firm can exploit the parameter estimations to set

a price that maximizes revenue. Our problem setting is closely related to the one considered by

Keskin and Zeevi (2014). They study a linear demand model without features, and consider a class

of semi-myopic algorithms that introduce appropriately chosen deviations to the greedy price in

order to maximize revenue. Keskin and Zeevi show that this class of algorithms has the optimal

regret rate, i.e., no other pricing policy can earn higher expected revenue asymptotically (up to a

logarithmic factor). Another related paper is den Boer and Zwart (2013), which proposes a quasi-

maximum-likelihood-based pricing policy that dynamically controls the empirical variances of the

price. Besbes and Zeevi (2009) and Wang et al. (2014) consider dynamic pricing for a single problem

under an unknown nonparametric demand model. Besbes and Zeevi (2012) extend the previous

result to a setting with multiple products and multiple resources under an unknown nonparametric

demand model. For an overview of some of the other problem settings and solution techniques used

in dynamic learning and pricing, we refer readers to the recent survey by den Boer (2015).

Our paper is particularly focused on a dynamic learning and pricing problem that contains

contextual information (i.e. features). Here we compare our paper with related work on dynamic

pricing with features. Qiang and Bayati (2016) extend the linear demand model in Keskin and Zeevi

(2014) to incorporate features, and apply a greedy least squares method to estimate model param-

eters. Cohen et al. (2016) propose a feature-based pricing algorithm to estimate model parameters

when demand is binary. Javanmard and Nazerzadeh (2016) and Ban and Keskin (2017) study

pricing problems where feature vector is high dimensional and the demand parameter has some

sparsity structure. We note that all these papers assume that demand models are correctly speci-

fied. In contrast, our paper studies a feature-based pricing problem where the model is misspecified,

and focuses on the impact of model misspecification on the seller’s revenue. Among these papers,

Qiang and Bayati (2016) and Ban and Keskin (2017) are closer to ours as they both consider

linear demand models with features. Nevertheless, due to the differences in model assumptions, the

regret bounds in Qiang and Bayati (2016) (O(logT )), Ban and Keskin (2017) (O(
√
T logT )) and

this paper (O(
√
T )) cannot be directly compared. In particular, Qiang and Bayati (2016) made an

“incumbent price” assumption, which gives the firm more information initially and allows the firm

to achieve a much lower regret bound of O(logT ) rather than O(
√
T ).

We note that a few recent papers apply nonparametric statistical learning approaches to pricing

with features in a batch learning setting where historical data are given as input (Chen et al. 2015,

Bertsimas and Kallus 2016). Our paper differs from these works in that we focus on a dynamic,



 Electronic copy available at: https://ssrn.com/abstract=2859672 

Nambiar, Wang and Simchi-Levi: Dynamic Learning and Pricing with Model Misspecification 7

multi-period setting. As stated in Van Ryzin and McGill (2000) and Cooper et al. (2006), in revenue

management practice, there is usually a repeated process where controls (e.g., booking limits or

prices) are enacted, new data are observed, and parameter estimates are updated. In this paper,

we are specifically interested in the case where historical data is dynamically generated the seller’s

pricing decisions. In addition, although nonparametric approaches avoid model misspecification,

parametric models are widely used in revenue management practice (Kuhlmann 2004, Cooper et al.

2006, Besbes and Zeevi 2015), so the consequence of model misspecification remains highly relevant

to revenue management practice.

As mentioned earlier, model misspecification can cause price endogeneity, because the demand

prediction error and the seller’s pricing decisions are both determined endogenously by the feature

vector. More generally, the phenomenon of price endogeneity are extensively studied in economics,

marketing, and operations management. Empirical studies have found that price endogeneity exists

and has a significant impact on price elasticity estimation in many real-world business settings

(Bijmolt et al. 2005). The econometrics literature has proposed various methods to identify model

parameters with endogeneity effect (e.g. Greene 2003, Angrist and Pischke 2008); Talluri and

Van Ryzin (2005) also provides an overview of these methods with revenue management appli-

cations. The price endogeneity effect has been studied in settings with consumer choice (Berry

et al. 1995), consumer strategic behavior (Li et al. 2014), and competition (Berry et al. 1995, Li

et al. 2016); these factors are beyond the scope of this paper. We note that empirical revenue

management studies often take the perspective of an econometrician who is outside the firm and

does not observe all the information that revenue managers can observe, such as cost, product

characteristics, consumer features, etc. (e.g. Phillips et al. 2015). However, in this paper we take

the perspective of a revenue manager within the firm who makes pricing decisions, much like in

Cooper et al. (2006) and Besbes and Zeevi (2015). We show that even if a decision maker observes

all the past pricing decisions, untruncated historical demand and contextual information, price

endogeneity can still arise when the seller assumes an incorrect model.

Notation For two sequences {an} and {bn} (n = 1,2, . . .), we write an = O(bn) if there exists

a constant C such that an ≤ Cbn for all n; we write an = Ω(bn) is there exists a constant c such

that an ≥ cbn for all n. All vectors in the paper are understood to be column vectors. For any

vector x ∈Rk, we denote its transpose by xT and denote its Euclidean norm by ‖x‖ :=
√
xTx. We

let ‖x‖1 be the `1 norm of x, defined as ‖x‖1 =
∑

i |xt|. We let ‖x‖∞ be the `∞ norm, defined as

‖x‖∞ = maxi |xt|. For any square matrix M ∈Rk×k, we denote its transpose by MT, its inverse by

M−1 and its trace by tr(M); if M is also symmetric (M =MT), we denote its largest eigenvalue

by λmax(M) and its smallest eigenvalue by λmin(M). We let ‖M‖2 be the spectral norm of matrix

M , defined by ‖M‖2 =
√
λmax(MTM). We denote the Frobenius norm of M by ‖M‖F , namely

‖M‖F =
√

tr(MTM).
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2. Model

We consider a firm (seller) selling a single product over finite horizon. At the beginning of each time

period (t= 1,2, . . . , T ), the seller observes a feature vector, xt ∈ Rm, which represents exogenous

information that may affect demand in the current period. We assume that feature vectors xt

are sampled independently for t= 1,2, . . . , T from a fixed but unknown distribution with bounded

support. (In Section 3.5, we will relax the IID assumption of xt and assume an arbitrary sequence

of random feature vectors.) Without loss of generality, we assume xt ∈ [−1,1]m after appropriate

scaling. Moreover, we assume that the matrix

M = E

[[
1 xT

t

xt xtx
T
t

]]
is positive definite.1

Given the feature vector xt, customer demand for period t as a function of price p is given by

Dt(p) = bp+ f(xt) + εt, ∀p∈ [p
t
, p̄t]. (1)

Here, parameter b is a constant representing price sensitivity of customer demand, and f :Rm→R

is a function that measures the effect of features on customer demand. Both b and f are unknown

to the seller. We assume that the demand function is strictly decreasing in price p (i.e. b < 0), and

f(xt) is bounded for all xt such that |f(xt)| ≤ f̄ . The latter assumption would follow immediately

from the fact that the set of all features xt is compact if f were continuous. The last term εt in Eq (1)

represents a demand noise. Without loss of generality, we assume εt has zero mean conditional of

xt: E[εt | xt] = 0; otherwise, the conditional mean E[εt | xt] can be shifted into function f(xt). We

assume that εt has bounded second moment (E[ε2t ]≤ σ2,∀t), and is independent of historical data

(xj, εj) for all 1≤ j ≤ t−1. However, the distribution of εt is allowed to vary over time. We refer to

Eq (1) as a quasi-linear demand model, since the demand function is linear with respect to price,

but is possibly nonlinear with respect to features.

We denote the admissible price range in period t, i.e. the range of prices from which the price p

must be chosen, by [p
t
, p̄t]. In particular, we allow the admissible price interval to vary over time.

We assume that p
t

and p̄t are inputs to the seller’s decision problem, while they may be arbitrarily

correlated with features xt and demand noise εt. We also assume there exist constants δ > 0 and

pmax such that p̄t ≤ pmax and p̄t−pt ≥ δ for all t. Given features xt, we denote the optimal price for

the true demand model (as a function of xt) by p̃t(xt) =− f(xt)

2b
. We assume that the optimal price

p̃t(xt)∈ [p
t
, p̄t] for all t.

1 This assumption is equivalent to the condition of “no perfect collinearity,” i.e., no variable in the feature vector can
be expressed as an affine function of the other variables. If matrix M is not positive definite, the dimension of feature
vector can be reduced by replacing certain variable as a combination of other variables.
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2.1. Applications of the Model

The above model has applications in several business settings that involve feature-based dynamic

pricing. One example is dynamic pricing for fashion retail, which will be discussed in more detail

in Section 4.2. In the fashion retail setting, a retail manager dynamically sets prices for fashion

items throughout a selling season, while the demand is highly uncertain when the selling season

begins. The feature vectors represent the characteristics of fashion items, such as color and design

pattern, as well as seasonality variables. Throughout the season, the retail manager may learn

from sales data about how customer demand varies for different product features, and adjust prices

accordingly to maximize revenue.

As another example, feature-based pricing is also used for personalized financial services. Phillips

et al. (2015) described a setting in the auto loan context, where the price (interest rate for a loan)

is adjusted based on features such as credit score of the buyer, the amount and term of the loan,

the type of vehicle purchased, etc. They find that using a centralized, data-driven pricing algorithm

could improve profits significantly over the current practice, where local salespeople are granted

discretion to negotiate price.

In our model, the admissible price interval [p
t
, p̄t] is allowed to vary for different periods. For

example, in the auto loan context, the price interval represents the range of admissible interest

rates set by the financial headquarters, which varies based on the amount and term of the loan

offered. As time-varying bounds may depend on features and demand noise, our model makes no

assumption of the distribution of price range [p
t
, p̄t], and allows the price bounds to be arbitrarily

correlated with past prices, feature vector xt, and noise εt. If such a correlation is present, it will

lead to price endogeneity (in addition to the price endogeneity caused by model misspecification)

and will be accounted for in our pricing algorithm.

2.2. Model Misspecification and Non-anticipating Pricing Policies

We consider a seller who is either unaware that the true demand function has a nonlinear depen-

dence on features, or is unsure how to model such dependence. As a result, the seller uses a

misspecified linear demand function to approximate the true quasi-linear demand function given

by Eq (1). The seller assumes a linear demand model as

Dt(p) = a+ bp+ cTxt + νt, ∀p∈ [p
t
, p̄t], (2)

where a∈R and c∈Rm are constants and νt is an error term.

We focus on the linear demand model, because the linear model and its variations are widely

used in revenue management practice and in the demand learning literature (Qiang and Bayati

2016, Ban and Keskin 2017); in addition, the model can capture nonlinear factors in the feature

vector by including higher order terms in the feature vector.
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The parameters (a, b, c) are unknown to the seller at the beginning of the selling season. We

assume that the seller knows that the parameters a and c are bounded, and that there exist ā, c̄

such that |a| ≤ ā and ‖c‖1 ≤ c̄, but not necessarily the values of ā, c̄. As for the price sensitivity

parameter b, we assume that the seller knows not only that the parameter b is bounded, but also

the range within which b lies, 0< b≤ |b| ≤ b̄. The assumption that the range of b is known to the

seller is strong, and is indeed a limitation of our model. However, there are applications for which

it may be reasonable to assume that the seller has some knowledge about this range, perhaps from

her prior experience with the sales of similar items during previous selling seasons. For example, in

our case study in Section 4.2, our estimates of b for different categories of fashion items were found

to be of the same order of magnitude, lying in the range [−1,−0.1]. Thus the seller could assume

that b lies in the range [−1,−0.1] for future selling seasons. More generally, the economics and

marketing literature finds that price elasticity, a quantity related to our price sensitivity parameter,

tends to fall within finite ranges across markets and products. Bijmolt et al. (2005), for example,

analyze 1851 price elasticities from 81 different publications between 1961 and 2004, across different

products, markets and countries. They observe a mean price elasticity of -2.62 and find that the

distribution is strongly peaked, with 50 percent of the observations between -1 and -3.

The seller must select a price pt ∈ [p
t
, p̄t] for each period t= 1,2, . . . , T sequentially while esti-

mating the values of (a, b, c) using realized demand data. The seller’s objective is to maximize her

total expected revenue over T periods.

We denote the realized demand given pt by dt, defined as

dt =Dt(pt) = bpt + f(xt) + εt.

Note that the realized demand is generated from the true model, i.e., the quasi-linear model Eq (1).

The history up to the end of period t− 1 is defined as

Ht−1 = (x1, p1, ε1, . . . , xt−1, pt−1, εt−1).

We say that π is a non-anticipating pricing policy if for any t, price pt is a measurable function with

respect to Ht−1 and the current feature vector and the feasible price range: pt = π(Ht−1, xt, pt, p̄t).

The seller cannot foresee the future and is restricted to using non-anticipating pricing policies.

2.3. Price Endogeneity Caused by Model Misspecification and Other Factors

By comparing the true quasi-linear demand model (cf. Eq (1)) and the misspecified linear model

(cf. Eq (2)), it is easily verified that the error term in the misspecified linear model is equal to νt =

f(xt)− (a+cTxt)+ εt. This error term νt is composed of an approximation error, f(xt)− (a+cTxt),

which is correlated with features xt, and a random noise εt, which is uncorrelated with features.
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When the model is misspecified, we have f(xt)− (a+ cTxt) 6= 0, so the error term νt is not mean

independent of feature xt, namely E[νt | xt] 6= 0.

The fact that the error term is not mean independent of the features could cause bias in the

seller’s demand estimates if the estimation procedure is not designed properly. Suppose the seller

uses a non-anticipating pricing policy π such that

pt = π(Ht−1, xt, pt, p̄t). (3)

Because the error term νt is correlated with features xt while price pt is a function of xt, the seller’s

pricing decision causes a correlation between νt and pt. More specifically, we have E[νtpt] 6= 0 since

E[νtpt | xt] = E[νt · π(Ht−1, xt, pt, p̄t) | xt] 6= 0. We refer to the correlation between pt and the error

term νt as the price endogeneity effect, and refer to pt as the endogenous variable. Throughout

the paper, the word “endogeneity” is used in a pure econometric sense to indicate the correlation

between pt and νt.

It is well known that in a linear regression model

dt = a+ bpt + cTxt + νt, (4)

when the regressor pt is endogenous, naive estimation methods such as ordinary least squares (OLS)

would give biased and inconsistent estimates of parameters (a, b, c). Biased estimates of model

parameters then lead to suboptimal pricing decisions. Moreover, the seller cannot test whether

price pt and error νt are correlated using historical data, since she does not observe the error term

νt directly; even if the seller has complete historical data, without knowing the values of (a, b, c),

the term νt cannot be computed.

In addition to model misspecification, other factors can also cause the price endogeneity effect.

If a manager believes she has expert knowledge about future demand, she may set the price range

[p
t
, p̄t] in anticipation of future demand, so the price bounds p

t
, p̄t are endogenous. Because our

pricing algorithm chooses price pt in [p
t
, p̄t], the price pt also becomes endogenous. In our algorithm

proposed in Section 3, we account for such endogeneity by allowing the price bounds p
t
, p̄t to be

correlated with noise εt.

The endogeneity problem has been extensively studied in the econometrics literature (Greene

2003, Angrist and Pischke 2008). There are a few key differences between the pricing model consid-

ered in this paper and typical research problems studied in econometrics. First, we study a pricing

problem from the perspective of a firm that wants to maximize its revenue, whereas econometri-

cians often take the perspective of a researcher who is outside the firm and wants to estimate causal

effects of model parameters. The second key difference is that econometrics and empirical studies
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often consider batch data, whereas our pricing model considers sequential data generated from

dynamic pricing decisions. Analyzing these two types of data usually requires different statistical

methods and correspondingly different performance metrics.

Although there are differences between the problem considered in this paper and those in the

econometrics and empirical literature, a common challenge is in studying a regression model with

endogenous independent variables. In fact, the dynamic pricing algorithm that we introduce in

the next section is inspired by statistical tools in econometrics such as instrumental variables and

two-stage least squares.

3. Random Price Shock Algorithm

In this section, we propose a dynamic pricing algorithm which we call the random price shock (RPS)

algorithm. The idea behind the RPS algorithm is that the seller can add a random price shock

to the greedy price obtained from the current parameter estimates. As the number of periods (T )

grows, the parameters estimated by the RPS algorithm are guaranteed to converge to the “best”

parameters within the linear demand model family, which we will define shortly in Section 3.1.

Therefore, the prices chosen by the RPS algorithm will also converge to the optimal prices under

the misspecified linear demand model.

We present the RPS algorithm below (Algorithm 1). The RPS algorithm starts each period by

choosing a perturbation factor δt. The algorithm computes the greedy price, pg,t, and adds it to a

random price shock, ∆pt. Note that the greedy price is projected to the interval [p
t
+ δt, p̄t− δt], so

that the sum of greedy price and price shock is always in the feasible price range [p
t
, p̄t]. (We denote

the projection of a point x to a set S by Proj(x,S) = arg minx′∈S ‖x−x′‖.) The interval [p
t
+δt, p̄t−

δt] is non-empty, since p̄t− pt− 2δt ≥ δ(1− t−1/4)≥ 0. The price shock is generated independently

of the feature vector and the demand noise (e.g., it can be a random number generated by a

computer).

After the demand in period t is observed, the algorithm updates parameter estimations by a

two-stage least squares procedure. First, the price parameter b is estimated by applying linear

regression for dt against ∆pt. It is important to note that we cannot estimate b by regressing dt

against the actual price pt, since pt may be endogenous and correlated with demand noise. Since

the random price shock ∆pt is correlated with the actual price pt but uncorrelated with demand

noise, we can view it as an instrumental variable. Therefore, this step allows an unbiased estimate

of parameter b. The second stage estimates the remaining parameters, a and c.

In the RPS algorithm, the variance of the price shock introduced at each time period (∆pt) is

an important tuning parameter. Intuitively, choosing a large variance of ∆pt generates large price

perturbations, which can help the seller learn demand more quickly; choosing a small variance
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Algorithm 1 Random Price Shock (RPS) algorithm.

input: parameter bound on b, B = [−b̄,−b]

initialize: set â1 = 0, b̂1 =−b̄, ĉ1 = 0

for t= 1, . . . , T do

set δt← δ
2
t−

1
4

given xt, set unconstrained greedy price: pug,t←−
ât+ĉ

T
t xt

2b̂t

project greedy price: pg,t←Proj(pug,t, [pt + δt, p̄t− δt])

generate an independent random variable ∆pt← δt w.p. 1
2

and ∆pt←−δt w.p. 1
2

set price pt← pg,t + ∆pt

choose an arbitrary price pt ∈ [p
t
, p̄t]

observe demand dt =Dt(pt)

set b̂t+1←Proj(
∑t
s=1 ∆psds∑t
s=1 ∆p2

s
,B)

set (ât+1, ĉt+1)← arg min
∑t

s=1(ds− b̂t+1ps−α− γTxs)
2

end for

means that the actual price offered would be closer to the greedy price, which allows the seller to

earn more revenue if the greedy price is close to the optimal price. The tradeoff between choosing

a large price perturbation versus a small price perturbation illustrates the classical “exploration-

exploitation” tradeoff faced by many dynamic learning problems. In Algorithm 1, the variances of

the price shocks are set as O(t−
1
2 ) to balance the exploration-exploitation tradeoff and control the

performance of the algorithm.

We would like to make two remarks about the RPS algorithm. First, the idea of adding time-

dependent price perturbations to greedy prices has also been used in Besbes and Zeevi (2015).

However, there is a fundamental difference between the price shocks introduced in RPS algorithm

and the price perturbations in Besbes and Zeevi (2015), which assumes a fixed (unknown) demand

function. The algorithm proposed in Besbes and Zeevi (2015) separates the time horizon into cycles

and requires testing two prices in each cycle: a greedy price (say, pg) and a perturbed price (say,

pg + ∆p). Observed demand under the two prices is then used to estimate price elasticity. This

strategy of testing two prices is not applicable when demand function depends on feature vectors,

because demand is constantly changing as features are randomly sampled. As a result, the RPS

algorithm can only test one price for each realized demand function, since the demand functions

in future periods may vary. That is, the RPS algorithm only observes demand under price pg +∆p,

but not pg.

Second, one may ask why the RPS algorithm is concerned with the correlation between the price

pt and the error term νt, but ignores the correlation between feature vector xt and error term νt.
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Indeed, the error term νt contains an approximation part f(xt)− (a+ cTxt) due to model misspec-

ification, so the least squares parameters a and c will be biased if xt and νt are correlated. The

reason why we can ignore the correlation between xt and νt in pricing decisions is that computing

an optimal price for the linear model, namely −(a+ cTxt)/(2b), only requires an unbiased estimate

of the aggregated effect of the feature vector on demand, which is measured by the numerator

a+ cTxt rather than the treatment effect of each individual component of xt. Unbiased estimates

of a+cTxt and b can be provided by the RPS algorithm. However, when xt is endogenous, the RPS

cannot guarantee that the estimates of a, c are unbiased component-wise.

3.1. Performance Metric and Regret Bound

To analyze the performance of Algorithm 1, let us first define regret as the performance metric.

Recall that the true demand function is given by

Dt(p) = bp+ f(xt) + εt, ∀t= 1, . . . , T (5)

where both b and f(·) are unknown to the seller. We would like to compare the performance of our

algorithm to that of a clairvoyant who knows the true model a priori. However, it can be shown

that the optimal revenue of the true model cannot be achieved when the seller is restricted to use

linear demand models, because the optimal price p̃t(xt) =− f(xt)

2b
cannot be expressed as an affine

function of xt. In Appendix A of E-companion, we show that if the sequence of pt for t= 1, . . . , T

is chosen based on linear demand models, the model misspecification error is quantified by

E

[
T∑
t=1

p̃t(xt)D(p̃t(xt))−
T∑
t=1

ptD(pt)

]
= Ω(T ).

Therefore, the optimal revenue of the true model is not an informative benchmark, since no algo-

rithm can achieve a sublinear (o(T )) regret rate with a misspecified model.

If the Ω(T ) misspecification error is large, a first order concern would of course be to find a

better demand model family than the current linear model in order to reduce the misspecification

error. However, even if the seller uses other parametric models, the revenue gap to the true model

can always grow as Ω(T ), as the same argument in Appendix A applies to any parametric model

because it is always possible that the parametric model is misspecified.

We then consider the revenue of a linear model that is the “projection” of the true model to the

linear model family. Ideally, if the true model is well-approximated by a linear model, the seller

will be able to achieve near optimal revenue even though it uses a misspecified model. Given a

nonlinear function f , we define the following linear demand model:

Dt(p) = a+ bp+ cTxt + νt, ∀p∈ [p
t
, p̄t], (6)
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where a and c are population least squares estimates of f(xt): a, c = arg minα,γ E[‖f(xt)− (α +

γTxt)‖2]. It can be shown by solving first order conditions that a, c are given by the closed form

expression: [
a
c

]
=

(
E

[[
1 xT

t

xt xtx
T
t

]])−1

E

[[
f(xt)
f(xt)xt

]]
. (7)

One can view linear model (6) as the projection of the true quasi-linear model (1) to the linear

model family (see Fig. 1). Let p∗t (xt) =−a+cTxt
2b

be the optimal price under the best linear model

given by Eq (6). The proposition below shows that the linear demand function (6) gives the highest

revenue among all linear demand functions. Therefore, we will call it the best linear model.

Proposition 1. For any period t, consider a price p′t = −α+γTxt
2β

that is affine in features xt,

where α,β, γ are measurable with respect to history Ht−1. Then, the revenue under price p′t is upper

bounded by the revenue under p∗t (xt), namely

E[p∗t (xt)Dt(p
∗
t (xt))]−E[p′tDt(p

′
t)] =−bE[(p∗t (xt)− p′t)2]≥ 0.

By Proposition 1, if the seller uses a linear demand model D′t(p) = α+ βp+ γTxt for period t,

the expected revenue of its optimal price p′t =−α+γTxt
2β

is maximized when p′t = p∗t .

We now define the seller’s regret as the difference in the cumulative expected revenue of a

clairvoyant who uses the best linear model and the expected revenue achieved by an admission

pricing policy, namely

Regret(T ) =
T∑
t=1

E[p∗t (xt)D(p∗t (xt))]−
T∑
t=1

E[ptD(pt)], (8)

where the expectation is taken over all random quantities including features xt, price ranges [p
t
, p̄t],

demand noise εt, and possibly external randomization used in the pricing policy.

To reiterate, in the definition of regret in Eq (8), we use the optimal price of the best linear

model (6), p∗t (xt), instead of the absolute optimal price for the true quasi-linear model (5), p̃t(xt).

The reason is that the optimal price p∗t (xt) of model (6) gives the highest achievable revenue if

the seller is restricted to making pricing decisions using linear demand models. Should we replace

p∗t (xt) by p̃t(xt) in the definition of regret in (8), the benchmark would be too strong to be achieved

by any linear model, and the regret would grow linearly in T no matter which pricing policy is

used.

3.2. A Upper Bound of Regret

We now prove the following regret upper bound for the RPS algorithm.

Theorem 1. Under the quasi-linear demand model in Eq (1), the regret of Algorithm 1 over a

horizon of length T is O( m+1
λmin(M)

√
T ).
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Theorem 1 expresses the upper bound on regret in terms of the horizon length T , the dimension

of features m, and the minimum eigenvalue of the design matrix M = E[(1, xt)(1, xt)
T], while the

constant factor within the big O notation only depends on model parameters b, b̄, sigma2 and pmax.

We note that the constant factor does not depend on the unknown values of a, b, c, or the unknown

distribution of xt except through the parameter λmin(M). The proof of Theorem 1 shows explicitly

how the regret depends on these parameters, see Appendix C of E-companion.

The main idea behind the proof of Theorem 1 is to decompose the regret into the loss in revenue

due to adding random price shocks, and the loss in revenue due to parameter estimation errors.

Since the randomized price shocks have variance O(t−1/2) at period t, the former part is bounded

by O(
√
T ). The latter part can be bounded in terms of the expected difference between the true

parameters a, b, c and the estimated parameters. We then modify results on linear regression in the

random design case (Hsu et al. 2014) to prove that the estimated parameters converge sufficiently

quickly to their true values.

Theorem 1 shows that the RPS algorithm is robust to model misspecification: Even if the true

demand model is nonlinear in features, the RPS algorithm is guaranteed to converge to the best

linear demand model (6), which gives the highest expected revenue among all linear models. The

RPS algorithm achieves such robustness because it correctly addresses the price endogeneity effect

introduced by model misspecification.

Remark 1. (Comparison with the upper bound in Keskin and Zeevi (2014)). Keskin and Zeevi

(2014) consider a linear demand model without features and fixed price bounds. They propose

a family of “semi-myopic” pricing policies that ensure the price selected at any period is both

sufficiently deviated from the historical average of prices and sufficiently close to the greedy price.

They show that such policies attain a worst case regret of at most O(
√
T logT ). Since the model

in Keskin and Zeevi (2014) is a special case of demand model (1) with f(xt) = 0, the result for

the RPS algorithm in Theorem 1 thus improves the upper bound in Keskin and Zeevi (2014) by

a factor of logT . In addition, as we have already noted, the RPS algorithm can be applied to a

broader setting with features and price endogeneity.

3.3. A Lower Bound of Regret

The upper bound on the regret of the RPS algorithm scales with O(
√
T ) as the number of period

T grows. We can prove a corresponding lower bound on the regret of any admissible pricing policy.

Theorem 2. The regret of any non-anticipating pricing policy over a selling horizon of length

T is Ω(
√
T ).

The proof of Theorem 2 is given in Appendix C. This theorem relies on a Van Trees inequality-

based proof technique (Gill and Levit 1995), and is related to the lower bound of Ω(
√
T ) described
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by Keskin and Zeevi (2014) on the regret of any non-anticipating pricing policy in the special case

of our model where m= 0 (i.e., there are no features) and the demand model is linear (i.e., model

is correctly specified). Theorem 2 extends the result of Keskin and Zeevi (2014) to the case where

m> 0, showing that the regret lower bound does not change in terms of T even in the presence of

features. Further, Theorem 2 shows that the regret of the RPS algorithm is optimal in terms of T .

Note that the lower bound in Theorem 2 does not depend on the dimension of the feature vector

m. The upper bound in Theorem 1, however, grows with m, and our numerical experiments show

the regret usually increase with m (see Appendix B.2 of E-companion). We conjecture that the

RPS algorithm’s dependence on m is due to the two-stage least squares procedure needed to obtain

an unbiased estimate of the price coefficient b. We leave it as future work to close the gap between

upper and lower bounds.

3.4. Price Ladder

A common business constraint faced by retailers is that prices must be selected from a price ladder

rather than from a continuous price interval. A price ladder consists of a discrete set of prices that

are typically fairly evenly spaced apart. For example, a firm may use prices such as $9.99, $19.99,

$29.99, etc., because these prices are familiar to customers and easy to understand. In this section,

we show how the RPS algorithm and theoretical results can be adapted to the setting where prices

are drawn from a price ladder rather than from price intervals.

We model this setting as follows. Suppose that the seller is interested in selecting prices from

the price ladder {q1, . . . , qN} where N ≥ 2 and q1 < · · ·< qN . Assume that for the purposes of price

experimentation, she is also allowed to use two additional prices q0, qN+1 such that 0< q0 < q1 and

pmax > qN+1 > qN . Then at each time period t, the selected price satisfies pt ∈ {q0, q1 . . . , qN , qN+1}

where N ≥ 2 and q0 < q1 < · · ·< qN+1. Analogous to our assumption in Section 2 on the width of

the price intervals, we assume here that δ ≤ qi+1 − qi ≤ δ̄ for some positive constants δ, δ̄ and all

i = 0, . . . ,N . The remaining assumptions on features xt, demand noise εt and function f are as

stated in Section 2.

We benchmark the performance of admissible pricing algorithms against a clairvoyant who knows

the “best” linear demand model given by (6), and selects price

p∗t = Proj(−(a+ cTxt)/(2b),{q1, q2, . . . , qN})

upon observing feature xt. Then the expected regret, as before, is given by

Regret(T ) =
T∑
t=1

E[p∗tD(p∗t )]−
T∑
t=1

E[ptD(pt)], (9)
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Algorithm 2 Random Price Shock (RPS) algorithm with price ladder.

input: parameter bound on b, B = [−b̄,−b]

initialize: choose â1 = 0, b̂1 =−b̄, ĉ1 = 0

for t= 1, . . . , T do

given xt, set unconstrained greedy price: pug,t←−
ât+ĉ

T
t xt

2b̂t

find it = arg minj∈{1,...,N} |qj − pug,t| and set constrained greedy price: pg,t← qi

generate an independent random variable ∆pt←


qit − qit−1 w.p.

qit+1−qit
(qit+1−qit−1)t1/3

qit+1− qi w.p.
qit−qit−1

(qit+1−qit−1)t1/3

0 w.p. 1− t−1/3

set price pt← pg,t + ∆pt

observe demand dt =Dt(pt)

set b̂t+1←Proj(
∑t
s=1 ∆psds∑t

s=1

(qis−qis−1)(qis+1−qis )
√
s

,B)

set (ât+1, ĉt+1)← arg min
∑t

s=1(ds− b̂t+1ps−α− γTxs)
2

end for

where the expectation is taken over all random quantities including features xt and the demand

noise εt.

The RPS algorithm as designed for the price interval setting (Algorithm 1) cannot be directly

applied to the case where prices must be drawn from a price ladder. In the experimentation

structure of Algorithm 1, price shocks of decreasing magnitude are selected along the selling horizon,

violating the price ladder constraint. We thus adapt the RPS algorithm to the price ladder setting

by modifying the price experimentation step. Suppose at time period t the estimated greedy price

pg,t is pg,t = qi for some 1 ≤ i ≤ N . We perform price experimentation by selecting the price pt

from the set {qi−1, qi, qi+1} with probabilities set to ensure ∆pt = pt − pg,t satisfies E[∆pt] = 0

and Var[∆pt] is a decreasing function of t. While Algorithm 1 sets ∆pt such that Var[∆pt]∝ 1√
t
,

our modified RPS algorithm sets ∆pt such that Var[∆pt]∝ 1

t1/3
. This shifts the balance between

exploitation and exploration, allowing our modified RPS algorithm to reduce its regret. The full

statement of the Random Price Shock (RPS) algorithm for the price ladder setting is given in

Algorithm 2.

We prove the following regret bound for the RPS algorithm with price ladder. As in the previous

section, we assume the regret is benchmarked against a linear clairvoyant who uses the optimal

price for the best linear approximation given by Eq (6).

Theorem 3. The regret of Algorithm 2 over a selling horizon of length T is O(
√

m+1
λmin(M)

·T 2/3).

The proof of Theorem 3 is given in Appendix C of E-companion. We can see that when price

intervals are replaced with a price ladder, our bound on the regret of the RPS algorithm worsens in
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terms of T . The intuition is that the clairvoyant’s optimal prices p∗t = Proj(−a+cTxt
2b

,{q1, q2, . . . , qN})

do not satisfy the first-order optimality condition, ∇Rt(p∗t ) = 0, in the price ladder setting. Devia-

tions from the clairvoyant’s price are thus more costly, worsening the regret bound.

3.5. Non-IID features

Previously, we assumed that the features {xt}Tt=1 are drawn from an IID distribution. This assump-

tion is too strong for some scenarios. For example, when the features include seasonal variables

such as day of the week, day of the month, or month or the year etc., the distribution of xt is

correlated over t and is not IID. In this section, we relax the IID assumption and allow the sequence

{xt}Tt=1 to be sampled from an arbitrary distribution on [−1,1]m (after appropriate scaling). The

assumptions on the demand noises εt, the function f and the price sensitivity parameter b are the

same as in Section 2.

Since the sequence {xt} is non-IID, we redefine the regret benchmark as the following linear

model:

D̂t(p) = ax + bp+ cTxxt, ∀p∈ [p
t
, p̄t], (10)

where ax and cx are defined for an arbitrary sequence of features, {xt}Tt=1, as[
ax
cx

]
= arg min

a′,c′

T∑
t=1

‖f(xt)− (a′+ c′Txt)‖2.

It can be shown by solving first order conditions that ax, cx are given by the closed form expression:[
ax
cx

]
=

(
T∑
t=1

[
1 xT

t

xt xtx
T
t

])−1 T∑
t=1

[
f(xt)
f(xt)xt

]
. (11)

Notice that Eq (10) describes the linear model that best approximates f(xt) under the empirical

distribution given {xt}Tt=1.

We assume that the parameters (ax, b, cx) are bounded as follows: |ax| ≤ ā, b≤ |b| ≤ b̄, ‖cx‖1 ≤ c̄.

The seller is assumed to know the bounds on b, b and b̄, but not the bounds on ax and cx. The

regret of any admissible pricing policy over a selling horizon of length T can now be defined as the

difference in the expected revenue of a clairvoyant who uses a linear demand model with parameters

ax, b, cx, and the expected revenue achieved by that pricing policy.2 We note here that although

the clairvoyant has full knowledge of the realization {xt}Tt=1 at the start of the selling horizon,

2 Again, we could define regret relative to the “true clairvoyant,” who knows the true demand model and sets price
p̃t = − f(xt)

2b
at each time period. But this definition can result in a linear regret (see details in Appendix A of E-

companion). Namely if {xt} happens to be IID, E
[∑T

t=1 p̃t(xt)D(p̃t(xt))−
∑T
t=1 ptD(pt)

]
= Ω(T ). Therefore, the

optimal revenue of the true model is not a particularly informative benchmark, since no algorithm can achieve a
sublinear regret rate with misspecified model.
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any admissible pricing policy does not know this realization, and can only observe the history

Ht−1 = {p1, x1, d1, . . . , pt−1, xt−1, dt−1}. The expected regret is given by

Regret(T ) =
T∑
t=1

E[p∗tD(p∗t )]−
T∑
t=1

E[ptD(pt)], (12)

where p∗t =−ax+cTxxt
2b

are the price chosen by the clairvoyant upon observing feature xt. The expec-

tation in Eq (12) is taken over all random quantities, including the features xt, price ranges [p
t
, p̄t],

and demand noise εt.

To validate that the linear clairvoyant is indeed an upper bound of any pricing policy using

linear demand models, let the prices chosen by our linear clairvoyant be p∗t (x) = −ax+cTxx

2b
for all

t and for any features x. Analogous to Proposition 1, Proposition 2 below shows that the linear

demand function (10) gives the highest revenue among all linear demand functions, justifying our

choice of regret benchmark.

Proposition 2. Given a particular realization {xt}Tt=1 of the features, consider price p′t =

−α+γTxt
2β

where α,β, γ are measurable with respect to history Ht−1 = {p1, d1, . . . , pt−1, dt−1}. Then,

we have
T∑
t=1

E[p∗tDt(p
∗
t )|x1, . . . , xT ]≥

T∑
t=1

E[p′tDt(p
′
t)|x1, . . . , xT ]

Algorithm. We adapt the RPS algorithm to the non-IID setting by introducing two main

modifications: Firstly, we modify the second regression step in the two-stage regression performed

by RPS. Instead of using bt+1 as an estimate for b and regressing ds − bt+1ps against previously

observed feature vectors xs, we use bs as an estimate for b at period s and then use Vovk-Azoury-

Warmuth (VAW) estimator (Azoury and Warmuth 2001) to regress ds− bsps against past xs. This

modification allows us to extend the analysis to an arbitrary sequence of features {xt}Tt=1. Secondly,

the magnitude of the price shock at each period t is increased from t−
1
4 to t−

1
6 . This changes the

balance of exploration and exploitation, putting more emphasis on exploration and allowing the

modified RPS algorithm to learn the parameters more accurately regardless of the distribution of

features. The full description of our modified algorithm is given in Algorithm 3.

We can prove the following upper bound on the regret of the RPS algorithm in the non-IID

setting.

Theorem 4. The regret obtained by the RPS algorithm for the non-IID setting is O(T 2/3).

The proof of Theorem 4, given in Appendix C of E-companion, relies on the properties of

the VAW estimator, a variant of the ridge regression forecaster (Cesa-Bianchi and Lugosi 2006,

Ch 11.8). Our analysis follows the analysis in Cesa-Bianchi and Lugosi (2006), which studies
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Algorithm 3 Random Price Shock (RPS) algorithm for the non-IID setting.

input: parameter bound on b, B = [−b̄,−b]

initialize: choose â1 = 0, b̂1 =−b̄, ĉ1 = 0

for t= 1, . . . , T do

set δt← δ
2
t−

1
6

given xt, set unconstrained greedy price: pug,t←−
ât+ĉ

T
t xt

2b̂t

project greedy price: pg,t←Proj(pug,t, [pt + δt, p̄t− δt])

generate an independent random variable ∆pt← δt w.p. 1
2

and −δt w.p. 1
2

set price pt← pg,t + ∆pt

choose an arbitrary price pt ∈ [p
t
, p̄t]

observe demand dt =Dt(pt)

set b̂t+1←Proj(
∑t
s=1 ∆psds∑t
s=1 ∆p2

s
,B)

set (ât+1, ĉt+1)← arg min
∑t

s=1(ds− b̂t+1ps−α− γTxs)
2

end for

the prediction of sequences in the presence of feature information. In their setup, a sequence

{(y1, g(y1)), (y2, g(y2)), . . .} is observed, where the yns are d-dimensional feature vectors and the

function g determining the outcome variable g(yt) is potentially nonlinear. The goal is to predict

the outcomes g(yn) for each n based on the observations {(yi, g(yi)), i= 1 . . . n− 1}. Cesa-Bianchi

and Lugosi (2006) show that if the VAW estimator is used to predict outcomes, the regret for

the square loss relative to the best offline estimator that can observe the entire sequence can be

shown to be logarithmic in terms of n. They show that this bound is optimal in n. Since our linear

clairvoyant functions as the best offline estimator, we can bound the regret of Algorithm 3 by

expressing it in terms of the square loss regret in Cesa-Bianchi and Lugosi (2006).

Theorem 4 shows that even when the features {xt} are generated from a non-IID distribution, it

is possible to achieve a non trivial, sublinear regret in terms of the length of the selling horizon T as

long as the features and the component f(x) of demand are bounded. Nevertheless, it is not clear

whether this upper bound on the regret is asymptotically optimal as we do not have a matching

lower bound in the order of Ω(T 2/3). Noting that Proposition 2 implies that in the special case that

the features are IID, the expected revenue of the non-IID linear clairvoyant is at least as much as

the expected revenue of the IID linear clairvoyant, we see that Theorem 2 also serves as a lower

bound in this setting. Thus there is a mismatch between our lower bound Ω(
√
T ) from Theorem 2

and upper bound O(T 2/3) from Theorem 4. We leave the problem of determining the asymptotic

optimality of Algorithm 3 to future work. Finally, the constants in our upper bound are given in

our proof of the theorem in Appendix C.
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4. Numerical Results

In this section, we add to the analysis in the previous section with numerical simulations that

empirically gauge the performance of the RPS algorithm. The first set of simulations, presented

in Section 4.1, makes use of synthetic data. These experiments investigate the dependence of the

regret of the RPS algorithm on the length of the selling horizon T for the IID, price ladder and non-

IID settings, and show that the regret growth matches our theoretical guarantees from the previous

section, thus validating our theoretical analysis. The second set of simulations, presented in Section

4.2, is based on higher-dimensional fashion retail data provided by Oracle Retail. These simulation

experiments serve to gauge the performance of the RPS algorithm in a real-world setting. Both sets

of simulations benchmark the RPS algorithm against competing algorithms that do not account

for price endogeneity, and show that the RPS algorithm alone learns the correct parameters of the

demand function over the selling horizon, and thus outperforming competing algorithms in terms

of the revenue earned over the course of the selling horizon.

4.1. Numerical Experiments with Synthetic Data

Each of the simulations in this section is run over a selling horizon of length 5000 periods and

repeated 200 times, and compares the performance of the RPS algorithm with the performance of

the following three algorithms:

• Greedy algorithm: The greedy algorithm (Algorithm 4) operates by estimating the demand

parameters at each time period using linear regression, then setting the price to the optimal price

assuming that the estimated parameters are the true parameters. This algorithm has been shown

to be asymptotically optimal by Qiang and Bayati (2016) in a linear demand model setting with

features, and with the availability of an incumbent price, but in general is known to suffer from

incomplete learning, i.e., insufficient exploration in price Keskin and Zeevi (2014).

• One-stage regression: This algorithm introduces randomized price shocks to force price explo-

ration, but uses a one-stage regression instead of a two-step regression as in RPS to learn the

parameters. A full description of the one-stage regression algorithm (Algorithm 5) is given below.

The one-stage regression algorithm is analogous to the class of semi-myopic algorithms introduced

by Keskin and Zeevi (2014), which use (deterministic) price perturbations to guarantee sufficient

exploration. However, Algorithm 5 does not consider the price endogeneity effect caused by model

misspecification in the estimation process.

• No feature clairvoyant : As a benchmark, the performance of RPS is compared with the per-

formance of a no feature clairvoyant. This clairvoyant knows the values of the parameters a and b

but considers the features x, which will be drawn from a zero-mean distribution, to be part of the

demand noise. Hence this clairvoyant will set prices to be − a
2b

at each time period. Such a pricing
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Algorithm 4 Greedy algorithm.

input: parameter bounds B = [−b̄,−b]

initialize: choose â1 = 0, b̂1 =−b̄, ĉ1 = 0

for t= 1, . . . , T do

given xt, set unconstrained greedy price: pug,t←−
ât+ĉ

T
t xt

2b̂t

if admissible price set is a price ladder then

project greedy price onto price ladder: pg,t←Proj(pug,t, [q1, . . . , qN ])

else

project greedy price onto price interval: pg,t←Proj(pug,t, [pt, p̄t])

end if

set price pt← pg,t

observe demand dt :=Dt(pt)

set (ât+1, b̂t+1, ĉt+1)← arg minα,β∈B,γ
∑T

s=1(ds−α−βps− γTxs)
2

end for

policy would be optimal in the absence of features but would evidently incur regret linear in T

when m> 0. This highlights the importance of considering demand features in dynamic pricing.

IID Setting

The first simulation example considers the case where the features xt are independently dis-

tributed, prices are chosen from continuous price intervals, and the source of endogeneity is a

misspecified demand function. In this set up, demand is given by the quasi-linear function

Dt(p) =
1

2(xt + 1.03)
+ 1− 0.9p+ εt,

where xt is a one-dimensional random variable uniformly distributed between [−1,1] and the noise

εt is normally distributed with mean 0 and standard deviation 0.1. Using the closed-form expression

in Eq (7), it can be seen that the linear demand model approximated by least squares is given by

D̂t(p)≈ 2.05− 0.90p− 1.76xt,

where all coefficients are expressed to 2 decimal places. The price range at period t is lower bounded

by p
t

= $0.69 and upper bounded by p̄t = $9.81. The retailer assumes that a lies in the interval

[1.5, 2.5], b lies in the interval [−1.2, −0.5] and c lies in the interval [−2.2, −1.2].

Results. Fig. 2a shows that in this numerical example, the regret of the greedy algorithm,

the one-stage regression algorithm, and the clairvoyant who ignores features, grow linearly with

t, and in all cases the regrets are higher than that of RPS after around 1000 iterations. Fig. 2b

confirms that the regret of the RPS algorithm is O(
√
T ). Finally, Table 1, which provides summary
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Algorithm 5 One step regression

input: parameter bounds B = [−b̄,−b]

initialize: choose â1 = 0, b̂1 =−b̄, ĉ1 = 0

for t= 1, . . . , T do

given xt, set unconstrained greedy price: pug,t←−
ât+ĉ

T
t xt

2b̂t

if admissible price set is a price ladder then

find i= arg minj∈{1,...,N} |qj − pug,t| and set constrained greedy price: pg,t← qi

generate an independent random variable ∆pt←


qi− qi−1 w.p.

qi+1−qi
2(qi+1−qi−1)t1/3

qi+1− qi w.p.
qi−qi−1

2(qi+1−qi−1)t1/3

0 w.p. 1− t−1/3

else

set δt←

{
δ
2
t−

1
4 if {xt} is IID

δ
2
t−

1
6 otherwise.

project greedy price: pg,t←Proj(pug,t, [pt + δt, p̄t− δt])

generate an independent random variable ∆pt← δt w.p. 1
2

and ∆pt←−δt w.p. 1
2

set price pt← pg,t + ∆pt

choose an arbitrary price pt ∈ [p
t
, p̄t]

end if

observe demand dt :=Dt(pt)

set (ât+1, b̂t+1, ĉt+1)← arg minα,β∈B,γ
∑T

s=1(ds−α−βps− γTxs)
2

end for

statistics of the parameter estimates of all the pricing algorithms except the clairvoyant at the end

of the selling horizon, shows that the RPS algorithm produces close estimates of all the parameters.

However, for the greedy and one step regression algorithms, the parameter estimates are actually

moving away from the least squares true value, and converge to a point on the boundary of the

feature parameter set. This demonstrates that parameter estimates may be significantly biased

when the endogeneity effect caused by model misspecification is not handled properly.

In Appendix B.1 of E-companion, we include additional numerical experiment for sensitivity

analysis. We consider a family of quasi-linear demand functions of the form

Dt(p) =
1

2(xt + γ)
+ 1− 0.9p+ εt,

where γ ranges from 1.02 to 2. As γ decreases and approaches to 1, the function f(xt) = 1/2(xt +

γ) becomes more nonlinear for xt ∈ [−1,1], and the fit of the closest linear approximation of

demand function deteriorates. Since model misspecification worsens as γ approaches 1, we would

expect that the endogeneity effect is more significant for demand models with smaller values of γ.
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The simulation results confirm that the regret gap between the RPS algorithm and the one-stage

regression algorithm increases as γ decreases. Moreover, we find that the RPS algorithm produces

unbiased parameter estimates for all γ, while the estimates from the one-stage regression algorithm

are biased especially when γ is close to 1.

We also analyze how the regret of the RPS algorithm changes with the dimension of the feature

vectors, m. The detailed simulation results are included in Appendix B.2 of E-companion. We find

that the regret of RPS tends to increase with m, and that the growth rate of regret appears to

match Theorem 1’s theoretical bound of O((m+ 1)
√
T ) in terms of m.

Price ladder setting We now consider the same set up as in the IID setting, but replace

the price range [$0.69, $9.81] with a price ladder [$0.50,$0.70,$0.90, . . . ,$9.70,$9.90]. where the

features xt are independently distributed, prices are chosen from continuous price intervals, and

the source of endogeneity is a misspecified demand function.

Results. As in the previous subsection, the regret of the Greedy algorithm, the One Step

Regression algorithm, and the clairvoyant who ignores features, grow linearly with T (Fig. 2c) while

the regret of the RPS algorithm (Algorithm 2) is O(T 2/3) (Fig. 2d). The summary statistics of

the parameter estimates of the competing algorithm (Table 2) again show that the RPS algorithm

produces close estimates of all the parameters, while we once more observe that the greedy and

one-step regression produce biased estimates.

Non IID setting Finally, we consider the case where prices are chosen from continuous price

intervals but the features xt are not independently distributed. In this set up, the demand function

is given by the quasilinear function

Dt(p) =−0.9p+ f(xt) + εt,

with

f(x) =
1

2(x+ 1.1)
+ 1.5.

We assume that xt is one dimensional (i.e. m = 1), xt = −1 + 2√
t

for t = 1, . . . ,5000 (note that

xt ∈ [−1, 1] ∀t) and the noise εt is normally distributed with mean 0 and standard deviation 0.1.

Recall from the definition of the cumulative expected regret in Section 3.5 that in the non-IID

setting, Regret(T ) is expressed relative to a clairvoyant who bases pricing decisions on the realized

sequence of feature vectors, {x1, . . . , xT}. Thus, to estimate Regret(t) for t= 1, . . . ,5000, we define

a separate clairvoyant for each time period t; we calculate the regret by comparing the cumulative

revenue of our pricing policies at time t with the cumulative revenue of a clairvoyant who bases

pricing decisions on {x1, . . . , xt}. Denote the demand model parameters assumed by the clairvoyant

at time t as (a(t), b, c(t)).
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The remaining parameter settings are as follows: At period t, the admissible price range is set

to

[p
t
, p̄t] = [−f(1)

2b
,−f(−1)

2b
] = [$0.97, $3.61].

We assume that the retailer knows that a lies in the interval [mint{a(t)} − 0.5,maxt{a(t)}] =

[1.9, 2.6], b lies in the interval [−1.2, −0.1] and c lies in the interval [mint{c(t)}−0.5,maxt{c(t)}] =

[−7.3, 0.3].

Results Fig. 2e plots the average regret of the RPS algorithm (Algorithm 3), as well as the

competing Greedy and One-step regression algorithms. The regret incurred by the RPS algorithm

is for t > 1000 lower than the regret of the other three algorithms, and its regret is O(T 2/3) as

shown by Fig. 2f. Table 3 shows that the RPS algorithm accurately estimates the parameters

a(5000), b, c(5000) while the Greedy and One Step Regression algorithms do not.

Table 1 End of selling horizon parameter estimates in the IID setting

True value RPS algo. Greedy algo. One step reg.

Mean (âT ) 2.05 2.04 1.50 1.50
Median (âT ) 2.05 2.04 1.50 1.50

Mean (b̂T ) -0.90 -0.91 -0.50 -0.50

Median (b̂T ) -0.90 -0.89 -0.50 -0.50
Mean (ĉT ) -1.76 -1.74 -1.20 -1.20

Median (ĉT ) -1.76 -1.75 -1.20 -1.20

Table 2 End of selling horizon parameter estimates in the price ladder setting

True value RPS algo. Greedy algo. One step reg.

Mean (âT ) 2.05 2.16 1.50 1.50
Median (âT ) 2.05 2.31 1.50 1.50

Mean (b̂T ) -0.90 -1.01 -0.50 -0.50

Median (b̂T ) -0.90 -1.11 -0.50 -0.50
Mean (ĉT ) -1.76 -1.81 -1.20 -1.20

Median (ĉT ) -1.76 -1.88 -1.20 -1.20

f

Table 3 End of selling horizon parameter estimates in the non IID setting

True value RPS algo. Greedy algo. One step reg.

Mean (âT ) -1.38 -1.35 -1.49 -0.87
Median (âT ) -1.38 -1.37 -1.50 -0.88

Mean (b̂T ) -0.90 -0.91 -0.16 -0.40

Median (b̂T ) -0.90 -0.91 -0.16 -0.40
Mean (ĉT ) -6.63 -6.60 -3.95 -4.40

Median (ĉT ) -6.63 -6.66 -3.97 -4.40
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Figure 2 Average regret and scaled regret in IID, price ladder and non IID settings

4.2. Case Study

In collaboration with Oracle Retail, we performed simulation experiments to gauge the performance

of the RPS algorithm in a real-world setting. These experiments were performed on a dataset
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provided by Oracle Retail, consisting of three years’ worth of data on customer transactions and

product feature information at an anonymous chain of brick-and-mortar department stores.

The goal of our experiments was to estimate the revenue that would have been earned by the

retailer if the prices of the items in the dataset had been chosen by the RPS algorithm. This was

a two-stage process: First, we used predictive modeling to build a counterfactual model of weekly

demand based on historical data. The process of building our demand model is described first.

Then, using our predictive model as a “ground truth” model, or a stand-in for the true demand,

we simulated the performance of the RPS algorithm over the selling horizon, allowing it to price

the items in the historical dataset based on their feature information. As in the computational

experiments in Section 4 with synthetic data, we evaluated the performance of the RPS algorithm

by comparing its estimated revenue with the estimated revenues of the greedy and the one-stage

regression algorithms (cf. Algorithms 4 and 5). The details of our experiments, from building our

demand model to running simulations, reported below.

Data Processing. We had access to two main types of datasets:

1. Customer transaction data – This dataset consists of customer transactions from August 2012

to July 2015. Purchased items are in the categories of fashion, furniture and housewares.

Information on the time of each transaction, the location (i.e. the store, district and region)

and the prices and IDs of the items purchased is included.

2. Item feature data – To supplement the transaction data, we had datasets providing information

on each item, such as its class, subclass, and feature information. For fashion items, classes

include categories of products such as shorts, t-shirts and dresses. Examples of product features

include brand, color, pattern, neckline and sleeve length. A total of 51 features were included

in the dataset, though not all features had been filled in - either because they were irrelevant

to the class of items, or because of inconsistencies in data entry by the retailer.

We processed the raw data by first merging the customer transaction data and the item feature

data. Next, we aggregated the sales at the week-district-item grandparent level, where an item

grandparent combines store keeping units (SKUs) of the same design, regardless of color or sizing.

This method of aggregation is valid as for the vast majority of the week-district-item grandparent

groupings, only one price is offered for all SKUs, at all stores and on all days within the group.

Week-district-item grandparent groupings for which more than one price was offered were removed

from the dataset.

We then employed several cleaning steps suggested by our collaborators at Oracle Retail, includ-

ing removing the first 5% and last 5% of sales for each item grandparent-region pair to avoid long

tail ends in sales. We expanded the feature vector with additional information, mainly relating

to seasonality. In our dataset, the level of sales seasonality is very significant. Fig. 3 shows the
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aggregate sales for a selected class of products, normalized from 0 to 1 within each year. Thus we

added to the feature vector a variable recording the month, and indicator variables for holidays

such as Christmas and Black Friday. We also added a variable indicating the number of weeks that

had elapsed since the first sale of the item grandparent within the district. Finally, we converted

our categorical features into binary features using the standard method of one-hot encoding.
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Figure 3 Seasonality of Demand

Demand Model. For any subclass S of products, because products in the same subclass are

similar to each other, we made a simplifying assumption that they have the same price sensitivity

parameter bS. The heterogeneity of product items is modeled using item-specific feature. A single

demand function was thus used to describe the demand for all item grandparent i in subclass S,

at district d and week w:

DS
i,d,w = bSpi,d,w + fS(xi,d,w) + εSi,d,w. (13)

Here, pi,d,w represents the price of item i offered in district d and week w, and feature vector xi,d,w

represents the item-specific features and seasonal information. This function is linear in price and

possibly nonlinear in the features xi,d,w, and is analogous to the single product demand function

we defined in Eq (1).

Estimation and Endogeneity. The dataset contains items belonging to 57 classes and 122

subclasses. Throughout the rest of this section, we focus on four subclasses.

Before we discuss the estimation procedure for the demand model, we introduce the following

metrics to measure the accuracy of the estimated model:

1. Mean Absolute Percentage Error (MAPE), given by (1/n) ·
∑n

i=1 |d̂i− di|/|di|, where d1, . . . , dn

are the true values and d̂1, . . . , d̂n are the predicted values.

2. Median Absolute Percentage Error (MDAPE), which is the median of the set {|d̂i− di|/|di|, i=

1, . . . , n}.
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We began the demand estimation process by estimating the parameter bS in (13) for each subclass

S. Our initial approach was to simply apply ordinary linear regression (OLS) on the historical data.

We used standard variable selection techniques and measured the accuracy of the estimated model

by randomly splitting the dataset into a training set and a testing set in the ratio 70:30. However,

the first column of Table 4 shows that the coefficients of price in the baseline model were estimated

to be either very close to 0, or positive in the case of Subclass 4. These results are unrealistic as

they imply that demand barely depends on price, or increases with price. We note that there are

certain luxury goods (known as Veblen goods) for which demand is usually observed to increase

with price. These luxury goods include jewelry and designer fashion items. However, since the seller

in the dataset is an off-price retailer, it seems that a more likely explanation of the baseline model

price coefficient estimates is price endogeneity caused by unobserved attributes. Namely, prices

were set manually by the retailer based on items attributes such as costs of production to which

we did not have access. Demand could also depend on these unobserved attributes (for example,

demand could depend on quality, which is correlated with the cost of production), causing our

baseline OLS model to obtain biased estimates of price coefficient.
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Figure 4 Markdown pricing: each trajectory represents the price of one item from the category.

We thus attempted to correct for endogeneity by using the two-stage least squares (2SLS)

method. In the absence of the availability of cost-side variables, our choice of instrumental variable

was, for each item grandparent-district-week tuple, the average price of all item grandparents sold

in other districts during the same week. This method of averaging over prices was used in con-

junction with a control-function approach (Phillips et al. 2015, Petrin and Train 2010) to correct
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respectively for endogeneity in data from the auto lending industry, and on households’ choices of

television reception options. By averaging over prices, we expect to also average out unobserved

characteristics, causing the instrumental variable to be uncorrelated with the demand noise. The

average price is also correlated with the price of each item sold in that week (thus meeting the

second criteria of an instrumental variable), since we have observed that markdown pricing causes

the prices of many items sold within the same season to decrease in sync with time (see Fig. 4). The

covariance between our instrumental variable and the price were 0.23,0.14,0.23,0.17 for Subclasses

1–4, confirming this assumption.

Table 4 Price coefficient estimates (95% confidence interval estimates in parentheses)

Subclass OLS estimate 2SLS estimate
1 -0.022

(-0.028, -0.017)
-0.278
(-0.308, -0.248)

2 -0.009
(-0.017, 0.000)

-0.280
(-0.365, -0.195)

3 -0.018
(-0.028, -0.008)

-0.383
(-0.599, -0.166)

4 0.028
(0.020, 0.037)

-0.383
(-0.634, -0.132)

The corrected price coefficient estimates with 2SLS for all four subclasses are given in the second

column of Table 4 along with 95% confidence intervals. Running the Wu-Hausman test gave a

p-value of less than 0.05 for all four subclasses, thus rejecting the hypothesis that there is no

correlation between the price and demand noise, and supporting our claim that price endogeneity

was present in the data for all four subclasses.

Next, we estimated the function fS(·) in Eq (13). Substituting our 2SLS estimates of the demand

elasticity bS from Table 4 into Eq (13), we trained a function fS to predict the remaining component

of demand. We tested several ways to estimate fS(·), including modeling it as a linear function, a

regression tree, and a random forest. Table 5 compares the demand prediction errors (MAPE and

MDAPE) when fS is modeled as a linear function and as a random forest. We found that using

random forest to predict demand with features gave the best prediction errors.

Table 5 Demand prediction errors using different demand models

(MAPE) (MDAPE)
Subclass Linear Random Forest Linear Random Forest

1 61.5% 57.2% 49.3% 41.9%
2 55.0% 46.2% 45.8% 33.8%
3 56.4% 46.3% 47.5% 31.7%
4 68.2% 52.1% 55.5% 38.7%
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Alternative Demand Models. Recall that we made two key assumptions on our demand

model: firstly, within any given subclass, demand for all products share the same price coeffi-

cient; secondly, demand for each item is independent of the prices of other items. To evaluate the

robustness of these assumptions, we also considered the following candidates for demand models:

(M1) Demand for item grandparent i has its own price sensitivity parameter and its own demand

function Di = ai + bipi + εi. This model relaxes the assumption that items in the same subclass

share the same price coefficient, but ignore item-specific features.

(M2) The same demand function describes all item grandparent-district-week tuples within the

same subclass, but each tuple has its own price elasticity: DS
i,d,w = aS + (bSxi,d,w)pi,d,w + cTSxi,d,w +

εi,d,w. This is demand model is analogous to the one studied in Ban and Keskin (2017).

(M3) The demand for each item grandparent-district-week tuple depends on the prices of other

products sold within that week: DS
i,d,w = aSi,d,w + bS1 pi,d,w + bS2 p̄w + cTSxi,d,w + εi,d,w, where p̄w is the

average price of all item grandparent-district tuples sold within the week. This model relaxes the

assumption that demand between different items are independent, but ignores nonlinear effect of

features.

These alternative demand models were evaluated and compared with the baseline model defined

in Eq (13) where the function fS is our random forest estimator. In Table 6, we show the prediction

errors of the baseline model and the three alternatives M1–M3 for products in Subclass 1. The

results indicate that using these alternative models does not significantly reduce prediction errors.

Therefore, we use the baseline model (13) as the counterfactual demand model in our simulations.

Table 6 Test set errors of alternate models on Subclass 1

Baseline M1 M2 M3

MAPE 57.2% 56.2% 55.2% 55.4%
MDAPE 41.9% 50.3% 48.4% 48.6%

Simulation Results After estimating the ground truth demand model, we ran numerical simu-

lations to determine how well the RPS algorithm could learn the model parameters and set prices.

The RPS algorithm and its variants presented in Section 3 cannot be directly applied to this

retail setting, since they assume a single product setting where demand is observed sequentially. In

our fashion retail setting, however, we price all items in a subclass simultaneously at the start of

every week, and observe demand for these items in batches at the end of each week. We therefore

modify the RPS for the batch updating setting. The algorithm statement is given in Algorithm 6.

It assumes that It items are sold in a particular week t, and denotes the price ladder at each week

t by {q1, . . . , qNt}.
In addition to modifying the pricing algorithm, we imposed the following price constraints on

the output of the algorithm:



 Electronic copy available at: https://ssrn.com/abstract=2859672 

Nambiar, Wang and Simchi-Levi: Dynamic Learning and Pricing with Model Misspecification 33

Algorithm 6 Random Price Shock (RPS) algorithm with batch updating.

input: parameter bounds B = [−b̄,−b]

initialize: choose â1 = 0, b̂1 =−b̄, ĉ1 = 0

for t= 1, . . . , T do

for items j = 1, . . . , It do

set i← I1 + . . .+ It−1 + j

set S← S ∪{i}

given xt, set unconstrained greedy price: pug,t←−
ât+ĉ

T
t xt

2b̂t

find lt = arg minl∈{1,...,Nt} |ql− pug,t| and set constrained greedy price: pg,t← qlt

generate an independent random variable ∆pt←


qlt − qlt−1 w.p.

qlt+1−qlt
(qlt+1−qlt−1)t1/3

qlt+1− ql w.p.
qlt−qlt−1

(qlt+1−qlt−1)t1/3

0 w.p. 1− t−1/3

set price pt← pg,t + ∆pt

observe demand dt =Dt(pt)

end for

set b̂t+1←Proj(
∑t
s=1 ∆ptdt∑t
s=1 ∆p2

t
,B)

set (ât+1, ĉt+1) = arg mina′,c′
∑t

s=1(a′+ c′Txs− (ds− b̂sps))2 + ‖
[
a′

c′

]
‖2 + (a′+ c′Txt+1)2

end for

1. Price ladder : All prices chosen by a pricing algorithm had to be rounded to end with 99 cents,

e.g. $3.99, $5.99, $7.99. This constraint was also imposed by the retailer on historical prices

from the dataset.

2. Price bounds: For each item grandparent-district-week tuple, the price charged by a pricing

algorithm was restricted to within 20% of the historical price charged by the retailer. This

had the effect of ensuring that the prices charged were appropriate (e.g. a $100 item could

not be priced at $1), and did not deviate wildly from time period to time period.

We ran the RPS algorithm with batch updating on a week-by-week basis over a 35 week horizon.

During the first two weeks, the algorithm set the price of each item as the sum of the historical

price chosen by the retailer and a random component, until sufficiently many demand observations

had been collected to uniquely determine the parameter cS.

To estimate the counterfactual demand that would have resulted from RPS choosing a particular

price, we first calculated the corresponding expected demand using our random forest model, then

added this expected demand to the prediction error of the random forest model, which we assumed

to be the demand noise.
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We also ran batch updating variants of the greedy and one-stage regression algorithms, which we

subjected to the same pricing constraints as RPS. The pseudocode of these algorithms is omitted

as they are modified from Algorithms 4 and 5 in a similar manner to RPS.

Fig. 5 gives the cumulative revenue, averaged over 100 iterations, of all three algorithms for

each of the four subclasses. For reference, the actual revenues earned by the retailer as well as the

projected revenue of the retailer in our estimated demand model, are also indicated. Note that

we cannot draw a fair comparison between the retailer’s revenue and the revenue of RPS as the

retailer’s pricing scheme was subject to additional constraints that RPS did not take into account.3

Comparing the revenue of RPS with those of the greedy and one-stage regression algorithms,

however, we see that RPS clearly outperforms the other two algorithms. Table 8 lists the summary

statistics over 100 iterations of the cumulative revenue earned by RPS at the end of 35 weeks

relative to those of the greedy and one-stage regression algorithms. The results show that the

average revenue earned by RPS is between 7–20% higher than the average revenue earned by the

greedy algorithm, and between 3–20% higher than the revenue earned by the one-stage regression

algorithm. Further, the 95% confidence intervals in Table 8 shows that RPS outperforms one-stage

regression and the greedy algorithm with high probability.

The difference in revenues comes from the biased parameter estimates produced by the greedy

and one-stage regression algorithms. Looking at Table 7, we see that these two algorithms signif-

icantly underestimate the price sensitivity parameter b, while RPS alone estimates b accurately.

This is consistent with our expectation that price endogeneity is present due to model misspecifi-

cation: all the tested algorithms assume that demand is a linear function in features, while the true

demand function is estimated from random forest, which can be highly nonlinear in features. Thus,

our RPS algorithm successfully learns the demand elasticity even in the presence of endogeneity.

In addition, we suspect that price endogeneity is also caused by the fact that the prices charged by

our algorithms were restricted to within 20% of the historical prices charged by the retailer. These

historical prices, as we have discussed above, are likely to be correlated with demand noise.

Finally, we compare the revenue of RPS to the best possible (clairvoyant) revenue given full

knowledge of the demand function, see Fig. 5 and Table 8. We find that the linear function esti-

mated by the RPS algorithm in fact provides a good approximation for the true nonlinear demand

function, as the revenue earned by RPS is close to the clairvoyant revenue for all four subclasses.

3 In addition to the price ladder constraint, the actual prices set by the retailer satisfy a markdown constraint, which
stipulates that prices must decrease monotonically with time towards the end of the selling horizon. We excluded
markdown constraints in all the algorithms tested, because we were not given information by the retailer on how to
formulate markdown constraints.
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(a) Subclass 1 (b) Subclass 2

(c) Subclass 3 (d) Subclass 4
Figure 5 Average revenue over 100 iterations of different algorithms

Table 7 Estimates of parameter b (with 95% confidence interval)

Subclass True Value RPS Greedy One-stage reg
1 -0.278 -0.279

(-0.306, -0.254)
-0.085
(-0.085, -0.085)

-0.119
(-0.133, -0.107)

2 -0.280 -0.276
(-0.369, -0.179)

-0.100
(-0.100, -0.100)

-0.100
(-0.101, -0.100)

3 -0.383 -0.377
(-0.489, -0.233)

-0.128
(-0.128, -0.128)

-0.122
(-0.136, -0.100)

4 -0.383 -0.375
(-0.461, -0.296)

-0.149
(-0.153, -0.142)

-0.131
(-0.131, -0.131)

5. Conclusion

We have shown that in dynamic pricing with contextual information, model misspecification can

give rise to price endogeneity. We have proposed a “random price shock” (RPS) algorithm, which

employs a combination of randomly generated price shocks and a two-stage regression procedure in

order to produce unbiased estimates of price elasticity. This allows the RPS algorithm to maximize

its revenue despite the presence of endogeneity. Our analysis shows that RPS does indeed exhibit
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Table 8 Comparison of estimated revenues earned by various algorithms (with 95% confidence interval)

Subclass RPS vs Greedy RPS vs One-stage
reg

RPS vs Clairvoy-
ant

1 7.91%
(7.84%, 8.00%)

3.32%
(2.50%, 4.62%)

-0.85%
(-0.92%, -0.78%)

2 6.98%
(3.03%, 8.33%)

6.97%
(2.92%, 8.31%)

-3.53%
(-7.09%, -2.31%)

3 21.23%
(21.23%, 22.27%)

20.30%
(17.62%, 21.32%)

-3.18%
(-4.74%, -2.35%)

4 21.04%
(19.19%, 21.59%)

15.28%
(13.56%, 17.35%)

-1.77%
(-3.26%, -1.31%)

strong numerical and theoretical performance; Our upper bound on the expected regret, O((m+

1)
√
T ), is optimal in T .

We have also shown that the RPS algorithm is versatile and can be adapted to a number of

common business settings, where the feasible price set is a price ladder, and where the contextual

information is not IID. We have introduced simple modifications to the RPS algorithm to adapt it

to these settings and proved corresponding theoretical guarantees; the regret of the modified RPS

algorithm is O(
√

(m+ 1)T 2/3) in the price ladder setting, and O(T 2/3) in the non IID setting.

Finally, we have demonstrated the real-world applicability of our model and algorithm through a

case study in collaboration with Oracle Retail, involving a large fashion retail dataset from a chain

of brick and mortar department stores. This case study shows how our model can be extended

beyond its single product setting, to a setting where multiple products are sold simultaneously

from week to week. Using our historical data, we have performed offline simulations gauging the

performance of RPS in this setting. The results of our simulations are very promising and show that

the RPS algorithm is expected to earn 8-20% more revenue on average than competing algorithms

that do not account for price endogeneity.

We end by noting that in this paper, we are primarily interested in model misspecification,

and have addressed the problem of price endogeneity in dynamic pricing specifically as caused by

model misspecification. A natural question is whether our model and analysis can be generalized

to include other sources of endogeneity potentially faced by a retailer, such as competition and

strategic customers. These are beyond the scope of this paper, and we leave such extensions to

future work.
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Appendix. E-Companion to “Dynamic Learning and Pricing with Model

Misspecification”

A. A Different Regret Definition

In the literature on dynamic pricing with demand learning, it is standard to define regret relative to the

clairvoyant who knows the true demand model. Let us refer to the clairvoyant defined in Section 3.1 as the

“linear clairvoyant,” and define a second clairvoyant, called the “true clairvoyant,” who sets price p̃t =− f(xt)

2b

at each time period. Then we can define a second notion of regret, Regret2(T ), in terms of the true clairvoyant:

Regret2(T ) =

T∑
t=1

E[p̃tD(p̃t)]−
T∑
t=1

E[ptD(pt)].

To see how Regret(T ) compares to Regret2(T ), we can write

Regret2(T ) = Regret(T ) +
T∑
t=1

E[p̃tD(p̃t)]−E[p∗tD(p∗t )] (14)

= Regret(T ) +
T

4|b|
E

(f(xt)−E
[
f(xt)

[
1 xT

t

]](
E

[[
1 xT

t

xt xtx
T
t

]])−1 [
1
xt

])2


≥ T

4|b|
E

(f(xt)−E
[
f(xt)

[
1 xT

t

]](
E

[[
1 xT

t

xt xtx
T
t

]])−1 [
1
xt

])2


using closed form expressions for p̃t and p∗t . This shows that the regret of any admissible pricing policy that

assumes a misspecified demand model, relative to the true clairvoyant, grows linearly in T , and with the

extent of model misspecification as captured by the expectation term in the second line. It reflects the fact

that prices chosen by a seller who assumes a linear demand model may never converge to the optimal price

p̃t, because p̃t could depend nonlinearly on xt. We have also included additional numerical experiment using

Regret2(T ) as the benchmark, see Appendix B.3.

Throughout the rest of this paper, we mainly focus on Regret(T ) rather than Regret2(T ). Regret(T ) is a

more interesting performance metric as (14) shows that Regret2(T ) of any admissible pricing policy affine

in xt is always Θ(T ), implying that it cannot be optimized in terms of T . The term “regret” thus refers to

Regret(T ) in the rest of this paper unless stated otherwise.

B. Additional Numerical Results

In this section we expand on the numerical results in Section 4 by investigating how our results depend

on the parameter settings. Section B.1 shows how the performance of the RPS algorithm depends on the

choice of demand function. Section B.2 looks at its dependence on the dimension of the feature vector m,

complementing our theoretical results on the RPS algorithm’s regret upper bound given in Section 3.

B.1. Dependence of regret on demand function

We now investigate how the results of our simulations depend on the demand function. In the IID setting

studied in Section 4, the quasilinear demand model is of the form

Dt(p) =
1

2(xt + γ)
+ 1− 0.9p+ εt,
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Figure 6 f(x) vs best linear approximation a+ c′x for γ = 1.02,2

where γ = 1.03, while the closest linear approximation is

D̂t(p)≈ 2.05− 0.90p− 1.76xt

As γ increases, the fit of the closest linear approximation of Dt for xt uniformly distributed between [−1,1]

improves, i.e. E[(f(xt)−a−c′xt)2] decreases. Fig. 6 illustrates this by comparing the function f with its best

linear approximation on the interval [−1,1] for two values of γ, γ = 1.02 and 2. Since model misspecification

worsens as γ decreases, we would expect that the endogeneity effect is more significant for demand models

with smaller values of γ.

We ran the RPS and one-stage regression algorithms for γ = 1.02,1.03,1.05,1.1,1.25,1.5,2.0, keeping the

price and parameter bounds the same as in the IID case numerical example with γ = 1.03. Table 9, which gives

the estimates of the parameter b at the end of 5000 time periods averaged over 50 iterations, shows that for

all γ, the RPS algorithm produces unbiased estimates of the parameter b. The one-stage regression algorithm

estimates, on the other hand, are biased for smaller values of γ. As γ increases, the one-stage regression

estimates of b improve. This is consistent with the observation that the endogeneity effect becomes more

significant as γ decreases; the RPS algorithm, which corrects for endogeneity, produces unbiased parameter

estimates for all γ, while the one-stage regression algorithm, which does not correct for endogeneity, only

accurately estimates the parameters when the endogeneity effect becomes insignificant. Fig. 7 plots the

average cumulative regret (over 50 iterations) of the RPS and one-stage regression algorithms at the end

of 5000 time periods for the different values of γ. The RPS algorithm outperforms the one-stage regression

algorithm for γ < 2.0, and the improvement of RPS relative to one-stage generally increases as γ decreases

and the endogeneity effect increases. However, for γ = 2.0, one-stage regression outperforms RPS algorithm;

In the absence of endogeneity, parameters can be estimated more efficiently using a one-stage rather than a

two-stage regression, and RPS loses its competitive edge.

B.2. Dependence of regret on feature vector dimension m

We conducted numerical experiments in an attempt to investigate the dependence of the results on m. For

simplicity, we looked at a number of different settings without any model misspecification, with T = 5000



 Electronic copy available at: https://ssrn.com/abstract=2859672 

Nambiar, Wang and Simchi-Levi: Dynamic Learning and Pricing with Model Misspecification 41

Table 9 Estimates of parameter b in Linear Demand Example

γ = 1.02 1.03 1.05 1.10 1.25 1.05 2.00s

RPS algo. -0.94 -0.90 -0.91 -0.92 -0.90 -0.91 -0.90
One-stage reg. -0.50 -0.50 -0.50 -0.53 -0.66 -0.77 -0.86
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Figure 7 Average regret over 50 iterations of RPS vs one-stage regression algorithms as γ is varied

and m varying from 1 to 1001. Unfortunately, almost none of these settings yielded a clear regret trend, and

showed the regret seesawing with increasing m. One possible explanation is that the asymptotic dependence

of the results on m only becomes detectable for larger values of m, which would be computationally infeasible

to test.

However, for one of the settings tested, a clear regret trend was observed. Below, we report the results

from this numerical experiment. The demand function is given by

Dt(p) = 2− 0.7p+ cTxt + εt.

For each m, the feature vectors xt are drawn IID from the distribution [−1,1]m, and c is a vector of length

m with the first entry set to 0.9 and all other entries set to 0. Note that ‖c‖1 is constant for all m, and thus so

is c̄, on which our regret bound depends (see Eq (21) for the full statement of the IID regret bound in terms

of all parameters). We set cmax to c+ [0.5,0.5, . . . ,0.5] and cmin to c− [0.5,0.5, . . . ,0.5], and let the noise εt

be normally distributed with mean 0 and variance 0.3. The price across all periods t is lower bounded by

$1.75 and upper bounded by $8.25.

Fig. 8 plots the regrets of the RPS algorithm for m = 1,3,5,11,51,101,201,501,1001, averaged over 10

iterations each. We can see that the regret of RPS is increasing with m, and that the growth of the regret

with m appears to be O((m+ 1)T ), in accordance with our regret upper bound. This numerical example

thus supports the idea that the regret of the RPS algorithm does indeed depend on m, and that there is a

gap in terms of m between our lower and upper bounds.

B.3. Regret relative to different clairvoyants

The above numerical experiments benchmark the performance of the RPS algorithm against the linear

clairvoyant, who bases pricing decisions on the closest linear approximation of the true quasilinear demand
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Figure 8 Average regret over 10 iterations of the RPS algorithm as m is increased from 1 to 1001.

model. Here we present additional numerical experiments benchmarking the performance of RPS against

the true clairvoyant, who has full knowledge of the true quasilinear demand model, and sets price p̃t =− f(x)

2b

at each time period. Fig. 9a plots the results of repeating the IID setting experiments from Section 4.1; it

plots the average regret of the RPS algorithm relative to both clairvoyants over 200 iterations and 5000 time

periods. Similarly, Fig. 9b plots the results of repeating the price ladder setting experiments from Section

4.1, and Fig. 9c plots the results of repeating the non IID experiments from Section 4.1.

Fig. 9a confirms the result that the regret of RPS relative to the true clairvoyant grows linearly with T

in the IID setting. On the other hand, Fig. 9b shows that, depending on the function f and the distribution

of the feature vectors, the regret of RPS relative to the true clairvoyant need not grow linearly with T in

the non IID setting. We can also observe from Figures 9a - 9c that the difference in revenue earned by the

true clairvoyant and the revenue earned by the linear clairvoyant can vary considerably depending on the

demand model and parameters; In the IID and price ladder settings, the extent of model misspecification is

extremely large, while in the non IID setting, the linear clairvoyant achieves nearly as much revenue as the

true clairvoyant. One way the retailer could try to improve the fit of her demand model in the first two cases

is by including higher order terms of xt in the feature vector and performing polynomial regression; however

we note that she faces a tradeoff in doing so: The regret bound stated in Theorem 1, shows that the regret

of RPS is O((m+ 1)
√
T ), i.e. including more terms of xt in the feature vector could decrease the regret from

model misspecification, but increase the regret due to parameter estimation errors.

C. Appendix: Proofs for Theoretical Analysis

Notation. The following notations will be used in this section. We define e := (a, cT)T and et := (ât, ĉ
T
t )T.

Let x̃ := (1, xT)T, M := E[x̃x̃T] and Mt := 1
t−1

∑t−1
j=1 x̃jx̃

T
j .

C.1. Proof of Proposition 1

Proof of Proposition 1. Consider price p′t =−α+γTxt
2β

, where α,β, γ are measurable with respect to history

Ht−1. Since p∗t =−a+cTxt
2b

, we have

E [p∗tD(p∗t )− p′tD(p′t) | Ht−1] =E [p∗t (bp
∗
t + f(xt))− p′t(bp′t + f(xt)) | Ht−1]

=E
[
p∗t (bp

∗
t + a+ cTxt)− p′t(bp′t + a+ cTxt)− (p∗t − p′t)(a+ cTxt− f(xt)) | Ht−1

]
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(b) Price ladder IID setting – average regret
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(c) Non IID setting – average regret
Figure 9 Average regret over 200 iterations of RPS algorithm relative to two different clairvoyants in IID and

Price ladder IID settings

=E [p∗t (bp
∗
t − 2bp∗t )− p′t(bp′t− 2bp∗t ) | Ht−1]−E

[
(p∗t − p′t)(a+ cTxt− f(xt)) | Ht−1

]
=− bE

[
(p∗t − p′t)2 | Ht−1

]
−E

[
(p∗t − p′t)(a+ cTxt− f(xt)) | Ht−1

]
.

To finish the proof, we shall prove that E
[
(p∗t − p′t)(a+ cTxt− f(xt)) | Ht−1

]
= 0. By definition, a, c is the

optimal solution of the following least squares problem

min
a′,c′

E
[
(f(xt)− (a′+ c′Txt))

2
]
.

By first order conditions, we have

E
[
a+ cTxt− f(xt)

]
= 0, E

[
xt
(
a+ cTxt− f(xt)

)]
= 0.

Since xt is independent of the history Ht−1, we have

E
[
a+ cTxt− f(xt) | Ht−1

]
= 0, E

[
xt
(
a+ cTxt− f(xt)

)
| Ht−1

]
= 0.
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Therefore,

E
[
(p∗t − p′t)(a+ cTxt− f(xt)) | Ht−1

]
=E

[
(−a+ cTxt

2b
+
α+ γTxt

2β
)(a+ cTxt− f(xt)) | Ht−1

]
=E

[
(− a

2b
+
α

2β
)E
[
(a+ cTxt− f(xt)) | Ht−1

]]
+ E

[
(−c

T

2b
+
γT

2β
)E
[
xt(a+ cTxt− f(xt)) | Ht−1

]]
= 0. �

which implies that E
[
(p∗t − p′t)(a+ cTxt− f(xt)) | Ht−1

]
= 0. Then, applying the law of total expectation,

we prove the theorem.

C.2. Proof of Theorem 1

Proof. Recall that the expected regret over the selling horizon is defined as

Expected Regret(T ) =

T∑
t=1

E[p∗tD(p∗t )]−
T∑
t=1

E[ptD(pt)]. (15)

First, let Q be a positive definite matrix such that M =Q2 (Q must exist since M is positive definite).

Then, let us define the event At as follows:

At =
{
Mt is invertible and ‖QM−1

t Q‖2 ≤ 2
}
.

We can write the regret as

T∑
t=1

E[p∗tDt(p
∗
t )− ptDt(pt)] =

T∑
t=1

E[p∗tDt(p
∗
t )− ptDt(pt)|At] ·P[At] + E[p∗tDt(p

∗
t )− ptDt(pt)|ACt ] ·P[ACt ]

≤
T∑
t=1

E[p∗tDt(p
∗
t )− ptDt(pt)|At] ·P[At] +

(ā+ c̄)2

2b
P[ACt ]

≤
T∑
t=1

E[p∗tDt(p
∗
t )− ptDt(pt)|At] ·P[At]

+
(ā+ c̄)2

b
2(m+ 1) exp

(
− 3λmin(M)(t− 1)

24λmin(M)‖V ‖2 + 8(m+ 1)

)
where the second inequality follows from the definition of p∗t and our assumptions on the boundedness

of the true parameters a, b, c, and the final inequality follows by bounding P(ACt ) by Lemma 2, where V :=

E[(Q−1x̃x̃TQ−1 − I)2]. Since the second addend in the final line is O(e−t), it is left to show that the first

addend is O(
√

1/t).

We decompose it as follows:

T∑
t=1

E[p∗tDt(p
∗
t )− ptDt(pt)|At] ·P[At] =

T∑
t=1

E[p∗tDt(p
∗
t )− pug,tDt(p

u
g,t)|At] ·P[At]

+

T∑
t=1

E[pug,tDt(p
u
g,t)− pg,tDt(pg,t)|At] ·P[At]

+

T∑
t=1

E[pg,tDt(pg,t)− ptDt(pt)|At] ·P[At].
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Since pg,t = Proj(pug,t, [pt + δt, p̄t− δt]) and the optimal price p̃t ∈ [p
t
, p̄t], we have

T∑
t=1

E[pug,tDt(p
u
g,t)− pg,tDt(pg,t)|At] ·P[At]≤

T∑
t=1

b̄δ2
t ·P[At]≤

T∑
t=1

δ2b̄

4

1√
t
≤ b̄δ2

√
T

2
.

In addition, pt = pg,t + ∆pt, where ∆pt is generated independently from pg,t, xt and the history Ht−1 with

variance δ2
t = δ2

4
√
t
. So

T∑
t=1

E[pg,tDt(pg,t)− ptDt(pt)|At] ·P[At] =

T∑
t=1

E[pg,tDt(pg,t)− (pg,t + ∆pt)Dt(pg,t + ∆pt)|At] ·P[At]

=

T∑
t=1

E[∆pt(−2bpg,t− f(xt))− b(∆pt)2|At] ·P[At]

=

T∑
t=1

E[−b(∆pt)2|At] ·P[At]

≤
T∑
t=1

−bδ
2

4

1√
t
≤ b̄δ2

√
T

2
.

To finish the proof, we want to show that E[p∗tDt(p
∗
t )− pug,tDt(p

u
g,t)|At] ·P[At] =O(1/

√
t). In the proof of

Proposition 1, we show that

E[p∗tDt(p
∗
t )− p′tDt(p

′
t)|Ht−1] =−bE[(p∗t − p′t)2|Ht−1].

for any p′t =−α+γTxt
2β

with α,β, γ measurable with respect to the history Ht−1.

Since the event At depends on the history Ht−1 and is independent of xt, this gives

E[p∗tDt(p
∗
t )− pug,tDt(p

u
g,t)|At] ·P[At] =−bE[(p∗t − pug,t)2|At] ·P[At],

where pug,t =− ât+ĉ
T
txt

2b̂t
is the greedy price given the estimates ât, b̂t, ĉt, and p∗t =−a+cTxt

2b
is the optimal price

of the following linear model

Dt(p) = a+ bp+ cTxt + νt, ∀p∈ [p
t
, p̄t],

with νt = f(xt)− a− cTxt + εt.

By the definition of put,g and p∗t , we have

E[(put,g − p∗t )2|At] ·P[At] = E

[(
a+ cTxt

2b
− ât + ĉTt xt

2b̂t

)2

|At

]
·P[At]

≤ 2E

[(
a+ cTxt

2b
− a+ cTxt

2b̂t

)2

|At

]
·P[At] + 2E

[(
a+ cTxt

2b̂t
− ât + ĉTt xt

2b̂t

)2

|At

]
·P[At]

≤ (ā+ c̄)2E

[(
1

b
− 1

b̂t

)2

|At

]
·P[At] +

1

b2
E
[(

(a+ cTxt)− (ât + ĉTt xt)
)2 |At] ·P[At]

where the second line follows from the inequality (x+ y)2 ≤ 2x2 + 2y2, and the third line follows from the

fact that the true parameters a, c satisfy ‖a‖ ≤ ā and ‖c‖1 ≤ c̄, as well as from the fact that b̂t ∈ [−b̄,−b].
Now, for demand parameter b′, let h be the function h(b′) = 1

b′
. The gradient of h, denoted by ∇h, is given

by ∇h(b′) =− 1
b′2

, and we have |∇h(b′)|2 = 1
b′4
≤ 1

b4
. Then by the Mean Value Theorem, we have

E

[(
1

b
− 1

b̂t

)2

|At

]
·P[At]≤

1

b4
E[(b− b̂t)2|At] ·P[At]

≤ 1

b4
E[(b− b̂t)2]. (16)
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By Lemma 1, we immediately have E[(b̂t− b)2] = O(1/
√
t). Now we will bound the error in the estimates of

a and c, namely E[
(
(e− et)Tx̃t

)2 |At]. Note that et is measurable with history Ht−1 and x̃t is independent of

Ht−1, so

E[
(
(e− et)Tx̃t

)2 |At] =E
[
(e− et)TE[x̃tx̃

T
t |At,Ht−1](e− et)

]
=E

[
(e− et)TM(e− et)|At

]
= E

[
‖e− et‖2M |At

]
,

where ‖y‖A :=
√
yTAy for any positive definite matrix A.

By the definition of Algorithm 1, assuming that Mt is invertible, et− e can be written as

et− e= Proj

(
M−1
t

∑t−1
s=1 x̃s(ps(b− b̂t) + εs)

t− 1

)
. (17)

Then we have

E[
(
(e− et)Tx̃t

)2 |] = E[‖et− e‖2M |At] ·P[At]

≤E[‖et− e‖2M |At] ·P[At] + E[4(eTx̃t)
2 + 4(eTt x̃t)

2] ·P[ACt ]

≤E[‖et− e‖2M |At] ·P[At] + 16b̄2p2
maxP[ACt ]

≤E[‖et− e‖2M |At] ·P[At] (18)

+ 16b̄2p2
max · 2(m+ 1) exp

(
− 3λmin(M)(t− 1)

24λmin(M)‖V ‖2 + 8(m+ 1)

)
. (19)

The third line follows from the assumption that the true parameter e ∈ E. In the last step, we bound

P(ACt ) by Lemma 2, where V := E[(Q−1x̃x̃TQ−1 − I)2]. Since Eq (19) is O(e−t), it is left to show that Eq

(18) is O(
√

1/t).

We write Eq (18) as

E[‖et− e‖2M |At] ·P[At]≤E

[
‖QM−1

t QQ−1

∑t−1
s=1 x̃s(ps(b− b̂t) + νs)

t− 1
‖2 |At

]
P[At]

≤E

[
‖QM−1

t Q‖22 · ‖Q−1‖22 · ‖
∑t−1

s=1 x̃s(ps(b− b̂t) + νs)

t− 1
‖2 |At

]
P[At]

≤E

[
4 · 1

λmin(M)
· 2

(
‖
∑t−1

s=1 x̃sps(b− b̂t)
t− 1

‖2 + ‖
∑t−1

s=1 x̃sνs
t− 1

‖2
)
|At

]
P[At]

≤E

[
8

λmin(M)

(
‖
∑t−1

s=1 x̃sps(b− b̂t)
t− 1

‖2 + ‖
∑t−1

s=1 x̃sνs
t− 1

‖2
)]

≤E

[
8

λmin(M)

(
(m+ 1)p2

max(b− b̂t)2 + ‖
∑t−1

s=1 x̃sνs
t− 1

‖2
)]

=
8

λmin(M)

(
(m+ 1)p2

maxE[(b− b̂t)2] +
1

(t− 1)2
E[‖

t−1∑
s=1

x̃sνs‖2]

)
. (20)

The first inequality holds by Eq (17) and the assumption that the true parameter e∈E. The second inequality

holds from the submultiplicative property of the spectral norm. By the definition of Q, we have ‖Q−1‖2 =

1/
√
λmin(M). The third inequality uses the definition of event At and the fact ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2.

The fourth inequality simply uses the definition of conditional expectation. The fifth inequality uses the

assumptions that ‖xt‖∞ ≤ 1 and pj ≤ pmax.
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It has already been established using Lemma 1 that E[(b− b̂t)2] is O(1/
√
t), so the first term of Eq (20)

is O(1/
√
t). For the second term, note that (x̃s, νs) is independent of (x̃s′ , νs′) for s 6= s′. Furthermore, by

the first order condition of the least squares estimator, we have E[νt] = 0 and E[xtνt] = 0. So for each s,

E[x̃sνs | Hs−1] = E[x̃sνs] = 0. Thus,

1

(t− 1)2
E[‖

t−1∑
s=1

x̃sνs‖2] =
1

(t− 1)2

t−1∑
s=1

E[‖x̃sνs‖2]

=
1

(t− 1)2

t−1∑
s=1

E[‖x̃s(f(xt)− a− cTxt + εt)‖2]

≤ (m+ 1)

t− 1
3(f̄2 + 4b̄2p2

max +σ2),

where the last step uses the fact that (x+ y + z)2 ≤ 3(x2 + y2 + z2) and ‖x̃s‖2 ≤m+ 1. Therefore, by Eq

(20), E[‖e− et‖2M ]≤O(1/
√
t) +O((m+ 1)/t) =O(1/

√
t) as desired.

Dependence on m,b, b̄ and other parameters By combining constant factors, the expected regret of

RPS algorithm over N periods can be bounded by

O

(
b̄2(p2

max + 1)

b4
(f̄2 +σ2 + b̄2p2

max)

δ2
(1 + p2

max

m+ 1

λmin(M)
)
√
T

)
+O((m+ 1) logT ), (21)

where the pre-factor in the first big O notation only contains an absolute constant. �

C.3. Proof of Theorem 2

Proof. We will prove that the lower bound of regret is Ω(
√
T ) even if the model is correctly specified.

Suppose there is no model misspecification, i.e. the demand function is given by

Dt(p) = a+ bp+ cTxt + εt.

We assume feature vector xt is i.i.d. and sampled uniformly from [−1/2,1/2]m, and demand noise εt is

i.i.d. normal with variance 1. By the first order condition, the optimal price that any non-anticipating pricing

policy can charge at period t is p∗t = (a+ cTxt)/(−2b).

By Lemma 3, we can assume without loss of generality that the seller uses a linear pricing strategy π

at period t given by pt = St + (Ut)
Txt, where St and Ut are measurable with respect to the history Ht−1 =

σ(x1, ε1, . . . , xt−1, εt−1). Denote the regret incurred by the seller at the end of T periods as Regret(T ). By

Proposition 1, we have

Regret(T ) =−bE[(pt− p∗t )2]

=−bE[(St + (Ut)
Txt−S∗− (U∗)Txt)

2]

=−b

{
E[(St−S∗)2] +

m∑
k=1

E[(Ut,kxt,k−U∗kxt,k)2]

}

=−b

{
E[(St−S∗)2] +

1

12

m∑
k=1

E[(Ut,k−U∗k )2]

}
, (22)

where S∗ =−a/(2b), U∗ =−c/(2b), the third line follows since E[xt] = 0 and xt = (xt,1, . . . , xt,m) has inde-

pendent entries for our particular choice of xt, and the last line is because each entry of xt has variance

1
12

.
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Now we use the Van Trees inequality (Gill and Levit 1995), a Bayesian version of the Crámer-Rao inequal-

ity, to lower bound the regret of any admissible policy. The proof below is a generalization of the proof

of Theorem 1 in Keskin and Zeevi (2014). Suppose the parameters θ = (a, b, c) belong to compact sets

Θ = A×B × C, where A = [−ā, ā], B = [−b̄,−b], C = {c′ ∈ Rm :
∑m

k=1 |c′k| ≤ c̄}. We can construct a prior

distribution on Θ with density function λ which is positive on the interior and 0 on the boundary of Θ. We

finish the proof by showing for any pricing policy that

Eλ [Regretθ(T )] = Ω(
√
T ),

where Regretθ(T ) is the regret associated with a particular (unknown) parameter θ, and Eλ[·] is the expec-

tation operator on parameter θ under distribution λ. The above result immediately implies that there exists

some parameter θ with regret Ω(
√
T ) for any pricing policy, namely

max
θ∈Θ
{Regretθ(T )} ≥Eλ [Regretθ(T )] = Ω(

√
T ).

Let ft(Ht | θ) be the joint probability density function of history Ht = (x1, p1,D1, · · · , xt, pt,Dt) under

parameter θ and a particular pricing policy ps = π(Hs−1, xs). By our assumption that xt is uniform and εt

is normal, we have

ft(Ht | θ) = Πt
j=1φ(Dj − a− bpj − cTxj),

where φ is the density function of the standard normal distribution. The Fisher information matrix of θ

given history Ht is

It(θ) = Eθ

[
∇θ log ft(Ht | θ) · (∇θ log ft(Ht | θ))T

]
= Eθ

 t∑
j=1

 1 xT
j pj

xj xjx
T
j pjx

T
j

pj pjxj p2
j

 . (23)

Define function g(θ) = [a/(2b),1, c/(2b)]T and function S(θ) = −a/(2b) = S∗. Applying the multivariate

Van Trees inequality to St, which is an estimate of S(θ) based on history Ht−1, gives

Eλ[Eθ[(St−S(θ))2]]≥ Eλ[g(θ)T∇S(θ)]2

Eλ[g(θ)TIt−1(θ)g(θ)] + Ĩ(λ)
, (24)

where Ĩ(λ) is the Fisher information of θ given prior λ. We have

g(θ)T · (∇S(θ)) =
[ a

2b
, 1,

c

2b

]T
·
[
− 1

2b
,
a

2b2
, 0

]
=

a

4b2
.

By Eq (23) and p∗j =−(a+ cTxj)/(2b), one can show that

g(θ)TIt−1(θ)g(θ) = Eθ

[
t−1∑
j=1

(pj − p∗j )2

]
≤Eθ

[
T∑
j=1

(pj − p∗j )2 = Regretθ(T )

]
.

Substituting the equations above into Eq (24), we get

Eλ[Eθ[(St−S(θ))2]]≥
(
Eλ[ a

4b2
]
)2

Eλ[Regretθ(T )] + Ĩ(λ)
. (25)

Similarly, for each k= 1, . . . ,m, by letting Uk(θ) =U∗k =−ck/(2b) and applying Van Trees inequality, we get

Eλ[Eθ[(Ut,k−Uk(θ))2]]≥
(Eλ[ ck

4b2
])2

Eλ[Regretθ(T )] + Ĩ(λ)
. (26)

Combining (22), (25), (26), and summing over t= 1, . . . , T , we have

Eλ [Regretθ(T )]≥
T∑
t=1

b

{(
Eλ[ a

4b2
]
)2

+ 1
12

∑m

k=1 Eλ[ ck
4b2

])2

Eλ[Regretθ(T )] + Ĩ(λ)

}
=

Ω(mT )

Eλ[Regretθ(T )] + Ĩ(λ)
.

Note that Ĩ(λ) is a constant independent of T . Consequently, we have

Eλ[Regretθ(T )]≥
√

Ω(T )− Ĩ(λ)

2
= Ω(

√
T ). �
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C.4. Proof of Theorem 3.

Proof. In the following, let p∗t,u :=−a+c′xt
2b

. We can decompose the regret into the loss due to imperfect

knowledge of the true demand model, and the loss due to price experimentation, namely

Regret(T ) =

T∑
t=1

E[p∗tDt(p
∗
t )]−E[ptDt(pt)]

=

T∑
t=1

E[p∗tDt(p
∗
t )]−E[pg,tDt(pg,t)] + E[pg,tDt(pg,t)]−E[ptDt(pt)].

The loss from price experimentation is upper bounded by

T∑
t=1

E[pg,tDt(pg,t)]−E[ptDt(pt)] =−b
T∑
t=1

E[∆p2
t ]

=−b
T∑
t=1

E[(qit − qit−1)(qit+1− qit)t−1/3]

≤ 3b̄δ̄2T 2/3.

where the last line uses the assumption that qi− qi−1 ≤ δ̄ for i= 1, . . . ,N − 1.

The loss from parameter estimation is upper bounded by

T∑
t=1

E[p∗tDt(p
∗
t )]−E[pg,tDt(pg,t)] = E[(p∗t,u− (p∗t − p∗t,u)Dt(p

∗
t,u− (p∗t − p∗t,u)]−E[pg,tDt(pg,t)] (27)

≤KE[|p∗t,u− p∗t + p∗t,u− pt,g|] (28)

≤K(E[|p∗t,u− p∗t |] + E[|p∗t,u− pt,g|])

≤ 2KE[|p∗t,u− pt,g|].

The first line, (27), follows from the fact that

E[p∗tDt(p
∗
t )] = E[(p∗t,u + (p∗t − p∗t,u)Dt(p

∗
t,u + (p∗t − p∗t,u)] = E[(p∗t,u− (p∗t − p∗t,u)Dt(p

∗
t,u− (p∗t − p∗t,u)],

by the symmetry of the function p 7→E[pDt(p)] around its maximizer p= p∗t,u. The second line, (28), follows

from the mean value theorem since E[pDt(p)] is a differentiable function of p. By the mean value theorem,

we have, for any p1, p2 ∈ {q1, . . . , qN}, that

|E[p1Dt(p1)]−E[p2Dt(p2)]| ≤ max
p∈{q1,...,qM}

|dpD(p)

dp
| ≤ 2|b|pmax + f̄ ,

thus (28) follows by setting K = 2|b|pmax + f̄ . Finally, the third line follows from the triangle inequality, and

the last line follows from the fact that |p∗t,u− p∗t | ≤ |p∗t,u− pt,g| since p∗t = arg minq∈{q1,...,qN} |p∗t,u− q|.
It remains to bound E[|p∗t,u − pt,g|]. Since E[|p∗t,u − pt,g|]≤

√
E[|p∗t,u− pt,g|2], we can then bound E[|p∗t,u −

pt,g|2] using the same argument made in the proof of Theorem 1, giving an upper bound of

8

λmin(M)
(m+ 1)p2

maxE[(b− b̂t)2] +O(
m+ 1

t− 1
).

Lemma 1 can be applied to bound the term E[(b− b̂t)2]. Then, using the identity
√
x+ y+ z ≤

√
x+
√
y+
√
z

for x, y, z ≥ 0, we can bound E[|p∗t,u− pt,g|] with

4
√

2 · pmax(f̄ +σ+ b̄pmax)

δ
√
λmin(M)

·
√
m+ 1

t1/3
+O(

√
m+ 1

t− 1
)
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Dependence on m,b, b̄ and other parameters By combining constant factors, the expected regret of

the RPS algorithm over T periods can be bounded by

O

((
|b|pmax + f̄

) pmax(f̄ +σ+ b̄pmax)

δ
√
λmin(M)

√
m+ 1T 2/3

)
+O

(√
(m+ 1)T

)
,

where the pre-factor in the first big O notation only contains an absolute constant. �

C.5. Proof of Proposition 2

Proof. Consider the optimization problem

max
α,β,γ

T∑
t=1

E[p∗tDt(p
∗
t )|{x1, . . . , xT}] = max

α,β,γ

T∑
t=1

(−α+ γTxt
2β

)(b(−α+ γTxt
2β

) + f(xt)).

It is easy to see that for any optimal solution (α∗, β∗, γ∗), (α∗ b
β∗
, b, γ∗ b

β∗
) is another optimal solution. Thus,

setting β = b, we have the equivalent optimization problem

max
α,γ

T∑
t=1

(α+ γTxt)(2f(xt)− (α+ γTxt)).

Finally, note that

arg max
α,γ

T∑
t=1

(α+ γTxt)(2f(xt)− (α+ γTxt)) =−arg min
α,γ

T∑
t=1

(f(xt)− (α+ γTxt))
2,

which proves Proposition 2. �

C.6. Proof of Theorem 4.

Proof. We decompose the regret as

Regret(T ) =

T∑
t=1

E[p∗tD(p∗t )]−E[ptD(pt)]

=

T∑
t=1

E[p∗tD(p∗t )]−E[pug,tD(pug,t)]

+ E[pug,tD(pug,t)]−E[pg,tD(pg,t)] + E[pg,tD(pg,t)]−E[ptD(pt)].

Following the proof of the regret bound in the IID setting, the quantity in the final line is upper bounded by

2

T∑
t=1

b̄δ2
t = 2

T∑
t=1

b̄δ2

4

1

t1/3
≤ 3

2
b̄δ2T 2/3.

To bound the difference between the oracle’s revenue and the revenue earned by the greedy prices, we let

yt =Dt− bpt = f(xt) + εt. Let y′t =Dt− b̂tpt. Let et = (at, ct) and let ex = (ax, cx) denote the parameters of

the clairvoyant’s demand model conditional on the realization {x1, . . . , xT}. Let Ex denote the expectation

conditional on a realization {x1, . . . , xT}, namely

Ex[·] = E[·|xt for t= 1 . . . T ].

By rewriting the demands and prices in terms of yt and y′t we have
T∑
t=1

E[p∗tD(p∗t )]−E[pug,tDi(p
u
g,t)] =

1

4|b|

T∑
t=1

E[Ex[(e
T
t x̃t− y′t)2− (eTxx̃t− y′t)2]] (29)

+
1

|b|
E[Ex[(p

u
t,g)

2(b2− b̂2t )]]. (30)

+
1

2|b|
E[Ex[(y

′
t− yt)(eTt x̃t− eTxx̃t)]] (31)

+
1

|b|
E[Ex[ytp

u
t,g(b̂t− b)]]. (32)



 Electronic copy available at: https://ssrn.com/abstract=2859672 

Nambiar, Wang and Simchi-Levi: Dynamic Learning and Pricing with Model Misspecification 51

First, we will bound (29). Define Mt = Im+1 +
∑t

s=1 x̃sx̃
T
s . The closed form expression for the estimator et

at period t is (Mt)
−1(
∑t−1

s=1 ysx̃s). Expanding the expressions for et in (29), we see that most of the terms in

the expansion are telescoping, giving
T∑
t=1

Ex[(e
T
t x̃t− y′t)2− (eTxx̃t− y′t)2] =

T∑
t=1

Ex[(y
′
t)

2x̃T
tM

−1
t x̃t] (33)

+ Ex[‖ex− e1‖2− (ex− eT+1)TMT (ex− eT+1)] (34)

+ Ex[(e
T
1 x̃1)2 + (eTxx̃T+1)2] (35)

−
T∑
t=1

Ex[(e
T
t+1x̃t+1)2x̃T

t+1M
−1
t x̃t+1− (eTT+1x̃T+1)2− (eTxx̃1)2].

Since e1 = (I + x̃1x̃
T
1)−1 · 0 = 0, ‖ex − e1‖2 = ‖ex‖2. Then since Mt is positive semi-definite for all t, (34) is

upper bounded by ‖ex‖2 ≤ ā2 + c̄2. Since e1 = 0 and xT+1 can be set to 0, (35) is 0. The final line is upper

bounded by 0.

Finally, to bound Eq (33), we can write
T∑
t=1

Ex[(y
′
t)

2x̃T
tM

−1
t x̃t] =

T∑
t=1

Ex[(f(xt) + εt + (b− b̂t)pt)2x̃T
tM

−1
t x̃t]

≤
T∑
t=1

(2σ2 + 2f̄2 + 4b̄2p2
max)x̃T

tM
−1
t x̃t.

The second line follows from the fact that εt is independent of the other terms and that it is mean 0 and

variance σ2. We also use the boundedness of f , b̂t and pt. Finally, using the identity

xT(Σ +xxT)−1x=
det(Σ)

det(Σ +xxT)

for any matrix Σ, we have

(2σ2 + 2f̄2 + 4b̄2p2
max)

T∑
t=1

x̃T
tM

−1
t x̃t ≤ (2σ2 + 2f̄2 + 4b̄2p2

max)

T∑
t=1

1− det(Mt−1)

det(Mt)

≤ (2σ2 + 2f̄2 + 4b̄2p2
max)

m+1∑
k=1

log(1 +λk),

where the λjs are the eigenvalues of
∑T

t=1 x̃tx̃
T
t . The sum of the λjs is at most T ·maxt ‖x̃t‖2, which in turn

is at most
√
m+ 1T . Thus the last line is O((m+1) · log(T (m+1))). Then (29) does not dominate the regret

bound.

Now we will bound Eq (30). Using the definition pug,t =− eTt x̃t

2bt
and the fact that |bt| ≥ b gives

Ex[(p
u
t,g)

2(b2− b̂2t )]≤
1

2b
Ex[(e

T
t x̃t)

2(b2− b̂2t )]

≤ 1

b
Ex[((e

T
t x̃t− eTx x̃t)2 + (eTx x̃t)

2)(b2− b̂2t )]

≤ 1

b
((2b̄2)Ex[(e

T
t x̃t− eTx x̃t)2] + (ā+ c̄)2Ex[b

2− b̂2t ]). (36)

The second line follows from the identity (x+ y)2 ≤ 2x2 + 2y2. The third line follows from the fact that

b2 + b̂2t ≤ 2b̄2 due to the assumptions on b and the projection step in the algorithm, as well as from the

assumptions on ex. Now, to bound Ex[(e
T
t x̃t− eTx x̃t)2] in Eq (36), note that we have

T∑
t=1

Ex[(e
T
t x̃t− eTx x̃t)2] =

T∑
t=1

Ex[(e
T
x x̃t− yt)2− (eTt x̃t− yt)2]. (37)
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This is because
T∑
t=1

Ex[(e
T
t x̃t− yt)2− (eTx x̃t− yt)2] =

T∑
t=1

Ex[(e
T
t x̃t− eTx x̃t)2] + Ex[(e

T
x x̃t− yt)x̃Tt (et− ex)]

=

T∑
t=1

Ex[(e
T
t x̃t− eTx x̃t)2] + Ex[(e

T
x x̃t− yt)x̃Tt (et− ex)]

=

T∑
t=1

Ex[(e
T
t x̃t− eTx x̃t)2],

where the second line follows from the fact that yt = f(xt) + εt and Ex[εt] = 0, εt independent of xt, ex, et,

and the final line follows from the first order conditions of the minimization problem Eq (10), as given by

Eq (11). Eq (37) thus implies that
∑T

t=1 Ex[(e
T
t x̃t− eTx x̃t)2] is O((m+ 1) log(T (m+ 1)).

To bound Ex[b
2− b̂2t ]) in Eq (36), we can write

Ex[b
2− b̂2t ] = Ex[(b− b̂t)(b+ b̂t)])

≤ 2b̄Ex[|b− b̂t|]

≤ 2b̄

√
E[(b̂t− b)2]

≤ 8b̄

√
f̄2 +σ2 + b̄2p2

max

δ

1

t1/3
,

where the second line follows from our assumed bounds on b and the projection step in the algorithm, the

third line follows from Jensen’s inequality since the function x 7→ x2 is convex, and the final line follows from

Lemma 1. Then,
∑T

t=1 Ex([b
2 − b̂2t ])≤ 32

3
b̄

√
f̄2+σ2+b̄2p2max

δ
T 2/3, which dominates the O((m+ 1 log(T (m+ 1))

term
∑T

t=1 Ex[(e
T
t x̃t− eTx x̃t)2], and implies that Eq (30) is O(T 2/3).

Similar ideas can be used to bound Eq (31) and (32). For Eq (31), using the identity y′t− yt = (b− b̂t)pt,
we have

T∑
t=1

Ex[(y
′
t− yt)(eTt x̃t− eTx x̃t)]≤ 2b̄pmax

T∑
t=1

Ex[|eTt x̃t− eTx x̃t|]

≤ 2b̄pmax

T∑
t=1

√
Ex[(eTt x̃t− eTx x̃t)2]

≤ 2b̄pmax

√
T

√√√√ T∑
t=1

Ex[(eTt x̃t− eTx x̃t)2].

The first line follows from our assumption on b, and that b̂ and pt are projections onto bounded sets. The

second line follows from using Jensen’s inequality again, and the final step follows from the Cauchy-Schwarz

theorem. Then, applying Eq (37) again, we see that Eq (31) is O(
√

(m+ 1)T log(T (m+ 1))).

Finally, each term of Eq (32) can be written as

Ex[ytp
u
t,g(b̂t− b)] = Ex[f(xt)p

u
t,g(b̂t− b)]

≤ f̄

2b
Ex[(e

T
t x̃t)(b̂t− b)]

=
f̄

2b
Ex[(e

T
t x̃t− eT x̃t)(b̂t− b) + (eT x̃t)(b̂t− b)]

≤ f̄

2b
(2b̄E[|eTt x̃t− eT x̃t|] + (ā+ c̄)Ex[|b̂t− b|]).
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The second line follows from the definition of yt and the fact that E[εt] = 0 and εt is independent from put,g

and b̂t. The final line follows from our assumption on b, and that b̂ and pt are projections onto bounded sets.

We have already shown that
∑T

t=1 E[|eTt x̃t − eT x̃t|] is O((m+ 1 log(T (m+ 1)), and that
∑T

t=1 Ex[|b̂t − b|] is

O(T 2/3). Then Eq (32) is O(T 2/3), which implies that the RPS algorithm is O(T 2/3) as well, thus concluding

the proof.

Dependence on m, ā, b̄, c̄ and other parameters By combining constant factors, the expected regret

of the RPS algorithm over T periods can be bounded by

O

(
b̄δ2 +

(ā+ c̄)2

b

√
f̄2 +σ2 + b̄2p2

max

δ

(
(ā+ c̄)b̄+

1

b

)
T 2/3

)
+O

(√
(m+ 1)T log(T (m+ 1)) + (m+ 1) log(T (m+ 1))

)
where the pre-factor in the first big O notation only contains an absolute constant. �

C.7. Lemmas

Lemma 1 (Bound on b̂t). E[(b̂t− b)2] can be bounded as follows:

• When Algorithm 1 is applied to the IID setting, for t≥ 4, we have

E[(b̂t− b)2]≤ 12 · f̄
2 +σ2 + b̄2p2

max

δ2
· 1√

t
.

• When Algorithm 2 is applied to the price ladder setting, for t≥ 2, we have

E[(b̂t− b)2]≤ 4 · f̄
2 +σ2 + b̄2p2

max

δ2 · 1

t2/3
.

• When Algorithm 3 is applied to the non IID setting, for t≥ 4 we have

E[(b̂t− b)2]≤ 12 · f̄
2 +σ2 + b̄2p2

max

δ2
· 1

t2/3
.

Proof. Define the constant α1 such that

α1 =


1
4

in the IID setting,
1
6

in the price ladder setting,
1
6

in the non IID setting.

We will first consider the IID and non IID settings, where prices are drawn from continuous price

intervals at each time period. Using the definitions of bt in Algorithms 1 and 3, b̂t = Proj(b̂ut ,B), where

b̂ut =
∑t−1
s=1 ∆psDs∑t−1
s=1 ∆p2s

. Since the true parameter b∈B, we have

E[(b̂t− b)2]≤E[(b̂ut − b)2]

= E

(∑t−1
s=1 ∆psDs∑t−1
s=1 ∆p2

s

− b

)2


= E

(∑t−1
s=1 ∆ps(f(xs) + εs + bpg,s + b∆ps)∑t−1

s=1 ∆p2
s

− b

)2


= E

(∑t−1
s=1 ∆ps(f(xs) + εs + bpg,s)∑t−1

s=1 ∆p2
s

)2


= E

(∑t−1
s=1 ∆ps(f(xs) + εs + bpg,s)∑t−1

s=1
δ2

4
s−2α1

)2
 .
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In the last equality, we used the fact that ∆p2
s = δ2

4
s−2α1 .

Note that ∆ps’s for all s are mutually independent, independent of xs, and have mean 0, so

E

(∑t−1
s=1 ∆ps(f(xt) + εs + bpg,s)∑t−1

s=1
δ2

4
s−2α1

)2
= E

[∑t−1
s=1 ∆p2

s(f(xs) + εs + bpg,s)
2

(
∑t−1

s=1
δ2

4
s−2α1)2

]

≤E

[∑t−1
s=1 3∆p2

s(f(xs)
2 + ε2t + b2p2

g,j)

(
∑t−1

s=1
δ2

4
s−2α1)2

]

≤ 12 · f̄
2 +σ2 + b̄2p2

max

δ2
· 1∑t−1

s=1 s
−2α1

(38)

We used the fact that (x+y+z)2 ≤ 3(x2 +y2 +z2). In the last step, we used the definition that ∆p2
s = δ2

4
s−2α1

and the assumption that f(xs), b, pg,s are bounded.

Now consider the price ladder setting. Using the definitions of bt in Algorithm 2, b̂t = Proj(b̂ut ,B), where

b̂ut =
∑t−1
s=1 ∆psDs∑t−1

s=1(qis−qis−1
)(qis+1

−qis )s−2α1
. Since the true parameter b∈B, we have

E[(b̂t− b)2]≤E[(b̂ut − b)2]

= E

( ∑t−1
s=1 ∆psDs∑t−1

s=1(qis − qis−1
)(qis+1

− qis)s−2α1

− b

)2


= E

(∑t−1
s=1 ∆ps(f(xs) + εs + bpg,s + b∆ps)∑t−1
s=1(qis − qis−1

)(qis+1
− qis)s−2α1

− b

)2


= E

( ∑t−1
s=1 ∆ps(f(xs) + εs + bpg,s)∑t−1

s=1(qis − qis−1
)(qis+1

− qis)s−2α1

)2


The last line follows from the fact that E[∆p2
s |pg,t = qis ] = (qis − qis−1

)(qis+1
− qis)s−2α1 .

As before, ∆ps’s for all s are mutually independent, independent of xs, and have mean 0, so

E

( ∑t−1
s=1 ∆ps(f(xt) + εs + bpg,s)∑t−1

s=1(qis − qis−1
)(qis+1

− qis)s−2α1

)2
= E

[ ∑t−1
s=1 ∆p2

s(f(xs) + εs + bpg,s)
2

(
∑t−1

s=1(qis − qis−1
)(qis+1

− qis)s−2α1)2

]

≤E

[ ∑t−1
s=1 3∆p2

s(f(xs)
2 + ε2t + b2p2

g,j)

(
∑t−1

s=1(qis − qis−1
)(qis+1

− qis)s−2α1)2

]

≤ 3 ·E

[
f̄2 +σ2 + b̄2p2

max∑t−1
s=1(qis − qis−1

)(qis+1
− qis)s−2α1

]

≤ 3 · f̄
2 +σ2 + b̄2p2

max

δ2 · 1∑t−1
s=1 s

−2α1

. (39)

We used the fact that (x + y + z)2 ≤ 3(x2 + y2 + z2). The second to last step uses the definition that

E[∆p2
s |pg,t = qis ] = (qis−qis−1

)(qis+1
−qis)s−2α1 , and the assumption that f(xs), b, pg,s are bounded. The last

step uses the assumption that qi− qi−1 ≥ δ for i= 1, . . . ,N + 1.

Now for the IID, non IID and price ladder settings,

t−1∑
s=1

s−2α1 ≥
∫ t

y=1

y−2α1dy=
1

1− 2α1

(t1−2α1 − 1),
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and we have for t≥ 4 that

1∑t−1
s=1 s

−2α1

≤ 2(1− 2α1)t2α1−1. (40)

Substituting (40) into (38) and (39) respectively, we prove the lemma in the IID, price ladder and non IID

settings. �

Lemma 2 (Bound on ‖QM−1
t Q‖2). Let M = E[x̃x̃T], V = E[(Q−1x̃x̃TQ−1 − I)2] and Mt =

1
t−1

∑t−1
s=1 x̃sx̃

T
s . For any t≥ 2, Mt is invertible and ‖QM−1

t Q‖2 ≤ 2 with probability at least

1− 2(m+ 1) exp

(
− 3λmin(M)(t− 1)

24λmin(M)‖V ‖2 + 8(m+ 1)

)
.

Proof. For any s = 1, . . . , t − 1, we have E[I − Q−1x̃sx̃
T
sQ
−1] = 0, where I is the identity matrix. In

addition, for an arbitrary matrix A, it holds that ‖A‖2 ≤ ‖A‖F , so by ‖x̃s‖∞ ≤ 1, we have

λmax(I −Q−1x̃sx̃
T
sQ
−1)≤‖I −Q−1x̃sx̃

T
sQ
−1‖2

≤‖Q−1‖2‖M − x̃sx̃T
s‖2‖Q−1‖2

≤‖Q−1‖2‖M − x̃sx̃T
s‖F‖Q−1‖2

≤ 1√
λmin(M)

· 2(m+ 1) · 1√
λmin(M)

=
2(m+ 1)

λmin(M)
.

Note that we used the submultiplicative property of the spectral norm. Since {x̃s} are independent and

identically distributed, we apply the matrix Bernstein bound (Lemma 4) with α= (t− 1)/2 to yield

P

[
λmax

(
t−1∑
s=1

I −Q−1x̃sx̃
T
sQ
−1

t− 1

)
>

1

2

]
≤ (m+ 1) exp

(
− t2/2

‖(t− 1)V ‖2 + 2(m+ 1)t/(3λmin(M))

)
= (m+ 1) exp

(
− 3λmin(M)(t− 1)

24λmin(M)‖V ‖2 + 8(m+ 1)

)
.

By an identical argument, we also have

P

[
λmax

(
−

t−1∑
s=1

I −Q−1x̃sx̃
T
sQ
−1

t− 1

)
>

1

2

]
≤ (m+ 1) exp

(
− 3λmin(M)(t− 1)

24λmin(M)‖V ‖2 + 8(m+ 1)

)
.

Thus we have

P[‖I −Q−1MtQ
−1‖2 >

1

2
] = P[max{λmax(I −Q−1MtQ

−1), λmax(Q−1MtQ
−1− I)}> 1

2
]

≤ 2(m+ 1) exp

(
− 3λmin(M)(t− 1)

24λmin(M)‖V ‖2 + 8(m+ 1)

)
. (41)

We can write Q−1MtQ
−1 = I + (Q−1MtQ

−1− I), then by Weyl’s inequality,

λmin(Q−1MtQ
−1)≥ λmin(I) +λmin(Q−1MtQ

−1− I)

≥ 1−‖Q−1MtQ
−1− I‖2

By Eq (41), with probability at least

1− 2(m+ 1) exp

(
− 3λmin(M)(t− 1)

24λmin(M)‖V ‖2 + 8(m+ 1)

)
,

we have λmin(Q−1MtQ
−1) ≥ 1/2. Since Q−1MtQ

−1 = Q−1
∑t−1
s=1 x̃sx̃

T
s

t−1
Q−1 is positive semidefinite,

λmin(Q−1MtQ
−1)> 0 implies that it is invertible. Then

‖QM−1
t Q‖2 =

1

λmin(Q−1MtQ−1)
≤ 2.

This proves the lemma. �
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Lemma 3 (Optimal Policy Structure for Linear Demand). Suppose the true demand function is

linear, given by

Dt(p) = a+ bp+ cTxt + ε.

Then, it is optimal for the seller to use a linear pricing policy of the form pt = St + (Ut)
Txt, where St and

Ut are measurable with respect to Ht−1.

Proof. Suppose the seller uses a pricing policy π(Ht−1, xt) = πt(xt) at period t, where function πt(·) is

measurable with respect to t and could be nonlinear. We denote by Ẽ[·] the conditional expectation operator

E[· | Ht−1]. Let S and U be the optimal solution of the following least squares problem:

max
s∈R,u∈Rm

Ẽ
[(
πt(xt)− s−uTxt

)2]
.

Clearly, S and U are measurable with respect to Ht−1. By the first order condition, the optimal solution

(S,U) satisfies

Ẽ[πt(xt)−S−UTxt] = 0, Ẽ
[
xt
(
πt(xt)−S−UTxt

)]
= 0. (42)

Now, let us compare the conditional expected revenue of price πt(xt) and price S+UTxt. We have

Ẽ
[
πt(xt)Dt(πt(xt))− (S+UTxt)Dt(S+UTxt)

]
=Ẽ
[
πt(xt) ·

(
a+ bπt(xt) + cTxt

)
− (S+UTxt)(a+ b · (S+UTxt) + cTxt)

]
=bẼ

[
(πt(xt))

2− (S+UTxt)
2
]

+ Ẽ
[
(a+ cTxt)(πt(xt)−S−UTxt)

]
(43)

=bẼ
[
(πt(xt))

2− (S+UTxt)
2
]

=b
{
Ẽ
[
(πt(xt)−S−UTxt)

2
]

+ 2Ẽ
[
(S+UTxt)(πt(xt)−S−UTxt)

]}
(44)

=bẼ
[
(πt(xt)−S−UTxt)

2
]
≤ 0.

The second term of Eq (43) and the second term of Eq (44) are both zero because of the first order condition

Eq (42). In the last step, recall that the price sensitivity parameter b < 0.

By taking the expectation over history Ht−1, we have

E
[
πt(xt)Dt(πt(xt))− (S+UTxt)Dt(S+UTxt)

]
≤ 0,

so if pt = πt(xt) is a nonlinear pricing policy, it is dominated by a linear pricing policy pt = S+UTxt. �

Lemma 4 (Matrix Bernstein bound, Tropp (2012)). Consider a finite sequence Xk of independent,

random, self-adjoint matrices with dimension d. Assume that each random matrix satisfies

E[Xk] = 0 and λmax(Xk)≤R almost surely,

then for all t≥ 0,

P

[
λmax(

∑
k

Xk)≥ t

]
≤ d exp

(
−t2/2

σ2 +Rt/3

)
where σ2 = ‖

∑
k

E[X2
k ]‖2.
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