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Abstract.  A goal for future robotic technologies is to advance autonomy capa-

bilities for independent and collaborative decision-making with human team 

members during complex operations. However, if human behavior does not 

match the robots’ models or expectations, there can be a degradation in trust that 

can impede team performance and may only be mitigated through explicit com-

munication. Therefore, the effectiveness of the team is contingent on the accuracy 

of the models of human behavior that can be informed by transparent bidirec-

tional communication which are needed to develop common ground and a shared 

understanding. For this work, we are specifically characterizing human decision-

making, especially in terms of the variability of decision-making, with the even-

tual goal of incorporating this model within a bidirectional communication sys-

tem. Thirty participants completed an online game where they controlled a hu-

man avatar through a 14 x 14 grid room in order to move boxes to their target 

locations. Each level of the game increased in environmental complexity through 

the number of boxes. Two trials were completed to compare path planning for 

the condition of known versus unknown information. Path analysis techniques 

were used to quantify human decision-making as well as provide implications for 

bidirectional communication.  
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1 Introduction 

Human-agent teaming is a critical area of research because technological advancements 

are reaching the point where machines are able to make both independent and interde-

pendent decisions. Due to these advancements, human team member roles are transi-

tioning to more communication-based interactions supporting larger goals and inten-

tions rather than direct control or teleoperation of the system [1]. One key limitation in 

the development of effective teaming has been the process of building a shared under-

standing of the mission space, whereby robotic team members can quickly and accu-



rately understand the human’s intent and behaviors [2]. This is important because suc-

cessful collaborative partnerships require communication, cooperation, and coordina-

tion between the acting members as they work towards a common goal [3], and distinct 

from prior work in supervisory control, which has often focused on ensuring the human 

has an accurate model of the robot’s behavior. In a truly collaborative context, it is 

crucial that the robot also have situation awareness of the human partner.  

1.1 Bidirectional Communication 

Bidirectional communication is an area of current research that aims to improve devel-

opment of common ground and shared understanding. It is especially critical for the 

transformation of a robot from tool to team member [4] because it allows for joint de-

cision-making and development of shared mental model representations [5], and 

knowledge transfer through communication supports shared situation awareness [6-7]. 

Increased autonomy, especially the capability for independent and interdependent de-

cision-making in complex environments, supports this need for the development of bi-

directional communication. In order to effectively communicate, it is important for both 

human and robotic team members to understand the decisions and decision-making 

processes within their team. The interpretation of an interaction or actions of a robotic 

team member can be directly influenced by the person’s expectations for the interac-

tion. Similarly, if the human teammate’s actions and behaviors deviate from the robot’s 

expectations, there will be a degradation in trust. Thus, if a robot team member can 

interpret and correctly predict the actions and behaviors of the human, then the robot 

can react accordingly. Bidirectional communication can also help both the team mem-

bers understand when a decision may intuitively counter their own ideas or models by 

providing reasoning information that defines the appropriateness of its decisions, thus 

updating the team member’s mental model and expectations for the task. In addition, 

the mode of communication and feedback capabilities have an effect on trust develop-

ment in human-agent teams [8].  

1.2 Human Decision-Making  

While there are many types of decisions, this paper focuses on spatial decision-making. 

Human spatial decision-making is characterized by the ability to rapidly produce robust 

solutions to complex problems. For example, the Traveling Salesman Problem (TSP) 

requires participants to connect nodes, representing cities, to create the shortest tour 

among the nodes. While its instructions are simple, the TSP is NP-hard, and brute force 

solutions require calculating (n – 1)!/2 tours where n is the number of nodes. Despite 

the computational complexity, humans produce near-optimal solutions to this problem 

in linear time [9-12] using a combination of global and local spatial heuristics [13-15]. 

Due to the quality of the solutions and the speed at which they are produced, the deci-

sion-making mechanisms humans use to solve these problems are an area of study for 

the AI community, but the underlying mechanisms still remain unknown.  



 Naturalistic spatial decision-making tasks allow these mechanisms to be supported 

by guidance from top-down cognitive processing systems [16-19]. Humans are capable 

of adapting paths easily to mission requirements during naturalistic, real-world tasks, 

such as mission planning for unmanned aerial vehicles [20]. Yet, recent research 

demonstrated that aggregate human solutions tend to converge on not just one but sev-

eral solution groups, each characterized by a distinct spatial mental model [21]. The 

adaptive nature of these top-down processes permits mission-dependent flexibility in 

the spatial decision-making process, and this characteristic has implications for bidi-

rectional communication in human-agent teams. 

Shared Mental Models. Understanding decision-making helps to classify the mental 

model for a task, which then guides expectations for interaction. Spatial mental models 

are mental representations of the environment [22-24], and weightings of the im-

portance of features in those representations relative to goals [22]. Spatial mental mod-

els directly impact a solution to a given spatial decision-making problem, as well as 

their evaluations of solutions generated by other humans and algorithms. This has direct 

implications for all manner of human-agent teaming problems. For example, in collab-

orative spatial decision-making, an algorithm may propose a route to a human who can 

either accept or choose to replan it. This replanning or retasking degrades performance 

and situation awareness, and increases workload [25]. In addition, divergence between 

the human team members’ spatial mental models and the actions taken by an intelligent 

agent can reduce predictability and degrade trust [26-28]. Conversely, spatial mental 

models that are similar to an agent’s suggestion can improve agent trust, and increase 

the rate of acceptance for that solution [21]. This is especially true for cases where 

agents are unable to articulate their reasoning for producing solutions that may contra-

dict human teammates’ spatial mental models. Therefore, this area represents a poten-

tial target for future research in bidirectional communication for the purpose of achiev-

ing consensus between human spatial mental models and intelligent agent problem 

solving mechanisms.  

Implications for Agent Development and Teaming. Knowing how humans make de-

cisions could help a robot to derive a model of the team member’s planning model, 

which allows the robot to infer future human behavior, and provides the needed context 

to communicate its state and goals in the same representation as the human. Such an 

extrapolation could greatly reduce the need for explicit communication (e.g., it might 

suffice for a robot to observe nodding or a hand que to infer how human will act next). 

Moreover, matching both representation and goals could result in an efficient search 

over the action space (e.g., a robot could narrow its search space based on expected 

human behavior). For intractable problems, knowing the optimal solution may not be 

possible. In that case, knowing how humans solve a problem could be a benchmark 

when developing robot algorithms. Further, understanding the limitations of a human 

can help teaming in such a way that the robot can take the initiative of being the main 

actor (e.g., computing a plan) in cases where the human is limited.  



1.3 Current Work 

The main objective of this research is to understand similarities and differences among 

human spatial decision-making processes as they apply to future human-agent teaming. 

When developing new spatial planning algorithms for robotic systems that will be col-

laborating with people to complete a task (e.g., moving objects around a room), it is 

important to characterize and compare the behavior of each of the agents under different 

conditions. Further, since each agent applies its own spatial mental model or algorithm 

to solve a given problem, in order to achieve robust collaboration and teamwork it is 

critical to recognize how the decision-making processes of each agent will handle in-

creasing environmental complexity and uncertainty. Where disparities exist between 

the resultant robot and human behaviors, bidirectional communication can be used as a 

means to achieve an optimal solution collaboratively. A first step toward achieving this 

goal is to characterize human spatial decision-making behaviors in the proposed tasks.  

For this study, an online game was developed to assess human spatial decision-making 

processes involved with controlling a virtual avatar through a virtual room with the 

purpose of pushing virtual boxes from a set of start locations to a set of end locations. 

The design of the study was such that each level represented an increase in environ-

mental complexity, and the two conditions represented an increase in task difficulty 

based on the availability of planning information.  

2 Methodology 

2.1 Participants 

Thirty participants between the ages of 18 and 60 were recruited. This age restriction 

was selected to reduce variance in participants’ spatial abilities. In prior studies involv-

ing tasks requiring spatial working memory, age-related cognitive decline reduces nav-

igation speed [29] and overall task performance [30-32]. 

2.2 Game Development and Task 

A Java Applet was built around similar game dynamics as the puzzle game Sokoban 

[33]. Sokoban, developed by Thinking Rabbit game studio in 1982, is a logic puzzle 

designed for the user to push objects (stones, boxes, etc.) around a playing field to a 

goal area in the fewest moves possible. For our study, the main game space for all levels 

was a 14 x 14 square grid surrounded by a brick wall on all sides. The grid space was 

developed to match the laboratory facilities at MIT to allow for future comparison of 

human and robot decision-making. The difference in design between this application 

and the original Sokoban game was that typically levels only had minimal number of 

solutions, while the open area of this playing field made for exponentially more paths 

to reach a solution. 

There were nine levels (Level 0 through Level 8) that increased in the number of 

boxes from two to 10 boxes (Figure 1). The number and location of the boxes and target 



locations were devised in such a way to represent increasing environmental complexity. 

In order to investigate the variability in human decision-making, different patterns, 

clusters, and spatially distant blocks were used while choosing the initial and target 

locations of the blocks. The game levels were designed in such a way that the optimal 

(or very close to optimal) solution was not obvious. This helps to identify variability in 

human decision-making behaviors.  

Condition 1 

(Known Information) 

Condition 2 

(Unknown Information) 

  
(a) Level 0 environmental complexity (2 boxes) 

  
(b) Level 1 environmental complexity (3 boxes) 

  

(c) Level 2 environmental complexity (4 boxes) 



  
(d) Level 3 environmental complexity (5 boxes) 

  
(e) Level 4 environmental complexity (6 boxes) 

  
(e) Level 5 environmental complexity (7 boxes) 

  
(f) Level 6 environmental complexity (8 boxes) 



  
(g) Level 7 environmental complexity (9 boxes) 

  
(h) Level 8 environmental complexity (10 boxes) 

Fig. 1. Each game level (a)-(h) represents increasing environmental complexity. For Condition 2 

(Unknown Planning Information), the entire game board was transposed over the y-axis making 

each condition directly comparable but unique.  

The start location of the avatar (represented by a person) was always in the same 

start corner. The avatar could only move up, down, left, or right (no diagonals) and 

could only push (not pull) the boxes. Therefore, the initial placement of the boxes were 

located a certain distance from the boundaries to ensure the existence of a solution. In 

order to avoid infeasibility (e.g., deadlock), the exterior 2 cells were intentionally left 

blank and boxes were not placed in corridor like shapes. An undo option to backup 

through previous moves, as well as a reset level option were available so that it was 

always possible to reach a solution. 

The overall goal was to move all boxes from their initial locations to their target 

locations. To this end, there were two main criteria to determine the overall trajectory, 

the sequence the boxes should be moved and calculating the shortest path from a box’s 

initial location to its target location. Participants completed two conditions representing 

increasing task difficulty. For Condition 1 (Known Planning Information), all boxes 

and target locations were known, such that participants had to control the human avatar 

through the virtual environment and push Box 1 to Target Location 1. Participants were 

instructed that the numbering on the boxes and target locations were only there to in-

form which box was connected with which target location. They could complete the 

task in any order. For Condition 2 (Unknown Planning Information), the boxes were 



unlabeled however all the target locations were labeled. The box numbers only became 

visible once the human avatar pushed the box to a new grid square location.  

2.3 Design 

The experimental design was a 2 condition (known versus unknown planning infor-

mation) x 9 environmental complexity (game levels ranging from 2-10 boxes) within-

subjects design. Participants completed Condition 1, Levels 0 through 8, followed by 

Condition 2, Levels 0 through 8. There were two main hypotheses. 

Hypothesis 1: Overall path length, number of movements, and time to completion 

will be longer when the environment is more complex (i.e., more boxes) and when the 

task is more difficult (i.e., changes in the amount of previously known information 

about the task). 

Hypothesis 2: Based on our prior research, there will be more than one “human” way 

of making decisions to plan a path and move the boxes. The Algorithm for finding the 

Least Cost Areal Mapping between Paths (ALCAMP) [34] will be used to quantify the 

divergence among participants' solutions in Condition 1 and Condition 2 for each level. 

Higher levels of environmental complexity associated with the levels will produce 

greater divergence (i.e., variability) in solutions, and we expect that the availability of 

planning information (manipulated in each Condition) will also impact the divergence 

among solutions in each level. 

2.4 Analysis  

Performance. Specific decision-making time and movements were recorded for all 

levels across both trials. Decision-making times included planning time (i.e., time to 

first movement), total completion time (i.e., time till last box was placed on the correct 

target), and action time (i.e., total completion time minus planning time). The actual 

decisions were analyzed by looking at the total number of moves to complete each 

level, and nearest-neighbor analysis. The nearest-neighbor analysis calculated the num-

ber of participants who first moved to the closest box to the start location compared to 

another box. This analysis provides insight into whether or not they used a local versus 

global strategy.  

Variability. A novel approach was used to characterize the variability among partici-

pants’ solutions for each of the spatial problems in each level. The variability among 

solutions is important to understand differences between individuals’ spatial solutions 

and to determine predictability in decision-making behaviors. Thus, increasing solution 

variability corresponds to decreasing predictability for both human- and algorithm-pro-

duced solutions. To measure the variability, participants’ solutions were pooled within 

each level representing environmental complexity and condition of task difficulty. 

ALCAMP [34] was used to compare all solutions within each pool in a pairwise-ex-

haustive fashion. The resultant values of this analysis reflect the divergence between 



the pair of paths as measured by Euclidian divergence among the grid squares, such 

that large values indicate that the two solutions are different and small values indicate 

that they are similar. Finally, these values were used to populate a symmetric dissimi-

larity matrix through a distance matrix. The mean of the upper or lower triangle indi-

cates the average dissimilarity among all of the solutions for a given level and condition 

– the higher the value, the greater the variability among participants’ solutions to that 

problem. This technique has been used in previous research to infer consensus in spatial 

decision-making processes [11, 21]. 

3 Results  

3.1 Performance Analysis 

Total Completion Time. A 2 condition (known vs unknown boxes) x 9 levels of envi-

ronmental complexity (levels 0-8) repeated measures within-subjects ANOVA was 

conducted to assess total completion time. There was a main effect of condition, 

F(1,24)=15.98, p=.001, d=1.03, where Condition 1 (known planning information) was 

longer, M = 49.894 sec, SE = 2.553, than Condition 2 (unknown planning information), 

M =44.049 sec, SE = 1.898. There was a main effect of level, F(8, 17)=78.89, p<.001, 

d=1.35, whereby increased environmental complexity led to increased completion time, 

and an interaction, F(8, 17) = 8.821, p<.001,  d=0.41, see Figure 2. These results show 

that increasing the amount of information available to an agent can increase processing 

times despite providing important cues to objects in the environment.  

 

Fig. 2.  Total completion time (seconds) on each game level representing environmental com-

plexity (game level) for the known and unknown planning information conditions 
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Paired samples t-tests were conducted for each level of environmental complexity 

to compare total completion time in the known and unknown planning information con-

ditions. There was a significant difference in scores for Levels 0 (p=.020), 2 (p=.008),  

3 (p=.009), 4 (p<.001), 5 (p=.004), and 7 (p<.001), whereby completion time was sig-

nificantly longer for Condition 1 (known planning information) than Condition 2 (un-

known planning information). Results are reported in Table 1. These results show that 

the effect between the two conditions collapsed completely on Level 6, and partially on 

Level 8, likely owing to characteristics of those specific environments. 

Table 1. Paired Samples t-tests for Total Completion Time 

Game 

Level 

Mean 

Time 1 

SD 1 Mean 

Time 2 

SD 2 t P D 

0  19.851 6.827 16.513 5.294 t(26)=2.479 .020 0.48 

1  19.342 6.401 18.211 4.015 t(27)=1.272 .214 0.24 

2  29.614 10.303 25.077 5.351 t(27)=2.851 .008 0.54 

3  44.052 11.258 38.273 7.160 t(27)=2.830 .009 0.53 

4  60.510 16.714 48.775 1.4152 t(27)=4.373 <.001 0.83 

5  62.897 22.463 53.272 13.360 t(26)=3.117 .004 0.60 

6  45.275 11.520 45.611 12.612 t(26)=-.139 .891 -0.03 

7  90.077 26.434 76.256 20.313 t(27)=5.855 <.001 1.11 

8 93.486 29.564 86.447 27.756 t(28)=1.893 .069 0.35 

 Note. Time is in seconds 

Planning and action time. In order to determine whether the source of the total com-

pletion time effects described above were due to differences in planning or action, we 

split the total completion time into a planning phase (duration between trial presentation 

and the first move) and action time (the remainder of the total completion time – plan-

ning time). A 2 condition x 9 levels of environmental complexity repeated measures 

within-subjects ANOVA was conducted to assess planning time. There was a main ef-

fect of condition, F(1,15)=24.33, p<.001, d=2.006, where Condition 1 (known planning 

information) was longer, M = 3.123 sec, SE = 0.501, than Condition 2 (unknown plan-

ning information), M = 1.375 sec, SE = 0.129. There was a marginal main effect of 

level, F(8, 120)=1.967, p=.056, d=0.028, whereby increased environmental complexity 

led to increased planning time, and an interaction, F(8, 120) = 2.776, p =.007, d=.038. 

Paired samples t-tests were conducted for each level of environmental complexity to 

compare planning time in the known and unknown planning information conditions. 

There was a significant difference in scores for Levels 1 (p=.005), and Levels 2 through 

8 (p<.001), whereby planning time was significantly longer for Condition 1 (known 

planning information) than Condition 2 (unknown planning information). Results are 

reported in Table 2.  

These results show that, while planning time generally increased with environmen-

tal complexity when boxes were known (thought the layout of the environment clearly 

played a role as well, as shown by the dip in planning time for Level 6), planning time 

essentially dropped to floor when boxes were unknown. One interpretation of this result 

is that participants adopted a very simple local decision-making strategy when the box 

numbers were unknown, as opposed to the global search performed when all planning 

information was presented. In addition, the paired samples t-tests showed that the effect 



Table 2. Paired Samples t-tests for Planning Time 

Game 

Level 

Mean 

Time 1 

SD 1 Mean 

Time 2 

SD 2 t p d 

0  3.230 1.281 2.765 1.341 t(24)=1.591 .125 0.32 

1  3.608 3.213 1.891 0.948 t(25)=3.077 .005 0.60 

2  2.686 1.326 1.369 0.732 t(24)=5.548 <.001 1.11 

3  4.326 3.542 1.268 0.574 t(25)=4.627 <.001 0.91 

4  6.629 6.468 1.436 0.694 t(28)=4.452 <.001 0.83 

5  5.099 4.601 1.496 0.694 t(27)=4.405 <.001 0.83 

6  3.155 2.036 1.453 0.790 t(25)=4.563 <.001 0.89 

7  5.124 3.815 1.211 0.509 t(24)=5.227 <.001 1.05 

8  6.134 5.246 1.713 0.907 t(26)=4.542 <.001 0.87 

Note. Time is in seconds 

of uncertainty on planning requires a minimum amount of environmental complexity 

(i.e., number of boxes) to manifest.  

To assess action time, a 2 condition x 9 levels of environmental complexity repeated 

measures within-subjects ANOVA was conducted to assess action time. There was a 

main effect of condition, F(1,29)=5.683, p=.024, d=.359, where Condition 1 (known 

planning information) was longer, M =51.040 sec , SE = 4.202, than Condition 2 (un-

known planning information), M = 48.464 sec, SE = 4.172. There was a main effect of 

level, F(8, 232)=99.828, p<.001, d=.365, whereby increased environmental complexity 

led to increased completion time. There was not a significant interaction, p = .088. Fig-

ure 3 depicts the mean planning times and mean action times for both conditions across 

all levels of environmental complexity.  
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(b)  

Fig. 3. Mean task times across levels of environmental complexity for planning time 

(a) and action time (b) where the solid black line represents Condition 1 (Known Plan-

ning Information) and the dashed line represents Condition 2 (Unknown Planning In-

formation) 

Paired samples t-tests were conducted for each level of environmental complexity 

to compare action time in the known and unknown planning information conditions. 

There was a significant difference in scores for Level 4, t(29)=2.217, p=.035, d=0.40; 

Level 5, t(29)=2.045, p=.050, d=0.37, Level 6, t(29)=-2.116, p=.043, d=-0.39, and 

Level 7, t(29)=2.291, p=.029, d=0.04. These results show that the interaction effect 

between information availability and environmental complexity nearly disappears 

when removing the variance attributable to the planning phase of problem solving. 

Thus, these results taken together show that the differences reflect differences in plan-

ning for spatial problem solving rather than the action of actually moving the avatar to 

solve the problem. 

Number of Moves. A 2 condition x 9 levels of environmental complexity repeated 

measures within subjects ANOVA was conducted to assess number of moves needed 

to complete the task. There was a marginal main effect of condition, F(1,21)=3.85, 

p=.063, d=.337, where Condition 2 (unknown planning information) required more 

moves, M =117.64, SE = 1.595, than Condition 1 (known planning information), M = 

115, SE = 1.590. There was a main effect of level, F(1, 21)=2707.23, p<.001, d=2.48, 

whereby increased environmental complexity led to increased completion time. There 

was significant interaction, F(1, 21) = 4.33, p=.050, d=.042. Paired samples t-tests were 
conducted for each level of environmental complexity to compare total number of 

moves in the known and unknown planning information conditions. There was a sig-

nificant difference in scores for Level 1, t(26) = -3.389, p=.002, d=-.65; and a marginal 

significant difference in scores for Level 8, t(28)= -2.028, p=.052, d=-.38. The result of 
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this analysis indicate that the conditions did not have a meaningful impact on the num-

ber of moves required to complete each problem. Rather, the number of moves was 

mostly impacted by the environmental complexity.  

Nearest Neighbor Analysis. In order to test the hypothesis that participants relied more 

heavily on local decision-making heuristics when boxes were unknown, we calculated 

the number of participants who first moved the box closest to the starting position 

(nearest neighbor preference), at each level of environmental complexity for each trial 

condition. A high percentage of participants exhibiting nearest neighbor preference 

would indicate a very simple local decision-making strategy. A lower percentage would 

indicate that participants employed a more global strategy. Figure 4 shows the percent-

age of participants who interacted with the closest box first for each level, in both ex-

perimental condition.  

Participants’ nearest neighbor preference was near-ceiling when the boxes were un-

known. When the boxes were known in advance, the percentage of participants show-

ing a nearest-neighbor preference decreased with increasing environmental complexity. 

These results, taken together, substantiate the hypothesis that participants typically em-

ployed global decision-making strategies when the box identities were known, but re-

sorted to local decision-making strategies in the absence of that information. 

 

Fig. 4.  Nearest neighbor analysis indicates the percentage of trials on which participants visited 

the box closest to the starting location first.  
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3.2 Variability Analysis 

Using the aforementioned procedure for calculating the average divergence in each 

condition and level, we see that variability in participants’ solutions increases roughly 

linearly with increasing environmental complexity, once complexity reaches a certain 

threshold (in this case, it appears to be 5 boxes). A 2 condition (Known vs. Unknown 

planning information) x 9 environmental complexity (Levels 0-8) ANOVA revealed 

significant main effects of both Conditions , F(1, 7812) = 227.33, p < .001, and Level, 

F(8, 7812) = 2305.92, p < .001, as well as an interaction effect between these two var-

iables, F(8, 7812) = 28.27, p < .001 (see Figure 5). Post hoc analysis using Tukey’s 

HSD tests showed significant effects between Conditions for levels 0 (p = .022), 2 (p < 

.001), 4 (p < .001), 5 (p < .001), 7 (p < .001) and 8 (p < .001). In all of these cases, 

participants’ solutions exhibited greater average divergence when the boxes were 

known (i.e., Condition 1) versus unknown (Condition 2). Note that the dip in diver-

gence in both conditions on Level 5 (7 boxes) likely reflects characteristics of that par-

ticular environment.  

  

Fig. 5. The divergence value indicates the number of grid points by which solutions differed or 

variance in solutions. The average divergence among participants’ solutions show very little dif-

ferences in solutions for lower levels of environmental complexity (Levels 0-2) but a large in-

crease in the number of possible solutions starting at Level 3.    

4 Discussion  

Communication is described by the research community as a reciprocal process where 

teammates send and receive information that form and reform the team’s attitudes, be-

haviors, and cognition [35] whereby a shared body of knowledge can be used to develop 
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shared expectations, allowing for improved team performance without explicit coordi-

nation [36-37]. In the past, a variety of methods to facilitate bidirectional communica-

tion have been explored. For example, transparent user displays can convey agent intent 

[2], as well as its goals, reasoning, and projected outcomes [38-40]. While a multimodal 

approach to communication can reduce workload and degraded situation awareness 

[41] by using both implicit (nonverbal – behaviors, actions) and explicit (voice, natural 

language or auditory) communication modalities [42]. Considerable efforts have gone 

into determining the type, amount, modality, and rate by which information should be 

communicated between team members (e.g., Situation Awareness agent-based Trans-

parency Model [40]). But perhaps key to the development of effective bidirectional 

communication within human-agent teams is the need for team members to be aware 

of goals, reasoning, actions, and projected outcomes of their teammates [43-46]. There-

fore, a major step to developing appropriate bidirectional communication is being able 

to quantify human behavior across tasks. If human behavior does not match the robots’ 

models or expectations, there can be a degradation in trust that can impede team per-

formance and may only be mitigated through explicit communication. 

4.1 General Discussion  

This was the first study in a set of studies using this paradigm. It was designed to ad-

vance the technical capabilities of a robot to more accurately perceive and interpret 

human team member behavior, and to develop appropriate bidirectional communica-

tion required for future collaborative tasking. By first looking at quantifying human 

behavior, we can provide a foundation for understanding how human expectations for 

planning and spatial task solutions are formed. This is essential for future teaming be-

cause when human expectations do not match robot behaviors then degradations in trust 

can occur. Therefore, quantifying the decision space can provide insights into identify-

ing when and how bidirectional communication could mitigate divergences in human 

and robot team behaviors. 

Human performance. The results of the present study showed that completion times 

generally increased with increasing environmental complexity. Furthermore, partici-

pants generally took longer to complete the levels when the box contents were known. 

Separating participants' solution times into planning times and action times showed that 

the majority of this discrepancy between the two information availability conditions 

was due to differences in time spent in planning rather than action. When the box num-

bers were visible to participants, participants took longer to begin moving than when 

the box numbers were not known, and we believe this time was spent analyzing the 

environment and planning their moves. Curiously, this increase in planning time did 

not translate to increased efficiency, as participants' solutions did not vary between the 

two information availability conditions in terms of the number of moves. Generally, 

this result indicates that perfect world knowledge did not improve performance, and 

actually reduced the speed with which participants completed each level. Understand-

ing variance in planning and completion times can provide insights into situations that 



may require more explicit communication between team members to clarify the under-

lying reasoning process for the decision being made, as well as help to determine timing 

associated with providing feedback to a team member. 

Global versus local decision-making and implications for bidirectionality. In order 

to quantify decision-making behaviors, as well as further investigate the planning time 

difference described above, we performed a simple analysis to determine whether par-

ticipants were using a local decision-making heuristic - nearest neighbor. The nearest 

neighbor analysis showed that nearly all participants employed a nearest neighbor heu-

ristic when the box numbers were unknown, visiting the closest box first. When box 

numbers were known, participants appeared to increasingly leverage global decision-

making strategies. This result, taken in the context of the performance results, shows 

that perfect world knowledge, which facilitates global decision-making processes, does 

not produce any marked advantage in efficiency or speed over simple local decision-

making heuristics for these problems. This is important for bidirectional communica-

tion, as it shows that more complex decision-making algorithms may produce only mar-

ginal performance gains over simpler algorithms, at a cost of being far more difficult 

to explain to human teammates and the computational complexity of the algorithm it-

self.  

Predictability of decisions. An important part of human-agent teams is the extent to 

which agents can predict one another’s actions. This can be viewed as a function of the 

number of different solutions that a group of agents will produce, or that a stochastic 

algorithm will produce on successive runs. Greater differences among solutions indi-

cates that those solutions will be harder for teammates to predict, whereas if all team-

mates’ solutions converge to only a few possibilities it will be easier to predict their 

actions. In order to examine the predictability of human solutions, we calculated the 

mean pairwise divergence among all solutions to each of the problems, in each condi-

tion. The main effect of environmental complexity was characterized by a general in-

crease in divergence with increasing environmental complexity, once the complexity 

of the environment increased beyond a threshold; in the present study, the threshold 

was five boxes. This means that most humans will make similar solutions when envi-

ronmental complexity is low suggesting that additional explicit communication may 

not be needed since the likelihood that expectations will match behaviors is high. How-

ever, when the environmental complexity reaches a set level, the number of possible 

solutions and variance between those solutions greatly increases leading to more un-

predictable human behavior. These results also showed that with the exception of Level 

6, after this threshold participants solutions diverged more when the box numbers were 

not shown. One interpretation of this finding, in light of the previous results, is that 

participants’ reliance on local decision-making heuristics when the box numbers were 

shown reduced the variance across their solutions. 

Summary discussion. The results described above, taken together, show that local de-

cision-making heuristics are sufficient for this task, as global processing takes longer, 



does not improve performance or efficiency, and increases the divergence among par-

ticipants’ solutions. These solutions would thus be harder for teammates to predict. Be-

yond a certain level of environmental complexity, bidirectional communication be-

comes increasingly important because the range of possible solutions to a given prob-

lem increases substantially. In these cases, bidirectional communication will be neces-

sary to promote shared situation awareness and trust, and to facilitate fluid, flexible 

interaction between humans and non-human intelligent agents.  

4.2 Implications on Algorithm Development  

Bidirectional communication has various impacts on the development of algorithms for 

the robot decision-making in collaborative missions. Specifically, shared understanding 

of the mission goals and mental models could minimize uncertainty in team decision 

making, and result in more predictable consequences. From the algorithmic perspec-

tive, predictable results after taking actions would greatly reduce online computations 

such as replanning because less deviations from the original plan would be observed. 

Also, understanding human decision-making and limitations could help developing ro-

bots that can autonomously decide when and how to help humans.  For example, robot 

might explicitly offer help when human spends a lot of time for planning the move, or 

robot could infer a specific part of the problem (e.g., furthest area from the human) and 

start working on that to shrink the decision problem of human. Overall, both implicit 

(e.g., posture, gesture) or explicit (e.g., natural language, feedback through displays) 

communication play an important role when developing decision-making strategies for 

robots that are expected to operate with humans in complex missions.  
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