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We report four narrow peaks in the Ξ0
bK

− mass spectrum obtained using pp collisions at center-of-mass
energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of 9 fb−1 recorded by the LHCb
experiment. Referring to these states by their mass, the mass values are m½Ωbð6316Þ−� ¼ 6315.64�
0.31� 0.07� 0.50 MeV, m½Ωbð6330Þ−� ¼ 6330.30� 0.28� 0.07� 0.50 MeV, m½Ωbð6340Þ−� ¼
6339.71� 0.26� 0.05� 0.50 MeV, m½Ωbð6350Þ−� ¼ 6349.88� 0.35� 0.05� 0.50 MeV, where the
uncertainties are statistical, systematic, and the last is due to the knowledge of the Ξ0

b mass. The natural
widths of the three lower mass states are consistent with zero, and the 90% confidence-level upper limits are
determined to be Γ½Ωbð6316Þ−� < 2.8 MeV, Γ½Ωbð6330Þ−� < 3.1 MeV and Γ½Ωbð6340Þ−� < 1.5 MeV.
The natural width of the Ωbð6350Þ− peak is 1.4þ1.0

−0.8 � 0.1 MeV, which is 2.5σ from zero and corresponds
to an upper limit of 2.8 MeV. The peaks have local significances ranging from 3.6σ to 7.2σ. After
accounting for the look-elsewhere effect, the significances of the Ωbð6316Þ− and Ωbð6330Þ− peaks are
reduced to 2.1σ and 2.6σ, respectively, while the two higher mass peaks exceed 5σ. The observed peaks
are consistent with expectations for excited Ω−

b resonances.
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The study of hadrons containing heavy (b or c) quarks
has undergone a renaissance over the last couple of
decades. During this time a plethora of new states have
been observed, including candidates for four-quark (tetra-
quark) states, and more recently five-quark (pentaquark)
states [1–3] (see Refs. [4–6] for recent reviews). In
addition, a number of observations of peaking structures
in the invariant-mass spectra of final states containing
Ξþ
c K− [7], Ξ0

bπ
− [8], Λ0

bπ
− [9], and Λ0

bπ
þπ− [10,11] have

provided valuable experimental information to improve our
understanding of quantum chromodynamics (QCD), the
theory of the strong interaction.
Fueled by these observations, there has been a renewed

interest in gaining a deeper theoretical understanding of
hadronic structure. The constituent quark model [12,13]
has been very successful in describing the types of hadrons
that form in nature and how they fit into multiplets [14]
based on the quantum numbers of the states. While
conventional baryons are understood to be states that
contain three valence quarks, a deep understanding of
how best to describe these and other multiquark states in
terms of their fundamental constituents is still an open
question. For example, in QCD, two quarks can exhibit

attraction when in a JP ¼ 0þ quantum state, giving rise to
the notion that conventional baryons can be described as
the bound state of a quark and a qq0 diquark [15,16]. These
ideas are naturally extensible to describe tetraquark and
pentaquark candidates [4–6].
Recently, the LHCb experiment observed five narrow

states, assumed to be excited Ω0
c baryons, which decay

into Ξþ
c K− [7]. These states have been analyzed from the

perspective of constituent quark models and lattice QCD
[17–30,30–33], quark-diquark models [34–44], as well as
molecular models [45–50] and pentaquark states [51–53].
Several of the models that seek to describe these peaks also
make predictions for Ξ0

bK
− resonances. Since the quark

contents of the Ω0
c and Ω−

b baryons are css and bss,
respectively, it is of great interest to search for analogous
states in the Ξ0

bK
− mass spectrum.

This Letter reports on a search for narrow resonances in
the Ξ0

bK
− mass spectrum close to the kinematic threshold.

The search uses data collected in pp collisions with the
LHCb detector at center-of-mass energies of 7, 8, and
13 TeV, corresponding to integrated luminosities of 1, 2,
and 6 fb−1, respectively. Charge-conjugate processes are
implicitly included, and natural units with ℏ ¼ c ¼ 1 are
used throughout.
The LHCb detector [54,55] is a single-arm forward

spectrometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c quarks.
Events are selected online by a trigger, which consists of a
hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which
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applies a full event reconstruction [56,57]. Simulated data
samples are produced using the software packages
described in Refs. [58–64], and are used to optimize
selection requirements and to quantify the invariant-mass
resolution of the LHCb detector.
Samples of Ξ0

b candidates are formed by pairing Ξþ
c and

π− candidates, where the Ξþ
c decays are reconstructed in the

pK−πþ final state. All final-state hadrons must have
particle-identification (PID) information consistent with
the assigned particle hypothesis. The final-state particles
are also required to be inconsistent with originating from a
primary pp collision vertex (PV) by requiring that they
have large χ2IP with respect to all PVs in the event. The
quantity χ2IP is the difference in χ

2 of the vertex fit of a given
PV when the particle (here p, K−, or πþ) is included and
excluded from the fit.
The Ξþ

c candidates must have a fitted vertex that is
significantly displaced from all PVs in the event and have
an invariant mass within 18 MeV of the known Ξþ

c mass
[14]. About 20% of the Ξþ

c background comprises mis-
identified Dþ → K−πþπþ, Dþ → KþK−πþ, Dþ

s →
KþK−πþ, and D�þ → ðD0 → K−πþÞπþ decays, as well
as misidentified ϕmesons with ϕ → KþK− combined with
an additional particle from elsewhere in the event. These
background contributions are removed by employing
tighter PID requirements on candidates that are consistent
with any of these decay hypotheses, resulting in about 1%
loss of signal efficiency. The pK−πþ invariant-mass dis-
tribution of Ξþ

c candidates satisfying these selection
requirements is shown in Fig. 1 (left).
The Ξ0

b candidates are formed from Ξþ
c π

− combinations
that have a significantly displaced decay vertex from all
PVs in the event and a trajectory that is consistent with
originating from one of them. The PV for which the Ξ0

b

candidate has the smallest χ2IP is assigned to be the
associated PV, and it is used subsequently to compute
quantities such as the Ξ0

b decay time. Candidates satisfy-
ing the requirement 5.6 < MðΞþ

c π
−Þ < 6.0 GeV are

retained, where M designates the invariant mass of
the system.
To further suppress background in the Ξ0

b → Ξþ
c π

−

sample, a boosted decision tree (BDT) discriminant [65]
is used. The BDT exploits 21 input variables: the decay
times of the Ξþ

c and Ξ0
b candidates and the χ2 values

associated with their decay-vertex fits; the angle between
the Ξ0

b momentum vector and the line that joins the Ξ0
b

decay vertex and its associated PV; and for each final state
particle the momentum, transverse momentum, χ2IP, and a
PID response variable. The PID response for final-state
hadrons in the signal decay is obtained from large D�þ →
ðD0 → K−πþÞπþ and Λ → pπ− calibration samples in data
[66,67]. Simulated signal decays and background from the
Ξþ
c mass sidebands (30< jMðpK−πþÞ−mΞþ

c
j<50MeV)

in data are used to train the BDT, wherem refers to the mass
of the indicated particle [14]. The chosen requirement on
the BDT response provides a relative signal efficiency of
90%, and reduces the combinatorial background by about a
factor of 2.5. Overall, the off-line selection requirements
are about 75% efficient on simulated decays, while reduc-
ing the background by about a factor of 40.
Figure 1 (right) shows the Ξþ

c π
− mass spectrum for

candidates passing the above selection criteria. The spec-
trum is fit with the sum of two Crystal Ball [68] functions
with a common mean and opposite-side power-law tails to
model the signal, and an exponential function to describe
the background distribution. The fitted Ξ0

b signal yield
is 19200� 200.
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FIG. 1. Invariant-mass spectrum for (left) Ξþ
c → pK−πþ and (right) Ξ0

b → Ξþ
c π

− candidates in data passing the selection requirements
described in the text. The arrows indicate the requirements on the invariant masses that are applied in the subsequent stages of the
analysis.
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To search for peaking structures in the Ξ0
bK

− mass
spectrum, a requirement that jMðΞþ

c π
−Þ−mΞ0

b
j<40MeV

is imposed, which reduces the number of Ξ0
b signal decays

to about 18 000. Each Ξ0
b candidate is combined with a K−

candidate that is consistent with originating from a PV in
the event. The Ξ0

b and K− trajectories are fitted to a
common vertex, and that vertex is kinematically con-
strained to coincide with the PV associated with the Ξ0

b
candidate [69]. The additional PV constraint improves
the resolution on the mass difference δM ≡MðΞ0

bK
−Þ −

MðΞ0
bÞ by about a factor of 2.

Random combinations of Ξ0
b baryons with a K− candi-

date are the largest source of background in the Ξ0
bK

− mass
spectrum. To improve the expected signal-to-background
ratio, a figure of merit, ϵ=ð ffiffiffiffi

B
p þ 5=2Þ [70], is used to

optimize the requirements on the PID information of the
K− candidates. Here, ϵ is the efficiency as determined from
simulation, and B is the number of wrong-sign Ξ0

bK
þ

combinations in the region 520 < δM < 570 MeV passing

the PID requirement, scaled to a 10 MeV mass window.
The 10MeVwidth is chosen based on the search for narrow
peaks, since the low signal yields expected would make
wide peaks difficult to separate from the combinatorial
background. The optimal requirement on the K− PID
provides an efficiency of about 85% and suppresses the
background by a factor of about 2.5.
The decay of a resonance to Ξ0

bK
− will produce peaks in

the δM spectrum. The experimental δM resolution is
obtained from simulated samples generated at several
masses, mres. The resolution function is described by the
sum of two Gaussian functions with a common mean. In
addition, the width of the narrower Gaussian component,
σcore, is fixed to be 45% of that of the wider component, and
its contribution is required to constitute 80% of the total
shape. A smooth, monotonically increasing function,
denoted as σðmresÞ, is then used to parameterize σcore as
a function of mres. In the δM interval of interest, σðmresÞ is
in the range of 0.7–0.8 MeV.
The δM distributions for right-sign (RS) and wrong-sign

(WS) candidates are shown in Fig. 2, along with fits to the
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FIG. 2. Distribution of the mass difference for (top) right-sign Ξ0
bK

− candidates, and (bottom) wrong-sign Ξ0
bK

þ candidates, as
described in the text.

PHYSICAL REVIEW LETTERS 124, 082002 (2020)

082002-3



spectra as described below. Four peaks are seen in the RS
spectrum of Ξ0

bK
− candidates (red curves), whereas no

significant peaks are seen in the corresponding WS Ξ0
bK

þ

distribution. To obtain the parameters of the peaks, a
simultaneous unbinned extended maximum-likelihood fit
is performed to the RS and WS spectra. Each signal peak is
described by an S-wave relativistic Breit-Wigner function
[71] with a Blatt-Weisskopf barrier factor [72], convoluted
with the resolution function σðmresÞ described above. A
common background shape is used to describe both the RS
and WS spectra, and is described by a smooth three-
parameter monotonic function that accounts for the Ξ0

bK
−

threshold.
The peak values of δM, natural widths, signal yields, and

the local and global significances are summarized in
Table I. The local significance is obtained as Sdata ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðLmax=L0

p Þ, where Lmax is the maximum value of
the fit likelihood and L0 is the value obtained when a
given peak’s yield is fixed to zero. All peaks have natural
width consistent with zero. The highest-mass peak has the
largest width, which differs from zero by 2.5 standard
deviations, as determined from a likelihood scan of the
width parameter.
To account for the look-elsewhere effect [73], which

considers that the peak search extends over about a
200 MeV wide mass region, a large number of pseudoex-
periments (pe) are generated. The pseudoexperiments use
the nominal parameters from the fit to the data, with the
signal yield of each peak, in turn, set to zero. The full mass
region is scanned in 0.5 MeV steps to identify the most
significant positive fluctuation outside of the region of the
three retained peaks, from which the significance Spe is
computed. From the corresponding distribution of Spe and
the value Sdata, a p value—expressed in Gaussian standard
deviations—is obtained for each peak, as shown in Table I.
The sources of systematic uncertainty that affect the

measured masses are summarized in Table II. The momen-
tum scale uncertainty is assessed by shifting the momentum
scale of all charged tracks by �0.03% [74] in simulated
decays, and evaluating the change in δM. The imperfect

modeling of the energy loss in the detector material results
in a systematic uncertainty of 0.04 MeV [75]. The
uncertainty due to the choice of signal model is assigned
by fitting the data with an alternative signal model
composed of two Gaussian functions with a common
mean. The largest change, 0.02 MeV, is assigned as a
systematic uncertainty to all of the peak positions. The
background shape uncertainty is assessed by removing the
influence of the WS data on the background shape, and
fitting only the RS data; the difference in the peak positions
with respect to the nominal fit is assigned as a systematic
uncertainty. The relativistic Breit-Wigner signal shape in
the nominal fit assumes that the decay proceeds through an
S wave, with an interaction radius in the Blatt-Weisskopf
barrier factor of R ¼ 3 GeV−1. Changing the angular
momentum in the decay to L ¼ 2 (D wave), and separately
varying R between 1 and 5 GeV−1, leads to a negligible
change in the peak positions. For the absolute mass
determination, the world-average Ξ0

b mass of 5791.9�
0.5 MeV [14] is used. The uncertainty of 0.5 MeV on this
mass dominates the systematic uncertainty and is quoted
separately in the final results.
The primary source of systematic uncertainty on the

natural widths of the observed peaks is from an imperfect
knowledge of the δM resolution, which is obtained from
simulation. Based on previous studies of D�þ → D0πþ
decays [76], the δM resolution in simulation agrees with
that of data within 10%. The impact of a�10% variation in
the resolution is evaluated using pseudoexperiments, where
each experiment is generated using the nominal signal
resolution function, and fitted with a 10% smaller or larger
δM resolution. Deviations of �0.10 MeV relative to the
true value of the width are found for a range of input widths
corresponding to that which is observed in data. The upper
limits on the natural width of the observed peaks are
evaluated by convoluting the likelihoods with this
0.10 MeV uncertainty, and finding the values of the widths
that contain 90% and 95% of the integrated probability. For
both the mass differences and widths, the total uncertainty
is dominated by the statistical component.
The measured masses and widths of the four peaks in the

Ξ0
bK

− mass spectrum are summarized in Table III. They are

TABLE I. Peak positions, widths, signal yields, and local and
global significances of the four mass peaks observed in the Ξ0

bK
−

mass spectra, as described in the text. The uncertainties are
statistical only.

Significances [σ]

Peak of
δM [MeV]

Width
[MeV]

Signal
yield Local Global

523.74� 0.31 0.00þ0.7
−0.0 15þ6

−5 3.6 2.1

538.40� 0.28 0.00þ0.4
−0.0 18þ6

−5 3.7 2.6

547.81� 0.26 0.47þ0.6
−0.5 47þ11

−10 7.2 6.7

557.98� 0.35 1.4þ1.0
−0.8 57þ14

−13 7.0 6.2

TABLE II. Systematic uncertainties on the measured peak
positions in the δM ¼ MðΞ0

bK
−Þ −MðΞ0

bÞ spectrum. The peaks
are numbered in order of increasing mass.

Source
Peak 1
[MeV]

Peak 2
[MeV]

Peak 3
[MeV]

Peak 4
[MeV]

Momentum scale 0.01 0.02 0.02 0.03
Energy loss 0.04 0.04 0.04 0.04
Signal shape 0.02 0.02 0.02 0.02
Background 0.05 0.05 0.01 0.01

Total 0.07 0.07 0.05 0.05
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qualitatively similar to those observed in the Ξþ
c K− mass

spectrum [7]. Arguably, the simplest interpretation of these
peaks is that they correspond to excited Ω−

b states, in
particular the L ¼ 1 angular momentum excitations of the
ground state, or possibly n ¼ 2 radial excitations. Many of
the quark model calculations predict L ¼ 1 states in this
mass region [17–26,28,33], and at least some of the states
should be narrow [21,23,33]. In particular, using the 3P0

model, five states in this mass region are predicted, with
approximately 8 MeVmass splittings; the four lightest have
partial width, ΓðΞ0

bK
−Þ, below 1 MeV, while that with the

largest mass has ΓðΞ0
bK

−Þ ¼ 1.49 MeV [23]. On the other
hand, predictions using the chiral quark-model indicate
that the JP ¼ 3

2
− and 5

2
− states are narrow, but the 1

2
− states

are wide, in the 50–100 MeV range [33].
Quark-diquark models have also predicted several

excited Ω−
b states in the region around 6.3 GeV [34,35,

42,77], with mass splittings similar to those observed here.
In an implementation of the 3P0 model, the JP ¼ 3

2
− and 3

2
−

are predicted to be narrow [77]. Molecular models have
also been employed, where two narrow JP ¼ 1

2
− states are

predicted at 6405 and 6465 MeV [78]; no statistically
significant peaks are seen at those masses with the current
dataset.
An alternate interpretation for one or more of the

observed peaks is that they arise from the decay of a
higher-mass excited Ω−

b state, Ω��−
b → Ξ00

b ð→ Ξ0
bπ

0ÞK−,
where the π0 meson is undetected. While the Ξ0−

b , Ξ�−
b

[76], and Ξ�0
b [79,80] baryons have been observed, the Ξ00

b
resonance is yet to be seen. If the Ξ00

b mass is in the interval
mΞ0

b
þmπ0 < mΞ00

b
< mΞ0−

b
, each of the observed narrow

peaks can be interpreted as having originated from the
above decay, provided that the corresponding Ω��−

b state is
narrow. In this case, their masses can be evaluated as
mΩ��−

b
¼ mΞ00

b
þ δMpeak, where the values of δMpeak are

taken from Table III. If the Ξ00
b baryon can only decay

electromagnetically to Ξ0
bγ, then the Ξ0

bK
− peaks would be

significantly broader and inconsistent with our data.
In summary, pp collision data collected with the LHCb

experiment at center-of-mass energies of 7, 8, and 13 TeV,
corresponding to integrated luminosities of 1, 2, and 6 fb−1,

respectively, have been used to search for near-threshold
Ξ0
bK

− resonances. Four new peaks are seen. Two of
the peaks, the Ωbð6340Þ− and Ωbð6350Þ−, are observed
with global (local) significance of 6.7 (7.2) and 6.2 (7.0),
respectively, while the two lower-mass peaks have
global (local) significance of 2.1 (3.6) and 2.6 (3.7).
The peaks are consistent with expectations for excited Ω−

b
resonances.
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lAlso at Università di Cagliari, Cagliari, Italy.
mAlso at INFN Sezione di Trieste, Trieste, Italy.
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