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Sensor-Based Reactive Symbolic Planning in Partially Known
Environments

Vasileios Vasilopoulos, William Vega-Brown, Omur Arslan, Nicholas Roy, Daniel E. Koditschek

Abstract— This paper considers the problem of completing
assemblies of passive objects in nonconvex environments, clut-
tered with convex obstacles of unknown position, shape and size
that satisfy a specific separation assumption. A differential drive
robot equipped with a gripper and a LIDAR sensor, capable of
perceiving its environment only locally, is used to position the
passive objects in a desired configuration. The method combines
the virtues of a deliberative planner generating high-level,
symbolic commands, with the formal guarantees of convergence
and obstacle avoidance of a reactive planner that requires
little onboard computation and is used online. The validity of
the proposed method is verified both with formal proofs and
numerical simulations.

I. INTRODUCTION

In this paper, we address a very specific instance of the
Warehouseman’s Problem [1] as a challenging setting in
which to advance the formal integration of deliberative and
reactive modes of robot assembly planning and control. We
posit a planar disk-shaped robot with velocity controlled
unicycle kinematics placed in an indoor environment with
known floor-plan, cluttered with convex obstacles of un-
known number and placement. The robot’s task is to bring a
collection of known disk-shaped objects from their initial
placement to their prescribed destination by approaching,
attaching and then pushing it into place, making sure to
avoid any collisions with the known walls, other objects and
unanticipated obstacles along the way.

A. Motivation and Related Work

The problem of using a higher-level planner to inform sub-
goals of a lower-level planner has been examined previously,
and we build on prior work in hybrid systems and task and
motion planning. However, most work has focused on ad
hoc abstractions that perform well empirically. For example,
Wolfe et al. [2] use a task hierarchy to guide the search for
a low-level plan by expanding high-level plans in a best-
first way. This approach guarantees hierarchical optimality:
it will generate the best plan which can be represented
in a given task hierarchy. Ensuring optimality has always
been difficult to achieve due to computational complexity.
Berenson et al [3] and Konidaris et al [4] use specific
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Fig. 1: A depiction of an intermediate stage of an assembly
process. The robot is tasked to move two objects from
their start to their final configuration using a gripper and a
LIDAR. The deliberative planner outputs a reference path
(purple) which the reactive planner has to follow, while
avoiding the unexpected obstacles (grey) in the (potentially)
nonconvex workspace. The resulting piecewise differentiable
object trajectory for one object is shown in red.

formulations of hierarchy without guaranteeing optimality.
Kaelbling and Lozano-Perez [5] avoid the computational cost
by committing to decisions at a high level of abstraction,
before a full low-level plan is available. Vega-Brown and Roy
[6] provided a further step towards tractable planning that
incorporated complex kinematic constraints, but no general
approach exists for incorporating complex dynamics.

On the other hand, planning the rearrangement of movable
objects has long been known to be algorithmically hard (e.g.,
PSPACE hardness was established in [1]) and a lively con-
temporary literature [7], [8] continues to explore conditions
under which the additional complexity of planning the grasps
results in a deterministically undecidable problem. While that
interface has been understood to be crucial for decades [9],
the literature on reactive approaches to this problem has been
far more sparse. Purely reactive formulations and provably
correct solutions to partial [10] and then complete [11] scalar
versions of the problem motivated the empirical study [12]
of a simplified proxy of the planar problem we consider here.



B. Contributions
We present a provably correct architecture (Fig. 3) for

planning and executing a successful solution to this Ware-
houseman’s problem by decomposition into an offline “delib-
erative” planning module and an online “reactive” execution
module. The deliberative planner, adapted from the proba-
bilistically complete (and optimal) algorithm of [13], is as-
signed the job of finding an assembly plan, while the reactive
planner accepts each next step of that planned sequence, and
uses online (LIDAR-style) sensory measurements to avoid
the unanticipated obstacles (as well as the known walls
and objects) by switching between following the deliberative
planner’s specified path or instead following a sensed wall.
The wall following algorithm is guaranteed to maintain the
robot distance from the wall within some specified bounds,
while making progress along the wall boundary.

After imposing specific constraints on how tightly packed
the unknown obstacles and the known objects’ initial and
final configurations can be, we prove that the hybrid control
scheme generated by this reactive planner must succeed in
achieving any specified step of the deliberative sequence with
no collisions along the way.

C. Organization of the paper
The paper is organized as follows. Section II describes

the problem and summarizes our approach. Section III gives
a brief outline of the high-level deliberative planner that
generates the sequence of appropriate symbolic commands to
accomplish the task at hand, without any information about
the internal obstacles. Section IV describes the fundamen-
tal idea of reactively switching between a path following
and a wall following mode, for both a holonomic and a
nonholonomic robot, while Section V extends our reactive
ideas to the navigation problem of a nonholonomic robot
grasping a passive object and using its sensor to position it
at a desired location. Section VI combines the ideas from
the previous two sections and describes the low-level, online
implementation of the symbolic action command set. Section
VII presents illustrative numerical examples for the ideas
presented, while Section VIII summarizes our observations
and ideas for future work.

II. PROBLEM FORMULATION
In this work, we consider a first-order, nonholonomically-

constrained, disk-shaped robot, centered at x ∈ R2 with
radius r ∈ R>0 and orientation ψ ∈ S1, using a gripper to
move circular objects in a closed, compact, not necessarily
convex workspace W ⊂ R2 as shown in Fig. 1, whose
boundary ∂W is assumed to be known. The robot dynamics
are described by

(ẋ, ψ̇) = B(ψ)uku (1)

with B(ψ) =

[
cosψ sinψ 0

0 0 1

]T
the differential constraint

matrix and uku = (v, ω) the input vector1 consisting of

1Throughout this paper, we will use the ordered set notation (∗, ∗, . . .)
and the matrix notation

[
∗ ∗ . . .

]T for vectors interchangeably.

a linear and an angular command. The robot is assumed
to possess a LIDAR, positioned at x, with a 360◦ angular
scanning range and a fixed sensing range R ∈ R>0 and is
tasked with moving each of the n ∈ N movable disk-shaped
objects, centered at p := (p1,p2, . . . ,pn) ∈ Wn with a
vector of radii (ρ1, ρ2, . . . , ρn) ∈ (R>0)n, from its initial
configuration to a user-specified goal configuration p∗ :=
(p∗1,p

∗
2, . . . ,p

∗
n) ∈ Wn. We assume that both the initial

configuration and the target configuration of the objects are
known. In addition to the known boundary of the workspace
∂W, the workspace is cluttered by an unknown number of
fixed, disjoint, convex obstacles of unknown position and
size, denoted by O := (O1, O2, . . .). To simplify the notation,
also define Ow := O ∪ ∂W.

We adopt the following assumptions to guarantee that
any robot-object pair can go around any obstacle in the
workspace along any possible direction, introduced only to
facilitate the proofs of our formal results, without being
necessary for the existence of some solution to the problem.

Assumption 1 (Obstacle separation) The obstacles O in the
workspace are separated from each other by clearance2 of
at least d(Oi, Oj) > 2(r+ maxk ρk), i 6= j, with k an index
spanning the set of movable objects. They are also separated
from the boundary of the (potentially nonconvex) workspace
W by at least d(Oi, ∂W) > 2(r + maxk ρk) for all i.

Assumption 1 means that there exists η ∈ R>0 such that

η = min

min
i,j
i6=j

d(Oi, Oj),min
i
d(Oi, ∂W)

 (2)

and η > 2(r + maxk ρk).
Also, in order to ensure successful positioning of all the

objects to their target configuration using reactive control
schemes, it is convenient to impose a further constraint on
how tightly packed the desired goal configuration can be.

Assumption 2 (Admissible object goals) For any object i ∈
{1, . . . , n}, d(p∗i ,Ow) > ρi + 2r.

The robot’s gripper can either be engaged or disengaged;
we will write g = 1 when the gripper is engaged and g = 0
when it is disengaged.

In order to accomplish the task of bringing every object
to its designated goal position, we endow the deliberative
planner with a set of three symbolic output action commands:
• MOVETOOBJECT(i,P) instructing the robot to move

and grasp the object i along the piecewise continuously
differentiable path P : [0, 1] → W such that P(0) = x
and P(1) = pi.

• POSITIONOBJECT(i,P) instructing the robot to push
the (assumed already grasped) object i toward its des-
ignated goal position, p∗i , along the piecewise contin-
uously differentiable path P : [0, 1] → W such that
P(0) = pi and P(1) = p∗i .

2Here the clearance between two sets A and B is defined as d(A,B) :=
inf{‖a− b‖ |a ∈ A,b ∈ B}
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Fig. 2: A depiction of a disk-shaped robot with radius r
(grey) moving a disk-shaped object with radius ρi (yellow).
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Fig. 3: An outline of the control approach followed in order
to position the objects. A high-level, deliberative planner
outputs a sequence of symbolic actions that are realized and
executed sequentially in low-level using a reactive controller.

• MOVE(P) instructing the robot to move along the piece-
wise continuously differentiable path P : [0, 1] → W

such that P(0) = x.
This symbolic command set, comprising the interface be-
tween the deliberative and reactive components of our plan-
ner enforces the following problem decomposition into the
complementary pair:

1) Find a symbolic plan, i.e a sequence of symbolic ac-
tions whose successful implementation is guaranteed to
complete the task.

2) Implement each of the symbolic actions using the appro-
priate commands uku according to the robot’s equations
of motion shown in (1), while avoiding the perceived
unanticipated by the deliberative planner obstacles.

Fig. 3 depicts this problem decomposition and the associ-
ated interface between the deliberative and reactive compo-
nents of our architecture.

III. DELIBERATIVE PLANNER

In order to obtain plans suitable for the reactive planner to
track, we use a high-level planner that combines the factored
orbital random geometric graph (FORGG) construction [6]
with the approximate angelic A* (AAA*) search algorithm
[14]. FORGG extends the asymptotic optimality guarantees
of the PRM* algorithm to problems involving discontinuous
differential constraints like contact and object manipulation.
Searching this planning graph using conventional methods
like A* is computationally expensive, due to the size of

search space. To facilitate efficient search, we employ the
angelic semantics developed by Marthi et al. [13] to encode
bounds on the possible cost of sets of possible plans. AAA*
uses these bounds to guide the search, allowing large parts
of the search space to be pruned away and accelerating the
search for a near-optimal high-level plan.

With this construction, the deliberative planner is supplied
with the initial position and size of the robot and the objects
to be placed, along with any information assumed to be
known (boundary of the workspace, walls, interior obstacles
etc.) and outputs a series of symbolic action commands
(MOVETOOBJECT, POSITIONOBJECT, MOVE) each asso-
ciated with a collision-free path P in order to accomplish
the task at hand.

IV. REACTIVE PLANNING FOR SINGLE ROBOTS
In this section we describe the (low-level) reactive al-

gorithms which guarantee collision avoidance and (almost)
global convergence3 to the plan provided by the (high-level)
deliberative planner, described in Section III. First, we focus
on the navigation problem of a single (fully actuated or
nonholonomically-constrained) robot, using tools from [16]
and [17], and we will show in Section V how to extend these
principles for the case of gripping contact.

A. Doubly-reactive planner for holonomic robots

First we consider a fully actuated disk-shaped robot cen-
tered at x ∈ R2 with radius r > 0, moving in a closed-convex
environment (denoted by W ⊂ R2) towards a goal location
x∗ ∈ R2. Although we use a differential drive robot for our
assembly problem here, we find it useful to present the basic
algorithm for fully actuated robots, especially since it will
be used in Section V. The robot dynamics are described by

ẋ = u(x) (3)

with u ∈ R2 the input. The sensory measurement of the
LIDAR at x ∈ W is modeled as in [17] by a polar curve
ρx : (−π, π]→ [0, R] as follows4

ρx(θ) := min

 R
min {‖p− x‖ |p ∈ ∂W, atan2(p− x) = θ}
min
i
{‖p− x‖ |p ∈ Oi, atan2(p− x) = θ}


(4)

We will also use the definitions of free space F, line-of-sight
local workspace LWL(x) and line-of-sight local free space
LFL(x) at x from [17].

Under the preceding definitions, it is shown in [17] that
the control law

u(x) = −k
(
x−ΠLFL(x)(x

∗)
)
, k ∈ R (5)

with ΠA : R2 → A denoting the projection function onto a
convex subset A ⊆ R2, i.e

ΠA(q) := arg min
a∈A

‖a− q‖ (6)

3It is well-known that the basin of a point attractor in a non-contractible
space must exclude a set of measure zero [15].

4See [17] for a discussion on the choice of LIDAR range R to avoid
obstacle occlusions.



asymptotically drives almost all configurations in F to the
goal x∗ while avoiding obstacles and not increasing the
Euclidean distance to the goal along the way.

B. Reactive path following

For a fixed goal x∗, the reactive control law in (5) guar-
antees convergence only for convex workspaces (punctured
by obstacles).

Therefore, inspired by [18], we apply the idea from
Section IV-A to the problem of a robot following a navigation
path P : [0, 1] →

◦
F, that joins a pair of initial and

final configurations x0,x1 ∈
◦
F in a potentially nonconvex

workspace and lies in the interior of the free space, i.e
P(0) = x0,P(1) = x1 and P(α) ∈

◦
F,∀α ∈ [0, 1].

As demonstrated in [18], the projected-path goal P(α∗)
with α∗ determined as5

α∗ = max{α ∈ [0, 1] |P(α) ∈ B (x, d(x, ∂F))} (7)

replaces x∗ in (5) as the target goal position and is constantly
updated as the agent moves along the path. Note that in
the LIDAR-based setting presented here, the distance of the
agent from the boundary of the free space d(x, ∂F) can
easily be determined as

d(x, ∂F) = min
θ
ρx(θ)− r (8)

C. Reactive wall following

As described in Section II and shown in Fig. 1, the path P

might not lie in the free space since the deliberative planner
is only aware of the boundary of the workspace and not of the
position or size of the internal obstacles. For this reason, we
present here a novel control law for reactive wall following,
inspired from the “bug algorithm” [19], that exhibits desired
formal guarantees.

The wall following law is triggered by saving the current
index α∗s of the path P when the distance of the agent
from the boundary of its free space, given in (8), drops
below a small critical value ε, i.e when d(x, ∂F) < ε. This
would imply that the robot enters a “danger zone” within the
vicinity of an unexpected obstacle. The goal now would be
to follow the boundary of that obstacle without losing it, in
order to find the path again.

Therefore, the robot first needs to select a specific direction
to consistently follow the boundary of the obstacle along that
direction. Since our problem is planar, there are only two
possible direction choices: clockwise (CW) or counterclock-
wise (CCW). Also, since the robot has only local information
about the obstacle based on the current LIDAR readings, a
greedy selection of the wall following direction is necessary.

Let θm ∈ (−π, π] be the LIDAR angle such that ρx(θm) =
min
θ
ρx(θ) corresponds to the minimum distance from the

blocking obstacle. Let nw(x) := −(cos θm, sin θm) denote
the normal vector to the boundary of the obstacle at the

5Here B(q, t) := {p ∈ W | ||p − q|| ≤ t}, i.e the ball of radius t
centered at q.
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Fig. 4: An example of computing the wall following local
free space LFw(x) (cyan) as the intersection of the local free
space LFL(x) (green) and the offset disk Dw (magenta) for a
robot with radius r positioned at x, encountering an obstacle
within its LIDAR footprint Lft(x) (red).

point of minimum distance and tw(x) = Jnw(x), with J :=[
0 −1
1 0

]
, the corresponding tangent vector.

Our proposed method uses the inner product tw,0 ·tP(α∗s),
with tw,0 denoting the tangent vector to the boundary of the
obstacle at the beginning of the wall following phase and
tP(α∗s) the tangent vector of the path P at α∗s . Then, the
value of a variable a is set to 1 for CCW motion and to -1
for CW motion (fixed for all future time) according to

a =

{
1, if tw,0 · tP(α∗s) ≥ 0
−1, if tw,0 · tP(α∗s) < 0

(9)

since tw(x) has counterclockwise direction around the ob-
stacle by construction.

Define the offset disk at x

Dw(x) := {p ∈W | ||p− xoffset(x)|| ≤ ε} (10)

with ε selected according to Assumption 1 to satisfy

0 < ε <
1

2

[
η − 2(r + max

j
ρj)

]
(11)

with η given in (2) and

xoffset(x) := x− (ρx(θm)− r)nw(x) (12)

Then define the wall following local free space LFw(x) as
at x

LFw(x) := LFL(x) ∩Dw(x) (13)

Since LFL(x) is convex [17],LFw(x) is convex as the
intersection of convex sets.

The wall following law is then given as

u(x) = −k (x− xp(x)) (14)

with

xp(x) := xoffset(x) +
ε

2
nw(x) + a

ε
√

3

2
tw(x) (15)



Lemma 1 If x ∈ F and d(x, ∂F) < ε with ε chosen
according to (11):

(i) The wall following free space LFw(x) contains x in
its interior.

(ii) LFw(x) = Dw(x) ∩ Hnw(x) with Hnw(x) the half
space

Hnw
(x) = {p ∈W | (p− xh(x)) · nw ≥ 0}

and xh(x) = x− 1
2 (ρx(θm)− r).

(iii) The point xp(x) lies on the boundary of LFw(x).

Proof. Included in [20]. �

Proposition 1 With the choice of ε in (11), the wall following
law in (14) has the following properties:

(i) It is piecewise continuously differentiable.
(ii) It generates a unique continuously differentiable flow,

defined for all future time.
(iii) It has no stationary points.
(iv) The free space F is positively invariant under its flow.
(v) Moreover, the set

{
p ∈W

∣∣∣ ε2 < d(p, ∂F) < ε
}

is pos-
itively invariant under its flow.

Proof. Included in [20]. �

We find it useful to include the following definition

Definition 1 The rate of progress along the boundary of the
observed obstacle at x is defined as

σ(x) :=
u(x) · tw(x)

||u(x)|| (16)

By combining all these results, we arrive at the following
Theorem:

Theorem 1 With a selection of ε as in (11), the wall
following law in (14) has no stationary points, leaves the
robot’s free space F positively invariant under its unique
continuously differentiable flow, and steers the robot along
the boundary of a unique obstacle in O in a clockwise or
counterclockwise fashion (according to the selection of a in
(9)) with a nonzero rate of progress σ, while maintaining a
distance of at most (r+ ε) and no less than

(
r + ε

2

)
from it.

Proof. Included in [20]. �

The robot exits the wall following mode and returns to
the path following mode once it encounters the path again,
i.e when α∗ = max{α ∈ [0, 1] |P(α) ∈ B (x, d(x, ∂F))} >
α∗s . An immediate Corollary of Theorem 1, along with path
continuity of P and Assumptions 1 and 2 is the following:

Corollary 1 If the robot enters the wall following mode, it
will exit it in finite time and return to the path following
mode.

Finally, since both the path following law [18] and the wall
following law generate continuously differentiable flows, we
find it useful to explicitly state the following result, in the
sense of sequential composition [21].

Theorem 2 In a workspace where Assumption 1 is satisfied,
any composition of path following and wall following phases
generates a unique piecewise continuously differentiable flow
for x, defined for all future time.

D. Extension to nonholonomic robots

As shown in [17], the preceding results can easily be
extended for the case of a differential-drive robot driving
towards a goal x∗, whose dynamics are given in (1). Here,
we will use a slightly different than [17] control law since
the robot possesses a gripper and must only move in the
forward direction to grasp objects. The following inputs are
used

v = max

{
−k
[
cosψ
sinψ

]T (
x−ΠLFv(x)(x

∗)
)
, 0

}
(17)

ω = −k atan2 (β2, β1) (18)

with

β1 =

[
cosψ
sinψ

]T (
x− ΠLFω(x)(x

∗) + ΠLFL(x)(x
∗)

2

)
(19)

β2 =

[
− sinψ
cosψ

]T (
x− ΠLFω(x)(x

∗) + ΠLFL(x)(x
∗)

2

)
(20)

in order to constrain the robot motion to forward only
and align with the desired target respectively. Here
LFv(x),LFω(x) are used as in [17].

Based on the preceding analysis, for a differential drive
robot, we will use x∗ = P(α∗) (with α∗ shown in (7)) in the
path following mode and x∗ = xp(x) in the wall following
mode. The following Theorem summarizes the qualitative
properties of the wall following law for differential drive
robots.

Theorem 3 With a selection of ε as in (11), the unicycle
wall following law in (17), (18) with x∗ = xp(x) as in (15)
leaves the robot’s free space F positively invariant under its
unique continuously differentiable flow, aligns the robot with
a tw(x) (according to the selection of a in (9)) in finite time
and steers the robot along the boundary of a unique obstacle
in O in a clockwise or counterclockwise fashion (depending
on a) with a nonzero rate of progress σ afterwards, while
maintaining a distance of at most (r + ε) from it.

Proof sketch. Included in [20]. �

We summarize the proposed method for switching be-
tween a path following and a wall following phase and
generating velocity commands for a differential drive
robot following a reference path P in [20, Algorithm
1], with the definition of an auxiliary symbolic action
NAVIGATEROBOT(P, r, ε, δ).

V. REACTIVE PLANNING FOR GRIPPING
CONTACT

In this Section, we describe a method for generating
suitable motion commands online for two objects in contact,



of which one is a differential drive robot and uses a gripper to
push the other, passive object on the plane. Our method con-
sists of generating “virtual” commands for different points
of interest in the robot-object pair and translating them to
“actual” commands for the robot using simple kinematic
maps.

A. Gripping contact kinematics

Consider the robot gripping an object i, as shown in Fig. 2.
We can find the position of the object center of mass xi ∈W

from the position of the robot center of mass x as

xi := x + (ρi + r) e‖ (21)

where φi = atan2(xi − x) and e‖ = (cosφi, sinφi) ∈ R2

is the unit vector along the line connecting the two bodies.
Since, the velocity of the object center of mass will be ẋi =
ẋ + (ρi + r) φ̇i e⊥ with e⊥ = (− sinφi, cosφi) ⊥ e‖, and
since the robot has a grip on the object along its line of
motion, so that the orientation of the robot ψ is always equal
to the robot-object bearing angle φi, we can use (1) to write

ẋi = Ti uku (22)

with the Jacobian Ti given by

Ti =

[
cosψ −(ρi + r) sinψ
sinψ (ρi + r) cosψ

]
(23)

and uku = (v, ω) the input vector as defined above.
Similarly, consider the circumscribed circle enclosing the

robot and the object with radius (ρi + r), as shown in Fig.
2. Its center point is located at

xi,c = x + ρi e‖ (24)

Following a similar procedure as above, we can show that

ẋi,c = Ti,c uku (25)

with the Jacobian Ti,c given by

Ti,c =

[
cosψ −ρi sinψ
sinψ ρi cosψ

]
(26)

B. Generating virtual commands

For the planning process, the fact that both Ti and Ti,c

are always non-singular implies that we can describe the
robot-object pair as either a dynamical system of the form

ẋi = ui(xi) (27)

or a dynamical system of the form

ẋi,c = ui,c(xi,c) (28)

since we can always prescribe (virtual) arbitrary velocity
commands ui or ui,c for either the object itself or for
the center point and then translate them to (actual) inputs
uku through (22) or (25) respectively (uku = T−1

i ui or
uku = T−1

i,c ui,c).
Since the circumscribed circle centered at xi,c is the

smallest circle enclosing both the robot and the object and
since Assumption 1 guarantees only that η > 2(r+maxk ρk),

we conclude that it is beneficial to consider the dynamical
system (28) (and generate virtual commands for the center
point xi,c) when following the path P that the high-level
planner provides. However, this will eventually position xi,c
to p∗i , instead of the object xi (which is desired). Therefore,
once the center point is placed to p∗i , we have to switch to
the system (27) and generate virtual commands for the object
xi to carefully position it to p∗i . Assumption 2 guarantees
that this is always possible. We can think of generating
commands ui and ui,c as a trade-off between careful object
positioning and agility in avoiding obstacles respectively.

C. LIDAR Range transformation

As described above, the robot-object pair is treated as a
single holonomic agent with radius ρi + r centered at xi,c
when following the reference path P. However, we know
that the LIDAR is positioned on the robot and its range
measurements are given with respect to x. Therefore, we
need a mechanism for translating these measurements from
x to xi,c. To this end, we describe the observed points from
the LIDAR using the function xLIDAR : (−π, π]→W

xLIDAR(θ) = x + ρx(θ) (cos θ, sin θ) (29)

and find the equivalent ranges from xi,c as

ρxi,c(θ) = min{R− ρi, ||xLIDAR(θ)− xi,c||} (30)

since R− ρi is the minimum distance that can be observed
from xi,c when no obstacles are present and corresponds
to the ray along the orientation ψ of the robot towards the
object.

We summarize the proposed algorithm for switching
between a path following and a wall following phase
and generating velocity commands for a robot-object
pair following a reference path P in [20, Algorithm
2], with the definition of an auxiliary symbolic action
NAVIGATEROBOTOBJECT(P, r, ρi, ε, δ).

VI. LOW-LEVEL IMPLEMENTATION OF
SYMBOLIC LANGUAGE

In this section, we describe the low-level implementation
and realization of the three symbolic actions introduced in
Section II, used to solve our assembly problem.

A. Action MOVETOOBJECT

The low-level implementation of this symbolic action is
quite straightforward, since the robot just needs to follow
the plan provided by the high-level planner and navigate to
a specific object using the auxiliary action NAVIGATEROBOT
[20, Algorithm 1]. The only caveat is that the robot needs
to be aligned with the object it needs to pick up in or-
der to engage the gripper. Since, no continuous law can
guarantee both position and orientation convergence for a
nonholonomically-constrained, differential drive robot [22]
and a discontinuous law needs to be introduced, we compute

α̃ := min{α ∈ [0, 1] |P(α) ∈ B(pi, ρi + r)} (31)



and “truncate” the path to P([0, α̃]). In this way, the robot
will navigate to P(α̃) (within a δ tolerance) which satisfies
||P(α̃)−pi|| = ρi+ r as desired. Then, in order to align the
robot with the object, the linear command v is set to zero
and the angular command is set to

ω = −k(φi − ψ) (32)

until φi = ψ. The low-level implementation is shown in [20,
Algorithm 3].

B. Action POSITIONOBJECT

From the preceding analysis in Section V and using the
auxiliary action NAVIGATEROBOTOBJECT, we can construct
the POSITIONOBJECT algorithm as shown in [20, Algorithm
4]. Since the task of NAVIGATEROBOTOBJECT is to bring
the object close enough to the destination in order to allow
careful positioning (allowed by Assumption 2), a final po-
sitioning step is required. To this end, instead of generating
virtual commands for the center of the circumscribed circle
of the robot-object pair as shown in (28), we generate
commands for the center of the object itself, as shown in
(27), according to the following law

ui = −k(xi − p∗i ) (33)

These virtual commands are then translated to actual robot
commands according to (22).

C. Action MOVE

This action is exactly like MOVETOOBJECT, but there is
no final orientation requirement. Its low-level implementation
is shown in [20, Algorithm 5].

Note here that the formal results accompanying both the
path following phase [18] and the wall following phase (The-
orems 1 and 3) along with Theorem 2 guarantee that every
symbolic action command will be successfully executed.

VII. NUMERICAL EXAMPLES

In this Section, we provide numerical examples6 of assem-
bly processes in various environments using the symbolic
action commands described above.

A. Environment packed circular obstacles

First, we test our algorithm in a rectangular, 20x20m
workspace, packed with circular obstacles, whose position
and size are unknown to the deliberative planner. The min-
imum separation η between the obstacles is chosen to be
only slightly above (e.g 5cm) the minimum allowed value
prescribed by Assumption 1, in order to demonstrate the
validity of our approach, deriving from the formal guarantees
of Theorem 1. The goal is to place an object to a desired
position, shown in 5. The deliberative planner outputs a
plan comprising of two actions: MOVETOOBJECT(1,P1)→
POSITIONOBJECT(1,P2), whose sequential execution and
the corresponding reference paths P1,P2 are depicted in Fig.
5.

6All simulations were run in MATLAB using ode45 and a gain k = 2.
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Fig. 5: A depiction of a packed two stage assembly process
with a fixed timestep, with the separation value just above
the minimum allowed value.

B. Cluttered environment with walls

In this paragraph, we demonstrate the execution of a
more challenging task. The robot should position the two
obstacles depicted in Fig. 6 to their predefined positions
within a polygonal workspace with walls, whose locations
are provided a-priori to the deliberative planner, and then
return to a “nest” location. The workspace is packed with
several convex, not-necessarily circular obstacles. As shown
in Fig. 6, the deliberative planner outputs a high-level
plan comprising of five actions: MOVETOOBJECT(1,P1)→
POSITIONOBJECT(1,P2) → MOVETOOBJECT(2,P3) →
POSITIONOBJECT(2,P4) → MOVE(P5), which is success-
fully executed by the reactive planner. An example for an
object trajectory during this execution is shown in Fig. 1.
Notice that, in contrast with several reactive wall following
schemes that require an estimate of the wall curvature, our
scheme can easily handle obstacles with corners. It is also
worth noting that the deliberative planner hit the maximum
number of expansions allowed and had difficulties extracting
a feasible plan when it was provided the exact position and
size of every obstacle, due to the highly packed construction.
This highlights another benefit of our approach; we can
significantly reduce the computational load of high-level
planners by tasking them only with the extraction of the
action sequence required, and using the reactive planner for
local obstacle avoidance and convergence online. This hap-
pens because the computational load of the reactive planner
remains the same regardless of the number of obstacles.

Finally, it is worth noting that the proposed scheme is
capable of executing a sequence of symbolic commands
provided by the deliberative planner, even when Assumptions
1 or 2 or the obstacle convexity are not satisfied. In the
accompanying video, we provide examples of successful
assemblies even in the absence of both obstacle convexity
and enough separation.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a provably correct architecture for
planning and executing a successful solution to an instance
of the Warehouseman’s problem by decomposition into an
offline “deliberative” planning module and an online “reac-
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Fig. 6: An illustration of the assembly process described
in Section VII-B, with a fixed timestep. The walls and
boundaries of the workspace, known to the deliberative
planner, are shown in black and the unexpected obstacles
handled by the reactive planner are shown in grey.

tive” execution module. A differential drive robot equipped
with a gripper and a LIDAR sensor, capable of perceiving
its environment only locally, is used to successfully position
the passive objects in a desired configuration with no col-
lisions along the way. Formal proofs and numerical results
demonstrate the validity of our method.

Future work will address the problem of closely integrat-
ing the reactive and deliberative planners and shifting more
of the planning burden to the reactive component, allowing
the deliberative planner to consider more complex dynamics
and generate paths faster and more efficiently. Moreover, we
plan to experimentally verify the reactive planning ideas for
pushing a grasped object, as presented in Section V.
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