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Abstract

The first enantioselective total synthesis of (−)-vallesine via a strategy that features a late-stage 

regioselective C17-oxidation, followed by a highly stereoselective transannular cyclization is 

reported. The versatility of this approach is highlighted by divergent synthesis of the archetypal 

alkaloid of this family, (+)-aspidospermidine, and an A-ring oxygenated derivative (+)-

deacetylaspidospermine, the precursor to (−)-vallesine, from a common intermediate.

Graphical abstract

The aspidosperma alkaloids, a family containing over 250 structurally diverse members, 

have been a subject of significant interest over several decades due to their structural 

complexity and diverse biological activity.1,2 The development of a unified strategy to access 

this diverse family of natural products is critical to enabling access to a multitude of these 

alkaloids for comprehensive chemical and biological studies. Our group has pursued a 

unified strategy to allow diversification of complex intermediates, en route to various 

members of this alkaloids family.3 One intriguing subset of the aspidosperma alkaloids is 

those which contain C17-oxidation, including the antiplasmodial alkaloid (−)-vallesine (1, 

Figure 1),4 (−)-aspidospermine (2),5 and (+)-deacetylaspidospermine (3).6 Related 

compounds include the C21-oxygenated variants (+)-haplocidine (5)7 and (−)-

cylindrocarpidine (6).8 Recently, we reported the first total synthesis of (+)-haplocidine (5) 

through a strategy that employs highly stereoselective cyclization events and regioselective 

late-stage A-ring functionalization.3e This strategy relies on the in situ masking of the C9-

amine via opening of the C19-hemiaminal to form an iminium ion, which is subject to 

directed, palladium-catalyzed ortho-C–H-acetoxylation of the aspidosperma indoline core. 
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While this strategy provided direct access to oxidized members of the fendleridine 

subfamily, it is not a viable approach for (−)-vallesine (1) and related alkaloids without C21-

oxidation. We therefore sought a strategy toward these alkaloids as part of our interest in 

biogenetically inspired late-stage arene oxidation of aspidosperma alkaloids. Herein, we 

describe the first total synthesis of (−)-vallesine (1) based on a late-stage regioselective 

complex indole boronation strategy. This strategy provides access to both (+)-

deacetylaspidospermine (3) and (+)-aspidospermidine (4) from a common advanced 

intermediate.

While aspidospermine (2)9,10 has served as an archetypal target for C17-oxidized 

aspidosperma alkaloids, most current synthetic routes rely on a late-stage Fischer indole 

synthesis utilizing 2-methoxyphenylhydrazine.9a Recent advances include the synthesis of 

(−)-aspidospermine (2) through an intramolecular cycloaddition cascade strategy,10b and the 

palladium-catalyzed decarboxylative asymmetric allylation approach toward (+)-

aspidospermine (2).10c The reliance on introducing C17-oxidation from commercial 

materials is a shared concept in all prior approaches to aspidospermine (2). We identified an 

opportunity to apply a strategy for regioselective indole boronation11,12 to offer a new 

opportunity for diversification of key intermediates en route to aspidosperma alkaloids.

Our retrosynthetic analysis of the C17-oxidized aspidosperma alkaloids is illustrated in 

Scheme 1, wherein we envisioned (−)-vallesine (1) to arise from N1-formylation of (+)-

deacetylaspidospermine (3). Informed by our studies of transannular cyclization via amide 

activation3c,d and key prior contributions,13 we envisioned (+)-deacetylaspidospermine (3) to 

arise from lactam 7. The necessary oxidation state at C17 would be introduced via 

regioselective boronation of indole 10, a compound related to intermediates that we have 

employed in syntheses of other aspidosperma alkaloids without A-ring oxygenation.3c

Consistent with our interest in functionalization of complex indole-derived compounds and 

inspired by advances in Ir-catalyzed boronation of various arenes,12 our group has reported a 

direct and scalable method for the one-pot conversion of C3-alkylindoles, including 

tryptophans and tryptamines, to the corresponding C7-boronated compounds (Scheme 2A).
11 Central to this strategy was a diboronation/protodeboronation sequence that took 

advantage of the increased nucleophilicity and basicity of the C2 position of the C3-

substituted indoles. Related advances include the regioselective C6-boronation of tryptophan 

derivatives, wherein a triisopropylsilyl blocking group influences the regiochemical 

outcome.14 In our planned boronation strategy to C17-oxygenated aspidosperma alkaloids, 

the synthetic intermediate 10 contains a disubstituted indole,3c,e–f possibly allowing a direct 

regioselective C17-boronation (Scheme 2B).12c,e–f

We have previously demonstrated the synthesis of lactam (+)-8 in >99% ee via an 

asymmetric alkylation strategy3c utilizing the synthetic (+)-(1R,2R)-pseudoephenamine 

chiral auxiliary, prepared in four steps from commercial materials.15 For the purposes of this 

study, we required lactam (−)-8, which we chose to synthesize through a parallel strategy 

utilizing the commercially available (+)-(1S,2S)-pseudoephedrine chiral auxiliary3a to 

provide lactam (−)-8 in 80% ee.16 In order to access the indole substrate for the planned 

boronation, we conducted removal of the N1-para-methoxybenzyl group from lactam (−)-8 
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under Birch reductive conditions using sodium metal in liquid ammonia to afford lactam 9 in 

91% yield (Scheme 3), followed by hydrogenation to afford indole 10 in 99% yield. 

Importantly, complete and regioselective boronation of indole 10 was accomplished using 

[Ir(cod)OMe]2 and pinacolborane to provide boronic ester 11, which was then subjected to 

oxidation using a solution of aqueous hydroxylamine to provide phenol 12 in 31% yield over 

two steps (Scheme 3).

Next, we required optimal conditions for transannular cyclization to secure the pentacyclic 

aspidosperma core of (−)-vallesine (1). While we have previously promoted transannular 

cyclization of lactam (−)-8 through an electrophilic amide activation strategy to enable 

access to the corresponding C19-iminium ion for further derivatization,3 we envisioned a 

partial reduction strategy would be more effective in conversion of intermediate 12 to 

alkaloid (−)-1 Inspired by seminal reports13 using lithium aluminum hydride for the partial 

reduction of related lactams, we chose the milder diisobutylaluminum hydride to enable 

direct, efficient formation of imine 13 from lactam 10 as a model substrate for the projected 

cyclization en route to (−)-vallesine (1). The intermediate imine 13 was reduced using 

lithium aluminum hydride to afford (+)-aspidospermidine (4)2,3c in 77% yield over two steps 

from lactam 10 (Scheme 4).

With the optimized conditions for reductive transannular cyclization in hand, we evaluated 

their application to the requisite C17-oxygenated aspidosperma intermediate. Methylation of 

phenol 12 with iodomethane in the presence of cesium carbonate afforded C17-methyl ether 

7 in 98% yield as the optimal substrate for transannular cyclization (Scheme 5). In the event, 

exposure of lactam 7 to diisobutylaluminum hydride led to transannular cyclization, and the 

resultant imine was reduced using lithium aluminum hydride to afford (+)-

deacetylaspidospermine (3) in 55% yield over two steps. All spectroscopic data for (+)-

deacetylaspidospermine (3) were consistent with the literature reports.6,10d The optical 

rotation data for alkaloid (+)-3 (observed [α]D
24 = +25 (c = 0.83, CHCl3); lit. [α]D = +3 

(CHCl3)6c and [α]D = +8 (MeOH)6f and [α]D
25 = +4.7 (c = 1.0 CHCl3)10d) indicated the 

correct sign with an increased magnitude as compared to the literature reports.16 

Furthermore, completion of the first total synthesis of (−)-vallesine (1) was achieved via 

formylation of (+)-deacetylaspidospermine (3) using acetic anhydride in formic acid to 

afford alkaloid (−)-1 in 87% yield. All spectroscopic data, as well as the optical rotation 

data, for (−)-vallesine (1, observed [α]D
24 = −71 (c = 0.71, CHCl3); lit. [α]D = −91 (c = 1, 

CHCl3)4b) were consistent with the literature reports.4,6f,16

We describe the first total synthesis of (−)-vallesine (1) based on a strategy involving late-

stage regioselective complex indole boronation, followed by transannular cyclization. This 

strategy uniquely offers access to both (+)-deacetylaspidospermine (3) and (+)-

aspidospermidine (4), representing A-ring oxidized and nonoxidized aspidosperma 

alkaloids, respectively, from a common intermediate. This approach not only removes the 

need for reliance on starting material to introduce the C17-oxidation found in a subset of 

aspidosperma alkaloids, but it also serves as the first example of boronation chemistry to 

secure the C17-oxygenation in these alkaloids.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structure of (−)-vallesine (1) and related aspidosperma alkaloids.
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Scheme 1. 
Retrosynthetic Analysis
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Scheme 2. 
Indole Boronation Strategy
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Scheme 3. 
Synthesis of C17-Oxidized Intermediate Phenol 12
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Scheme 4. 
Synthesis of (+)-Aspidospermidine (4)
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Scheme 5. 
Synthesis of (+)-Deacetylaspidospermine (3) and (−)-Vallesine (1)
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