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Abstract

We consider a general model of an open multiclass queueing network with Poisson
arrivals and exponentially distributed service times. The routing may be class depen-
dent and can have deterministic or probabilistic character. Different classes can have
different service requirements at each node of the network. The performance objective
is to minimize a weighted sum of the expected response times of different classes. We
propose a new method for finding a lower bound on achievable performance. Based
mainly on conservation laws ideas, we derive a polyhedral space which includes the
whole set of points with achievable response times (i.e. the achievable region) by sta-
ble and preemptive scheduling policies. Optimizing over this polyhedron, we derive a
lower bound on achievable performance. We check its tightness by simulating heuris-
tic scheduling policies. We prove that for the special case of single-station networks
(multiclass queues and Klimov’s model), this polyhedron is the achievable region.
Moreover, the proposed method can be viewed as an extension of conservation laws
to a general model of an open multiclass queueing network. In terms of computational
complexity and in contrast to simulation-based existing methods, the calculation of
the lower bound consists of solving an LP with both the number of variables and
constraints being polynomial to the number of classes. In terms of the tightness of
the bound, our method is at least as good as existing methods.
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Chapter 1

Introduction

A multiclass queueing network is one that services multiple types of customers which
may differ in their arrival processes, service requirements, route through the network
as well as cost per unit of waiting time. A very important problem that often arises
in such a system is to find out the optimal way to slip customers by the network while
minimizing the expected sojourn time of each customer type. There are two kinds of
decisions involved in this optimization problem: sequencing and routing decisions. A
sequencing policy determines which type of customer to serve at each station of the
network every moment in time; a routing policy determines which route each type of

customer should follow to get through the network.

Numerous applications point out the importance of the problem described above.
Packet-switching communication networks with different types of packets and differ-
ent priorities between those packet-types as well as job shop manufacturing systems
are among them. The scheduling control of a CPU in a multi-level programming
computer system constitutes another application. In all these systems it is desirable
to specify, if possible, or just to characterize an optimal strategy that minimizes a

linear cost function of the expected waiting times in every queue of the network.

The control of multiclass queueing networks is a mathematically challenging prob-

lem. In order to achieve optimality, stations have to decide which of the competing



customer types to serve at each point in time, based on information about the load
conditions of various other stations. Additionally, customers can choose their route
through the network taking into account the current state of various queues. Those
interactions between various queues create serious dependencies among them and pre-
vent exact performance analysis which, whenever it can be done, is generally achieved
through approximations. Moreover, optimizing a multiclass queueing network is an
even harder problem. Thus, not surprisingly, simulation is the most common practice

among researchers as a tool of evaluating heuristic policies.

The research community has not developed until now analytical tools to evaluate
the closeness to optimality of proposed heuristic policies. The derivation of lower and
upper bounds on achievable performance is the aim of this thesis. Tight lower bounds
provide a good estimation of the proximity to optimality of the proposed policies.
Upper bounds, other than the straw policies like first-come first-serve (FCFS), which
come from heuristic scheduling policies restrict the feasible space and can probably
give a relatively good intuition on the character of the optimal policy. Taking into
consideration that a lower bound on achievable performance is not necessarily achiev-
able by a specific policy, a policy within, say, 10 % of the lower bound is considered
a very good policy.

1.1 Literature Review

A large variety of multiclass networks is presented in a survey paper by Kelly and
Laws [KeLa]. Results from many researchers are provided when the network is in
heavy traffic. In particular, extensive use is made of the so-called Brownian network
models developed by Harrison and his co-authors Reiman and Wein [Harr, HaDa,

Reim, HaWe, Weil, Wei2, Wei3).

Perhaps, this heavy traffic scheduling approach, is one of the most successful ap-

proaches for controlling multiclass queueing networks. It proposes heuristic policies



which typically outperform more traditional policies. It has been more successful in
closed networks and networks with controllable input, but has not been particularly
successful in scheduling open networks which is the focus of this thesis. In the only
study that concerns lower bounds, Ou and Wein in [OuWe] derive “pathwise” lower
bounds for general open queueing networks with deterministic routing. By pathwise
we mean that a bound on a measure of the “work to be done in the network” is
derived for every sample path. They also calculate steady-state bounds by basically
averaging over all sample paths. But, since their bounds are “pathwise”, simulation

is needed for their derivation.

Harrison and Wein in [HaWe] include some heavy-traffic scheduling results for a
simple two-station network that we are also considering in this thesis (Chapter 2).
Wein in [Weil, Wei2] also includes heavy traffic-scheduling results in a networks where

admission control is applied.

Kumar, in [Kuma] treats a category of manufacturing systems which he calls re-
entrant lines. Some simple bounds are proposed, stability is proven for some policies

and a number of policies are compared via simulation.

One very interesting approach, that stimulates the work in this thesis is to try to
characterize the whole region of achievable performance in the problem of schedul-
ing multiclass queueing networks. This region, which is constrained in the positive
orthant, is defined such that every point in it corresponds to the performance of a
valid policy. In addition, there is no valid policy with performance outside of the
region. Having determined the achievable region, the scheduling problem reduces to
a mathematical programming problem. More precisely, optimization of the objective
function over this space yields the optimal performance. In [ShYa), Shantikumar and
Yao follow this approach and study several variations of a multiclass queue. They
are able to exactly characterize the achievable space and prove that, in the cases

they studied, this space has a very special combinatorial structure; it is a polymatroid
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polytope (see Chapter 4 for a definition). They also prove that the optimal policy is a
strict priority rule. Their results partially extend to some queueing networks also, but
under stringent restrictions. N amely, they assume that different types of customers
are identically treated in the network, by having the same routing probabil.ities and

the same service requirements at each station of the network.

In a recent work ([Tsou]) Tsoucas, derives the achievable region for a scheduling
problem introduced by Klimov ((Klim]). This model is basically a multiclass queue
with feedback. It turns out that in this problem, the optimal policy is again a strict
priority policy that can be found by an algorithm initially given by Klimov. This

algorithm is also derived in (Tsou] by different means.

1.2 Background Material; Conservation Laws

Since this thesis extends the notion of conservation laws in single-server systems to
open multiclass queueing networks, in this section, we are discussing about the con-

servation laws (equalities and inequalities) in a single server multiclass queue.

The following discussion is mainly based in [GeMi, chap. 6]. Consider a multiclass
single-server queue with N classes, where the server has unjt speed. Interarrival and
service times can be arbitrary. Let us define as virtual load, denoted by Vs(t), the
total amount of work in the system, wdrking under scheduling strategy S, at time ¢.
Let us also define a policy to be work-conserving if does not allow the server to be
idle when there are jdbs in the system and does not cause jobs to depart before they

are finished. We are making the following assumptions:

* The stochastic process Vs(t) has an equilibrium distribution with finite steady-

state mean V.
e Service times are independent and identically distributed.
o The scheduling strategies we are considering are non-anticipative (i.e. only

11



information about the present and the past of the queueing process is used in

making scheduling decisions).

The third assumption is necessary in order that the service time distribution of a job
from a particular class, given that the job is in the system, is the same as the uncon-
ditional distribution. The second assumption asserts that the server cannot obtajn

information for future service times from past service times.

It can be seen from the definition of Vs(t) that it is independent of the scheduling
strategy S as long as we consider work-conserving policies. If by Vs, we denote the
steady-state average virtual load of class r (i.e. the sum of the average remaining ser-
vice times of the class 7 jobs present in the system) then this observation is equivalent

to the equation:

N
Z Vs, =V (1.1)

r=1
where V' is a constant independent from the scheduling strategy. Equation (1.1) is

the so-called conservation law and is true for every scheduling strategy 5.

Let us now denote by g any non-empty subset of classes. If by V§ we denote the
steady-state average virtual load of jobs whose class belongs to the set g and if we
allow preemptive policies then there exists a scheduling strategy that minimizes V4.
Namely, it holds that:

VE > Ve, (1.2)

where §* is the strategy that assigns preemptive priority to the classes in g over the

classes not in g. Equation (1.2) can be rewritten as:

3 Vs, > V¥ (1.3)

rEg

where V7 is the steady-state average virtual load in a system where only classes in the
set g arrive. Thus, (1.3) is a conservation inequality and it basically states that the

best we can do for jobs whose class belongs in g is to give them preemptive priority

12



over the remaining jobs.

The space defined by (1.1) and (1.3) is a polytope that includes the achievable
region. Moreover, since at each vertex of the polytope some of the inequalities (1.3)
are satisfied with equality and V9 is achievable by a policy, it can be shown that every
vertex corresponds to a policy. Since every point in the polytope can be written as a
convex combination of the vertices, every point in the above polytope is achieved by
a randomized policy. This argument proves that the space defined by (1.1) and (1.3)
is the achievable region for work-conserving and preemptive policies that satisfy the
assumptions introduced. Using these formulas one can derive the achievable region in
an M/M/1 multiclass queue. In this case, it is also possible to calculate the constants

V and V9 and thus to obtain the achievable region explicitly.

1.3 Problem Formulation

In this section we define the most general queueing network model that we are consid-
ering in this thesis. All the other models that we are using can be easily transformed

to it.

Consider an open multiclass queueing network with NV single server stations and
R different job types. Jobs may change type as they move from one node to another.
In particular, a job of type r, when completing service at node i goes to node j as
a type s job with probability p;,.;, and leaves the network with probability p; .o =
1 = 34 Pirrsjs- There are r independent Poisson streams of arrivals to the network,
one for each type of customers. The Poisson arrival process for customers of type r
has rate Ao, and these customers join the ¢ station with probability ¢;.. The pair
(,7) is called class and the class (%,7) requires an exponentially distributed service
with rate p;,. Let n(;,)(t) be the number of class (4,7) customers, present in the
network at time t. The optimization problem is to determine a global scheduling

policy that minimizes a linear cost function of the form (i) CGr)T(ir)y Z(ir) being

13



the expected response time (waiting + service time) of class (¢,7) and ¢(;,) being
given finite weights. Note that only sequencing decisions are involved. The routing
probabilities, which are class dependent, are given and are not subject to optimization.
Our objective is to derive a region that includes the region of achievable performance

for this network model.

1.4 Assumptions

In this section we define the class of policies that we are considering valid. Throughout

the thesis, unless explicitly stated otherwise, we are considering policies such that:

Assumption A The stochastic process n;.(t) has a unique invariant distribution

with steady-state mean n;,, for every class (i,r) of customers.

Assumption B For every class (i,7) of customers, E[n?,(t)] < co, where the ezpec-

tation is taken with respect to the invariant distribution.

Assumption C The scheduling strategies we are considering are non-anticipative
(i.e. only information about the present and the past of the queueing process is used

in making scheduling decisions).
Assumption D Preemption is allowed.

Notice that we are not restricting ourselves to work-conserving policies.

1.5 Contributions of the Thesis

The main contribution of the thesis is that it proposes a new method, based mainly
on conservation laws ideas (see (GeMi, ShYa]) and on ideas in [Kuma), to derive linear
inequalities and equalities involving the mean response time of the different classes
of customers in the network. These expressions define a polyhedron that contains
the achievable region. Thus, optimization over this approximate region provides a

lower bound on the achievable performance. We prove that our characterization is

14



exact for the well known case of the multiclass queue [GeMi, KIv2] and for the case
of the Klimov’s problem (see [Klim, Tsou]) 1. As a result, our approach can be seen
as a natural extension of conservation laws to multiclass queueing networks. Qur
technique includes the case of both deterministic and probabilistic routing. To the
best of our knowledge, this is the first attempt to apply conservation ideas to an open

multiclass queueing network with a general structure.

In the examples that we studied, we found that the tightness of our lower bound
on achievable performance is, approximately, in the the same order of magnitude
as “pathwise” bounds derived in [OuWe| with a technique that needs a simulation
experiment for the calculation of the bound. Moreover, our lower bound can be
computed in a number of steps which is a polynomial function of the number of
classes in the network. Namely, the calculation of the lower bound consists of solving
a linear programming problem with O(n?) variables and O(n?) constraints, n being

the number of classes in the network.

1.6 Detailed Summary of Results and Organiza-

tion of the Thesis

The rest of the thesis is organized as follows:

In Chapter 2, in order to illustrate our approach, we start with a well-studied, sim-
ple, open network. We derive the conservation equalities and inequalities mentioned
in the previous section. These equations, along with some more based on different
ideas, define an approximate performance region for the problem. Optimization over
this region yields the lower bound on achievable performance. We also discuss some
heuristic policies whose performance yields an upper bound. At the end of the chap-

ter, we consider some simple limiting cases for the traffic parameters of the network

!Since in the literature these problems are studied within the class of work-conserving policies,
in order to establish the equivalence we restrict ourselves to work-conserving policies.
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and show that for policies which are “intuitively” optimal we can prove asymptotic

optimality via our lower bounds.

In Chapter 3, we apply the bounding method illustrated in Chapter 2 to a general
open multiclass network with Poisson arrivals and exponentially distributed service
times, where different classes have the same service requirement at each node of the
network. The method basically consists of writing 2" — 1 inequalities, n being the
total number of classes in the network. We also slightly modify this method to include
networks with probabilistic routing and different service requirements among classes

at each node of the network.

In Chapter 4, we prove that we can get the exact characterization for an M /M/1
multiclass queue and for Klimov’s problem ? with Poisson arrivals and exponentially
distributed service times. Thus, we justify our claim that the proposed bounding
method can be viewed as an extension of conservation laws to networks. Moreover, it
provides an alternative method for deriving the achievable spaces for the multiclass
queue and Klimov’s model. In particular, we derive the conservation equalities and
inequalities for both models and prove that the region they define is the achievable
region. For the multiclass queue the result is also proven in [GeMi] using a different
approach. For Klimov’s problem, we prove that the achievable region we get has the
same structure as the one described in [Tsou]. This is a new result since Tsoucas
considers general interarrival and services times along with non-preemptive policies.
He provides only the structure of the achievable region by deriving it in terms of an

arbitrary function, while we are deriving it explicitly.

In Chapter 5, we propose a refined bounding method that yields our tightest lower
bound. The method consists of writing only conservation equalities. In addition, it
makes the numerical calculation of the lower bound less burdensome, computation-

ally. Moreover, we provide a proof, for the case of the multiclass queue, that the

%in this chapter we restrict ourselves to work-conserving policies

16



refined method is consistent with the earlier one. Namely, we prove that the poly-
hedral space derived in Chapter 4 for the multiclass queue is a projection of the
polyhedral space derived via the refined method. This is an interesting result from a

purely combinatorial point of view.

In Chapter 6, both methods are applied to three specific network examples consid-
ered in the literature and numerical results are obtained for various traffic conditions.
We believe that these experiments demonstrate that the methods proposed in this

thesis yield in most of the cases adequately tight lower bounds.

Finally, in Chapter 7, we conclude and we mention some open problems.

17



Chapter 2

A Simple Two-Station Network

Our goal in this chapter is to illustrate our methodology in a relatively simple exam-

ple and to gain some useful insights.

Consider the network, with two types of customers, depicted in Figure 2-1. Type
1 customers visit stations 1 and 2, in that order, before exiting the network and type
2 customers visit only station 1 before exiting the network. Both arrival processes
are Poisson with rates ), )\, for customers of type 1,2 respectively. Service times at
stations 1 and 2 are exponentially distributed with parameters u,, u, respectively. In
order to ensure that at least one stable policy exists, we assume that )\, + A2 < g
and A; < p;. We define class 1 customers to be type 1 customers at station 1, class
2 customers to be type 2 customers at station 1 and class 3 customers to be type 1
customers at station 2. Let z;, i = 1,2,3, be the expected response time (waiting +
service time) of class ¢ customers. Note that the existence and finiteness of these ex-
pected response times is guaranteed by Assumption A in Sec. 1.4. The optimization
problem is to determine a scheduling policy at station 1 that minimizes a linear cost

function of the form Ef=1 ¢:iz; where c; are given finite weights.

In [HaWe], Harrison and Wein examine this particular network within the Brow-
nian motion model framework when interarrival and service times have a general

distribution. Their objective function being the total expected number of customers
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Type 1

Figure 2-1: A simple two-station network

in the network, they derive a pathwise lower bound on achievable performance and
propose a threshold policy. They then show via simulation that the relative difference
between the performance of the proposed policy and the lower bound becomes small
as the load is increased towards the heavy traffic limit. In [ChYY], Chen et al. follow
a stochastic intensity control approach. They model the arrival and service processes
as counting processes with controllable stochastic intensities and they try to schedule
the server in station 1 in order to minimize a discounted cost function over an infinite
time horizon. They establish a switching curve structure and they prove the optimal-
ity of simple policies in some specific cases. They also propose heuristic policies for

other more difficult cases.

In this chapter we will at first derive lower bounds by :

1. A unified approach which yields 23 — 1 conservation inequalities (that is, one
inequality for each non-empty subset of the three classes). We refer to them
as conservation inequalities because they are based on the conservation of the

work to be done in the network.
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2. Using some more ideas, such as stability conditions, which properly exploit the
special structure of this network but can also be extended to the more general

setting of open multiclass queueing networks.

We will then derive several upper bounds and prove, for some special load conditions,

asymptotic optimality of certain policies, using the lower bounds.

2.1 Lower Bounds

2.1.1 Conservation Inequalities

Let n;(t),7 = 1,2,3 be the number of customers of class i present in the network at

time ¢. Consider the following potential function :

BS(t) = Y f(ijni(t) (2.1)

i€S
where S is a subset of classes and f5(3) are positive multiplying constants, depending
on the class and on the subset S, which we hereafter call f-parameters. This function
can be thought as a measure of the work to be done in the network at time ¢. Using
a probabilistic argument we obtain a lower bound on the mean “amount of work to

be done”. The results are summarized in the following theorem:

Theorem 2.1 For the specific network we are considering in this chapter and for
every policy satisfying the assumptions introduced in Section 1.4 the following in-

equalities hold:

My + dpzy > m/\_l/\“tx_z/\z (2:2)
T > 1 (2.3)
B = A
Ty > 1 (2.4)
B1— Az
za > 4 (2.5)
H2
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1

>
o1+ 2 (2.6)
A+ Ag
A2Z2 + \zg > —m —— 2.7
242 13_“1+#2_A2 ( )
I+ A
2/\131 + /\21}2 + /\19:3 Z 1+ A (2.8)

B+ p2 — 22 — Ag

Proof : We shall apply a common technique and force servers to work continu-
ously even when the station is empty. Thus, at service completions customers depart
only if they are present. This modification does not alter the behavior of the system
because of the memoryless property of the exponential distribution. In particular,
when an arriving customer finds the server working on a fictitious customer, his ser-
vice time is the residual life of the service time for the fictitious customer which is
still exponentially distributed. Let 7, be the sequence of times immediately after an
arrival or a service completion (fictitious or real). Let also denote by 1{-} the indi-
cator function; that is, 1{A} = 1 if event A occurs and zero otherwise. In addition,
by o.,, we denote the o-field generated by events up to and including time r, or,

intuitively, the previous history. Finally, without loss of generality, let
Mt+A+p+p=1

in order to make notation easier. Note that what we are doing is that we uniformize
the underlying Markov chain corresponding to the network. Events occur according to
a common “Poisson clock” of rate 1 and the self-transitions correspond to departures
of fictitious customers. We are going to apply this uniformization again in Chapter
3 where we extend this method to open multiclass networks where classes may have
different service requirements at each node. Next, we demonstrate the derivation of
the bounds given in the theorem’s statement, for each specific choice of the subset S.
Therefore, dropping S from R%(t) and f5(i), we obtain:
o for S = {1,2}:

B[R (tas1) | or] = Ai(R(m) + £(1))* + a(R(ra) + £(2))* +
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tal{server 1 busy from class 1 at T} (R(1,) ~ f(1))? +
#1l{server 1 busy from class 2 at 7, }(R(r,) — f(2))? +
#11{server 1 idle at T }R¥(1,) + #2 R*(1,)

We expand the squared terms and observe that if we set f(1) = f(2) = f, the term:

2p 1{server 1 busy from class 1 at Ta}R(7.) (1) +
2p11{server 1 busy from class 2 at .} R(7,) f(2)

can be written as:

2p11{server 1 busy at T} R(1,) fa

Using also that:

1{server 1 busy at T} <1 (2.9)

we get:

E[R¥(ta) | 0r,] > R¥(ra) + M1 £2(1) + A2 f%(2) +
#11{server 1 busy from class 1 at T} (1) +
#1l{server 1 busy from class 2 at ™} f3(2) -
2p R(0) fo +
(2A£(1) + 20, £(2)) R(r., ) (2.10)

we did a proper matching between the f-parameters (f(1) = f(2) = £.) in order
to obtain tighter bounds. According to Assumption (B) in Sec. 1.4, E[R*(r,)] is
finite. In addition, under the invariant distribution of ni(t) i =1,2, 3, considered in

Assumption (A), we have:
E[1{server i busy from class jat 7.} = E[1{server i busy from class j at t} Vt,n
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and

E[R(tay1)] = E[R(r,)] = E[R(t)] Vt,n

because the events 7, are triggered by a “Poisson clock” of rate 1, and it is a fact that
Poisson arrivals see time averages (PASTA property). Thus, by taking expectations
with respect to the invariant distribution of ni(t) i =1,2,3, in equation (2.10) we

obtain:

MfA(1) + A2 £3(2)
E[R(r.)] > #ifa — M f(1) = X2 £(2)

using :

E[1{server i busy from class jat .} = A fori,7 =1,2 (2.11)
Hi

In addition, by Little’s law we have :
E[R(r0)] = M f(1)zy + A2 f(2)z, (2.12)

Therefore since f(1) = f(2) = f, we finally obtain (2.2).
Similarly, for the other possible choices of S , We get:
e for § = {1} :

B[R} (ras1) [ 0r] = M(R(ma) + F(1)* + MR (r,) +
m1l{server 1 busy from class 1 at T} (R(m) — f(1))? +
p11{server 1 idle from class 1 at Ta}R?(10) + p2 R¥(1y)

Observing that:
1{server 1 busy from class 1 at 7,,} < 1, (2.13)

by using (2.11) and by taking expectations we get:

A1f3(1)
R 2 e R A

By Little’s law we obtain (2.3).
e for § = {2}, similarly, we obtain (2.4).
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e for § = {3} :

E[Rz("'nﬂ) | ora] = ’\le(Tn) + Asz(Tn) +

pa1l{server 1 busy from class 1 at T} (R(T) + f(3))?% +
prl{server 1 idle from class 1 at Ta}RE(10) +
p21{server 2 busy from class 3 at T} (R(T) — £(3))? +

pal{server 2 idle at 7, } R*(r,)
Observing that:
1{server 1 busy from class 1 at T} >0
1{server 2 busy from class 3 at ™} <1,

by using (2.11) and the following :

A1

E[1{server 2 busy from class 3 at Tn}] = p
2

and by taking expectations we get :

M fi(3)
E[R(r,)] > m

By Little’s law we get (2.5).

o for § = {1,3}:

E[Rz("'nﬂ) | Ory) =
M(R(ra) + f(1))® + A R¥(r,) +

n1l{server 1 busy from class 1 at T} R() — f(1) + £(3))? +

m1{server 1 idle from class 1 at Ta} R (1) +

p2l{server 2 busy from class 3 at T HR(T) — f(3))? +

u2l{server 2 idle at Tn}Rz(Tn)

24

(2.14)



When
f(1) > £(3)

using the inequalities:
1{server 1 busy from class 1 at 7,} < 1

1{server 2 busy from class 3 at 1,} <1,

by using (2.11), (2.14) and by taking expectations we get:

s AP+ M) — F3) 4 M)
BB 2 S F D = 73) + 1 F8) =% FD)

The above equation can be written as:

MM - fa) + M fE,
+ fanzs 2 ' '
Ty f3v1 3 2[”1(1 —_ fs'l) + ﬂ2f311 - Al]

where fa; = f(3)/f(1) < 1. One can now, intuitively, argue, that since the values
fsa =0 and f3; = 1 leave in the denominator of the previous equation the “heavy
traffic” terms p; — A; and p; — Ay, respectively, they yield tighter bounds. A plot
in the space of z;-z3, for different values of f3; has the form depicted in Fig. 2-2.
The bound corresponding to the choice f3; = 0 is the same as (2.3). Therefore we
set f(1) = f(3) in order to get the bound corresponding to the choice f5; = 0 and
by using Little’s law we get (2.6). In this example we were able to argue that a
specific choice of the f-parameters yields tighter bounds. Intuitively, we chose the
f-parameters such that the denominator of the rhs ! of the bounding equation takes
the form 1— 3,5 p; where p; is the traffic intensity of class . However, in the general
case of a multiclass queueing network it is difficult to argue similarly. Therefore, we
are just going to select the f-parameters, in the general case developed in Chapter
3, following the intuition developed here. In Chapter 5, we are going to propose a

refined method that yields bounds independent of the choice of the f-parameters.

lright hand side
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X3 t

W f3,l= 0

1

Figure 2-2: A plot for different values of f, ;.

Continuing the proof of the theorem,
o for § ={2,3} :

E[Rtan1) | 07] = MER¥(r,)+ A2(R(r) + £(2))? +
mil{server 1 busy from class 1 at T} R(Ta) + £(3))? +
#11{server 1 busy from class 2 at T} R(m) — f(2))? +
m1{server 1 idle at 7,,} R¥(r,) +
uzl{server 2 busy from class 3 at 7, }(R(r,) — F(3))* +
pal{server 2 idle at 7.} R*(r,)

Observing that:
1{server 1 busy from class 1 at 7,} >0
1{server 1 busy from class 2 at T} <1
1{server 2 busy from class 3 at ™} <1,
by using (2.11), (2.14) and by taking expectations we get :

202 £%(2) + 21, £(3)

E[R(r.)] > 2(p1f(2) + a2 f(3) — A2£(2))

26



Setting f(2) = f(3) in order to get a tighter bound (in the sense that we discussed
before) and by using Little’s law we have (2.7).
e Finally for for 5 = {1,2,3} :

E[R)(Tay1) | 0r,] =
M(A(ra) + f(1))* + Aa(R(ma) + £(2))* +
pl{server 1 busy from class 1 at 7, }(R(7.) — f(1) + £(3))® +
p1{server 1 busy from class 2 at 7, }(R(7.) — f(2))® +
pil{server 1 idle at 7,} R*(7,,) +
pzl{server 2 busy from class 3 at 7, }(R(7.) — f(3))* +

pal{server 2 idle at 7.} R*(r,)

When
f(1) 2 £(3)
setting:

fc=f(1)—f(3)=.f(2)7

observing that:

1{server 1 busy at ,} < 1
1{server 2 busy from class 3 at 7,,} <1,

by using (2.11), (2.14) and by taking expectations we get :

s WP 4 4 PR) + M) - FB) + X fA(2) + W)
FIR(m)l 2 2 fe + 12f(3) — Mf () = f(2)

Setting f(1) = 2, f(2) = f(3) = 1in order to get a tighter bound and by using Little’s
law we have (2.8). O

Discussion : Note that equation (2.2) is the same as the conservation law for

the multiclass M/M/1 queue (see [GeMi, Chap. 6]), with an inequality sign instead of
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an equality. Within the class of policies we are considering the conservation law does
not hold since we allow idling. If, however, we restrict ourselves to work-conserving
policies then it is possible to derive the conservation law via this approach. We are
going to provide the proof in Chapter 4 where we will address the general case of the
multiclass queue.

Note also, that equations (2.3) and (2.4) have a very intuitive explanation; they
are the two inequalities that with the conservation law define the achjevable region
for the multiclass queue at station 1. In Chapter 4, also, we are going to prove for
the general case of the multiclass queue that for work conserving policies equations
(2.3) [(2.4)] hold with equality if we give preemptive priority to customers of class 1
[class 2], respectively.

A final note is that (2.5) says nothing more than the fact that the mean response
time of class 3 is at least its mean service time. Actually, this conservation inequality
suggests that there exists a scheduling policy which makes zero the waiting time of
customers of class 3. Indeed, a policy which serves class 1 customers only if server 2

is idle, is such a policy.

2.1.2 A Bound Based on Stability

Since we want to derive a lower bound we can eliminate type 2 customers. The intu-
itive idea behind the bound derived in this subsection is that if we wanted customers
of class 3 to have zero waiting time we would have to make server 1 idle most of
the time and work only when station 3 becomes empty. If this was the case, we
could make station 1 unstable under heavy traffic conditions. A simple probabilistic

argument, yields the following theorem :

Theorem 2.2 (Stability bound) In the network of Figure 2-1, the Jollowing bound

holds for any policy satisfying the assumptions given in Section 1.4:

1 1

z3 2 p—-—---14 —
ma2(p1 + p2)  pe

(2.15)
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where :
2\, — max(pq, p2)
p1 + pz — max(p, p;)

P = max(0, (2.16)

Proof : Let p denote the steady state probability of both servers being busy

with type 1 customers. Then since:

1 — p = E[1{only one server is busy}] + E[1{both servers are idle}]

it holds that:

1 — p > E[1{only one server is busy}]

According to assumption (A) in Sec. 1.4 the system is stable and therefore, the
expected queue lengths are finite. Customers are entering both servers with rate 2);
(since every customer has to to visit both servers). They are departing with rate
#1 + 2 if both servers are busy and with rate y; if only server i,i = 1,2 is busy. Due
to stability these arrival and service rates are equal. Writing this argument down we

have:
“departure rate from both stations” = “arrival rate to both stations”
But it holds that:
P(p1 + p2) + (1 — p) max(py, p3) > “departure rate from both stations”

Therefore we get :

Pl +p2) + (1 — p)max(py, pz) > 2); =

p> 21 — max(p, p2)
T g1+ p2 — max(pg, o)

Because p is a probability we finally have

p>p (2.17)
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where p is given by (2.16). Since the arrivals are Poisson and the service times
exponentially distributed there exist an underlying continuous-time Markov chain
describing the network. With probability 7t~ the chain leaves the set of states
where both servers are busy, due to a server 1 completion. Thus, p;ﬁ_‘u—’ is the
steady-state number of transitions in the Markov chain, from the set of states where
both servers are busy, corresponding to arrivals at stati@n 2. Each of these arrivals
has to wait, in queue, at least 1/u, on the average. Therefore if by w; we denote the

expected waiting time of class 3 customers we have just proved that:

H1

w3 2 p——e
pa(p1 + p2)

(2.18)

The inequality holds because there may be arrivals to station 2 even when both
stations are not busy. But since z3 = w3+ 1/p, from (2.17) and (2.18)'it is seen that
(2.15) holds. O

2.1.3 A Bound Based on A Tandem Queue Argument

Eliminating type 2 customers and setting ¢, = c3 = 1 we get a tandem queue with
equal costs at both servers. Since we can’t do better than FCFS, we get the bound :
1 1

Ty + 23 > + 2.19
! ? Br—A pe— A ( )

Note that -5 is the mean response time of an M/M/1 queue with arrival and service

rate A, u respectively.

2.1.4 A Bound Based on the c-yx Rule

It is known that for a multiclass queue the c-p rule (see [K1v2]) is optimal. Therefore
the performance of the c-u rule at station 1 bounds the weighted sum of z,, z;. Let
denote by p; = %IL and by p; = ‘—’:f the traffic intensities of class 1 and class 2 at

station 1, respectively. The bound is given by :
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eif c1/p1 > c2/p2

1Ty + ca®2 Z C113‘14 + c;mzA . (2.20)

where zf,z# are the response times of class 1 and 2,respectively, when preemptive

priority is given to class 1, and can be easily calculated (see [KIv2]). In particular,

they are given by:
1
A
T —
! 25 M A

A = 1 p1/p1 + P2/
pm(l—-p) (- p1)(1 — p1 — p2)

o if Cz/Pz > C1/P1

1T, + 22 > cz? + czzf (2.21)

where zP,z2 are the response times of class 1 and 2,respectively, when preemptive

priority is given to class 2. In particular, they are given by:

1
B
T =
? Fl—)\z

2B = 1 p2/m1 + pr/
VT (@ —p2)  (L—pa)(1=p1—p2)

Note: If for some reason we want to restrict ourselves to non-preemptive policies
the bound (2.20) holds with z{, 24 the response times of class 1 and 2, respectively,

when non-preemptive priority is given to class 1. The same comment applies to (2.21).

In fact, it will be seen later (Chapter 4) that this bound, based on the optimality
of the c-p rule is redundant. Namely, we are going to prove that the “conservation
inequalities” for a multiclass queue fully characterize the achievable region and from
that the optimality of the c-u rule. Thus, for the specific network under consideration
in this chapter, the conservation inequalities for subsets of classes involving only

classes 1 and 2 (in particular, (2.2), (2.3), (2.4)) fully characterize the achievable

31



space when c3 = 0. Therefore, they capture the information provided by the c-u rule

bound.

2.1.5 Lower Bound on achievable performance

It is now seen that the space of the expected response times for the network under
consideration is constrained by the bounds derived so far. Thus, the derivation of
the lower bound on the attainable performance consists of solving the following linear

programming (LP) where LB stands for lower bound :

ZLB = min¢;z; + ¢,Ty + cazg

subject to : (2.22)

AL + Az
p1— A1 — Ay

1
T 2>
' B1— A

A1y + Agzp >

T+ z3 >

B2 — Ay
AL+ A,
K1+ g2 — s
3\ + A,
B1+ pa —2) — A,
. i 1
TS A
1 1

T+ z3 > +
' ? mo—A o pp — A

A2Za + Aizg >

201 + Apzp + Aizg >

T3 >

T1,T2,23 20
where 7 is given by (2.16).
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2.2 Upper Bounds

One obvious candidate for an upper bound is the FCFS policy which is easily ana-

lyzable. Other candidates are strict priority policies which can be simulated. Finally,

heuristic policies, based mainly on intuitive grounds can also provide upper bounds. |
In this section we will first analyze the FCFS policy and then discuss a heuristic

threshold policy.

2.2.1 Analysis of the FCFS Policy

We will first analyze the FCFS policy from first principles. We will also analyze it
using the BOMP network notation (see [(GeMi] and Sec. 3.2 where a brief summary
of this notation is given) because this is the easiest way to analyze simple policies

(like FCFS and LCFS) in complex networks where a first principles analysis is not
available.
Analysis from First Principles

Let us denote by p, = A’fuL'\‘, PB = % the total traffic intensities at stations 1,2
respectively. Recall that by p; = %;'-,i = 1,2 we denoted the traffic intensities of class

i.

The total input at station 1 is an aggregate Poisson process with rate \; + ),.
Therefore, the steady state probability distribution of the total number of customers
at station 1 is (M/M/1 result):

Pa(na) = (1 — pa)pit (2.23)

Also at station 2 the total number of customers has probability distribution in steady-

state:

ps(ns) = (1 - pp)og (2:24)

Moreover, since the scheduling policy at station 1 is independent of the class of each
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customer (FCFS), the number of class 1 customers versus the number of class 2
customers should depend only on their arrival rates. Therefore, using that p/(1 — p)

is the expected number of customers in an M /M/1 queue we get:

A PA 1
E[n,] = >0 = — 2.25
] A+ A1 —py ! B1— A1 — A, (2.25)
A2 pa 1
Eln,] = >Tp=— 2.26
[M] /\1+/\21—PA 2 B1— A — A, ( )
PB 1
Elngl = —— = z; = 2.27
ma] 1—pp ' B2 — A ( )
Thus, the performance of the FCFS policy is given by:
c1+ ¢ €3
Z = + 2.28
FoFs M=M= A gy — A ( )

Analysis Using BCMP Notation

The state of the system is @ = (7i4,7p) where 7y = (n1,m2) is the vector of the
number of customers of class 1, 2 at station 1 and 7p = ng3 is the number of customers
at station 3. If we denote by 9a(%4), 98(7B) the terms corresponding to stations 1,

2 respectively, we get:
1 (n1 =+ nz)! 1

gA(nA) = GA n]_!’nz! “?1*‘":
- 1 1
np)= = v
95(7p) Go i

d(7) = Xt

p(%) = d(7)ga(74)gn(7B) (2.29)

p(7) being the steady state probability distribution of the number of customers in

the network.
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The constant G4 can be calculated easily as follows:
n + ni na
o=z (@) () -
n1,n3 ny,N2 1 H1
x| ) (2) -
k k=n;+ng Ny, N2 H1 H1

3 (Al + /\z)" _

k 23
1

1—pa

Also, G'p is given by:
1

Gr =
Ry

Thus, we are able finally to calculate the mean number of customers of each class

in the system :

+ A ni A ny
Bl = Tmez | "7 (2)7(2)7 -
ny,ny Ny, N2 H1 K1

A 4 9 ny + Ny w22\
(2o | T ) (2) -
g w nyyng ny, N2 H1

Codw=A /[

A
H1 -\ - A2

which is the same as (2.25). Using similar reasoning, we can also derive (2.26) and

(2.27). Therefore, (2.28) can be derived via this alternate route.

2.2.2 Heuristic Threshold Policies

Intuition suggests that a threshold policy would perform well under heavy traffic
conditions. What this policy has to avoid is to leave station 2 idle (by making
the server at station 1 serve customers of type 2) when there are type 1 customers

available at station 1. Depending on whether idling is desirable the following two
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policies achieve this goal.

Policy 1 : Give priority to type 1 customers at station 1 when there
are B or fewer customers at station 2. Otherwise give priority to type 2

customers. Never idle.

and

Policy 2 : Give priority to type 1 customers at station 1 when there
are B or fewer customers at station 2. Otherwise give priority to type
2 customers. Idle at station 1 when there are B or more customers at

station 2 and no type 2 customer is present at station 1.

Both policies can be preemptive or not. Here, B is a constant threshold and its opti-
mal value can be calculated via simulation. Policy 1 was proposed in [HaWe| where
the Brownian network model approach was used. Intuition seems to suggest that
when ¢; and c¢; are comparable, policy 1 which is work-conserving is preferable. But

when c3 3> ¢; then policy 2 should be closer to optimal.

We were not able to analyze these policies. Thus, the only available tool for

+ performance analysis is simulation.

2.3 Some Special Cases

In this section we discuss optimal policies for some special heavy traffic cases. We
were able to prove optimality using our lower bounds. We observed that the LP (2.22)
yields equal cost with the cost of some specific policy. Thus, this specific policy is in a
sense optimal. The optimal policies for the following special cases are also intuitively
obvious. What is really important is that our lower bounds have the proper limiting
behavior. That is, they approach optimality as certain parameters tend to various

limits. In the proofs of the following theorems we are using the notation:

1

“as ¢ — y, A(z) =~ B(z)” = ‘]'15.” gg:; =
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“asx — y, o(A(z)) = B(z)” = lim A(:z:) —

25 B()

Theorem 2.3 Fiz p, and pp. For Ay — py, Ay — 0 and p3 > pq, non-idling FCFS

18 optimal, in the sense that:

ZrB
A=, =0 ZpcFs

=1 (2.30)

where Zpcrs is the performance of the FCFS and Zy g the lower bound on achievable

performance in (2.22).

Proof : Note that only station 1 is in heavy-traffic. We are only going to use
the bounds (2.3), (2.15), (2.19). Rewriting them we have :

1
T >
! B — M

= (2.31)

T+ T3 2 1 + 1 =r
! 3—#1—A1 ,llzz—f\1—2

(2.32)

. 1 1
—_—t— = 2.33
Puz(m Fpa)  ma P (2:33)

where p is given by (2.16). We defined 7,7, and r3 to be equal with the rhs of (2.31),

T3 2

(2.32) and (2.33) respectively. Figure 2-3 illustrates these inequalities in the space of
Ty, T3.

Note that under the heavy traffic condition A; — g; both r; and 7, tend to infinity.
In, contrast r3 remains finite. Let the corners z; and z; in the Figure 2-3 have the

following coordinates in the z;-z3 space.

1 = (311, 1313), Z2 = (221, fb'zs)-

Therefore, as Ay — p, it is seen that:

1
Hl—/\l

L1 = T ~
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Figure 2-3: Bounds in the z,,z; space for 2.4 theorem.
Instead
T13 = T3z = 0(1)

In addition, when \; — p,,
121
M1 — Ay

ZFcrs ™
Thus, (2.30) is proven. O
Theorem 2.4 For A\, + A\; — p,, and within the class of non-preemptive work-

conserving policies satisfying the assumptions A, B and C of Sec. 1.4: the non-

preemptive c-p rule is optimal in the sense that

ZLB
A1z —uy Ze_,_,

=1 (2.34)

where Z._,, is the performance of the c-u rule and Zr.p the lower bound on achievable

performance in (2.22).
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Proof : Since we are considering work-conserving policies, the conservation law

at station 1 asserts that:

AL+ Az

/\lzl + /\2:1:2 = m = 94 (2.35)
We also have the bounds (2.3), (2.4):
Ty > (2.36)
I VR .
Ty > 1 __ (2.37)
the bound (2.19):
1 1
T+ T3 > + g3 (2.38)

1= A M2 — Ay -
and the c-pu rule bound (2.20) where, without loss of generality, we are making the

assumption ¢;/A; > ¢3/Ag:

€11 + €222 > c195 + €206 (2.39)

95,96 being the mean response times when non-preemptive priority is given to class
1 at station 1. We defined g4,¢;,92 and g3 to be equal with the rhs of the equations
(2.35), (2.36), (2.37) and (2.38), respectively. Finally, we also have the stability bound
(2.15):

1 1
S S 2.40
Ba(pr + p2)  pa 97 (2.40)

where g7 is defined to be equal with the rhs of (2.40). Solving (2.35) for z,, by

T3 > P

substituting into (2.37) we get:

2, < g4 — A2g2 =20, (2.41)
A1
and by substituting into (2.39) we get:

Az + 11

2, > —2Tk 2.42
P (e = ) M (242)
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where we defined z,, and z,, to be equal with the rhs of the equations (2.41) and
(2.42), respectively. It can be shown that the rhs of (2.42) is greater than g, therefore
(2.41) along with (2.42) define the feasible ? region for z;. Additionally, since we are
considering heavy traffic conditions (A\; + A; — p,) in station 1, g, — oo and as a
consequence g; is smaller than the rhs of (2.41). Thus, the feasible region has the
shape depicted in Figure (2-4).

x3 A
| !
[} ]
g3 I\
22
t
|
]
]
)
|
i
X zl z3
g7 - bemomen < Fooe
] N |
] N [}
! M 1
xid g3 xlu x1

Figure 2-4: Bounds in the z,,z3 space for Theorem 2.5.

The lower bound is achieved at one of the corners z;, z,, zs. Using mathematica 3

we found that as A; + A; — py :

C2 AL+ A,
y RN — —— 2.

e Wi v (243)
C2 21

L, =~ 2.44

! 1= A g1 — AL — A ( )
(3] AL+ A2

Ly =~ WP v (2.45)

>The term feasible here has the linear programming meaning; it doesn’t necessarily mean that
this is the achievable region.
Smathematica is a software package for symbolic algebraic calculations
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C2 A1+ A,
1= A1 g — A — A

Loy =

(2.46)

where Z,,,7,, and Z, is the performance at corners z,, z; and z3 respectively. In the
limit A; + A2 — p1, and since ¢;/); > ¢3/), it is seen from (2.4'13), (2.44) and (2.45)
that the minimum is achieved at either z; or z;. Using also (2.46), it is seen that as
A1 + A2 — p; we have:

Ly 2y X Doy

a

For \; — p3; and ¢ > ¢; we were not able to find the optimal policy. We
believe that a threshold-type policy should be quite close to the optimal. However,
we proved that an insertion of a buffer with a deterministic server in the stream of
type 1 customers from station 1 to station 2, considered as a policy, outperforms FCFS
because it smoothes the input traffic to station 2. Note that this is not an admissible
policy since it alters the network configuration. Our proof, assumes A\, — 0 because
otherwise it would be very difficult to characterize the output of station 1. However,
the smoothing behaviour of the buffer is present even when class 2 customers are not
eliminated and therefore it is reasonable to believe that the qualitative result holds

for this case also. Summarizing we have the following theorem:

Theorem 2.5 Let \; — p, such that A\; = pp — ¢, where ¢ — 0. Let also c3 > ¢,
and A\; — 0. Then the insertion of an infinite buffer with a deterministic server, with
rate p = pi3 — €, where a € [0,1] and € € (0, ;) in the siream of type 1 customers

from station 1 to station 2, considered as a policy, outperforms FCFS.

Proof : Under the conditions given in the theorem a FCFS analysis (M/M/1

queues in tandem) yields:
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where zf€FS ¢I'CFS 3re the mean response times of classes 1,3 under FCFS, respec-

tively. If by Zrcrs we denote the performance of the FCFS then as A1l — fa

C3
B2 — A

ZFcrs ~ (2.47)

Let us now analyze the network after the insertion of the deterministic device.

The modified network is depicted in Figure 2-5.

cost cl cost cl cost c3

M/M/1 queue M/D/1 queue G/M/1 queue

Figure 2-5: The modified network with the deterministic device.

The mean response time at station 1 (M/M/1 queue) and the mean response time

at the buffer (M/D/1 queue) are:

1 A 1
o= ——— ol = — 4= 2.48
T Ve 2u(p — A1) p (2.48)

where zP, z0 are the mean response times at stations 1,b, respectively, in the network

depicted in Figure 2-5. Since we want the performance of the modified network to be
better than the performance of FCFS we have to drive station b also in heavy traffic.
We choose o — p2 (that is, the M/D/1 queue is in heavy traffic), such that:

B= g — ae (2.49)

where € — 0 and « is a multiplying constant. Then the contribution of both station

1 and the deterministic device to the objective value function is dominated by:

c1f\1

C ZD+:BD N —
e + o) 2u(p — M)

(2.50)
The probability density function of the service times in the M/D/1 queue is &(t - %)

42



and therefore the Laplace transform for the interdeparture time distribution is (see

[BeNa, pg. 14])
A1 s+ M —a/u
-_ €
JIaR + A]

Interdeparture times are not independent but in [BeN a] is shown that in the heavy
traffic limit (p — 1) the covariance between different interdeparture times goes to
zero very fast, as the distance in time between these interdeparture times increases.
Therefore, making an approximation, we are going to ignore them and use the results
for a G/M/1 queue with independent and identically distributed interarrival times.
Thus, the parameter o for the G/M/1 queue discussed in [Klv1] is given by:

— ﬁ K2 = p20 +p e~ (H2—ua0)/u

o 2.51
K pa — pao + Ay ( )
From the theorem’s statement we have:
Al = iy — € 4 (2.52)

where € is a small number. Since in heavy traffic ¢ — 1, we expand (2.51) in a

neighborhood of 1 and by keeping second order terms, after some algebra, we get:

2/\1#2 A1
o=1+—22__ (7L 1)< 2.53
(2u2 — f\f)uz(#z ) (2.53)

Now, since the mean waiting time in a G/M/1 queue with parameter o and rate y is
given by o/[u(1— )] (see (K1v1]), the cost in the G /M/1 queue is dominated in heavy
traffic (as ¢ — 1) by cyzs ~ 30 /[ua(1 — o)) and therefore the total performance, in

heavy traffic, of the system (taking into consideration 2.50) is given by:

ClAl + C30
D~
2u(p =) T (1= o)

(2.54)

where Zp denotes the performance of the network depicted in Fig. 2-5. Plugging
(2.52) and (2.49) into (2.53) and the result into (2.54), by expanding with respect to

€ and by minimizing the result over a we finally get for the performance of the system
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with the deterministic device:

Zp=2 -;-c;, + o(€) (2.55)

From (2.47) and (2.52) it is clear (since ¢; > c;) that the insertion of the deterministic

device, if considered as a policy outperforms FCFS by (es—c1)/2. O

Remarks : A simple analysis similar to the one followed in the two previous

theorems yields that the lower bound on attainable performance is in this case:

Zip = "'?‘ + ofe) (2.56)
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Chapter 3

A General Open Multiclass
Queueing Network: Approximate

Characterization

Our goal in this chapter, is to derive lower and upper bounds on the achievable per-
formance for a general multiclass queueing network. We are considering two network
models; one with deterministic routing where different customer classes have the same
service requirements at a specific station and another with probabilistic routing where
customer classes may have different service requirements at a specific station. The
second model is the most general model that we consider in this thesis and is defined

in Sec. 1.3. Next we define both models for the chapter to be self-contained.

Network model with Deterministic Routing: Consider an open multiclass
queueing network with J single server stations and I different customer types. Cus-
tomers of type i (i = 1,2,...,) enter the system as a Poisson stream at rate ); and

pass through a sequence of stations

r(i,1),7(z,2),..., r(i, M(2))
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before leaving the system. M(7) is the number of stages that an arriving customer of
type ¢ has to complete before exiting the network. The station which a type ¢ cus-
tomer visits at stage m (m = 1,2,..., M()) of his route is station r(i,m). Each visit
of a customer type at a station defines a different class. So, (i,m) is the class formed
by type 7 customers at the mth stage of their route. Service times are exponentially
distributed and let p,(; ) be the service rate of station r(i,m). We assume that the
total input rate at a station is less than H+(i;m) to ensure that at least one stable policy
exists. Note here that we let service rates depend only on the station. Let finally
n(i,m)(t) be the number of customers of class (i,m) present in the network at time ¢.
The optimization problem is to determine a scheduling policy that minimizes a linear
cost function of the form 2 (i,m) €(i;m)T(i,m)s T(i,m) being the expected response time

(waiting + service time) of class (i,m) and c(; ) being given finite weights.

Network model with Probabilistic Routing: Consider an open multiclass
queueing network with [V single server stations and R different job types. Jobs may
change type as they move from one node to another. In particular, a job of type r,
when completing service at node i goes to node j as a type s job with probability
Pirij,e and leaves the network with probability p;.o = 1 — 3;, Pi.rij.- There are  in-
dependent Poisson streams of arrivals to the network, one for each type of customers.
The Poisson arrival process, for customers of type r, has rate Ao, and these customers
join the i station with probability ¢;.. The pair (i, ) is called class and the class (¢, )
requires an exponentially distributed service with rate p;,. Let n(;ir)(t) be the number
of class (i,7) customers, present in the network at time t. The optimization problem
is to determine a global scheduling policy that minimizes a linear cost function of the
form 3(;r) €(i;r)®(ir)s Z(ir) being the expected response time (waiting + service time)

of class (¢,7) and ;) being given finite weights.

Note that the probabilistic network model, includes the deterministic one. To
bound the performance, we will mainly use the ideas illustrated in the previous chap-

ter for the specific two-station network mentioned there. In Section 3.1 we derive
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lower bounds that include the achievable region for the open multiclass queueing
network. Then in Section 3.2 we describe the BCMP networks notation because it
is a concrete method to analyze simple policies that provide upper bounds to the

performance in a general multiclass network.

3.1 Lower Bounds

3.1.1 Deterministic Routing; Conservation Inequalities

Consider a subset S of the set of classes. We define a measure of the work to be done

in the network as follows:
R(t)= Y F2 G m)ng m(2) (3.1)

(i,;m)es

where f5(i,m) are the multiplying constants which we called f-parameters, in Chap-
ter 2.

The following conditions on the f-parameters emerge from the proof of Theorem
3.1. Although they may appear unmotivated at this point, the proof suggests that
they lead to tighter bounds. So, for each S we have the following conditions holding
(note that we drop S from the notation):

For all classes (i,m) € S queued in the same station r(i,m):

1.
f(,m) = f,(im) when (i,m +1)¢S§ (3.2)

and

frm) = f(i,m) — f(i,m + 1) when (i,m + 1) € § (3.3)

where f,(im) is a non-negative constant depending only on the station. We then have

the following theorem:
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Theorem 3.1 For all f-parameters satisfying conditions (3.2), (3.3), and within the
class of policies described in Sec. 1 -4, the following inequality (lower bound) holds for
each subset S of the set of classes:

N(S)

(i.nzl):es Aif (2, m) 2 (i m) > DS) (3.4)

where:

N(S) = Z /\,-fz(i,m) + Z /\.'fz(i, m) +

{(i,m)eS|m=1} {(3ym)eS|(i,m+1)gS}

3 Ai(f(i,m) — f(i,m +1))? +

{(im)€Ss|(i,m+1)es}

/\,‘fz(i, m + 1)
{(i,m)QSI(i,m+l)€S}

D(S) =2 Z fr(i,m)“r(i,m) - Z /\,f(l, m)

{r(3,m)l(i,m)es} {(iym)eSIm=1}

Z(i,m) being the mean response time of class (i,m).

Proof : In order to prove the theorem we use the same procedure we used for
the derivation of the bounds named conservation inequalities in Chapter 2. So, we
are again applying the same trick and force the single servers at each station to work
continuously even when the station is empty. As we explained in Chapter 2 this
modification does not alter the behaviour of the system. Let again 7, be the sequence
of times immediately after an arrival or service completion (fictitious or real). Let also
denote by 1{-} the indicator function and by o, the o-field generated by events up
to time 7, or intuitively the previous history. Let us finally, without loss of generality

scale time such that:

Z A'i + Z Hr(i,m) = 1

r(i,m)
for ease of notation. We use the notation {(i,m) € S | m = 1} to represent all the
classes in S formed by type i customers at the first stage of their route through the

network. In addition, in the set {(i,m) ¢ § } we also include the external world of
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the network. Dropping S from R5(t) and f5(z), we get:

E[Rz(fnﬂ) | 0r] =
Y A(fGm)+R(m)+ Y MRYm)+
{(i,m)eS|m=1} {(3,m)gS|m=1}

Z He(i;m)1{r(z,m) busy from (i,m) at 7, }(R(r,) — f(E,m))? +
{(3ym)€S|(im+1)¢S}

z Er(i;m)1{r(¢,m) busy from (i,m) at 7,}
{(Gym)€s|(i,m+1)eS}

(R(ra) — f(i,m) + f(i,m + 1)) +

> pem{r(i,m) idle from (i,m) at 7, } R*(r,) +
{(iym)es}

> pr(i,m)L{r(i,m) busy from (i,m) at T }(R(a) + f(i,m +1))? +
{(iym)¢S|(i,m+1)€S}

Z He(iym)1{r(2,m) idle from (i,m) at 7.} R*(7,) +
{(¢ym)¢S|(i;m+1)€S}

Z /"r(i,m)Rz(Tn)
{(i;m)¢5|(i;m+1)¢S}

In order to derive a tighter bound we are going to make a proper matching of the
f-parameters at each station. Thus, we observe that if we set (3.2) and (3.3) in the

term:

> 24e(i,m)1{r (2, m) busy from (i,m) at 7.} R(7,)f(i,m) +
{(iim)es|(i,m+1)¢Ss}

24+ (i,m)1{r(¢,m) busy from (i,m) at 7, }

{(iym)€S|(i,m+1)eS}
R(r)(f(i,m) — f(i,m + 1))

it can be written as:

3 2 fr(i,;m)Hr(i,m)B(T0)1{r(¢,m) busy from (i,m) € S at .}
{r(im)i(i;m)es}

To bound this term we are going to use the fact that:

1{r(i,m) busy from (i,m) € § at 7,} < 1
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Moreover we bound the term:

2 > pr(im)1{r(i,m) busy from (i,m) at T} R(a) f(i,m + 1)
{(iym)gS|(i;m+1)es}

by using that:
1{r(i,m) busy at , from (i,m) & § | (t,m+1)e S}>0

According to Assumption (B) in Sec. 1.4, E[R*(r,)] is finite. In addition, under the

invariant distribution of n(; )(t), considered in Assumption (A), we have:
E[1{r(i,m) busy from (i,m) at a}] = E[1{r(:,m) busy from (i,m) at t}] Vt,n

and

E[R(russ)] = E[R(r.)] = E(R(£)] Vt,n

because the events 7, are triggered by a “Poisson clock” of rate 1, and it is a fact

that Poisson arrivals see time averages (PASTA property). Now, using:

E[1{r(i,m) busy from (i, m) at T} = ”’L
r(i,m)

we finally obtain, after some algebra:

N(S)
n > ==t
Bl > Zi5)
where N(S) and D(S) are given in the statement of the theorem. At this point it is
~ a simple matter to see that the application of Little’s law yields (3.4). O

Remarks : The procedure to obtain the bound was very similar to the one
described in Chapter 2. The last task is to set the f-parameters in such a way to
make the bound even tighter. As we noted in Chapter 2 we try to form a term

1 — p in the denominator D(S) under restrictions (3-2),(3.3). That is, we first do
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the proper matchings of the f-parameters described by equations (3.2) and (3.3) and
we then determine the remaining f-parameters in such a way that the denominator
D(S) takes the hea.vy-tra.ﬂié form. An other choice for the f-parameters is to select
f5(i,m) to be the expected remaining service time of class (¢,m) within the subset
S. This choice satisfies (3.2) and (3.3) yielding f,(;m) = 1/pr(i,m) which is positive
and depends only on the station. In general, it is not known if there exists a selection
of the f-parameters that provides dominant bounds. But, even if this is the case, it is
difficult to determine these “best” f-parameters. In Chapter 5, we will prove that it
is not important to do so, because a refined bounding method that we propose there
yields better bounds independent of the choice of the f-parameters. Let us now denote
by S the cardinality of the set S. This bounding technique summarized in the above
theorem yields 25 — 1 linear inequalities. The initial idea was found in [Kuma] where
the f-parameters were chosen to be the “remaining number of stages”, that is, the
number of service completions a customer has in front of him (f(i,m) = M(:) —m+1).

Our generalization yields much tighter bounds.

3.1.2 Probabilistic Routing; Conservation Inequalities

The traffic equations for the probabilistic network model take the form:
N R
M = Aorlir + 3 D NjeiPirrsis (3.5)
j=1lr'=1

We assume that the inequality:

> dir g

(Gwn)li=i Har!

holds at each station ¢, in order to ensure that at least one stable policy exists. As
we did in the previous subsection we consider a subset S of the set of classes and we

define a measure of the work to be done in the network as follows:

Rs(t)= Z fs(i,r)n(,-'m)(t) (3.6)

(i,r)€S
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where f5(i,m) are the multiplying constants which we called f-parameters, in Chap-

ter 2.

The following conditions on the f-parameters emerge from the proof of Theorem
3.2. Although they may appear unmotivated at this point, the proof suggests that
they lead to tighter bounds. So, if for each S we set (note that we drop S from the

notation):

For all classes (i,7) € S queued in the same station i:

f‘ = I‘Livr Z Pi.r;j,r’(f(i,r) - f(j’ T’)) + Z piv"jvrlf(i’r) (3'7)
(4ir')es (Gir)gs
where f; is a non-negative constant depending only on the station.
we have the following theorem:

Theorem 3.2 For all f-parameters satisfying the restriction (3.7) and within the

class of policies described in Sec. 1.4, the following inequality (lower bound) holds for
each S:

. N'(S)
D Mirf(6y )Ty > = (3.8)
(i,r)es , D’(S)
where :
N'(S) = Z Ao.rqi.rfz(ivr)‘F 2 i z Pi.r:j.r'fz(j""') +
(i,r)es (i,r)gs (5r')es
2 '\""[ X2 Piwie(FGr) = fG,P))2 + 3 Pa'.r;j.r'f’(iv")]
(ir)es  L(r)es ir)gs

D'(S) =2 [ Z fi— E A0.1-‘11'.1'.f(iv"‘):l

{il3r with (i,r)es) (ir)es

S being a subset of the set of classes and Z(ir) the mean response time of class (i,r).
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Proof : The proof is quite similar to the proof of Theorem 3.1. We shall apply
uniformization to the continuous-time Markov-chain corresponding to the network.

So let the uniform rate be:
v= Z Aor + Zﬂi,f

Without loss of generality we scale time such that v = 1. Let 7, be the sequence of
times immediately after a transition and let o,, be the o-field generated by events up
to time 7, or more intuitively the previous history. Let finally 1{-} be an indicator
function. With the uniformization we are inserting a common “Poisson clock” for
every transition in the Markov-chain. Being in a specific state of the chain, only
some of the generally possible events can occur. For example, if the chain is in a
state where no class k& customer is present in the network then a departure of a class
k customer cannot occur. Thus, the actual transition rate (1) from a specific state,
say u, is less than v. In the uniformized chain however, from state u transitions occur
with rate v. That is, actual transitions occur with rate 1, and self-transitions with

rate v — vq. Thus, the recursive equation for R(t) takes the form:

B[R t11) | ov,] =
Z AO.rQi.r(R(Tn) + f(i, 1‘))2 + Z /\o,'q,",.Rz(Tn) +

(ir)es (r)gs
> pirl{server i busy from type r at r,}
(i,r)ES
[ Z Piws:'.f’(R(Tn) - f(i,7) + (4, ""))2 + 2 Pissiet (R(Tn) — f(iar))z] +
(dr')es (3r))gS
" pis1{server i idle from type r at 7, }R*(r,) +
(i,r)es
Z pirl{server i busy from type r at .}
(ir)gs
[ > Pirar(B(ma) + (5,7 + X p.-,,g,-,,,R’(rn)] "
(Grt)es (5r')ES
3" pis1{server i idle from type r at 7,,}R*(r,)
(4,r)gS
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Note here that the set of classes (7,7') ¢ S includes the external world of the network.
As we did before we are going to make a proper matching of the f-parameters in order

to get tighter bounds. Using (3.7) the term:

2 Z pir1{server i busy from type r at Tn}

(i,r)eS
> Pirie R(m)(f(i,7) — FG,PN+ 3 Pirsir B(T0) f(3,7)
(4ir1)es (Gr')gs

can be written as follows:

> fiR(rs)1{server i busy from classes (i,7) € S at Tn}
{il3rwith(i,r)es}

Now, to bound the above term we are using the fact that:
1{server i busy from classes (i,7) € S at ™} <1

In addition, to bound the term:

3" 2u;.1{serveri busy from type r at r,} > Piwsie B(Ta) f(7,7")
(i,r)gS (Jr')es

we are using that:

1{server i busy from type r at 7,,} > 0

From here the procedure to get the bound is identical to the one described jn Theorem

3.1. Thus, having (3.7) holding and using that:

Ai.r
Hir

E(1{server i busy from type r at 7,}] =

where A;; is the solution of the traffic equations (3.5), we finally get (3.8). O

Remarks : The last task is again to determine the f-parameters, satisfying (3.7)

in order to get the dominant bounds from the class of bounds defined by (3.8). One
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choice for those parameters that we believe gives these dominant bounds is to set:
f%(i,7) = “expected remaining service time for jobs (i,7) within the subset $”

This suggests:
. 1 .
fs(z,r) =—+ Z Pi.f:j.r'fs(J""') (3'9)

i,r (jr")es

This choice satisfies (3.7) because:

fi= Pi.rf(iﬂ') Z Pijrijirt — iy Z Pi,r;j.r'f(j’ 7")) + I‘i.rf(i7"') Z Dirijyrt =

(4ir')es (sr)es (Jir')gs
fi= /"i.rf(i’r) - /"i'rf(iﬂ') +1=1

where we used (3.9). Moreover, this choice of the f-parameters would make the
denominator of (3.8) in the form 1 — 2(ir)es PG and this why is going to yield
tighter bounds. This claim is also justified by the fact that in the Klimov’s problem
(see Chap. 4) this choice of the f-parameters yields the tightest bounds. But, we were
not able to prove it in the general case. Instead, in Chapter 5 we modify the method
that we are using to derive the bounds and we derive stronger bounds independent

of the choice of the f-parameters.

3.1.3 A Bound Based on Stability

For the deterministic network model a generalization of the results of Section 2.1.2

yields :

Theorem 3.3 For every pattern of the form depicted in Figure 3-1, where customers
enter (from the outside world or another station) with rate \ and stations t,2+1 have
ezponentially distributed service times with rates rates i piy1 Tespectively, and within

the class of policies satisfying the assumptions in Sec. 1 -4, the following inequality
holds:

Hi 1 + 1
Bi + Big1 v Mg

Tk 2 P (3.10)

55



where:

ﬁ = max (0, 2) — ma‘x(p’l"/'l'l"Fl) )
Hi + piv1 — max(pq, piyq)

T, being the mean response time of the class of customers at station i+1.

Proof : Ifin the proof of Theorem 2.2 we replace Ay by A, pu; by u;, ps by piyq
and z3 by z; then the proof carries through. O

— T IO— M) —

Figure 3-1: The pattern considered in the stability bound

3.1.4 Lower Bound on Achievable Performance

It is now seen that the space of the expected response times for the network under
consideration is constrained by the bounds derived so far. Note, that we didn’t write
down for this network model a bound analogous to the c-u rule bound of Chapter
2 because, as we mentioned there and we will prove in Chapter 4, such a bound is
captured by the “conservation inequalities”. We denote by E the entire set of classes
in the network. The derivation of the lower bound on the attainable performance
consists of solving the following linear programming (LP) where LB stands for lower
bound:

Deterministic Routing:

Zrp = min Z CrZp

v class &
subject to: (3.11)
N(S)
Aif(k)x, > VSCE
keZS () D(S)
2 > p—E . L

+
Mi+ piga iy i
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where N(S),D(S) are defined in the statement of Theorem 3.1 and Py Miy fiyy are
defined in the statement of Theorem 3.3.
Probabilistic Routing

Zrp = min Z CrZi

v class &
subject to: (3.12)
N'(S)
Mf(R)ey > ——= VSCE
2 W2 i)

where N', D' are defined in the statement of Theorem 3.3.

3.2 Upper Bounds

Upper bounds are obtained by using simple policies which can be analyzed in closed
form since the network models we considered can be easily transformed to the model
of BCMP and Kelly networks. We will also, simulate strict priority policies and other
heuristics that exploit the special structure of each specific topology. We will, next,
briefly discuss the BCMP networks notation (see [GeMi, chap. 3]). The BCMP net-

work model is the most general model known to have a closed-form solution.

The network topology is represented by an arbitrary graph with N nodes (exclud-
ing the “outside world” node). There are R job types and jobs may change type as
they move from one node to another. In particular, a job of type r, after completing
service at node 7, goes to node j as a job of type s with probability p;,.;, and leaves
the network with probability p;,o. The pair (i,7) is called class. The set of classes is
split into one or more non-intersecting subsets, called subchains according to the fol-
lowing rule: two classes belong to the same subchain if there is i-z non-zero probability
that a job will be in both classes during its sojourn through the network. We denote
these subchains by Ey, Es, ..., Em (m > 1). Let S be the state of the network, M(S5)
the total number of jobs in the network in state § and M(S, E\) the number of jobs
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in subchain E, when the network is in state S.

The external arrivals are generated by one independent non-homogeneous Poisson
process for each subchain with instantaneous rate (M (5, Ey)) corresponding to the
kt* process. Note that the arrival process may depend on the state of the system. An

arrival from the k® process goes to node i as a type job with probability poy,r-

There are the following four possibilities for the stations (node types) of the net-

work:

1. The service requirements for each class depend on the station and not on the
specific class. More precisely, all classes queued in the same node i have expo-
nentially distributed service times with rate p;. The policy is FCFS. The speed

of the single server C;(n;) depends on the number of jobs in the node n;.

9. The service requirements for type r jobs can have Coxian distributions but we
are only considering the case of the exponential distribution. The difference
from the type 1 node is that each class can have distinct service requirements.
Thus, the service requirements for class (i,r) are exponentially distributed with
rate pi,. The scheduling strategy is processor-sharing and the speed of the

single server may also depend on n; as for type 1 nodes.

3. The assumptions for the service requirements are the same as for type 2 nodes
and the scheduling strategy is server-per-job (that is there are infinite number

of servers and a job is assigned to one as soon as it enters the node).

4. The assumptions for the service requirements are the same as for type 2 nodes
and the scheduling strategy is LCFS preemptive-resume. The speed of the single

server may also depend on n; as for type 1 nodes.

The traffic equations for the network take the form:

€j.s = Poijis +ze"s"pi-":i‘a 1, = 172v'-'1N; T8 = 1’27-'-’R

i,r
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We are looking at a node state which is 7; = (n;1,ni32,...,nir) where n;, is the
number of type r customers at node i. Let also n; be the total number of customers

at node 7. The aggregate network state is § = (®y,7z,...,7n). The BOMP theorem

asserts that the steady state distribution is:

p(3) = Zd(3)a:(7@)ea(s) - an()
where:
¢ G is a normalizing constant;
o d(5) = TIr, |G 2" Ai(n)
o the factor g;(7;) depends on the type of node ¢ as follows:
— if node 7 is of type 1 then

eli'

n" Hr—l n' ',

9:(f:) = J—l 1 Ci(7)

— if node 1 is of type 2 or 4 then

n‘ !ellr/ﬂmlrz

r—l nip!

J—l C (J)

gi(7:) =
— if node 7 is of type 3 then

gi(:) = ﬁ _—"(ei"{:i';)m
r=1 it
For an open network it is easy to calculate the expectation of the queue lengths
for each class of customers by using some known formulas as we did in Chapter 2 for
the specific network topology we were discussing there. For the deterministic routing
network model we can analyze the FCFS strategy as an upper bound. Note that
the nodes of the network can be modeled according to the BCMP notation as type

1 nodes. For the probabilistic routing network model (where different classes have
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different service requirements) we can no longer analyze the FCFS policy. But we
can analyze the LCFS ! preemptive-resume and the processor-sharing policy. More

precisely we can model the nodes of the network as nodes of type 2 or type 4.

llast come first serve
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Chapter 4

The Single Station Case:

Complete Characterization

In this chapter we will prove that our bounds fully characterize the achievable region
for single station networks. In particular, we examine an M/M/1 multiclass queue
where each class can have distinct service requirements and a model introduced by
Klimov [Klim] which is a multiclass M/M/1 queue with Bernoulli feedback. Again,
in Klimov’s model, we allow different classes to have distinct service requirements. In

this chapter we are considering work-conserving policies satisfying the assumptions

(A), (B), (C) and (D) in Sec. 1.4.

4.1 Multiclass Queue

In this section we prove that the polytope which our lower bounds define is a polyma-
troid polytope with the associated function being supermodular. We then prove that
this space is the achievable region for this problem. This is a special case of the result
in [ShYa] where it is proven that the achievable region of any system that satisfies
strong conservation laws (see [ShYa] for a definition) is a polymatroid polytope. Also,
the achievable region of the multiclass queue is given in [GeMi]. As a consequence of
the conservation laws, the c-x rule is the optimal. The optimality of the c-u rule can
also be proved based on different arguments ([Klv2]). The proof we are giving for the
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optimality of the c-x rule is not new. But we do provide it for the purpose of com-
pleteness and because it illustrates in a simple example the power of our approach.

Next come the definitions of polymatroids and supermodularity:

Definition 4.1 Let N be a finite set and let Yy be a real-valued function on the subsets
of N. Then y is supermodular if:

¥y(S)+y(T)<y(SUT)+y(SNT) forS,TC N

Definition 4.2 Given a finite set N and a nondecreasing supermodular function y

on N with y(0) = 0, the polytope

P(y) = {-‘CE?R'HZ“’:'Z!/(S) forSSN}

j€s
is the polymatroid polytope associated with (N,y).

Consider now, a multiclass queue with n classes of customers, as depicted in
Figure 4-1. Customers of type 7 enter the station in a Poisson stream of rate ); and
form class i. The station has a single server and each class of customers requireé
service time exponentially distributed with rate i. Let z; be the expected response

time for customers of class  and let n;(t) be the number of customers of class i present

in the system at time ¢.

1

2\__\0
/

n

Figure 4-1: A multiclass queue

Our goal is to prove that the lower bounds in Chapter 3 define, for this case, a

polyhedron which is the achievable region for the problem. In order to prove this, we
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first prove some lemmas.

We will first derive the lower bounds for the above described system of the mul-
ticlass queue. We use the method described in the chapter 3. The next lemma

summarizes the result:

Lemma 4.1 For the M/M/1 multiclass queue and within the class of policies satis-
fying the assumptions of Sec. 1.4. the following inequalities hold for every subset S

of the set of classes:

o~ Zies(pilpi)
;P;z. . 1 =3 iespi (41)

where p; = );/p; is the traffic intensity of class i customers.

Proof : We again need to uniformize and we define the uniform rate to be:

n

v=73 (A+m)

=1

Without loss of generality we scale time in order to have v = 1. So following the

steps of our method for a subset S of N = {1,2,...,n} we have:

RB(t) =3 fo(i)mi(t)

€S

Dropping S from RS(t) and f5(i) we get:

E[RY(rap1) | 0ra] = - M(B(ma) + F(3))* + 20 MR (ra) +
i€S igSs
Y nil{server busy from class i at 7, }(R(r,) — f(@)? +
€S
> nil{server idle from class 7 at 7,} R*(r,) +
i€s

Y wiR(r,)

igS
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To get tighter bounds we now choose (following the remarks in Chap.3):

fli)=—,vies

T

Therefore using:

1{server busy from classes i € § at Ta} <1 (4.2)

we get (4.1). O
The following lemma proves that the rhs of the above bounds is an achievable

performance when preemptive priority is given to the classes in S.

Lemma 4.2 Inequality (4.1) holds with equality for work-conserving policies satisfy-

ing the assumptions in Sec. 1.4, when preemptive priority is given to the classes in

the subset S.

Proof : Observe that in the derivation of the bound we used (4.2) in order to

bound the term:
2fip;1{server busy from classes ; € S at Ta}R(1)
If preemptive priority is given to the classes in S, however, we have:
R(r,)1{server busy from classes i € S at Ta} = R(1s)

because when R(,) # 0 (that is a customer of classes i € S is present) and preemptive
priority is given to the classes € S then the server should definitely be working on
a customer of classes i € . Otherwise, when R(7,) = 0 the above equation holds

trivially. O

Corollary 4.3 When S = N, then equation (4.1) holds with equality for work-

conserving policies satisfying the assumptions in Sec. 1.4.
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Lemma 4.4 The optimal solution of the LP:
min Z C: T
i=1
subject to:

ZP'ﬂ" > Ties(pi/ i)
ies 1 —Xiesp

$i€§R+

is the performance vector of the c-u rule.

Proof: Weare first going to establish the polymatroid structure of the polytope
defined by (4.1). If for A C N we define:

p(A) = piy P'(A) =D (pi/m) (4.3)

icA i€A
and
p'(4)
Y(A) = ———— 4.4
()= 120 (44)
then the LP takes the form:
min Z C;T;
i=1
subject to:

Zp,-:c.- >y(S) for SCN
i€es
T; € %4_

The function y on subsets of IV is obviously non-decreasing. We are going to need

the following lemma which is proven in Appendix A.

Lemma 4.5 The real-valued function y on subsets of N is supermodular.
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Continuing the proof of the lemma 4.4 the above LP has as dual the following:

max Y s y(S)

SCN

subject to:

and let §7 = {1,2,...,;} for j € N and S° = 0. Then the solution:

25 = ¥(8%) — y(s71)

4.5
Pj ( )
is primal feasible because VT C N:
dpimi = 3 [y(59) - y(55Y)
JjET JET
> Y W(SNT)—y(S 1N T)] (supermodularity)
JET
= y(NNT)-y(0) =y(T)
The primal objective for this solution is:
LI . .
> (y(87) — y(571y) (4.6)
j=1Pi

Additionally, the solution:

S s fS=Sand1<j<n

Pj Pi+1
Ts=\ @ ifS=Sandj=n
0 otherwise
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is dual feasible because rg > 0 and:

cs
2

E Mg =Tsj + Tgj+1 + ...+ Tgn = -
sljes Pij

The dual objective function is:

n-1 n

S22 - S 20 -y )
Therefore comparing (4.6), (4.7) we see that the proposed solutions of the primal and
of the dual are also optimal since they are feasible and achieve the same objective
value. What is now left to do is to prove that (4.5) gives the expected response
time z; for class j when preemptive priority is give in ascending order of the index
7 and highest priority is given to class 1. Indeed, as the following lemma (proved in

Appendix B) asserts this is the case.

Lemma 4.8 Equation (4.5) gives the ezpected response times when preemptive pri-

ority is given to classes 1,2,...,n in that order.

Thus, the c-x rule is proved to be optimal. [
Now, we have all the required tools to prove that the polyhedron defined by our

bounds is the achievable region for the multiclass queue. We have the following

theorem:

Theorem 4.7 (Multiclass queue) The polyhedron:

Yies(pi/1i)
T > —————= VSCN
g.:gp 1 -3 iespi

o Zien(pi/pi)
ieZNp.:c‘ 1 =Yienp

wi€§R+

is the achievable space for the multiclass queue.
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Proof : We have already proved in lemma 4.1 that this polyhedron includes
the achievable region. In addition, lemma 4.4 shows that the performance at every
extreme point is achieved via a preemptive priority rule (the c-u rule) since every
extreme point can become optimal by a proper selection of the costs. Thus, since
every point in the polyhedron can be written as a convex combination of the extreme
(21, 22,...) points with coefficients a1,az,..., there exists a randomized policy that
achieves the performance at this point. Namely, the randomized policy uses the

priority rule corresponding to z; with probability a;. O

4.2 Klimov’s Problem

In this section we prove that for this problem, also, our bounds fully characterize the
achievable region. More precisely we prove that the polytope defined by the bounds
described in Chapter 3 for the M/ M/1 case of the Klimov’s problem is the achievable
region. The derived polytope has exactly the same structure as the polytope derived
in [Tsou| for the M/G/1 case, under non-preemptive policies. In fact, the explicit
form of the polytope is not given in [Tsou); the rhs of the inequalities that define
the polytope is an unknown function satisfying some properties. In contrast, we will
explicitly define the polytope, in the M/M/1 case, and prove that it is the achievable
region via a different technique. We are again, as in the previous section, considering

work-conserving policies satisfying the assumptions in Sec. 1.4.

Let us first define the problem. Consider the single-server station of Fig. 4-2.
Customers of type i = 1,2,...,n enter the station in a Poisson stream of rate ); and
form class . Each class  of customers requires an exponentially distributed service
time with rate ;. Upon service completion, customers of class 7, with probability p;;
are fed back as customers of type j and with probability p; leave the system. Let
ni(t) be the number of customers of class i at time ¢. The objective function has the

form Y7, ¢;z; where z; is the mean response time of class :.
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Figure 4-2: Klimov’s problem.

The traffic equations for the above system are:
:\i = A,- + Z :\jpj,' (4.8)
i=1

We are at first going to derive the lower bounds in the following lemma:

Lemma 4.8 For every policy in the class of policies satisfying the assumptions in

Sec. 1.4 the following inequality holds for every subset S of the set of classes:

S Sifsti)es 2 % (4.9)

where:

i€S i€S jES jgS igs jES

N(S) =Y MG+ M LZ pii(fs(i) — fs(3)) + > Pijfé(i)] +3 MY pifii),

D(S) =2 [1 -3 A.-fs(i)]

i€S
and
fs(i) = l + > piifs(5) (4.10)
Ki  jes

Proof : We uniformize by setting a uniform rate:

v=3 N+ Y p

k=1 k=1
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and we scale time so that v = 1. So, following the steps of our method for a subset

S of {1,2,...,n}, we have:
R(t) = Y fs(i)n(t)

i€S

Dropping § from R5(t) and fs(i) we get:

E[Rz(rnﬂ) l o'fn] =
2 M(R() + F(0) + 3 MR (r) +

i€s igS

Zp;l{server busy from class i at 7,} [Z pi;(R(re) — f(3) + f(5))*+
i€S j€S

> pii(R(ty) - f(i))z} +
igs

Z pil{server idle from class 7 at o} R (1) +

ies

JES

Y pil{server busy from class i at Tn} [Z pii(R(ta) + f(5))*+
igs

ZPinz(fn)] +
Jjgs

Z pil{server idle from class i at Ta} R (1)

ig$

Note here that the subset {j | j ¢ S } includes also node 0 which is the external world
of the network. As we did before we have to make the proper matchings in terms of

the f-parameters in order to get tighter bounds. Therefore we set:

mi | 2o pis(f() — F(7) + YpisfGi)| = f Vie s (4.11)
i€s i€s

Then by using the fact that:

1{server busy from classes i € S at ™} <1 (4.12)
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we are able to bound the term:

2f1{server busy from classes i € S at T2} R(T,)

On the other hand we use:

1{server busy from classes i gSatr,}>0 (4.13)

to bound the term:

3" pil{server busy from class i at T}2 Zp;,-R(rn)f(j)
igs , ies

Thus, by using Little’s law and the solution of the traffic equations (4.8), we finally

derive the following bound:

\: F()z: M

where:

N(S) =3 Nf(i)+ Y A [Z pi(f(1) — F(5)) + Zp.-,-f’(i)] +3 MY p5%G)

€S i€S JES Jjg€S igS  jeS

and

D(5) =2 [f N0

i€S
Now, the only task left is to determine the value of the f-parameters that yields
the tightest bounds satisfying the conditions that were imposed to them in the proof.
According to the remarks of theorem 3.3, we choose f(3) to be the expected remaining
service time within the class S, that is we choose f(2) satisfying (4.10). Let us check
if this choice satisfies (4.11). Plugging it to (4.11) we get:

fo= wf@) Y pi—m Y pi; fG) + pif(3) Y pi;
Jj€s JjES JgS
= f(Dmi — ps Z;sPijf(j)
Jj€

=1
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Note from (4.9) that we are not interested in the absolute values of the f-parameters

but in their ratio f(i)/f. Thus plugging f = 1 into the expression for D(S) we proved

the lemma. O

The following lemma proves that the rhs of the above bounds is an achievable

performance when preemptive priority is given to the classes in S.

Lemma 4.9 Inequality (4.9) holds with equality, for work-conserving policies satis-

fying the assumptions of Sec. 1.4 when preemptive priority is given to the classes in

the subset S of the set of classes.

Proof : The proof is similar to the proof of lemma 4.2. In the derivation of (4.9)

we used (4.12) in order to bound the term

2f1{server busy from classes i € S at Tn } R(T,)

Moreover, it holds that:
R(7,)1{server busy from classes i € S at Ta} = R(1)

because when R(,) # 0 (that is a customer of classes i € S is present) and preemptive
priority is given to the classes € S then the server should definitely be working on
a customer of classes i € S. Otherwise, when R(7,) = 0 the above equation holds

trivially. In addition to that, we also used (4.13) to bound the term

3" pil{server busy from class i at Ta} O Pij2R(70) f(5)
igs jes

Moreover, it holds that:

R(r,)1{server busy from classes i gSatm,} =0

because when R(7,,) # 0 (that is a customer of classes ; € S is present) and preemptive

priority is given to the classes € S then the server should definitely not be working
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on a customer of classes ¢ ¢ §. Otherwise, when R(7,) = 0 the above equation holds

trivially. O

Corollary 4.10 When S = {1,2,...,n} then (4.9) holds with equality within the

class of policies considered in lemma 4.9.

The next lemma characterizes the extreme points of the polytope defined by (4.9)
and proves that Klimov’s algorithm [Klim] is the optimal priority rule. Let us in-
troduce some notation. By E = {1,2,...,n} we denote the entire set of classes.
Since N(S), D(S) defined in lemma 4.8 are functions of the subset S of E we define a
real-valued function G(S) on the subsets of E. Let also denote by {r1,7,,..., Tn} an

ordering of the set of classes in E. Let finally ¢} = 5. We have the following lemma:

A

Lemma 4.11 The solution of the LP:
min ) cin;
i€E
subject to: (4.14)

3 fs(i)m > G(S) SCE

i€S

Z fE(i)n,- = G(E)
icE
n; € R*

is the solution of the system of equations:

k .
Z f{"lv”?v"'v"l'}(ﬂ-i)nwl' = G({Wl,ﬂ'z, ceey 1rk}) k=12,...,n (4.15)

i=1
where the optimal ordering 7y, ,,..., 7, is given by the following adaptive algorithm:
Step 1:
E° — E
c
T {fso(i)}
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. ci
Tn = arg mm{on(i)}
Step 2: Fork=1,2,...,n—1

E* — N*='\ {mp_t11}

Yg: = min

{4 — 528 fei(i)yEs }

icEk fEi(i)
Tn-k = 8IgMmin {C: — ¥jc0 fei()yes }
" Far ()

Proof : Note at first that in the statement of the lemma, without loss of gen-
erality, we have written the polytope defined in lemma 4.8 in the space of the mean

number of customers in the system instead of mean response times. We are going to

give a duality proof. The dual of (4.14) is:

ma.xzs: ysG(S5)

subject to: (4.16)

> ysfs(i) < ¢
Slies
ys 20
yg unconstrained
Let a proposed primal solution be the solution of the system of equations (4.15).
This solution is feasible. To see that consider the following subsets of E:

Sk = {m,72y...,m} k=1,2,....n

For each of these subsets lemma 4.9 asserts that the bound (4.9) is satisfied with
equality if preemptive priority is given to classes in S*. But the union of those rules is

just the policy “assign preemptive priorities according to the ordering 71, m2,...,T,".
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This is a valid policy and therefore according to lemma 4.8 has performance in the
feasible space of the LP (4.14). Thus, primal feasibility is proven. Now, as dual

solution consider:

HS=Ek=0,1,..,n-1
ys ={ v i (4.17)

0 otherwise

We are going to prove dual feasibility using induction.

At the first step of the induction consider the solution:

Ys = (4.18)

0 otherwise

{yEo if S = E°

At each step we will update the solution. We have:

Y- ysfs(i) = ygo fao(i) < ¢

Slies

which verifies that (4.18) is feasible from the definition of YEo.

For the the second step of induction consider the solution:

YEo if S=E°
Yys=§ ym >0 if §=E! (4.19)

0 otherwise

To have dual feasibility:

> s fs(?) = ypo feo (i) + ym fmn (3) < ¢
Slies

¢ — ypo fpo(i)
fea(3)
So selecting the minimum according to the adaptive algorithm we satisfy dual feasi-

bility. Thus, inductively we prove that (4.17) is dual feasible. Moreover from (4.15)

=y <

note that for the non-zero dual variables the primal constraints are satisfied with
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equality. Thus, complementary-slackness is available. [J

Remarks : The algorithm to determine the optimal ordering is Klimov’s algo-
rithm. The real-valued function G(S) on the subsets of E is not supermodular. It
has the property that the system of equations (4.15) has a solution in the polytope.
The polytope defined in the statement of this lemma with such a G function is named

extended-polymatroid in [BGeT).

Now, we have all the required tools to prove that the polyhedron defined by our
bounds is the achievable region for the Klimov’s problem. We have the following

theorem:

Theorem 4.12 (Klimov’s problem) The polyhedron:

> fs(i)ni > G(S) SCE

t€S
ng(i)ng = G(E)

n; € R*

with fs(i) given by (4.10) and G(S) = N(S)/D(S), is the achievable space for the

Klimov’s problem.

Proof : We have already proved in lemma 4.8 that this polyhedron includes
the achievable region. In addition, lemma 4.11 shows that the performance at every
extreme point is achieved via a preemptive priority rule since every extreme point
can become optimal via by a proper selection of the costs. Thus, since every point
in the polyhedron can be written as a convex combination of the extreme (21y22,...)
points with coefficients a,, a;, ..., there exists a randomized policy that achieves the
performance at this point. Namely, the randomized policy uses the priority rule
corresponding to z; with probability a;. O

As a final remark, our bounding technique provides the exact characterization of
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solving the system of equations (4.15), one can get the performance of the optima]
policy. To the best of our knowledge the optimal policy has not been analyzed ip the
Klimov’s problem. The reason is that it is very difficult to characterize the feedback

process.
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Chapter 5

A Refined Bounding Technique

In this chapter we are going to present a more refined method based on the conser-
vation inequalities discussed in the previous chapters. Among the advantages of this

methods are:

e It yields tighter bounds.

e It yields a more appealing, in terms of computation, LP than the LP (3.11) or
(3.12) proposed in Section 3.1.

e It yields bounds independent of the choice of the f-parameters which was based

only on intuitive grounds in Chapter 3.

We are going to derive these bounds for the most general network model we have
considered so far, the probabilistic routing model defined in Section 1.3 a.ﬁd in Chapter
3. This model as we have mentioned there includes the deterministic routing model
presented in Chapter 3. Consider, therefore, the probabilistic routing network model
and let n(;,) be the steady-state number of customers of class (4,7) in the system.

The traffic equations of this network are given in (3.5).

5.1 Lower Bounds; Conservation Equalities

We denote by E = {(i,r) | ¢=1,2,...,N, r=1,2,... , R} the entire set of classes

and by E its cardinality. We define again a measure of the work to be done in the
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network as follows:

R(t)= Y f(i,r)ng.)(t) (5.1)

(i,r)EE
where f(i,7) are the multiplying constants which we named f-parameters. Letting 7,
be the sequence of transition times in the uniformized Markov chain corresponding

to the network we also define the following variables:
L = E[1{server i busy from type r at Tn } () (Tn)] (5.2)

Nijer = E[1{server i idle at 1, }n(; ()] (5.3)

where 1{-} is the indicator function and the expectations are taken with respect to the
invariant distribution mentioned in Assumption (A). We finally define an ordering

between different classes:

(il,rl) (ik,rk) (iE,TE)

where (7,7;) is the kD class and also define a function that gives the order of a class
by:
ind(z,7) = k

when (i,7) is the kth class. We then have the following theorem for scheduling

strategies satisfying the assumptions imposed in the introduction of the thesis:

Theorem 5.1 For the probabilistic routing network model the following equalities

hold independent of the scheduling strategy, satisfying the assumptions in Sec. 1.4:

zﬂi.r-[i,r;i,r -2 Z ﬂj,r’pj,r';i,r'[j,r’;i,r - 2A0,rQi.r/\i,rzi,r =
(J'ﬂ")EE

’\O.rqi,r + Ai,r(l - piv":‘ﬁ') + Z Aj,r'pj.r':i,r V(l, 7') eFE (5-4)
{(Gr)EE j#i,r'#r}
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F'i,rIi,r;j,r' + P‘J',r'Ij,r’;i.r - Z .u'k,wpk,w;i.rIk,w;j,r' - Z ,uk.wpk,w;j,r’Ik,w;i.r —
(kyw)eE (k,w)EE

A0 Gisr At Tjirt = Aot Qi Mg T4 =

—/\i,rpi,r;j,r‘ - Aj'rlpj’rl;i'r V('i,'l‘), (], 1") € E I md(i, 7') > an(], 7") (5.5)

Proof : We are again applying uniformization as in Theorem 3.2 and writing

the recursion for R(t). Let the uniform rate be:

V= ZAO" + Zﬂ.",,

Without loss of generality, we scale time such that v = 1. Let 0., be the o-field

generated by events up to time 7, or more intuitively the previous history. We have:

E(RY(Tnt1) | 00, =
Y. dorgir(R(ra) + f(5,7)) +
(i,r)EE
Z pis1{server i busy from type r at ,}
(s,r)EE
Z pi,r;j,r'(R(fn) - f(i’r) + f(j’ r’))z + p,",-;o(R(Tn) - f(i’ 1‘))2 +
(4r')eE '
Y pirl{server i idle from type r at T} R (1)
(i,r)EE

Rearranging terms, taking expectations and using that:

/\i.r

t,r

E[1{server i busy from type r at Tn}] =

where );. is the solution of the traffic equations (3.5) we obtain:
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2 Z i [( E Pi.r:j.r’(f(ivr) - f(Jv 1")) + Pi.r;of(i7r)]

(i,r)€E Jr')eE
nlLrEo E[1{server i busy from type r at T} R(r,)] —

2 3 Xorgirf(i,m)E[R(r,)] =
(ir)eE

> Mo @i f2(3,7) + > i L > Piriie(f(3,7) — f(5,7"))? + Piro (i, 7) (5.6)

(ir)eB (ir)eE ir)EE
Moreover, it is seen from (5.1) and (5.2) that:

E(1{server i busy from type r at WmIR(T) = > FU, ")
(J‘;")GE

Therefore if we enumerate the different classes by letting (ix,7%) be the k'R class and

define a vector:

f= [f(ihrl) f(iksrk) f(iEer)]T

then (5.6) which is a symmetric quadratic form in terms of the f-parameters can be

written in the form:
FTQf = fTQof (5.7)

for some symmetric matrices @, Qo. Since (5.7) is valid for every choice of the f-
parameters, Q = Q. Let us write down explicitly the equations in (5.7). From (5.6)

the diagonal terms have the form:

2”1',1- [pi,rgo + Z Pi,r;j,r’] Ii,r;-i,r -2 Z I-’-j,r'Pj,r';i,rIj.r';i,r -

{(j.f’)GEIj#i,l"#f} {(J.I"')GEI.T.#’.W'#'} .
2A0,rq:',r’\i,rzi,r =
/\O,rQi.r + Ai,r [pi,r;o + z Pz',r;j,r'] + Z Aj,v-'1:'_1',1";:',1'
{(Gir")€E|j#iri#r) {(Gr)€E|j#iri£r)}

from which we easily obtain (5.4) since the transition probabilities add up to one.

For the off-diagonal terms we consider only terms above the diagonal in the matrix
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equation (5.7). We then have:

“ilr [pi’r;o + Z P'-'ru"r’] Ii,r;j'r' - ﬂiofp";ﬂjv"'liv";i-f +
{(Gr)EE i rir)

l‘l'jvf" pjl"';o + Z pjﬂ'l?k’w] Ij"’;‘.'r - P’jp"pjl"'iiv'Ijvf';jof' -
{(k-w)eE'k¢jlw#"}

ﬂ'k.wpk.w;i,r Ik,w;j.r' - Z #k.wpk,w;j,r’ Ik.w;i.r -
{(kv‘")eElk#ivjv“’#"v"'} ' {(k,w)eElk;ﬁ,j,w;Er.r’}

A0,r Qi AjiriTjirt = NoriQyei Ai o i =

_Aiv'p"v"?jlr' - A.iv"'p.il"';':o"

which implies (5.5). O

Remarks : Note that in the proof of theorem 3.2 we were making different ap-
proximations for every non-empty subset of £ (namely, we were using the fact that
certain indicator functions were less than 1) and thus all the inequalities (one for each
non-empty subset of E) were useful. On the contrary here, since we are proceeding
with equalities (we do not bound indicator functions with 1) we need only consider the
entire set . For every other non-empty subset S of E we can get the corresponding
to @ = Qo matrix equation, by setting equal to zero the f-parameters corresponding
to classes out of S. But since (5.7) holds for every choice of the f-parameters we are

not going to get more information.

In addition to (5.4) and (5.5) we can also derive some more equalities by taking
the product of all the possible events at each node ; of the network with n(je) for

every class (7,7'). Namely, we have the following theorem:

Theorem 5.2 For each node i of the network and each class (4,7') € E and within

the considered class of policies, the following equality holds:

Z Ii,r;j,r’ + Ni?jv" = Ajv"zjvr' (5'8)
r|(i,r)EE
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Proof : Note that at node i of the network the events:

B;.(1n) = “server 1 busy from type r at 7,”

for every class (i,7) along with the event:

BN;(7,) = “server i idle at 7,”

are mutually exclusive and exhaustive. Thus:

E

(5r1)(Tn) ( >, UYBIL,(m)}+ 1{BN;(rn)})J = (i) = At
{rl(ir)eE}
It is not hard to see considering the definitions (5.2), (5.3) that we get (5.8). O
The polyhedron in standard form defined by (5.4), (5.5) and (5.8) is an approx-
imation of the achievable for the network region at least as good as the polyhedron
obtained by the approach in Chapter 3. This is due to the fact that they are de-
rived using the same recursive equation. The following theorem proves this claim. In
particular, we prove that the polytope defined by (5.4), (5.5) and (5.8) is a subset
of the union of polytopes defined by (3.8) for all the choices of the f-parameters.
Therefore the polytope derived via the refined method is a tighter approximation of
the performance space than the polytope derived in Chapter 3. Let us denote by
R1 the polyhedron defined by (3.8) and the positivity constraints of the zis. Let
also denote by R2 the polyhedron defined by (5.4), (5.5) and (5.8) along with the

positivity constraints of the variables T(ir)y Lipijer and N0

Theorem 5.3 If {z(;,) Ly Nijp, (3,7),(4,7') € E} is a feasible solution of R2
then {z(i,), (i,7) € E} is a feasible solution of R1.

Proof : Consider a feasible solution of R2. Since equation (5.7) holds for every
choice of the f-parameters, it is seen that we can write down an equality for every

non-empty S C E, if we set equal to zero the f-parameters corresponding to classes
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outside S. For any such S, it is apparent from (5.8) that:

Z Iiv"ij)"' + Z I'.s"FJ‘v"l + Mi.‘il" = Ajn"'mjv’l
{rlGr)es} {rlGir)gs}

which implies that

o Livjrr < i
{rlir)es}

and

E[1{server i busy from classes (3,7) € § at m}ng,n ()] < (1) (5.9)

Now recall that in the proof of Theorem 3.2 we used that:
1{server i busy from classes (i,r) € S at T} <1 (5.10)

and

I{server i busy from type r at Tn} >0 (5.11)

in order to get the bound (3.8). That is, we first wrote down the recursive equation,
we then applied (5.10) and (5.11) and we finally took expectations to get (3.8). It can
be seen that exactly the same bound is obtained by first writing down the recursive
equation, then taking expectations and finally using (5.9) along with the positivity
constraint for the variables I;,.;... Thus, from the equality in (5.7) corresponding
to the subset S, the inequality (3.8) is derived by using (5.8). In other words we
proved that if {z(;,) L e Niyjpr, (i,7), (4,7') € E} is a feasible solution of R2 then
{2(ir)s (i,7) € E} is a feasible solution of R1.

Remarks : We can intuitively argue that (5.8) contains more information than
the somewhat “crude” (5.9). Thus, we strongly believe that there are, in general, feasi-
ble solutions {x(; ), (i,7) € E} of Rl such that {@(ir) Lirijer Niipr, (1), (4,7") € E}

is not a feasible solution of R2.
The bound on achievable performance (LB) can now be obtained from the follow-
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ing LP:

Zrpp =min Y (i) T (i)
v class (i,r)

subject to: (5.12)

zﬂi,r-[i,r;i,r -2 Z ﬂj,r’pj,r';i,r-[j,r';i,r - 2A0,rqi,r/\i,rzi,r =
(sr)eE

A0,1’qi,1' + Ai,1-(1 - Pi,r;i,r) + E /\j,r’pj,r’;:',r V(Z, 1') € E
{(j.l")eElj#i,r'#f}

ﬂi,r-[i,r;j,r‘ + I-‘j,r’-[j,r‘;i,r - Z #k,wpk,w;i,rlk,w;j,r’ - Z #k.wpk.w:j,r’lk,w;i,r -

A(Ii,v-q:',v-A_y',f-’wj,r' - /\O,r'Qj,r'/\i,rmi,r =

_’\-'.rpi.r;j.r’ - ’\j.r'PJ'.r':i.r V(i"")a (4, 7") € E| ind(i,r) > ind(j, 7")

Z Iiv'?jvf' + M;J'l"' = Aj',.::l:j,,.:
{rl(i,r)€E}

m(iyf)’Ii‘f;J'.f” Ni::iﬂ" € R+ Vivr’ 7 r!

According to Theorem 5.3 the lower bound on achievable performance calculated with
the LP (5.12) is an upper bound to the one calculated with the LP (3.12). Moreover,
note that the LP (5.12) is more tractable computationally than the LP (3.12). The
former has O(E?) variables and O(E?) constraints while the latter had F variables
and O(2F) constraints.

5.2 Consistency of the Refined Method with the

Earlier Approach

To check the consistency of the two methods, we will consider the case of the mul-
ticlass queue where we are able to exactly characterize the achievable region. Thus,
consider a multiclass queue with n classes of customers. By N = {1,2,...,n} we

denote the entire set of classes. Customers of type i enter the station in a Poisson
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stream of rate ); and form class ;. The station has a single server and each class of
customers requires service time exponentially distributed with rate y;. Let n;(t) be
the number of customers of class ; present in the system at time t, and let n; be the

steady state quantity. Let also Pi = Ai/p; be the traffic intensity of class 1 customers.

As we have shown in Chapter 4, the performance space of the multiclass queue is

described by the following polyhedron P1I:

P1: BRI Zies(pi/mi) VSC N
ies ki T 1 —=iespi

PR Zien(pi/pi)
ieN Hi 1 = Yien pi

n; € Rt

The polyhedron (P2) derived via the refined method is given in the following
lemma. Let us first define in analogy with (5.2) and (5.3):

I;; = E[1{server busy from class i at Ta}n;(1h)) (5.13)

N;j = E[1{server idle at ,}n;(r,)] (5.14)

Note that N; = 0 Vj, because when nj(ta) # 0 the server should be definitely

working *.

Lemma 5.4 For the multiclass queue and for work-conserving policies satisfying the

assumptions in Sec. 1.4 the following polyhedron P2 includes the performance space:
P2: p..;I,',' — /\,-n,- = A,‘ Vi (5.15)

pili; + pil;; — Ajn; — An; =0 Vi,j |7 >1 (5.16)

1Recall that throughout the analysis of this problem in Chapter 4 we were considering work-
conserving policies. Therefore to demonstrate the equivalence we retain this assumption now.
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Z I,'J' =Ny V] (517)
ieN

ni, Ii; € RY Vi,j
Proof : The recursive equation for R(t) takes the form:

E[RYrap1) | or] = 30 N(R(ma) + £(3))? +
iEN i :
> pil{server busy from class i at Ta}(R(72) — (1)) +
1EN
> pil{server idle from class i at T }R2(Ty)
tEN

Following the steps illustrated in Theorem 5.1 we get:

Yowif(E) Y] FG) L — X M@ FG)ms = 3 M) (5.18)
ieN jeN iJEN ieN
From the last equation one can derive the equations that define P2. Equation (5.15)
corresponds to (5.4) and equation (5.16) to (5.5). We also have to consider the
equations corresponding to (5.8) which take the form (5.17). Therefore the refined
method yields the polyhedron P2, defined by (5.15), (5.16), (5.17) along with the
positivity constraints of all the variables. O .
Next we will show that the polyhedron derived by the elimination of the I;; vari-
ables in P2 is the polyhedron P1. In other words P1 is the projection of P2 in the

space of n;’s.

Theorem 5.5 The polyhedron P2, derived via the refined method Jor the multiclass

queue, projected in the n;,i = 1,2,...,n, space yields P1.

Proof : Let P2’ the projection of P2 in the space of n;’s. We want to show that
P2 = P1. We first show that P2' C P1. |

Consider P2. We eliminate the variables /;;. Namely, dividing (5.16) with p;p;
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and adding for all 7, j such that j > i we get:

I"' Ig 1 n
>R E G LTy (5.19)
wieNl>i LG Tk

which implies

Z Z Iz:"'z Z IJ'_ZPJ Z _ = pi Z n—J:=0=“’

JEN Hj teN|i<j iEN Hi JEN|ji>i JEN iEN|i<s Hi €N jeN|i>i 7]

S Y LY Y oY T = Y oo (520

ieN Hi ieNjic; jieN P ieNji>; JEN ieNli<i i jeN  ieNpis; Mi
Observing that the jj term is missing from the above summation we use (5.15) and
(5.17) to get:
1

2 —ni— 3 i(pj IO EDIIEDY n— =0 (5.21)

jeN Hi jeN Hi JEN  icNl|igj

or equivalently,
2 ni _ Tien(pi/mi)
enti 1 =3 ienpi

which is the equality of P1.
Next, to get the inequalities we divide (5.16) with ip; and adding for all 7, JES
such that j > ¢ we get:

Ii' It 1
2: _’+__p:n__p.ﬂ =0 (5.22)
ijesii>i LAi M i s

from which we get:

Z > I:J+Z > LY Y =Yg S o=

jes Hi i€Si<j ies ¥ JES|i>i i€s  ieSli<ij M ies jesli>i Hi

Z Z I,_,+Z > I'J—ZPJ E ~ 20 > n—:':o (5.23)

JES ] i€Sli<j JES Hi i€S|i>j Jj€ES  ieSli<j JES  ieS|i>j

Observing that the jj term is missing from the above summation we use (5.15) and
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(5.17) to get:

Zn—’:—z—(r’ﬁpgn:) PIVIED D E g =0 (5.24)

jesBi  jesHi j€S lEs|.;e,l‘ jes Bi igs

which yields
T 5 Zies(pi/ i)
ics ki 1 —Tiespi

since I;; > 0. These are the inequalities of P1. Therefore we have proven that a
feasible solution of P2’ is also a feasible solution of P1.

We now show the converse. Consider a feasible solution of P1. It then holds that:

Z Z:GS(pt/.u't)

ies i 1= Diesp
n; 1 n;
2= —(pitemi) =D p; Y, — >0 (5.25)
JjES Hj JjES Kj j€S ieSlizj It

We now choose I ; satisfying (5.15) and (5.17) which also implies that:

> Lj=n;—pi(l+n;) (5.26)
iEN|i#j
Note that there exist positive I;; variables satisfying (5.26). This is due to the fact
that n;,1 = 1,2,...,n, is a feasible solution of P1. Namely for § = j the inequality of
P1 implies that n; —p;(1+n;) > 0. Writing now (5.25) as an equality by introducing
the I;; variables we get (5.24). Using (5.15) and (5.17) we get (5.23) and from that
(5.22).
Moreover from the equation of P1 we get (5.21) and by choosing I ; satisfying
(5.15) and (5.17) we get (5.20) and from that (5.19).
Summarizing we started from a feasible solution of P1 and by choosing I; ; satis-
fying (5.15) and (5.17) we got (5.22) and (5.19). From the set of I, ; satisfying (5.22)

and (5.19) we select a solution such that:

I; I ni
_+__p-——p,——0 Vi,jEN|j>1
Bio B mipg ’
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This is (5.16). Thus we have constructed 5 feasible solution of P2. o

Discussion : The result Jjust proven is quite interesting evep from a combipa.
torial optimization point of view. [t states that 5 polymatroid polytope which is
defined by 2n _ 1 constraints can be transformed to 5 polytope defined in a different
Space of dimensjop O(n?) that has O(n?) constraints, This theorem suggests that
such a relatjop may also exist between the approximate polytopes derived for the
open multiclass queueing network, [n other words, it may provide a way to obtain
the “optima]” f-parameters ip the sense that they yield the dominant and tightest

bounds.
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Chapter 6

Numerical Results

In this chapter we provide some numerical results in order to evaluate the performance
of our bounding techniques. In particular, we provide three network examples and

for each of these examples and for various traffic conditions we will evaluate:

o The lower bound on achievable performance according to the approach devel-

oped in Chapter 3.

o The lower bound on achievable performance according to the approach devel-

oped in Chapter 5.
o The performance of the FCFS policy.

o The performance of the best policy we were able to found which serves as an

upper bound.

Thus, we are able to evaluate the tightness of our lower bound. In fact, since the
optimal is not known for each case, we cannot calculate the closeness of our lower
bound to the optimal policy. Instead, we will calculate its closeness to the upper
bound which of course is an overestimate. In particular, we will calculate the efficiency

of the bound which we define as:

] Best Lower Bound
efficiency = Best Upper Bound 100%
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6.1 A Simple Two-Station Network; Revisited

Consider the two-station network example studied in Chapter 2 and depicted in Fig-
ure 2-1. Table 6.1 compares our lower bounds on attainable performance with FCFS
and the threshold policy 1 (see Chapter 2) for various load conditions and provides
the efficiency of the bound. “Lower Bnd. 1” and “Lower Bnd. 2” in the table corre.-
spond to the bound developed in Chapter 3 and Chapter 5, respectively. Costs were
chosen in order to have as ob jective function the total expected number of customers
in the network. Actually, this is the reason that the threshold policy 1 was simulated
and not the threshold policy 2. As we mentioned in Chapter 2 we expect policy 2
to be better only when c; > c1. Note that the performance reported in the table
for the threshold policy corresponds to the optimal value of the threshold B which
was found for each case by doing several simulation runs. Table 6.2 contains the data
used for each case reported in Table 6.1. Finally, recall that by p,, pB we denote the

total traffic intensities at station 1 and station 2, respectively.

Load Lower | Lower | FCFS | Thresh. | Effic.

Node 1-Node 2 Bnd. 1 | Bnd. 2 Policy
HEAVY-HEAVY 14.15 | 14.15 | 19.43 | 16.98 | 83%
HEAVIER-HEAVIER 19.9 19.9 28 23.76 | 84%
VERY HEAVY-VERY HEAVY || 49.96 | 49.96 73 57.38 | 87%
MEDIUM-HEAVY 9.18 9.18 10.5 1044 | 88%
LIGHT-MEDIUM 1.61 1.61 2.17 2.16 75%
HEAVY.MEDIUM 9.6 9.6 10.5 9.98 96%
MEDIUM-LIGHT 1.9 1.9 2.17 2.14 89%

Table 6.1: Numerical results for the network of Figure 2-1.

It is interesting that the efficiency of our lower bound is of approximately the same
order of magnitude as the efficiency of the “pathwise bound” derived in [OuWe],
which is based on simulation. Our bound, however, does not need a simulation
experiment. Note also that the threshold policy clearly outperforms FCFS. From

Table 6.1 it is apparent that as p — 1 the efficiency of the bound increases. This
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____Load Pa_| pB | A1 | Az [ | po

HEAVY-HEAVY 0.93 (0.8610.86| 1 2|1
HEAVIER-HEAVIER 0951090090 1 2 (1
VERY HEAVY-VERY HEAVY (| 0.98 | 0.96 | 0.96 | 1 211
MEDIUM.HEAVY 06 [ 09 109 (03211
LIGHT-MEDIUM 04 |06 {06 02|21
HEAVY-MEDIUM 09 | 06 | 06 [1.2| 2] 1
MEDIUM.-LIGHT 06 | 04 | 04 08|21

Table 6.2: Data for the experiments of Table 6.1.

is true for both balanced and imbalanced traffic conditions. In particular, the ef-
ficiency increases as we go from HEAVY-HEAVY to HEAVIER-HEAVIER and to
VERY HEAVY-VERY HEAVY conditions. It also increases as we go from LIGHT-
MEDIUM to MEDIUM-HEAVY and from MEDIUM-LIGHT to HEAVY-MEDIUM
conditions. This behaviour is mainly due to the fact that the threshold policy be-
haves better as the traffic gets heavier (see [HaWe]). One final observation is that
the efficiency of the bounds is better in imbalanced tra:ﬂic conditions. An intuitive
explanation is that when one station is not so loaded as the other the scheduling prob-
lem is somewhat “easier” in the sense that the scheduler should focus on the heavy
loaded station. Since our bounds explicitly characterize the performance space for

the single-station case they approximate better the achievable region in imbalanced

traffic conditions.

6.2 A Four-Class Network Example

Consider the network of Figure 6-1. Customers enter the network in a Poisson stream
of rate A and they visit stations 1,2,1,2, in that order before exiting the network, form-
ing classes 1,2,3,4 respectively. The single servers at stations 1,2 has service times

exponentially distributed with rates u;,u, respectively.

Table 6.3 compares our lower bounds on attainable performance with FCFS and
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2

Figure 6-1: A Four-Class Network Example.

the best found policy ! for various load conditions, providing also the efficiency of
the bound. “Lower Bnd. 1” and “Lower Bnd. 2” in the table correspond to the
bound developed in Chapter 3 and Chapter 5, respectively. Costs throughout the

experiments reported in the table were chosen to be:
1 =13, c2=13, ca =12, ¢4 = 1.

In this specific example the best policy we were able to find, for each load condition
we considered, happens to be a strict priority one. Note that we only considered non-
preemptive policies. It is interesting that not a single policy was optimal for every

case we considered. More precisely the following two policies were competing:

Policy 1: Give at station 1 highest priority to class 3 and lowest to class
1 (3 — 1) and give at station 2 highest priority to class 4 and lowest to
class 2 (4 — 2).
Policy 2: Give at station 1 highest priority to class 3 and lowest to class
1 (3 — 1) and give at station 2 highest priority to class 2 and lowest to
class 4 (2 — 4).

with the one outperforming the other in some cases and vice versa. In the table, next
to the performance of the best policy for each case, we are giving in parenthesis the
policy identifier, denoting by p1 and p2, policy 1 and policy 2, respectively. Table 6.4
contains the data used for each case reported in Table 6.3. Note that by p4, pg we

denote the total traffic intensities at station 1 and station 2, respectively.

lwe only considered non preemptive policies
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Load Lower | Lower | FCFS Best Effic.
Node 1-Node 2 || Bnd. 1 | Bnd. 2 Policy

HEAVY-HEAVY 42.24 | 45.36 | 70.55 | 65.58 (p2) | 69%
MEDIUM-MEDIUM || 16.07 | 20.07 [ 28.83 | 27.88 (p1) | 72%
MeDIuM.HEAVY || 17.06 | 17.35 | 23.2 | 20.55 (pl) | 85%
LIGHT-MEDIUM 3.44 3.69 5.23 | 5.00 (pl) | 74%
HEAVY-MEDIUM || 20.08 | 20.55 | 25.93 | 22.00 (p2) | 94%
MEDIUM-LIGHT 4.25 4.56 5.56 | 5.29 (pl) | 86%

Table 6.3: Numerical results for the network of Figure 6-1.

Load PA | P | A | m | po
HEAVY.HEAVY 0.85 ( 0.80 | 0.17 | 0.40 | 0.43
MEDIUM-MEDIUM || 0.57 | 0.63 | 0.13 | 0.46 | 0.41
MEDIUM.HEAVY 06 | 09 | 0.5 | 1.67 [ 1.12
LIGHT-MEDIUM 04 | 06 | 05 ] 2.5 [1.67
HEAVY.MEDIUM 09 |06 | 0.5 ([1.12]1.67
MEDIUM-LIGHT 06 { 04 | 0.5 |1.67] 25

Table 6.4: Data for the experiments of Table 6.3.

The efficiency of our lower bound is again of approximately the same order of mag-
nitude as the efficiency of the “pathwise bound” derived in [OuWe]. As we argued
in the beginning of this Chapter the efficiency of the bounds depends both on the
their closeness to optimality and on the suboptimality of the upper bound. In order
to understand which factor is more important we calculated the performance of the
optimal policy for one specific case via dynamic programming. In particular, we ap-
plied the value iteration algorithm given in [Bert] to the corresponding to the network
Markov chain for the MEDIUM-MEDIUM traffic case. The dynamic programming al-
gorithm yielded an optimal for the objective function of 27.7 proving policy pl almost
optimal. But it is not apparent that this is the case for all the other traffic conditions.

One different aspect of this example, compared to the example of Section 6.1,
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is that in the balanced traffic case the efficiency of the bound deteriorates as the
traffic gets heavier. Unfortunately, the traffic intensities are too large in this case to
make the problem solvable by dynamic programming. Therefore we cannot specify
if the deterioration of the efficiency is due to the deterioration of the policy. On the
contrary, in the imbalanced case this example has the same behaviour as the previous
one. In particular, we observe again that as the traffic goes from LIGHT-MEDIUM
to MEDIUM-HEAVY the efficiency increases. The same is true as the traffic goes
from MEDIUM-LIGHT to HEAVY-MEDIUM. A last note on this example is that

the efficiency becomes better when station 1 is more loaded than station 2.

6.3 A Six-Class Network Example

Consider the network depicted in figure 6-2. Customers of type 1 enter the network
in a Poisson stream of rate A; and they visit stations 1,2,1,2, in that order, before
exiting the network, forming classes 1,2,3,4 respectively. Customers of type 2 enter
the network in a Poisson stream of rate A, and they visit stations 1,2 before exiting
the network, forming classes 5,6 respectively. The single servers at stations 1,2 have

service times exponentially distributed with rates p,u, respectively.

Y-

yo J!X ye

Figure 6-2: A Six-Class Network Example.

Table 6.5 compares our lower bounds on attainable performance with FCFS and

the best found policy ? for various load conditions, providing also the efficiency of

?we only considered non preemptive policies
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the bound. “Lower Bnd. 1” and “Lower Bnd. 2” in the table correspond to the
bound developed in Chapter 3 and Chapter 5, respectively. Costs throughout the

experiments reported in the table were chosen to be:
1 =15, =13, ¢3 = 12, ca=1cs=1.1, cg = 1.1.

In this specific example, also, the best policy we were able to find, for each load
condition we considered, happens to be a strict priority one. Note that we only
considered non-preemptive policies. It is interesting that not a single policy was
optimal for every case we considered. More precisely the following two policies were

competing:

Policy 1: Give at station 1 highest priority to class 3 and lowest to class
5(3 — 1 — 5) and give at station 2 highest priority to class 6 and lowest
to class 2 (6 — 4 — 2).
Policy 2: Give at station 1 highest priority to class 1 and lowest to class
5 (1 — 3 — 5) and give at station 2 highest prioﬁty to class 2 and lowest
to class 6 (2 — 4 — 6).

with the one outperforming the other in some cases and vice versa. In the table, next
to the performance of the best policy for each case, we are giving in parenthesis the
policy identifier, denoting by p1 and P2, policy 1 and policy 2, respectively. Table 6.6
contains the data used for each case reported in Table 6.5. Recall that by PA, PB We

denote the total traffic intensities at station 1 and station 2, respectively.

The efficiency of our lower bound is again of approximately the same order of
magnitude as the efficiency of the “pathwise bound” derived in [OuWe].

In this example, as in the example of the previous section, we observe that in
the balanced traffic case the efficiency of the bound deteriorates as the traffic gets
heavier. We also observe that, as in the example of the previous section, the efficiency

becomes better when station 1 is more loaded than station 2.
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Load Lower | Lower | FCFS Best Effic.
Node 1-Node 2 || Bnd. 1 | Bnd. 2 Policy
HEAVY.HEAVY 15.72 | 16.67 | 30.56 [ 26.89 (p2) | 62%
MEDIUM-MEDIUM || 5.83 6.17 9.86 | 9.25 (p2) | 67%
MEDIUM-HEAVY | 15.77 | 15.85 | 21.26 | 18.20 (p1) | 87%
HEAVY-MEDIUM || 18.77 | 18.79 | 23.00 [19.80 (p1) | 95%

Table 6.5: Numerical results for the network of Figure 6-2.

Load PA PB M| Ag £ K2
HEAVY-HEAVY |1 0.85[0.90 [0.5[0.7] 2 [1.89
MEDIUM-MEDIUM || 0.7 | 0.7 [ 0.5 [ 0.7 ] 2.43 | 2.43
MEDIUM-HEAVY 06 | 09 {0.5(0.7]2.83]1.89
HEAVY-MEDIUM 09 106 [05[07]1.89]2.83

Table 6.6: Data for the experiments of Table 6.3.

A conclusion that can be drawn from all the cases studied numerically is that our
lower bounds are very efficient in imbalanced traffic conditions. In these conditions
the efficiency of the bounds increases with the traffic intensity. In balanced traffic
conditions, they also behave well especially when the traffic intensity is not very close

to one. But, even in these heavy-balanced traffic conditions, in the examples that we

studied the efficiency does not gef worse than 62%.
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Chapter 7

Conclusions and Open Problems

In this thesis we considered the problem of scheduling an open multiclass queueing
network, with Poisson arrivals and exponentially distributed service times, when only
sequencing decisions are involved. The ob jective was to minimize a weighted sum
of the expected response times of different classes in the network. We proposed a
new method to derive a lower bound on the achievable performance based mainly
on ideas of conservation laws. Qur method consists of deriving a polyhedral space
which includes the achievable region of the network. Thus, optimization of the ob-
jective function over this polyhedral space yields a lower bound on the achievable
performance. We were able to prove that in single-station network models, namely
in a multiclass queue with and without feedback, the above mentioned polyhedron
exactly characterizes the achievable region. Thus, our method can be viewed as a
natural extension of known results for single-station networks to the general setting

of an open multiclass queueing network.

More precisely, we proposed two variations of the same method that define two dif-
ferent polyhedral spaces. In the first variation, we define a class of polyhedral spaces,
by changing the values of a set of parameters, which we named f-parameters. In order
to get the tightest of these polyhedra, one has to find the values of the f-parameters
corresponding to this polyhedron. This is not an easy task to do, in general, and

thus we chose the “optimal” values of the f-parameters based on intuitive grounds.
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The second variation is more efficient in terms of computational effort needed for the
calculation of the lower bound and yields only one polyhedron, explicitly defined by
the data (arrival rates, service rates and routing matrix). In the single-station case
we were able to find the “optimal” value of the f-parameters such that the polyhedra

defined by both variations exactly characterize the achievable region.

Comparing with the existing literature on lower bounds, our method js an ana-
lytical one that calculates the lower bound on achievable performance in a number
of steps which is a polynomial function of the number of classes in the network. On
the contrary, existing methods are simulation-based. Moreover, in terms of tightness
of the bound, a numerical study in various network topologies that we Presented,

suggests that our method is at least as good as existing methods,

* A way to find a relation between the two polyhedral spaces defined by the two
variations of our method. This was done in the single-station case. However,

We were not able to generalize in the general case.

® Ways to improve the efficiency of our bounds, especially in the case of networks

with nodes in balanced-heavy traffic.
® A way to generalize the Proposed method in order to include closed networks.

® A way to generalize the proposed method in order to include networks with

general arrivals and general service times.
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| Appendix A
Proof of Lemma 4.5

The real-valued function y on the subsets of N = {L,2,...,n} was defined in chapter

4 to be:
r'(S)
1 - p(S)

where p'(S) = Ties(pi/p:) and p(S) = T;cq pi. In order to prove the submodularity

y(§) =

of the above function we are using the following proposition from [NeWo].

Proposition A.1 A real-valued function f on the subsets of a set N is supermodular

if and only if

F(SU{}) = £(5) 2 f(SU{5,k}) — f(SU{k}) forj,k € N, j# k and S C N{j, k}.

We therefore have:

F(SULG k) ~ F(SU{R}) + £(S) - F(SU{j}) =
P'(S) + (pi/1i) + (pr/pn)  p'(S) + (pu/pa) + PS)  PS) +(pifes)
1—p(S) = pi—pr 1-p(S)=pe  1-p(S)  1-p(S)—p;

= Z—jpk(l — o(S))(1 - o(8) - pu) + P 0i(1 = ()L = p(S) ~ ;) +
P(S)pil(1 = p(S) = p;)(1 = p(S)) = (1 = p(S) = i — p;)(1 = p(S) — Pr)]
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The first two terms of the last equivalence are positive so it suffices to show the

positivity of the last term. Thus,

F(SU{5k}) - f(SU{kD) + F(S) - F(SU D) >

P'(8)psl(1 = p(8) = p;)(1 = p(8)) = (1 = p(S) = pr — ;)1 = p(S) — p1)]
P'(S)ripe(2 — 2p(S) — pr — p;)

20'(S)pip(1 — p(S) — pr — p;)

0 O

v

v
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Appendix B

Proof of Lemma 4.6

From (4.3), (4.4) and (4.5) we have that:

Shalpi/m)  Ti 1o/ 1)

T O o g

_ (-zEe) sl s - (1 Thope) TL &
- (1-zizie) (- =L, 1)
_ ok -shiarlig-vihasn,arite
- (1-xizie) (1-Tio )
_ i "" 1Pk+PJEk=1,,.
B (1 Ty o) (-Siap)

(- +oitat+a_u

T; =
(1 - 2.-1 Pt) ( Eu—l Pa)

_ 1 Thea(pi/ i)

pl-siip)  (-zo pi) (1 -2, )

But this is exactly the formula from priority queueing (see [GeMi, eq. (1.81)]) of the
response time z; for class j customers when preemptive priority is given to classes

1,2,...,7n in that order. O
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