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Abstract: In their recent paper, Lau, Clark, and Lappin explore the idea that the
probability of the occurrence of word strings can form the basis of an adequate
theory of grammar (Lau, Jey H., Alexander Clark & 15 Shalom Lappin. 2017.
Grammaticality, acceptability, and probability: A prob- abilistic view of linguis-
tic knowledge. Cognitive Science 41(5):1201–1241). To make their case, they
present the results of correlating the output of several probabilistic models
trained solely on naturally occurring sentences with the gradient acceptability
judgments that humans report for ungrammatical sentences derived from round-
trip machine translation errors. In this paper, we first explore the logic of the
Lau et al. argument, both in terms of the choice of evaluation metric (gradient
acceptability), and in the choice of test data set (machine translation errors on
random sentences from a corpus). We then present our own series of studies
intended to allow for a better comparison between LCL’s models and existing
grammatical theories. We evaluate two of LCL’s probabilistic models (trigrams
and recurrent neural network) against three data sets (taken from journal
articles, a textbook, and Chomsky’s famous colorless-green-ideas sentence),
using three evaluation metrics (LCL’s gradience metric, a categorical version of
the metric, and the experimental-logic metric used in the syntax literature). Our
results suggest there are very real, measurable cost-benefit tradeoffs inherent in
LCL’s models across the three evaluation metrics. The gain in explanation of
gradience (between 13% and 31% of gradience) is offset by losses in the other
two metrics: a 43%-49% loss in coverage based on a categorical metric of
explaining acceptability, and a loss of 12%-35% in explaining experimentally-

*Corresponding author: Jon Sprouse, University of Connecticut, Storrs, USA,
E-mail: jon.sprouse@uconn.edu
Beracah Yankama: E-mail: beracah@mit.edu, Sagar Indurkhya: E-mail: indurks@mit.edu,
Massachusetts Institute of Technology, Cambridge, USA
Sandiway Fong, University of Arizona, Tucson, USA, E-mail: sandiway@email.arizona.edu
Robert C. Berwick, Massachusetts Institute of Technology, Cambridge, USA,
E-mail: berwick@csail.mit.edu

The Linguistic Review 2018; 35(3): 575–599

Brought to you by | MIT Libraries
Authenticated

Download Date | 5/9/19 3:49 PM



defined phenomena. This suggests that anyone wishing to pursue LCL’s models
as competitors with existing syntactic theories must either be satisfied with this
tradeoff, or modify the models to capture the phenomena that are not currently
captured.

Keywords: acceptability, grammaticality, probability, gradience, n-grams,
recurrent neural networks

1 Introduction

In The Logical Structure of Linguistic Theory (Chomsky 1955/1975) and Three
Models for the Description of Language (Chomsky 1956), Chomsky advanced
perhaps the first serious argument that the probabilities of strings of words are
unlikely to provide an adequate basis for a theory of human grammar. A
rational reconstruction of Chomsky’s argument runs roughly as follows: Take
the sentence Colorless green ideas sleep furiously. The sentence itself is exceed-
ingly unlikely to occur in natural speech because its meaning is anomalous.
Further, every substring of two or more words in the sentence is also semanti-
cally anomalous. Consequently, the likelihood of occurrence of any of these
substrings, and of the complete string itself, will be very low. Reversing the
words in this sentence–Furiously sleep ideas green colorless–results in a simi-
larly semantically deviant surface sequence. This semantic deviance of the
reversed string also suggests that the substrings of two or more words, and
the full string, will have a low likelihood of occurrence. Consequently, any
theory of grammar that is predicated upon the likelihood of occurrence of word
strings will treat these two sentences as relatively similar (i.e., both relatively
improbable, with unigram probabilities exactly equal). Nonetheless, native
speakers report substantial cognitive differences between the two sentences
that do not reflect their equal likelihoods. The first sentence behaves more like
a grammatical sentence: native speakers report that it is acceptable, though
semantically anomalous; native speakers utter it with normal intonation; and
native speakers recall it easily after hearing it only once or twice. In contrast,
the reversed sentence behaves like an ungrammatical sentence: native speak-
ers report it as not acceptable; native speakers utter it with flat, list-like
intonation; and native speakers have difficulty remembering it even after
repeated presentations. Taken together, this empirical evidence suggests that
probabilities of strings of words cannot form the basis of an adequate theory of
human grammar.
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To be fair, the argument put forward by Chomsky does not go through
empirically for the two strings above: the joint probability of the trigrams in
the reversed string is about 38 times smaller than the joint probability of the
trigrams of the original string (see also Pereira 2000). This might be taken to
suggest that likelihood of occurrence can form the basis of an adequate theory of
grammar. Recent work in the computational linguistics literature has sought to
explore this possibility. Lau et al. (2014; 2015; 2017; henceforth LCL) have argued
that the continuous nature of acceptability, sometimes referred to as the
gradience of acceptability, motivates a reconsideration of grammatical models
predicated upon the probabilities of word strings (from here on, we will use the
phrase surface probabilities to mean probabilities of strings of (overt) words).
The logic of LCL’s argument goes like this. Given that acceptability judgments
form the empirical basis for syntactic theories, syntactic theories should strive to
explain the gradient acceptability of individual sentences. Surface probability
models can yield gradient outputs, so once one corrects for nuisance variables
like sentence length and word frequency, surface probability models could in
fact serve as potential models for gradient acceptability, filling the gap left by
traditional categorical models of grammar. Furthermore, there are currently no
adequate models of the gradient acceptability of individual sentences based on
traditional categorical models of grammar. Therefore, if surface probability
models do an adequate job of predicting the gradient acceptability of individual
sentences, they should be preferred to the (non-existent) models of acceptability
based on categorical grammars.

LCL (2014, 2015, 2017) apply this logic to an empirical study of three types of
surface probability models: n-gram models (2, 3, and 4-gram models), recurrent
neural network models (RNNs), and Bayesian Hidden Markov Models. Crucially,
these models were trained only on naturally occurring sentences from the British
National Corpus, and only on the words that appear in those sentences (no
covert items). To test the performance of these models, LCL created a set of 2000
test sentences by sending 500 sentences from the BNC through machine transla-
tion from English, to each of four languages (Chinese, Japanese, Norwegian, and
Spanish), and back to English (a roundtrip through machine translation) using
Google Translate. This results in 2000 sentences containing syntactic violations
of various sorts, plus the original 500 grammatical sentences. They then calcu-
lated several measures of sentence-level probability for these generated test
sentences using their surface probability models. These measures attempted to
control for various nuisance variables that can affect probability, such as word
frequency and sentence length. They then collected acceptability judgments
from human participants (using 2, 4 and 100 point scales) for the 2500 test
sentences using Amazon Mechanical Turk. Finally, they calculated correlations
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between the probability measures and the human acceptability judgments. LCL
indeed find non-trivial positive correlations, and from that argue that surface
probability models should be considered not just as theories of acceptability, but
as viable alternatives to existing theories of syntax.

The idea that probabilistic grammars could be used to explain gradient
acceptability has been explored in various ways within the generative litera-
ture, with some notable positive results (e.g., Featherston 2005; Bresnan 2007;
Sorace and Keller 2005). But what is particularly provocative about LCL’s
argument, and the reason that we focus on their study here, is that they deploy
their argument in service of theories of grammar that deviate substantially
from existing generative syntactic theories. In a very real sense then, their
argument can be seen as a rehabilitation of surface probability models by
focusing on gradient acceptability of individual sentences. If LCL’s claims
hold, they are potentially field-changing. As such, we believe it is valuable
to explore LCL’s claims in some detail. In what follows, we will first identify
two aspects of LCL’s study that make it difficult to compare the empirical
coverage of their surface probability models to existing syntactic theories
(the choice of evaluation metric, and the choice of data set). We will then
present our own set of studies designed to eliminate these problems. The goal
is to facilitate a more direct comparison between the empirical coverage of
LCL’s surface probability models and existing syntactic theories. Though our
empirical results are specific to LCL’s models, we hope that the general form of
our study (and the ensuing discussion) will provide a model for future work
that seeks to compare surface probability models to existing syntactic theories.

2 The evaluation metrics

LCL adopt an evaluation metric that aligns with their research goals. They
believe that it is important for linguistic theory to explain the gradience of
acceptability judgments, so they choose a metric that evaluates how well their
probability measures correlate with gradient acceptability. Let’s call this the
gradient metric. This is a perfectly reasonable metric given LCL’s goals.
However, as LCL correctly observe, it is impossible to compare their models to
existing categorical grammars using this metric, because there is no existing
theory of gradient acceptability that uses a categorical grammar. Thus, the
gradient metric is asymmetrical in its application – it can tell us about LCL’s
models, but not about the difference in performance between LCL’s models and
categorical grammars. The lack of a theory of gradience for categorical gram-
mars is not a research failure. It reflects the research goals of the syntacticians
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who explore categorical grammars. For these syntacticians, gradience is a nui-
sance variable caused by cognitive systems other than the one that they are
interested in (sentence processing, task effects, meaning and knowledge inter-
actions, etc). Therefore, these syntacticians typically adopt metrics that better
align with their research goals. We can think of at least two metrics that are
used, often without explicit discussion, in the categorical syntax literature. We
will discuss each in the following two paragraphs. The ultimate goal will be to
apply all three metrics to LCL’s models in an attempt to create a more symme-
trical framework for comparing LCL’s models to categorical theories.

One common metric in the categorical literature simply asks how well
categorical grammars explain (gradient) acceptability judgments. We will call
this the categorical metric. For grammars with two categories (grammatical and
ungrammatical) the categorical metric simply asks whether grammatical sen-
tences have higher acceptability than ungrammatical sentences. Statistically
speaking, if the gradient metric is a correlation between gradient grammaticality
and gradient acceptability, the categorical metric is a point-biserial correlation
between categorical grammaticality and gradient acceptability. In this way, the
categorical metric is literally a categorical version of the gradient metric, albeit
one that involves a subset of the information involved in the gradient metric.
Though this is technically a loss of information, it is a conscious choice to
abstract away from gradient acceptability in categorical grammars; and it is
the only way for categorical grammars to participate in a correlation with
acceptability on a sentence-by-sentence basis (without building a complete
theory of sentence processing to generate gradient acceptability). The interpreta-
tion of the categorical metric is similar to that of the gradient metric – higher
correlations are better. That said, we expect for both the gradient metric and the
categorical metric that the correlations will underestimate the true relationship
between the grammar and acceptability. This is because we expect that cognitive
systems outside of the grammar could create potentially dramatic mismatches
between grammaticality and acceptability. There are several well-known exam-
ples of such mismatches: doubly center-embedded relative clauses (Chomsky
and Miller 1963), NPI illusions (Xiang et al. 2009), agreement attraction (Bock
and Miller 1991), and comparative illusions (Townsend and Bever 2001). It is
dangerous to speak for an entire field, but it seems to us that most syntacticians
assume that these mismatches will be relatively rare, such that the categorical
metric should yield a strong correlation (enough so that syntacticians tend to
use the correlation as a working hypothesis for determining the grammaticality
of sentences based solely on their acceptability).

Another common metric in the literature seeks to eliminate the con-
found of gradient acceptability by comparing two (or more) conditions to
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each other. The goal is to create conditions that differ only by the gramma-
tical property of interest, while holding all other properties constant, such
that subtraction logic can be used to isolate the effect of the grammatical
manipulation, thus revealing a causal relationship between the grammati-
cal property and differences in acceptability. We will call this the experi-
mental logic metric. The differences returned by the experimental logic
metric can be viewed either gradiently (effect sizes can range from 0 to
infinity, with a sign that indicates the direction of the difference), or cate-
gorically (e.g., for binary grammars, 0 indicates no effect, a positive or
negative value indicates an effect). Because effects are, obviously, inter-
preted categorically in the categorical grammar literature, we will set aside
the gradient interpretation in this article, but note it for future discussions.
We should also note that the experimental logic metric is not unique to
syntax – it is the default metric for all of psycholinguistics and cognitive
science more generally. It also tends to be interpreted categorically in other
domains of psycholinguistics and cognitive science (though not exclu-
sively). We take this trend to be part of the motivation for exploring gradient
models in cognitive science that LCL reference in their articles. Like the
categorical metric, the experimental-logic metric involves a proper subset of
the information in the gradient metric in the special case where the data set
used to test the gradient metric contains experimentally-defined phenom-
ena. We will use two data sets that consist solely of experimentally-defined
phenomena; these will be discussed in Section 3.

Taken together, these three metrics – gradient, categorical, and experimen-
tal logic – can provide a new framework for comparing LCL’s models with
existing categorical grammars. Recall that LCL’s models differ from existing
categorical grammars not just in the gradient/categorical distinction, but also
in the nature of the grammar itself (surface probabilities versus the abstract
categories, rules, and constraints that typify generative syntactic theories). The
gradient metric provides an estimate of the unique benefits of LCL’s gradient
grammar – it shows how much of the gradience in judgments can be captured
by the gradient grammar directly. The categorical and experimental logic metrics
provide a point of comparison with existing categorical grammars, allowing us
to evaluate the contribution of the change in the nature of the grammar. These
evaluations will, of course, be subjective. But we believe that the information
provided by the categorical and experimental logic metrics is exactly the kind of
information that the field needs to evaluate to what extent LCL’s models should
be considered competitors with existing grammars, and to what extent LCL’s
models must be augmented to increase their performance on these more tradi-
tional metrics.
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3 The test data sets

Given that LCL focus exclusively on the gradient metric, their study requires a
large number of sentences that span the full range of potential acceptability
judgments. Their method for constructing a test data set (i.e., randomly selected
sentences from the BNC sent through roundtrip machine translation using
Google Translate) may be reasonable given these requirements: the roundtrip
machine translation method produces a large number of ungrammatical sen-
tences quickly; and LCL’s judgment experiments show that those sentences
occupy a wide range of acceptability. The categorical metric has similar require-
ments, so LCL’s test data set would work for that metric as well. However, the
experimental logic metric imposes an additional requirement: the items in the
data set must form carefully-controlled logical sets (minimally, pairs) that
manipulate a specific grammatical property of interest while holding as many
other properties constant as possible. To satisfy the requirements of the experi-
mental logic metric, we will test three data sets here: a randomly selected
sample of 150 pairwise phenomena (300 sentence types) from Linguistic
Inquiry (LI) 2001–2010 (collected by Sprouse et al. 2013); an exhaustive selection
of 230 sentence types from Adger’s (2003) Core Syntax textbook that form 105
multi-condition phenomena (collected by Sprouse and Almeida 2012); and a new
data set containing all 120 five-word strings that result from permuting the five
words in Chomsky’s famous colorless green ideas sentence.

Beyond meeting the requirements of the experimental logic metric, these
three data sets have the added advantage of containing phenomena that are of
particular interest to working syntacticians. Though it is possible that the LCL
test set contains phenomena of interest to syntacticians, it is also possible that
the Google Translate algorithm will not create some of the grammatical manip-
ulations that syntacticians have devised in their quest to probe the boundaries of
human grammars. Though this variation concern is a minor point, the theore-
tical value of these three data sets is a nice added value. The LI phenomena
come from relatively recent issues of a leading journal in the field, and are
therefore likely to be phenomena that have helped shape cutting-edge theories.
The Adger phenomena come from an advanced introductory textbook that
explicitly attempts to motivate a specific syntactic theory (Minimalism). And
the exhaustively permuted data set, which we will call CGI, is derived from the
sentence that Chomsky first used to argue against surface probability models in
the 1950s. This data set has the peculiarly interesting property that the unigram
probability scores are equal for every sentence, so that any deviation in prob-
abilistic acceptability must stem from partial probabilities (in the corpus) of

Colorless green ideas do sleep furiously 581

Brought to you by | MIT Libraries
Authenticated

Download Date | 5/9/19 3:49 PM



bigram, trigrams, or smoothing values.1 We will provide the details of each data
set in the three paragraphs below, and then present summary results of accept-
ability judgments on these data sets in Figure 1.

The Linguistic Inquiry (LI) data set was constructed by Sprouse et al. (2013).
This data set consists of 300 distinct sentence types that form 150 experimen-
tally-defined phenomena consisting of a putatively grammatical sentence and a

Figure 1: Experimental results for Amazon Mechanical Turk judgements on the three data sets.
The left-most column displays the mean ratings of the sentence types in each data set arranged
in ascending order of acceptability. The center column shows the distributions of the mean
ratings. The right column shows the experimentally-defined effect sizes (where the control
condition is a violation condition).

1 Note that this is because LCL’s text cleaning script lower-cases both the training and test
corpora; if the first word of each permuted string was capitalized, the unigram probabilities
would differ in the case of, for example, “Green” and “green.”
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putatively ungrammatical sentence. The 150 phenomena were randomly
sampled from a ten-year span of the journal Linguistic Inquiry (2001–2010). By
focusing on experimentally-defined phenomena, we can use all three evaluation
metrics in our analysis. By using a leading theoretical journal, the phenomena in
this data set are likely to be representative of the phenomena that are used to
push the boundaries of current syntactic theories. Sprouse et al. tested 8 tokens
of each condition (2400 sentences total) using the best practices of experimental
syntax (Latin Square design, pseudorandomized orders, etc.). Sprouse et al.
tested these items using three distinct tasks: a 7-point scale, magnitude estima-
tion, and forced-choice. Participants were recruited using Amazon Mechanical
Turk; 312 per task (936 total). We use the 7-point scale results here (because the
other data sets use magnitude estimation and forced choice, and we wanted
methodological diversity). The results of the 7-point scale task were z-score
transformed prior to analysis to remove scale biases. In the discussions that
follows the rating for each sentence type was calculated from the mean of the 8
tokens per condition.2 When evaluating the acceptability of individual sen-
tences, we report the acceptability for all 300 sentence types. When evaluating
the experimentally-defined phenomena, we report the results for the 137 phe-
nomena that reached strict statistical significance (p < 0.05 in a linear mixed
effects model) in the direction reported in the LI articles.

The second data set comes from an exhaustive test of the data points in
Adger’s (2003) textbook Core Syntax as conducted by Sprouse and Almeida
(2012). The data set itself has many components because it covers an entire
textbook. Here we use the 230 sentence types that Sprouse and Almeida tested in
a series of magnitude estimation experiments. Like the LI data set, 8 tokens were
created and tested for each sentence type (using the best practices of experi-
mental syntax). The ratings of each participant were z-score transformed to
eliminate scale biases. In the analyses that follow, we report the mean rating
of the 8 tokens for each sentence type. In the analyses that use the individual
sentence metric, we use all 230 sentence types from the experiments. In the
analyses that use the experimental-logic metric, we use 104 pairwise phenom-
ena that reached a strict level of statistical significance (p < 0.05, using linear
mixed effects models) in the direction reported in Adger’s textbook.

The final data set is comprised of all 120 permutations of the five words in
Chomsky’s famous sentence Colorless green ideas sleep furiously, which we will
call the CGI data set for short. Because all of the sentences are semantically

2 We use the arithmetic mean over the 8 values here as a measure of central tendency because
LCL’s SLOR scores are sometimes negative, and harmonic or geometric means operate only over
a non-negative domain.
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anomalous, it seems unlikely that there would be much spread on a 7-point scale,
making a correlation with probabilities difficult. To overcome this challenge, we
instead used a two-alternative forced-choice task that presented two CGI sen-
tences at a time, and asked the participants which of the two is more acceptable.
We created all 7140 pairs, and collected 4 judgments for each pair using Amazon
Mechanical Turk. We then used the Elo chess rating system (Elo 1978) to expand
the pairwise comparisons into individual gradient ratings (a method that has been
explored by Yasutada Sudo in currently unpublished work, with results suggest-
ing that forced-choice plus Elo yields results equivalent to a Likert scale task). In
essence, we treated each pairwise comparison as a “chess match” between the
two sentences. The winner of each match receives “points” proportional to the
difference between its current point total and the current point total of its
competitor. We ran 10,000 random orders of the 28,560 pairwise matches to
ensure that the order of the matches was not contributing to Elo ratings, and
used the mean Elo rating as the acceptability estimate for each sentence. We then
scaled the resulting Elo ratings to be on the same scale as the z-score transformed
results from the other two data sets (which makes plotting easier).

Taken together, the three data sets cover distinct subsets of the data points in
syntactic theory, and provide a number of dimensions of methodological variability
(judgment tasks, sampling of data types, and structure of the data sets). Crucially,
these data sets yield exactly the kind of gradience in acceptability judgments that
LCL obtained with their data set, so we can apply all three evaluation metrics for
optimal comparison. Figure 1 displays the basic results. Gradience in acceptability
is readily seen in the left-most column of Figure 1, which plots the mean rating for
each sentence type in the three data sets in ascending order of acceptability.
Although the plot appears to contain a line, it is in fact a series of (empty) circles
that are densely packed. There is no hint of a category break in the locations of the
means. The center column of Figure 1 shows the distribution of mean ratings for the
sentence types in each data set, which indirectly reveals the experimental-logic that
was used to construct the LI and Adger data sets through the bimodality of the
distribution, and reveals the fact that very few of the permutations in the CGI data
set are acceptable. The right column of Figure 1 shows the effect sizes of each
pairwise phenomenon. For the LI and Adger data sets, each bar represents the
difference between the putatively grammatical sentence and the putatively ungram-
matical sentence in each pair. For the CGI data set, we calculated the difference
between the classic Chomsky sentence and every other permutation. There turn out
to be three negative effect sizes in the CGI data set because there are three CGI
permutations that were rated by humans as more acceptable than the classic
sentence: green colorless ideas sleep furiously, green colorless ideas furiously sleep,
and colorless ideas furiously sleep green.
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4 The models

We explore two of LCL’s surface probability models in our study: trigrams and
RNNs. Overall, LCL present seven models in their broad search for a best fitting
model, but for time and space reasons, we thought it best to focus on two
models that are likely to differ in theoretically meaningful ways, while still
being similar in that they are surface probability models (because of their design
and training based on surface strings). Trigram models have well-known limita-
tions: they operate over strings of words with no hierarchical structure, and they
are unable to capture dependencies beyond three words in length. LCL’s RNNs
differ in that they are presumed to be able to capture more statistical structure in
the data set, including hierarchical structure, and dependencies longer than
three words. This makes the two models an interesting comparison set, as one
is inherently limited by its nature, whereas the other is primarily limited by the
statistical structure in the training set (though also constrained by the network
architecture and the learning algorithm). We trained both models on the British
National Corpus (100M words).3 We used the SRI Language Model toolkit to
calculate a trigram model,4 and a fast implementation of the industry standard
RNN code by Mikolov (2012) (available on github here: https://github.com/
yandex/faster-rnnlm). For the specific details of the RNN model, we refer the
reader to LCL’s articles (Lau et al. 2014; Lau et al. 2015; Lau et al. 2017).

LCL report 13 distinct probability measures for each of their models as part of
their broad search for the best fitting model to their data sets. Reporting the results
of multiple models with slight variations is common practice is the computational
literature, as the goal is to map out the space of possible performance. Here we

3 The BNC introduces a potential mismatch with the judgments (US English) that both we and
LCL collected using Amazon Mechanical Turk. However, there are three reasons to continue to
use the BNC. The first is to maintain a direct comparison with the LCL studies; they used the
BNC and US English judgments, so we will as well. The second is that the BNC is at the upper
limit of the size of a corpus that can be used as a training set for the RNNs. The RNNs take a
considerable amount of computational power to train. The obvious US English corpus to try,
COCA (Corpus of Contemporary American English) is too large to efficiently compute with the
resources provided by our universities. The third is that COCA in fact leads to lower performance
of the trigram models than the BNC. It is not clear why this is so; but we did not want the choice
of corpus to bias against the results of the LCL models.
4 We used a sentence padding of one (e.g., marking the beginning of the sentence) with normal-
ization denominators of sentence length +1 and +2 (hence ngram.1 and ngram.2 from the SRI
toolkit), in order to compare with the method LCL used (LCL do not directly report their padding
parameters and in some cases it is unclear what padding was used, even after examining LCL’s
computer code).

Colorless green ideas do sleep furiously 585

Brought to you by | MIT Libraries
Authenticated

Download Date | 5/9/19 3:49 PM



decided to focus on just one of LCL’s probabilitymeasures, specifically the syntactic
log odds ratio (SLOR) measure. We chose to focus on one probability measure to
better comport with the standard practice in the experimental literature of choosing
a single theory, and evaluating it. We wanted to avoid any perception that we were
leveraging researcher degrees of freedom to find better or worse fitting grammars.
The SLOR measure was first proposed by Pauls and Klein (2012) as a way of
correcting for both sentence length and word frequency when calculating the
probability of a sequence of words. For example, for the trigram model we study
here, the SLORmeasure for each sentence would be the equation given in (2) below:
the joint log probability of the trigrams in a sentence (logP3 ξð Þ) minus the joint log
probability of the words in a sentence (logP1 ξð Þ), divided by the number of trigrams
in the sentence ( ξj j):

SLOR=
logP3 ξð Þ− logP1 ξð Þ

ξj j (1)

The SLOR measure is also the most theoretically grounded measure that LCL
evaluate, as it is the one that corrects for both of the nuisance variables that
LCL highlight in their discussion as impediments to using sentence probability
as a model of grammaticality: sentence length and individual word frequency
in the training corpus. The SLOR measure can also be seen as a per-word
average partial difference of the model’s log probability prediction over that of
the unigram.

5 The results of the gradient metric

As a first analysis, we will use LCL’s gradient metric to evaluate the three models
(trigrams with a padding of one, trigrams with a padding of two, and RNN) on
our three data sets. This will show us how much of the gradience in our three
new data sets that the LCL models capture, thus providing a measure of the
benefit that LCL’s new grammar models offer that is parallel to the values
reported in LCL 2014, 2015 and 2017. Figure 2 presents the results of correlating
the SLOR probability measure with the mean acceptability judgments of the
individual sentence types in the three data sets (the points in the plots represent
condition means: because there are 8 tokens per sentence type in the LI and
Adger data sets, we averaged over the 8 tokens to derive mean acceptability
ratings and mean SLOR measures for each type; this averaging is due to the
judgment experiments – the experiments were designed to derive reliable esti-
mates of conditions, not of items). We have added lines of best fit, as well as r
and R2 values in the corners of each plot. All three models yield a weak to
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moderate positive correlation between SLOR and acceptability for the LI data set
(r between 0.3 and 0.5); a moderate positive correlation for the Adger data set (r
between 0.52 and 0.55); and a weak to moderate positive correlation for the CGI
data set (r between 0.32 and 0.44). Framed another way, these models capture
13% to 15% of the variance in ratings of individual sentences (based on R2

values) for the LI data set; 27% to 31% for the Adger data set; and 10% to
20% for the CGI data set.

For comparison, with the round-trip translation data set, LCL obtained r
values of 0.41 for the trigram model, and 0.53 for the RNN model; equivalently,
the LCL models capture 17% and 28% of the variance in ratings of individual
sentences. This suggests that the results of the LCL models in predicting the
gradience of our data sets is roughly in line with the results they report on their
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Figure 2: Scatterplots of the correlation between SLOR and acceptability judgments using the
BNC for the trigram and RNN models.
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roundtrip machine translation data set, albeit with two interesting divergences.
The first is the decreased performance of the RNN on the LI data set, but no
decrease in the Adger data set. This possibly reflects meaningful differences in
the phenomena contained in the two data sets, such that the Adger data set is
easier for the RNN to capture. This would not be entirely surprising given that
Adger explicitly states that the textbook is designed around a narrower set of
phenomena than other textbooks in an attempt to construct an explicitly intern-
ally consistent theory. The second potentially interesting difference is the
decreased performance of the trigram models on the CGI data set relative to
the LCL results. This likely stems from the semantic implausibility of the
sequences of words in the CGI data set, which in turn likely affects their
occurrence frequency in the BNC. 5 This is precisely Chomsky’s original argu-
ment – a grammar model that is built on string probabilities will not necessarily
be able to capture the difference between colorless green ideas sleep furiously
and furiously sleep ideas green colorless.

One notable property of the scatterplots for the LI data set in Figure 2 is that
there appear to be two masses of judgments – one higher in acceptability and
one lower, both of which are relatively widely spread across the range of SLOR
scores. This difference is less pronounced with the Adger data set, though still
partially visible. This appears to be structure in the data set that is not explained
by the models. We will turn to the other two metrics to attempt to understand
what this structure could be.

6 The results of the categorical metric

The categorical metric measures how well a categorical grammar predicts
acceptability judgments under the simplifying assumption that the categories
of the grammar map transparently to (the relative order of) acceptability. In this
section we apply the categorical metric to four grammar models: an idealization
of a binary grammar derived from the traditional syntax literature, and catego-
rical approximations of the three surface probabilistic models from LCL.

5 Due to quirks of smoothing, particularly when using the Kneser-Ney smoothing adopted by
LCL and here, the trigram models use an “n-gram fallback.” That is, if some word triplet does
not appear, then this smoothing method backs off to a (discounted) bigram estimate, and if
there is no bigram, then backs off to a unigram estimate. Recall that, since SLOR is the
difference between the language model result and a unigram estimate, it is easy for the trigram
models of the CGI sentences to return relatively constant discounted unigram values.
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For the binary grammar we present a correlation between grammaticality as
defined by the diacritics (asterisk, question mark, etc.) on the sentences as
published in LI. We categorize sentences with any sort of diacritic as ungram-
matical, and sentences without diacritics as grammatical. Using these categories
directly as predictors of acceptability is a bit circular: the diacritics in the
literature are based on the judgments collected by the authors, so correlating
them with the judgments collected by Sprouse et al. (2013) is descriptively
equivalent to measuring the discrepancies among the published LI data, the
idiosyncratic use of diacritics by different authors, and the Sprouse et al. (2013)
data. However, another way of interpreting the correlation is as a measure of
how well a comprehensive binary grammar built from the diacritics published in
LI would capture the gradient judgment data. Of course, there currently is no
comprehensive binary grammar built from the diacritics published in LI; all we
have are the partial grammar fragments that are published in each paper. As one
anonymous reviewer correctly points out, we have no way of knowing if these
grammar fragments could be combined into a single coherent grammatical
theory. This is a challenge for studies like ours that we take up in more detail
in Section 8. That said, we can use the correlation of the diacritics with the
gradient judgments as an upper-bound estimate of what a successful binary
grammar based on the LI data would look like under the categorical metric. To
balance this idealization, we can apply similar upper-bound assumptions to the
LCL models. (It is important to note that the Adger data set does not trigger this
concern, because Adger created a comprehensive, internally-consistent theory
for the phenomena reported in the textbook. The system is built to capture the
diacritics that are published in the textbook.)

For the probabilistic models created by LCL, we can convert the gradient
probabilistic outputs into a categorical predictor by selecting a category thresh-
old – a value within the probability range of the model that divides the set of
outputs into two categories. In order to give the models the most beneficial
interpretation (in line with the idealization step we applied to the binary gram-
mar), we chose the thresholds such that they maximize the point-biserial corre-
lation between the resulting categories and the gradient judgments (by testing
100 possible thresholds evenly spaced throughout the range and selecting the
one that results in the maximal r value). Though this is a post-data decision, it
seems reasonable given that the probabilistic models were not designed to yield
inherent category boundaries.

In Figure 3, we apply these four models to the LI and Adger data sets. We do
not apply the models to the CGI data set because we have no independent theory
of which permutations are grammatical and which are ungrammatical. As
before, we have chosen SLOR as the measure of grammaticality for the
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probabilistic models, with the categories determined by the threshold value that
leads to the strongest possible correlation. Each plot places the categorical
predictor (grammaticality) on the x-axis, and continuous acceptability on the
y-axis. The points are jittered horizontally to make it easier to see the density at
each level of acceptability (without the jitter the points severely overlap). We
report the r and R2 values for each model.

The correlations for the binary grammars are relatively high: the r values are
0.78 and 0.87 for LI and Adger respectively, leading to R2 values of 0.61 and 0.75
under a regression interpretation of the correlation. This reflects the relatively high
correlation between the diacritics reported in the literature and the experimentally
collected judgments (despite difference in the use of diacritics across authors). It
also reflects an upper bound on the value of the categorical metric if the field were
to construct a comprehensive grammar out of the partial analyses presented in the
literature. The correlations for the probabilistic models using the categorical metric
are substantially lower, but roughly in line with the correlations that we saw using
the gradient metric: the r values range from 0.38 to 0.54, and the R2 values range
from 0.14 to 0.29. As before, the correlations are stronger for Adger than for LI.
However, unlike before, the RNN and trigram models perform roughly equally.
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Figure 3: Point-biserial correlations for four models (binary grammar from LI, and three from
LCL), and two data sets (LI and Adger). The points have been jittered horizontally to better
reveal the density of the points at each level of the y-axis. The r and R2 values for the point-
biserial correlations are reported in the bottom left and right of each plot.
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If the gradient metric is interpreted as giving us a measure of the benefit of
LCL’s models (the ability to explain 13%-31% of the gradience in the LI and Adger
data sets), then the categorical metric provides a way of calculating a type of
“cost” for LCL’s decision to radically depart from existing grammatical theories
(i.e., to use surface probabilities). The categorical metric assumes that the gram-
mar should be able to predict an ordering relationship among the sentences:
grammatical sentences should be more acceptable than ungrammatical sentences.
Under this metric, the (internally consistent) Adger grammar captures 75% of the
variance in the model, suggesting that Adger’s grammar can explain 75% of the
variance in acceptability judgments when viewed through this ordering relation-
ship; the LCL models only capture 26%-29%. The same pattern holds for the
idealized binary grammar derived from the LI data set: the idealized binary
grammar would capture 61% of the variance, whereas the LCL models only
capture 14%-18%. This suggests that the LCL models are failing to capture a
substantial amount of the acceptability that Adger’s categorical grammar cap-
tures, and a substantial amount of the acceptability of the phenomena that have
been reported in LI. We turn next to the experimental logic metric, which provides
slightly different information about the empirical costs of LCL’s models by focus-
ing on experimentally-defined phenomena rather than individual sentences.

7 The results of the experimental-logic metric

Finally, we apply the experimental-logic metric to derive a “cost” based on
experimentally-defined phenomena. The LI data set contains 137 experimen-
tally-defined phenomena that replicated under the strictest definition of replica-
tion in the Sprouse et al. (2013) experimental studies. The Adger data set
contains 104 pairwise phenomena that replicated under the strictest definition
of replication in the Sprouse and Almeida (2012) experimental studies. The CGI
data set consists of 120 comparisons: colorless green ideas sleep furiously vs. all
120 permutations (including itself). The experimental logic in these studies
allows us to ask whether the SLOR measure predicts the existence of these
experimentally-defined effects (something that is not possible with LCL’s round-
trip machine translation data sets).

Here we focus on the categorical presence of effects: we subtract the SLOR
measures for the two sentence types comprising each effect (grammatical –
ungrammatical), and look to see if the difference runs in the predicted direction.
We chose a categorical definition of an effect (as opposed to comparing the
magnitude of the effects), because (i) the categorical presence of the effect is
logically prior to comparing magnitudes; and (ii) a larger portion of the syntactic
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literature focuses on categorical effects, making our results more relevant for the
field. Figure 4 presents the results of those calculations. The left-most panel in each
row simply recreates the right panel of Figure 1 – the effect sizes present in the
acceptability judgment data sets, organized in ascending order. The other three
panels organize the SLOR effects for the trigram1, trigram2, and RNNmodels, in the
same phenomenon order as the judgment effects. We linearly scaled the SLOR
effects to more closely match the judgment effects in size to minimize the visual
impact of the different scales. Again, for the LI and Adger data sets, because there
are 8 tokens per sentence type, these are arithmetic mean acceptability and mean
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Figure 4: Effect sizes for the experimentally-defined phenomena in the three data sets: 137
phenomena from LI; 104 from Adger; and 120 pairs from CGI, the latter developed by creating
every possible pairing from the 120 sentences. The effects are ordered in ascending order for
the acceptability judgment effect sizes, and displayed in corresponding order for each of the
trigram1, trigram2, and RNN models. The % number displayed is the percent of pairwise ratings
that turn out to be incorrect.
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SLOR effects (averaged over the 8 tokens for each type); for the CGI data set, the
acceptability ratings are the mean of 10,000 ELO competition simulations, and the
SLOR values are precise values for each sentence.

For the LI and Adger data sets, all of the experimentally-defined effects have a
positive sign in acceptability judgments: the putatively grammatical sentence is
more acceptable than the putatively ungrammatical sentence. This makes these
plots easy to read: if a bar in the plot for a model is positive, then the model
correctly predicted the categorical existence of the phenomenon; if a bar is
negative, then the model failed to predict the existence of the phenomenon, and
in fact, predicted that the effect would be in the opposite direction (that the
ungrammatical sentence would be more acceptable than the grammatical sen-
tence). This same logic holds for all of the CGI sentence except for the first four
sentences. As mentioned in Section 3, the first three effects go in the opposite
direction in terms of judgments (the permuted sentence is more grammatical than
the classic Chomsky sentence), and the fourth is a comparison of the Chomsky
sentence to itself. To quantify this evaluation, we simply calculated the percen-
tage of phenomena that the models fail to (categorically) capture (the number of
incorrect predictions divided by the total number of phenomena in the data set).
Figure 4 reports those percentages in the bottom right corner of each panel.

The percentages reveal the empirical coverage of LCL’s gradient models
according to the experimental-logic metric. The LCL models fail to capture
23%-24% of the phenomena reported in Linguistic Inquiry between 2001 and
2010. Because the LI data set is a random sample, we can say that this result
generalizes to the population of data points in that ten-year span with a margin
of error of ± 5%. For the Adger data set, the tradeoff is slightly better, as the
models only fail to capture 12%-15% of the phenomena that are captured by the
binary grammar proposed in the Adger textbook. Finally, the LCL models fail to
capture 12%-35% of the CGI pairs. The large range for the CGI data set is due to
the very different performance of the two model types: the trigram models
perform much worse than the RNN model on the CGI data set. As with the
categorical metric, these results represent a type of “cost” for LCL’s models: in
their current form, LCL’s models fail to capture 12% to 35% of the phenomena
that are relevant to linguistic theory.

8 General discussion

The primary goal of this study was to present a more balanced picture of the
performance of LCL’s models by adopting three evaluation metrics – the gradi-
ent metric preferred by LCL, and the categorical and experimental-logic metrics
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preferred by the literature on categorical grammars. Taken together these
metrics provide the information necessary to perform a type of cost-benefit
analysis of LCL’s surface probability models. On the one hand, LCL’s models
capture 10%-31% of the variance in gradient acceptability judgments in our
three data sets; this is the benefit of their models, because this is a type of
prediction that categorical grammars cannot make. On the other hand, LCL’s
models capture around 43%-49% less of the variance in acceptability according
to the categorical metric, and fail to capture 12%-24% of phenomena as defined
by the experimental-logic metric. This, then, is the current tradeoff for the LCL
surface probability models.

We say that this is the current tradeoff because one could imagine adapting
LCL’s models to try to increase the empirical coverage of phenomena that are
critical to the field of syntax, while maintaining the same (or better) coverage of
gradient acceptability. This would then bring us full circle back to fact that
motivated this study in the first place: LCL’s models differ from existing theories
in two ways: they are gradient, and they rely on the surface probabilities of word
strings. It is an open empirical question whether LCL’s models can be adapted to
cover the phenomena that are critical to syntactic theory while maintaining their
current architecture. It is well-known that n-gram models (where n is, by defini-
tion, finite) will ultimately be insufficient for human language syntax (even if
they are a good approximation), because of the existence of unbounded depen-
dencies (wh-movement, ellipsis, and the like). We therefore assume that there is
little point in further exploration of n-gram models within this context. That
said, ideal-RNNs have the power of Turing machines, so they can, in principle,
capture any grammar that might exist in human languages (which we assume
fits within the mildly context sensitive class of grammars). The question then is
what such an RNN would look like. Would that RNN encode symbolic computa-
tions? Would that RNN use learning biases that are innate and domain-specific?
The strongest hypothesis in the RNN literature, which is sometimes called
philosophical connectionism (Fodor and Pylyshyn 1988), is that RNNs can acquire
human language syntax in a way that does not use symbolic computations (see,
e.g., Smolensky 1988, among others), and does not rely on learning biases that
are innate and domain-specific. Unfortunately, this hypothesis has not been
proven or even attempted for a wide range of phenomena that are central to
the syntactic literature. For researchers interested in exploring this strong
hypothesis, the phenomena that are unexplained in the data sets here provide
a list of phenomena for future research. If RNNs can be expanded to capture
these phenomena without simply becoming implementations of existing syntac-
tic theories, then that would be a major result for the field. On the other hand, if
RNNs cannot be expanded to capture these phenomena without becoming
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implementations of existing syntactic theories, then that would suggest that the
weak-to-moderate correlations found for LCL’s RNN models are simply the result
of an approximation of human syntax. (Though we cannot discuss the phenom-
ena that the RNN fails to capture here for space reasons, we provide a complete
list of the sentences themselves on the first author’s website as an appendix. The
phenomena include: constraints on long-distance dependencies; constraints on
ellipsis; constraints on agreement; constraints on argument structure; and con-
straints on polarity items.)

These analyses have also revealed two challenges for categorical grammars.
The first is the same challenge that LCL note (following Keller 2000; Featherston
2005; Bresnan 2007; and others): if syntacticians believe that acceptability
judgments are a fundamental data type for grammatical theories, then there is
value to constructing a complete theory of gradient acceptability judgments in
order to better understand when judgments are providing evidence about the
grammar (as opposed to evidence about other aspects of language processing).
It is impossible to disagree with the logic of this – it is always helpful to have a
complete theory of the data type that one is using. That said, as a practical
matter, very few (if any) domains in cognitive science have a complete theory of
their data type. Instead, most (if not all) domains rely on experimental logic to
attempt to control for factors that they believe are outside of their theory of
interest. We could decide that linguistics is ready to be among the first domains
of cognitive science to create a complete theory of a data type, but it is important
to note that this is a more ambitious goal than is typical.

The second challenge was helpfully pointed out to us by an anonymous
reviewer: there is no single, coherent categorical grammar that is sufficiently
formalized to perform the kind of quantitative evaluation that LCL prefer. This
issue is primarily subtext in the LCL study (because LCL do not evaluate
categorical grammars directly), but was made explicit by our analyses – we
were forced to use the data reported in the LI articles as an idealized upper
bound for what could be covered if the field were able to integrate the partial
analyses that exist into a single, coherent theory. We chose to focus on the
choice of evaluation metrics and test data sets in this article, but as the
reviewer points out, it is also true that direct comparisons between theories
are difficult if one (or both) of those theories are insufficiently comprehensive
(and formal) to make quantitative predictions. This is a well-known issue that
is an active area of research in the computational linguistics literature (e.g.
Collins and Stabler 2016).

Beyond the larger question of comparing LCL’s models to existing theories,
there are at least two finer-grained results worth noting for potential future
research. The first is that the LCL models perform substantially better on the
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Adger data set than the LI data set for all three metrics. One possibility is that
this reflects Adger’s stated decision to craft a textbook that focuses on phenom-
ena that lead to an internally consistent syntactic theory. It is possible that this
selection criterion happens to generate phenomena that are more easily
described by LCL’s trigram and RNN models. Determining this cause would
require a deeper comparison of the construction types in the Adger and LI
data sets, which is beyond the scope of this article. The second finer-grained
result is that the CGI data set led to a larger difference in performance between
the trigram model and the RNN model than the other data sets, at least for the
experimental-logic metric (and to a lesser extent the gradient metric; it was not
tested using the categorical metric). To our minds, this reinforces Chomsky’s
original argument that n-gram models cannot easily distinguish between seman-
tic anomaly (which depresses production occurrence) from syntactic anomaly
(which also depresses production occurrence). The stronger performance by the
RNN on the CGI data set again likely reinforces the conclusion we reached from
the results of the Adger data set: the RNN performs well on phenomena that are
relatively less complicated.

Finally, though we chose to focus on three evaluation metrics in this study,
it should be noted that there are a number of other evaluation metrics that are
employed in the syntactic literature beyond the three evaluated here. These
metrics are often based in judgments, but the judgments are evaluated in a
more complex way compared to the relatively simple comparisons used here.
These metrics often include the use of “diagnostics” – judgment patterns that
indicate the presences of a specific abstract object in the theory, and the
evaluation of patterns in diagnostics across languages (e.g., that English and
Scandinavian show different patterns of island effects), across constructions
(e.g., that raising and control show distinct diagnostic results despite super-
ficial similarities), and the evaluation of patterns over developmental time
during language acquisition (e.g., the mistakes that children make versus
those they do not). These higher-order metrics should eventually be part of
the discussion of any grammatical theory. Even if one could expand LCL’s
models to capture all of the phenomena of syntactic theory, they will also need
to be evaluated along these other metrics. This is the classic difference
between descriptive and explanatory adequacy (see, e.g., Chomsky 1986). It is
one thing to capture the same sentences as a human grammar; it is another
thing to capture that grammar in the same way that humans do. That said, we
believe that it is reasonable to begin the discussion with the more direct
acceptability judgment evaluation metrics as LCL have done; we just want to
expand those metrics incrementally to attempt a more direct comparison with
existing grammatical theories.
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9 Conclusion

In this study, we sought to take a closer look at the performance of a set of
probabilistic models proposed by Lau et al. (2014; 2015; 2017) as potential
replacements for existing grammatical theories. These models all share the
idea that probabilistic models derived from the surface probabilities of word
strings might explain gradient acceptability in some sense “better” than existing
grammatical theories. If true, this would be a provocative, and potentially field-
changing, finding. To investigate this idea further, we applied three evaluation
metrics (the gradient metric, the categorical metric, and the experimental-logic
metric) to two of LCL’s probabilistic models (trigrams and an RNN), and to three
data sets that consist of violation types that were explicitly constructed by
syntacticians to probe the limits of syntactic theory (LI, Adger, and CGI). These
three metrics allowed us to create a type of cost/benefit analysis: the new benefit
offered by LCL’s models is the ability to explain the gradience in acceptability of
individual sentences (this is, as LCL note, something that most existing syntactic
theories cannot do), and the cost is to what extent the models sacrifice empirical
coverage of acceptability (relative to categorical theories), and to what extent the
models sacrifice empirical coverage of experimentally-defined phenomena that
are central to current syntactic theorizing. Our results suggest there are very real,
measurable cost-benefit tradeoffs inherent in LCL’s models (see Sections 6 and 7
for precise numbers). Anyone wishing to pursue LCL’s models as competitors
with existing syntactic theories must therefore either be satisfied with these
tradeoffs, or modify the models to capture the phenomena that are not currently
captured.

Though the results of this study suggest that the specific models that LCL
propose are not yet ready to supplant existing syntactic theories, these models
have made it clear that there are a number of research questions that the field
could be addressing. For one, the field could take the gradient metric seriously,
and attempt to construct models of gradient acceptability. To be fair, this has
been a topic in the field for quite some time (e.g., Keller 2000; Featherston 2005;
and Bresnan 2007; among others). Perhaps it is time to create large-scale
theories of judgments that incorporate theories of sentence processing to esti-
mate processing cost, or that incorporate methods from the computational
linguistics literature to apply probabilities to existing syntactic theories (e.g.,
Hunter and Dyer 2013). Another avenue is to explore RNNs in more detail as
discussed in the previous section. The primary RNN literature will likely never
take the concerns of syntacticians seriously (in terms of phenomena covered, or
metrics applied) unless syntacticians participate in the research in good faith.
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There are multiple examples of such research in the field: Prince and Smolensky
(1991; 1993) and Smolensky and Legendre (2006) have developed grammatical
frameworks that combine symbolic and sub-symbolic computation, and have
explored the limits of RNNs designed to learn specific phenomena from linguis-
tic theory. Given the resurgence in popularity and practical effectiveness of
RNNs over the past few years (both in industry and academia), even if many
syntacticians ultimately believe that cognition is best understood as symbolic,
there is very clearly value in lending syntactic expertise to research in the RNN
hypothesis space so that the two subfields can more easily communicate about
the costs and benefits of each approach.
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