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On characers of irreducible highest weight modules of negative

integer level over affine Lie algebras

Victor G. Kac∗ and Minoru Wakimoto†

To the memory of Bertram Kostant

Abstract

We prove a character formula for the irreducible modules from the category Ø over the simple
affine vertex algebra of type An and Cn (n ≥ 2) of level k = −1. We also give a conjectured
character formula for types D4, E6, E7, E8 and levels k = −1, ...,−b, where b = 2, 3, 4, 6
respectively.

0 Introduction

Let g be a simple finite-dimensional Lie algebra over C, and let ( . | . ) be the invariant symmetric
bilinear form on g, normalized by the condition (α|α) = 2 for a long root α. Recall that the
affine Lie algebra ĝ, associated to g is the infinite-dimensional Lie algebra over C

(0.1) ĝ = g[t, t−1]⊕ CK ⊕ Cd

with the following commutation relations (a, b ∈ g, m, n ∈ Z):

(0.2) [atm, btn] = [a, b]tm+n +mδm,−n(a|b)K, [d, atm] = matm, [K, ĝ] = 0.

The form ( . | . ) extends from g to a non-degenerate invariant symmetric bilinear form on ĝ by

(0.3) (atm|btn) = δm,−n(a|b), (g[t, t−1]|CK + Cd) = 0, (K|K) = (d|d) = 0, (K|d) = 1.

Choosing a Cartan subalgebra h of g, one defines the associated Cartan subalgebra of ĝ :

(0.4) ĥ = h+ Cd+ CK.
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The restriction of the bilinear form ( . | . ) from ĝ to ĥ is non-degenerate, and we identify ĥ with
ĥ∗ and h with h∗ using this form. Then d and K are identified with elements, traditionally
denoted by Λ0 and δ respectively. We denote q = e−δ.

Choosing a Borel subalgebra b = h+n+ of g, one defines the corresponding Borel subalgebra
of ĝ :

b̂ = ĥ+ n+ +
⊕

n>0

gtn.

Given Λ ∈ ĥ∗, one extends it to a linear function on b̂ by zero on all other summands. Then
there exists a unique irreducible g-module L(Λ), which admits an eigenvector vΛ of b̂ with
weight Λ. Since K is a central element of ĝ, it is represented on L(Λ) by a scalar Λ(K), called
the level of L(Λ) (and of Λ).

Let α1, . . . , αℓ be simple roots of g, θ be the highest root, and Λ̄1, . . . , Λ̄ℓ be its fundamental
weights, i.e. (Λ̄i|α

∨
j ) = δij , where α∨ = 2α/(α|α). Then α0 = δ − θ, α1, . . . , αℓ are simple roots

of ĝ, and the fundamental weights Λi of ĝ are defined by (Λi|α
∨
j ) = δij , Λi(d) = 0, i, j =

0, 1, . . . , ℓ. Any Λ ∈ ĥ∗ can be uniquely written in the form

(0.5) Λ =

ℓ∑

i=0

miΛi + aδ, where mi, a ∈ C.

A ĝ-module can be “integrated” to the corresponding group, hence it is called integrable,
iff all mi are non-negative integers. In this case the level of L(Λ) is a non-negative integer.

The character of L(Λ) is defined as the following series, corresponding to the weight space
decomposition of L(Λ) with respect to ĥ :

(chL(Λ))(h) = tr L(Λ)e
h, h ∈ ĥ.

This series is convergent in the domain {h ∈ ĥ |αi(h) > 0, i = 0, 1, . . . , ℓ}. Note that, adding
bδ to Λ, where b ∈ C, multiplies the character by q−b. Thus, chL(Λ) depends essentially only
on the labels m0, . . . ,mℓ of Λ in (0.5).

If the ĝ-module L(Λ) is integrable, its character is given by the Weyl-Kac character formula:

(0.6) R̂chL(Λ) =
∑

w∈Ŵ

ε(w)w(eΛ+ρ̂) =
∑

w∈W

ε(w)w
∑

γ∈Q∨

tγ(e
Λ+ρ̂).

Here R̂ = eρ̂
∏

α∈∆̂+
(1−e−α)mult(α) is the affine Weyl denominator, ρ̂ is the affine Weyl vector:

(0.7) ρ̂ = ρ+ h∨Λ0,

where ρ is the Weyl vector for g and h∨ is the dual Coxeter number (= 1
2 the eigenvalue on g

of the Casimir element). Furthermore, Ŵ = W ⋉ {tα |α ∈ Q∨} is the affine Weyl group, where
W is the Weyl group of g, ε(w) = det

ĥ∗
w, Q∨ =

∑ℓ
i=1 Zα

∨
i is the coroot lattice of g, and the

translation tγ ∈ End ĥ∗ for γ ∈ h∗ is defined by

(0.8) tγ(λ) = λ+ λ(K)γ − ((λ | γ) + 1
2λ(K)(γ | γ))δ, λ ∈ ĥ∗.

The details of the above discussion may be found in the book [K90].
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In the paper [KW88] a similar character formula was proved for admissible L(Λ), defined
by the condition that for α ∈ ∆̂re

+ , the set of real roots of g, the number (Λ + ρ̂ |α∨) must be
a positive integer each time when it is an integer. Admissible ĝ-modules include the integrable
ones, but exclude, for example the ĝ-modules L(kΛ0), where k is a negative integer.

It is known for arbitrary (non-critical, i.e. of level 6= −h∨) Λ that

(0.9) R̂chL(Λ) =
∑

w∈Ŵ

c(w)w(eΛ+ρ̂),

where c(w) are integers [KK79], and that c(w) can be computed via the Kazhdan-Lusztig

polynomials for Ŵ [KT00]. However the explicit formulas for the integers c(w) are unknown in
general.

In Sections 1 and 2 of the present paper we find explicit character formulas for level −1
modules L(Λ) over ŝℓn and over ŝpn with n ≥ 3, with highest weights Λ = −(1 + s)Λ0 + sΛ1

and Λ = −(1 + s)Λ0 + sΛn−1, s ∈ Z, and Λ = −(1 + s)Λ0 + sΛ1, s ∈ Z≥0 and Λ = −2Λ0 +Λ2,
respectively (see Theorems 1.1, and 2.1, 2.2 respectively). In particular, we compute in both
cases the character of L(−Λ0), which are simple affine vertex algebras of level −1. (As shown
in [AP12] and [AP14], the above modules are all irreducible modules over these vertex algebras
in the category Ø.) The main ingredients of the proof are the free field realization of these
modules, given in [KW01], the irreducibility theorems from [AP14], [AP12], and the affine
denominator identity for that affine Lie superalgebras ŝℓn|1 and ŝpon|2, given in [KW94], [G11]

In Section 3 we indicate a proof, under a certain hypothesis, of an explicit character formula
for certain modules L(Λ) of negative integer level over affine Lie algebras, and conjecture that
the hypothesis holds for the affine Lie algebras of Deligne series D̂4, Ê6, Ê7 and Ê8.

Throughout the paper the base field is C.
Both of us wish to thank ESI, Vienna, where we began discussion of this paper, for hos-

pitality. The first named author wishes to thank IHES, where the paper was completed, for
perfect working conditions.

1 Proof of the character formulas for ĝ, where g = sℓn

In this section we prove a character formula for certain highest weight mdules L(Λ) of level −1
over the affine Lie algebra ŝℓn. The normalized invariant bilinear form ( . | . ) on sℓn is the trace
form. We choose as its Cartan subalgebra , as usual, the subalgebra of all diagonal traceless
matrices. Then the simple roots of sℓn are α1 = ε1− ε2, . . . , αn−1 = εn−1− εn, where ε1, . . . , εn
is the standard basis of the dual of all diagonal matrices, and its root (= coroot) lattice is
Q =

∑n−1
i=1 Zαi.

We will also use the embedding of sℓn in the Lie superalgebra sℓn|1. The trace form on
sℓn extends to the supertrace form ( . | . ) on sℓn|1, and its Cartan subalgebra embeds in the
Cartan subalgebra of sℓn|1 of supertraceless diagonal matrices. Then the simple roots of sℓn|1
are α1, . . . , αn−1, αn = εn − εn+1, where αn is an odd root. Also, sℓn and sℓn|1 have the same
Weyl group, and their dual Coxeter numbers are n and n− 1 respectively.

Theorem 1.1. Let n ≥ 3, and let L(Λ) be an irreducible level −1 ŝℓn-module with highest
weight

Λ = −(1 + s)Λ0 + sΛn−1 (resp. = −(1 + s)Λ0 + sΛ1), s ∈ Z≥0.
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Then the character of L(Λ) is given by the following formula:

(1.1) R̂chL(Λ) =
∑

w∈W

ε(w)w
∑

γ∈Q
(γ|Λ̄n−1(resp. Λ̄1))≥0

tγ(e
Λ+ρ̂).

The proof of formula (1.1) uses the free field construction, given in [KW01], of the affine Lie
superalgebra ĝℓm|n of level 1 in a Fock space F in the case of m = 0 . Note that in that paper
we used the supertrace form, which is equal to the negative of the trace form on gℓn = gℓ0|n.

Hence we get a ĝℓn-module structure on F of level −1. Recall some properties of this module,
described in [KW01].

First, we have the charge decomposition into a direct sum of ĝℓn-submodules:

(1.2) F =
⊕

s∈Z

Fs.

Second, there is a Virasoro algebra acting on F, and leaving all subspaces Fs invariant, for
which all fields a(z), a ∈ gℓn, are primary of conformal weight 1, and each Fs in (1.2) has a
unique, up to a constant factor, non-zero vector |s〉 with minimal L0-eigenvalue (see Section 2
for more details). Moreover this vector is invariant with respect to the Cartan subalgebra of
ĝℓn and has the following weight:

(1.3) weight |s〉 =

{
−Λ0 −

s
2δ + sε1 if s ∈ Z≥0,

−Λ0 +
s
2δ + sεn if s ∈ Z≤0.

Third, by formula (3.15) from [KW01], the character of the ĝℓn-module F is given by

chF :=
∑

s∈Z

xschFs = e−Λ0

n∏

j=1

∞∏

k=1

(1− xeεjqk−
1
2 )−1(1− x−1e−εjqk−

1
2 )−1.

Letting in this formula x = e−εn+1q
1
2 , we obtain:

(1.4) e−Λ0

n∏

j=1

∞∏

k=1

(1− eεj−εn+1qk)−1(1− e−(εj−εn+1)qk−1)−1 =
∑

s∈Z

e−sεn+1q
s
2 chFs.

It was proved in [AP14] that all ĝℓn-modules Fs are irreducible, provided that n ≥ 3.
Therefore, using (1.3), we see that Fs = V (λ(s)) ⊗ L(Λ(s)), where V (λ(s)) is an irreducible
ĝℓ1-module with highest weight λ(s) ∈ C

∑n
i=1 εi +Cδ and L(Λ(s)) is an irreducible ŝℓn-module

with highest weight

Λ(s) = −Λ0 + sΛ̄1 (resp. − Λ0 − sΛ̄n−1) ∈ h∗ if s ≥ 0 (resp. s ≤ 0),

where λ(s) ⊕ Λ(s) = weight |s〉.
Hence, using that Λi = Λ0 + Λ̄i, we obtain that the character of Fs is given by

(1.5) ϕ(q)ch Fs =

{
q

s
2 es(ε1−Λ̄1)chL(−(1 + s)Λ0 + sΛ1) if s ∈ Z≥0,

q−
s
2 es(εn+Λ̄n−1)chL(−(1− s)Λ0 − sΛn−1) if s ∈ Z≤0.
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Here and further ϕ(q) =
∏∞

n=1(1− qn). Substituting (1.5) in the RHS of (1.4), we obtain:

(1.6)

LHS of (1.4) =
1

ϕ(q)
(
∑

s>0

es(ε1−εn+1)qse−sΛ̄1chL(−(1 + s)Λ0 + sΛ1).

+
∑

s≤0

es(εn−εn+1)esΛ̄n−1chL(−(1− s)Λ0 − sΛn−1)).

Next, we embed the Lie algebra sℓn in the Lie superalgebra sℓn|1 as described above. We

extend this embedding to the affine Lie (super)algebras ŝℓn →֒ ŝℓn|1. Then identitiy (1.6) can
be rewritten as follows:
(1.7)

e−Λ0ϕ(q)

n∏

j=1

∞∏

k=1

(1− eαj+···+αnqk)−1(1− e−(αj+···+αn)qk)−1

=
∑

s>0

es(α1+···+αn)qse−sΛ̄1chL(−(1 + s)Λ0 + sΛ1) +
∑

s≤0

esαnesΛ̄n−1chL(−(1− s)Λ0 − sΛn−1).

We denote the 0-th fundamental weight and the Weyl vector for ŝℓn|1 by Λ′
0 and ρ̂′ respec-

tively. Then, by (0.7), we have, when restricted to ŝℓn :

(1.8) Λ′
0 = Λ0 and ρ̂′ = ρ̂− Λ0.

Recall the formulas for the Weyl denominator R̂ for ŝℓn and the Weyl superdenominator R̂′ for
ŝℓn|1 :

(1.9) R̂ = eρ̂ϕ(q)n−1
∏

α∈∆̂re
+

(1− e−α),

(1.10) R̂′ = eρ̂
′

ϕ(q)n
∏

α∈∆̂re
+

(1− e−α)
n∏

j=1

∞∏

k=1

(1− eαj+···+αnqk)−1(1− e−(αj+···+αn)qk−1)−1.

Multiplying both sides of (1.7) by R̂, we obtain, using (1.9) and (1.10):

(1.11)

R̂′ =
∑

s>0

es(α1+···+αn)qse−sΛ̄1R̂chL(−(1 + s)Λ0 + sΛ1)

+
∑

s≤0

esαnesΛ̄n−1R̂chL(−(1− s)Λ0 − sΛn−1).

On the other hand, R̂′ can be computed by the superdenominator identity [KW94], [G11]:

(1.12) R̂′ = ε(w)w
∑

γ∈Q

tγ
eρ̂

′

1− e−αn
.
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Expanding tγ
eρ̂

′

1−e−αn in the geometric series in the domain |e−αn | < 1, |q| < 1, we obtain for
γ ∈ Q (using (0.8)):

tγ
eρ̂

′

1− e−αn
= e(n−1)Λ0(

∑

p≥0
(γ|αn)≤0

−
∑

p<0
(γ|αn)>0

)eρ+(n−1)γ−pαnq
n−1

2
(γ|γ)+(ρ|γ)−p(αn |γ).

Using that nαn =
∑n

i=1 εi − nΛ̄n−1, and that (αn|γ) = −(Λ̄n−1|γ) for γ ∈ Q, we can rewrite
this formulas as

tγ
eρ̂

′

1− e−αn
= e(n−1)Λ0(

∑

p≥0
(γ|Λ̄n−1)≥0

−
∑

p<0
(γ|Λ̄n−1)<0

)e−
p
n

∑n
i=1 εieρ+(n−1)γ+nΛ̄n−1q

n−1

2
(γ|γ)+(ρ|γ)+p(Λ̄n−1|γ).

Plugging this in (1.12) and using that
∑n

i=1 εi is W -invariant, we obtain:

(1.13)

R̂′ =e(n−1)Λ0

∑

γ∈Q

(
∑

p≥0
(γ|Λ̄n−1)≥0

−
∑

p<0
(γ|Λ̄n−1)<0

)e−p(αn+Λ̄n−1)q
n−1

2
(γ|γ)+(ρ|γ)+p(Λ̄n−1 |γ)

×
∑

w∈W

ε(w)weρ+(n−1)γ+pΛ̄n−1 .

Thus we obtain the identity

RHS of (1.11) = RHS of (1.13).

Comparing the coefficient of e−pαn for p ≥ 0 in this identity, we obtain:

R̂chL(−(1 + p)Λ0 + pΛn−1) = e(n−1)Λ0

∑

γ∈Q
(γ|Λ̄n−1)≥0

q
n−1

2
(γ|γ)+(ρ|γ)+p(Λ̄n−1|γ)

×
∑

w∈W

ε(w)weρ+(n−1)γ+pΛ̄n−1 =
∑

w∈W

ε(w)w
∑

γ∈Q
(γ|Λ̄n−1)≥0

tγe
−(1+p)Λ0+pΛn−1+ρ̂.

This establishes formula (1.1) for Λ = −(1 + s)Λ0 + sΛn−1. Formula for Λ = −(1 + s)Λ0 + sΛ1

follows by the involution of the Dynkin diagram of ŝℓn which keeps the 0th node fixed.

Remark 1.2. Let Λ = −(1+s)Λ0+sΛ1 and let L(Λ) =
⊕

j∈Z≥0

L(Λ)j be the eigenspace decompo-

sition of L(Λ) with respect to −d. Let dimq L(Λ) =
∑

j≥0(dimL(Λ)j)q
j be the “homogeneous”

q-dimension of L(Λ). Dividing both sides of the last equality in the proof of (1.1) by e(n−1)Λ0R,
where R is the Weyl denominator of g, and letting all elements of h∗ equal 0, we obtain by the
usual argument:

ϕ(q)dim g dimq L(Λ) =
∑

γ∈Q
(Λ̄1|γ)≥0

dim(sΛ̄1 + (n− 1)γ)q
n−1

2
(γ|γ)+(sΛ̄1+ρ|γ),

where dim(λ) =
∏

α∈∆+
(λ+ ρ|α)/(ρ|α) is the expression of the Weyl dimension formula for g.

Remark 1.3. For ŝℓ2 the characters of the above modules are very easy (see, e.g. [KW88]):
eΛ0R̂chL(−(1 + s)Λ0 + sΛ1) = 1− e−(s+1)α1 , s ∈ Z≥0.
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2 Proof of the character formulas for ĝ, where g = spn

In order to prove the character formulas for ŝpn, where n ≥ 4, even, we use the embedding of
spn in sℓn, obtained as the fixed point subalgebra of the involution σ, corresponding to the flip
of the Dynkin diagram of sℓn. The normalized invariant bilinear form ( . | . ) on spn is again the
trace form. Let n′ = n

2 .
We will also use the embedding of the Lie algebra spn in the Lie superalgebra spon|2. The

simple roots of the latter are α∗, α1, . . . , αn′−1, αn′ , where α∗ is an odd root, and α1, . . . , αn′ are

the simple roots of the former. We let Q∨ =
∑n′

i=1 Zα
∨
i be the coroot (6= root) lattice of spn.

In this section we prove the following two theorems.

Theorem 2.1. Let n ≥ 4 be even, and let L(Λ) be an irreducible ŝpn-module with highest weight
Λ.

(a) If Λ = −(1 + s)Λ0 + sΛ1, where s ∈ Z≥1, then

chL(Λ) = R̂−1
∑

w∈W

ε(w)w
∑

γ∈Q∨

(γ|Λ̄1)≥0

tγ(e
Λ+ρ̂)

(b) If Λ = −Λ0, then

chL(Λ) =
1

2
(R̂−1

∑

w∈W

ε(w)w
∑

γ∈Q∨

(γ|Λ̄1)≥0

tγ(e
Λ+ρ̂) + e−Λ0

ϕ(q2)

ϕ(q)

∏

α∈∆ℓ

∏

k∈Zodd>0

(1− eαqk)−1),

where ∆ℓ is the set of long roots of spn.

(c) If Λ = −2Λ0+Λ2, then chL(Λ) is obtained by an expression, obtained from (b) by dividing
by q and replacing plus by minus between the summands.

Theorem 2.2. The characters of the ŝpn-modules L(−Λ0) and L(−2Λ0 + Λ2) can be written
in the form (0.9) as follows:

(a)

R̂chL(−Λ0) =
∑

w∈W

ε(w)w
∑

γ∈Q∨

(γ|Λ̄1)≥0
(γ|Λ̄n′ )∈2Z

tγ(e
Λ+ρ̂).

(b)

R̂chL(−2Λ0 + Λ2) =
∑

w∈W

ε(w)w
∑

γ∈Q∨

(γ|Λ̄2−Λ̄1)≥0
(γ|Λ̄n′ )∈2Z

tγ(e
Λ+ρ̂).

7



First letting in the character chF of the ĝℓn-module F, considered in Section 1, x =

eα∗−εn′q
1
2 , and restricting the module F to ŝpn, we obtain, cf. (0.4):

(2.1)

e−Λ0

∞∏

k=1

(1− eα∗qk)(1− e−α∗qk−1)
∞∏

k=1

n′∏

i=1

(1− eα∗+α1+···+αiqk)(1 − e−α∗−α1−···−αiqk−1)

×

∞∏

k=1

n′−1∏

i=1

(1− eα∗+α1+···+2αi+···+2αn′−1+αn′ qk)(1 − e−α∗−α1−···−2αi−···−2αn′−1−αn′ qk−1)

=
∑

s∈Z

es(α∗−εn′ )q
s
2 ch Fs

∣∣
ŝpn

.

Next, we embed the Lie algebra spn in the Lie superalgebra spon|2 as described above. We
denote the 0-th fundamental weight and the Weyl vector for ŝpon|2 by Λ′

0 and ρ̂′ respectively.
Then, by (0.7), we have again (1.8), when restricted to ŝpn.

Denote by R̂ and R̂′ the Weyl denominator and Weyl superdenominator for ŝpn and ŝpon|2
respectively. Then we have by (1.8) for spn :

(2.2) R̂′ = ϕ(q)R̂ × (LHS of (2.1)).

On the other hand, the superdenominator identity for ŝpon|2 reads [KW94], [G11]:

(2.3) R̂′ =
∑

w∈Ŵ

ε(w)w
eρ̂

′

1− e−α∗
,

where Ŵ = W ⋉ {tγ | γ ∈ Q∨} is the Weyl group of ŝpn.
Using (2.1)–(2.3) and applying the same argument as in Section 1, we obtain for each

s ∈ Z≥0 :

(2.4) ϕ(q)R̂ (chFs)
∣∣
ŝpn

=
∑

w∈W

ε(w)w
∑

γ∈Q∨

(γ|Λ̄1)≥0

tγ(e
Λ+ρ̂).

This proves claim (a) of Theorem 2.1, since, due to [AP12], the restriction of the ŝℓn-module
L(−Λ0 + sΛ̄1) to ŝpn is irreducible for s > 0.

In order to prove claims (b) and (c), we need to study the module F more carefully. Recall

that F is the unique irreducible module over the Clifford algebra Cl with generators ϕ
(i)
k and

ϕ
(i)∗
k , i = 1, . . . , n, k ∈ 1

2 + Z, with relations ϕ
(i)∗
−k ϕ

(i)
k − ϕ

(i)
k ϕ

(i)∗
−k = 1 and = 0 in the rest

of the cases, which admits a non-zero vector |0〉, such that ϕ
(i)
k |0〉 = 0 = ϕ

(i)∗
k |0〉 for all k >

0, i = 1, . . . , n. The charge decomposition (1.2) is defined by letting charge |0〉 = 0, charge

ϕ
(i)
k = 1 = −chargeϕ

(i)∗
k .

Note that the algebra Cl carries an involution σ, defined by

σ(ϕ
(i)
k ) = (−1)iϕ

(n+1−i)∗
k

This involution induces an involution of the space F0, denoted again by σ, letting σ|0〉 = |0〉,
so that we have its eigenspace decompositions

(2.5) F0 = F 1
0 ⊕ F−1

0 .
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The space F0 is spanned by monomials

(2.6) v = ϕ
(i1)
−k1

· · ·ϕ
(im)
−km

ϕ
(j1)∗
−l1

· · ·ϕ
(jm)∗
−lm

|0〉.

Since

σ(v) = (−1)
∑m

p=1(ip+jp)+mϕ
(n+1−j1)
−l1

· · ·ϕ
(n+1−jm)
−lm

ϕ
(n+1−i1)∗
−k1

· · ·ϕ
(n+1−im)∗
−km

|0〉,

we see that, if v ∈ F−1
0 , we have (1 ≤ p ≤ m) :

(2.7) n+ 1− jp = ip, n+ 1− ip = jp, lp = kp;

(2.8)

m∑

p=1

(ip + jp) +m ≡ 1 mod 2.

By (2.7) we have
∑m

p=1 ip =
∑m

p=1(n + 1) −
∑m

p=1 jp. Therefore
∑m

p=1(ip + jp) = m mod 2,

which contradicts (2.8). Hence F−1
0 contains no monomials (2.6).

Thus, for a monomial (2.6) we have: either σ(v) = v, or v and σ(v) are linearly independent.

Denote by F ♯
0 the subspace of F0 spanned by monomials fixed by σ. From the above discussion

we obtain:

(2.9) chF±1
0 =

1

2
(ch F0 ± ch F ♯

0).

Recall the construction of the representation of ĝℓn of level −1 in F [KW01]. Let ϕ(i)(z) =∑
k∈ 1

2
+Z

ϕ
(i)
k z−k− 1

2 , ϕ(i)∗(z) =
∑

k∈ 1
2
+Z

ϕ
(i)∗
k z−k− 1

2 . Then

(2.10) eij(z) 7→: ϕ(i)(z)ϕ(j)∗(z) :, K 7→ −1, d 7→ −L0

defines a representation of ĝℓn in F of level −1 (preserving (1.2)). Here

∑

k∈Z

Lkz
−k−2 =

1

2

n∑

j=1

(: ∂ϕ(j)(z)ϕ(j)∗(z) : − : ∂ϕ(j)∗(z)ϕ(j)(z) :)

is the representation in F of the Virasoro algebra. In particular, the Heisenberg subalgebra H
of ĝℓn is represented in F as

∑

k∈Z

(Int
k)z−k−1 7→

∑

k∈Z

Hkz
−k−1 =

n∑

i=1

: ϕ(i)(z)ϕ(i)∗(z) : .

Since the ĝln-module F0 is irreducible [AP14], we have the following decomposition of it as an
H ⊕ ŝln-module

(2.11) F0 = V ⊗ L(−Λ0),

where V is an irreducible H-module with highest weight vector |0〉, i.e. (Int
k)|0〉 = 0 for k ≥ 0.

We obviously have:
V = C [H−k | k ∈ Z>0] |0〉 and σ(Hk) = −Hk.
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Hence, in particular V is σ-invariant, so that we have the eigenspace decomposition with respect
to σ : V = V 1 ⊕ V −1. Note that the action of ŝpn ⊂ ĝℓn on F0 commutes with the action of
σ on F0, hence both F 1

0 and F−1
0 are ŝpn-modules. Moreover, due to [AP12], the ŝℓn-module

L(−Λ0), restricted to ŝpn, is a direct sum of two irreducible modules, with highest weights −Λ0

and −Λ0 + Λ̄2 mod Cδ. But it is easy to see that

(ϕ
(1)

− 1
2

ϕ
(n−1)∗

− 1
2

+ ϕ
(2)

− 1
2

ϕ
(n)∗

− 1
2

)|0〉

is a singular vector for ŝpn, and its weight is −Λ0 + Λ̄2 − δ. Thus we obtain

Lemma 2.3. As an H ⊕ ŝpn-module, one has

F 1
0 ≃ V 1⊗L(−Λ0)+V −1⊗L(−Λ0+Λ2− δ) , F−1

0 = V −1⊗L(−Λ0)+V 1⊗L(−Λ0+Λ̄2− δ).

It is easy to see that

(2.12) ch V ±1 =
1

2

(
1

ϕ(q)
±

ϕ(q)

ϕ(q2)

)
,

hence we have

(2.13) (ch V 1)2 − (ch V −1)2 =
1

ϕ(q2)
.

Next, we obviously have:

F ♯
0 = C

[
ϕ
(i)
−kϕ

(n+1−i)∗
−k

∣∣∣∣ 1 ≤ i ≤ n, k ∈
1

2
+ Z≥0

]
|0〉,

hence

chF ♯
0 = e−Λ0

∏

k∈Zodd>0

n∏

i=1

(1− eεi−εn+1−iqk)−1.

It follows that

(2.14) chF ♯
0

∣∣
ŝpn

= e−Λ0

∏

k∈Zodd>0

∏

α∈∆ℓ

(1− eαqk)−1.

Now we are able to complete the proofs of claims (b) and (c) of Theorem 2.1. By Lemma
2.3 we have:

(2.15) ch V ±1chL(Λ0) + ch V ∓1ch (−Λ0 + Λ̄2 − δ) = chF±1
0 .

From (2.9), (2.13) and (2.15) we obtain:

1

ϕ(q2)
chL(Λ0) =

1

2

(
ch V 1 − chV −1

)
chF0

∣∣
ŝpn

+
1

2
(chV 1 + ch V −1)chF ♯

0 |ŝpn .

Now claim (b) follows from (2.14). Claim (c) follows from Lemma 2.3 and claims (a), (b).

Next, we turn to the proof of Theorem 2.2. First from the denominator identity of A
(2)
2n′−1

we deduce the following lemma.
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Lemma 2.4. Let M = {γ ∈ Q∨ | (γ|Λ̄n) ∈ 2Z}. Then

e−Λ0
ϕ(q2)

ϕ(q)
R̂

∏

α∈∆ℓ
k∈Zodd>0

(1− eαqk)−1 =
∑

w∈W

ε(w)w
∑

γ∈M

tγ(e
n′Λ0+ρ).

Using this lemma, we can rewrite the character formulas, given by Theorem 2.1(b) and (c)
as follows

(2.16) R̂ chL(−Λ0) =
1

2

∑

w∈W

ε(w)w(
∑

γ∈Q∨

(γ|Λ̄1)≥0

+
∑

γ∈Q∨

(γ|Λ̄n′ )∈2Z

) tγ(e
n′Λ0+ρ).

(2.17) R̂ ch (−Λ0 + Λ̄2) =
1

2q

∑

w∈W

(
∑

γ∈Q∨

(γ|Λ̄1)≥0

−
∑

γ∈Q∨

(γ|Λ̄n′ )∈2Z

) tγ(e
n′Λ0+ρ).

In order to rewrite these formulas into a nicer form we introduce a different Z-basis of Q∨:

γi = α∨
i + · · · + α∨

n′ , i = 1, . . . , n′.

Then, letting γ =
∑

k jkγk, we have:

(2.18) (γ|Λ̄1) = j1, (γ|Λ̄2 − Λ̄1) = j2, (γ|Λ̄n′) =
∑

k

jk.

Using that (−Λ0 + ρ̂ | δ − θ) = 0, we obtain

Lemma 2.5. For Ω ⊂ Z
n′

let

Ω′ = {(−j1 − 1, j2, . . . , jn′) | (j1, . . . , jn′) ∈ Ω} .

Then
∑

w∈W

ε(w)w
∑

(j1,...,jn′)∈Ω

t∑
k jkγk(e

nΛ0+ρ) = −
∑

w∈W

ε(w)w
∑

(j1,...,jn′)∈Ω′

t∑
k jkγk(e

nΛ0+ρ).

Introduce the following shorthand notation:

[condition (∗) on γ] :=
∑

w∈W

ε(w)w
∑

γ∈Q∨

γ satisfies (*)

tγ(e
n′Λ0+ρ).

Applying Lemma 2.5 to the set Ω = {(j1, . . . , jn) ∈ Z
n′
| j1 ≥ 0,

∑
k jk ∈ Zodd}, we obtain in

this notation:

(2.19)
[
(γ|Λ̄1) ≥ 0, (γ|Λ̄n′) ∈ 1 + 2Z

]
= −

[
(γ|Λ̄1) < 0, (γ|Λ̄n′) ∈ 2Z

]
.

In the above notation, formula (2.16) becomes:

R̂ chL(−Λ0) =
1

2
([(γ|Λ̄1) ≥ 0] + [(γ|Λ̄n′) ∈ 2Z]).
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Using (2.19), this completes the proof of claim (c) of Theorem 2.2.
Likewise in the above notation formula (2.17) becomes:

R̂ chL(−Λ0 + Λ̄2) =
1

2q
([(γ|Λ̄1) ≥ 0]− [(γ|Λ̄n′) ∈ 2Z]).

Using (2.19) this can be rewritten as

(2.20) R̂ chL(−Λ0 + Λ̄2) = −
1

q

∑

w∈W

ε(w)w
∑

γ∈Q∨

(γ|Λ̄1)<0
(γ|Λ̄n′ )∈2Z

tγ(e
n′Λ0+ρ).

In order to rewrite this formula further we need the following properties of roots and weights
of spn, which are straightforward.

Lemma 2.6. The weight λ := Λ̄2 satisfies the following properties:

(a) λ is a positive short root, given by

λ = α1 + 2(α1 + · · ·+ αn′−1) + αn′ =
1

2
(γ1 + γ2).

(b) (λ|γi) = 1 if i = 1, 2, and = 0 otherwise.

(c)

rλ(
n′∑

k=1

jkγk) = −j2γ1 − j1γ2 +
n′∑

k=3

jkγk.

(d)
rδ−λ = rλt−γ1−γ2 .

(e)
rδ−λ(n

′Λ0 + ρ) = n′Λ0 + ρ+ λ− δ = (−Λ0 + λ− δ) + ρ̂.

Using Lemma 2.6, we can rewrite (2.20) as follows:

R̂ chL(−Λ0 + Λ̄2) = −
1

q

∑

w∈W

ε(w)w
∑

γ∈Q∨

(γ|Λ̄1)<0
(γ|Λ̄n′ )∈2Z

tγrΛ̄2
t−γ1−γ2(e

−Λ0+Λ̄2+ρ̂−δ).

=
∑

w∈W

ε(w)w
∑

j1,...,jn′∈Z
j1<0∑
k jk∈2Z

t
(−j2−1)γ1+(−j1−1)γ2+

∑n′

k=3 jkγk
(e−Λ0+Λ̄2+ρ̂).

Replacing in the last expression −j2 − 1 by j1 and −j1 − 1 by j2, we obtain:

R̂ chL(−Λ0 + Λ̄2) =
∑

w∈W

ε(w)w
∑

j1,...,jn′∈Z
j2≥0∑
k jk∈2Z

t∑
k jkγk(e

−Λ0+Λ̄2+ρ̂).

Now, by (2.18), claim (b) of Theorem 2.2 follows.
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3 A character formula for the Deligne series modules

In this section we prove the following simple theorem.

Theorem 3.1. Let g be a simply laced Lie algebra of rank ℓ (so that α∨
i = αi), and Λ be a

weight of ĝ of level k ∈ Z<0, such that the following conditions hold:

(i) (Λ|αi) ∈ Z≥0 for i = 1, . . . , ℓ,

(ii) there exists a positive root α of g, such that (Λ + ρ̂|δ − α) = 0,

(iii) if β ∈ ∆̂+ is orthogonal to Λ+ ρ̂, then β = δ − α,

(iv) (extra hypothesis) in the character formula (0.9) one has:

c(γ) := c(tγ) = (linear function in γ ∈ Q) + const.

Then

(3.1) R̂ chL(Λ) =
1

2

∑

w∈W

ε(w)w
∑

γ∈Q

((α|γ) + 1)tγ(e
Λ+ρ̂).

Note that Theorem 1.1 shows that the extra hypothesis fails for g = sℓn, k = −1. However,
the comparison with [Kaw15], [AK16] indicates that the following conjecture may hold.

Conjecture 3.2. If g = D4, E6, E7, or E8, then the extra hypothesis (iv) holds (hence the
character formula (3.1) holds).

Remark 3.3. If Λ = kΛ0 for k ∈ Z<0, conditions (i)–(iii) of Theorem 3.1 hold for k = (−h∨

6 −
1) + s, where s = 0, 1, . . . , b − 1 and b = 2, 3, 4, 6 for g = D4, E6, E7, E8 respectively. This
explains the name “Deligne series modules”, cf. [Kaw15], [AK16], [AM16].

The proof of Theorem 3.1 is easy (but it is probably quite hard to verify the exta hypothesis
(iv)). Indeed, by (i) chL(Λ) is W -invariant, and, by (ii), k + h∨ > 0, hence (0.9) holds and it
can be rewritten as

(3.2) R̂ chL(Λ) =
∑

w∈W

ε(w)w
∑

γ∈Q

c(γ)tγ(e
Λ+ρ̂).

Since, by (ii) we have rδ−α(Λ + ρ̂) = Λ + ρ̂, and also rδ−α = rαt−α, rαtγrα = trα(γ), ε(wrα) =
−ε(w),, we can rewrite (3.2) as

R̂ chL(Λ) = −
∑

w∈W

ε(w)w
∑

γ∈Q

c(γ)trα(γ)−α(e
Λ+ρ̂).

Replacing in this formula γ by rα(γ)− α, we obtain

(3.3) R̂ chL(Λ) = −
∑

w∈W

ε(w)w
∑

γ∈Q

c(rα(γ)− α)tγ(e
Λ+ρ̂).
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Taking half the sum of (3.2) and (3.3), we obtain

(3.4) R̂ chL(Λ) =
1

2

∑

w∈W

ε(w)w
∑

γ∈Q

c̃(γ)tγ(e
Λ+ρ̂)

where c̃(γ) = c(γ) − c(rα(γ)− α). The function c̃(γ) has the following two properties:

(3.5) c̃(γ) = −c̃(rα(γ)− α), γ ∈ Q,

(3.6) c̃(γ) = (linear function in γ) + const, γ ∈ Q.

By (3.6), which holds due to the condition (iv), we can write for some β ∈ h∗, a ∈ C :

(3.7) c̃(γ) = (γ|β) + a, γ ∈ Q.

Then we obtain for all γ ∈ Q:

(3.8) c̃(rα(γ)− α) = (γ|β) − (α|β)(γ|α) − (α|β) + a

Since, by (3.5), (3.7) = -(3.8), we obtain:

2(γ|β) − (α|β)(α|α) − (α|β) + 2a = 0, for all γ ∈ Q.

Hence β = 1
2(α|β)α and a = 1

2 (α|β). Therefore, by (3.7), we obtain

(3.9) c̃(γ) = const. × ((γ|α) + 1) for all γ ∈ Q.

By (3.4) and (3.9), we have:

(3.10) R̂ chL(Λ) = const. ×
∑

w∈W

ε(w)w
∑

γ∈Q

((γ|α) + 1)tγ(e
Λ+ρ̂).

Since the stabilizer in Ŵ of any λ ∈ h∗ of positive level is generated by reflections rα, α ∈ ∆̂re
+

fixing λ [K90], by the conditions (ii) and (iii) we see that ŴΛ+ρ̂ = {1, rδ−α}. It follows that
const. = 1

2 in (3.10), proving (3.1).

Conjecture 3.4. If g = D4, E6, E7 or E8 and k = −1,−2, . . . ,−b, where b = 2, 3, 4, or 6
respectively, then all irreducible modules from the category O of the vertex algebra L(kΛ0) are
those from Theorem 3.1. (It follows from [AM16] that all these vertex algebras are quasilisse,
hence, by [AK16], have only finitely many irreducible modules in the category O.)

Example 3.5. Let g = D4, k = −1. Then the following Λ’s satisfy the conditions (i), (ii), (iii)
of Theorem 3.1 (we label the branching node of the Dynkin diagram of D4 by 2):

− Λ0; −2Λ0 + Λi (i = 1, 3, 4); −3Λ0 + Λ2;

− 3Λ0 + Λi + Λj ((i, j) = (1, 3), (1, 4), (3, 4)).

Remark 3.6. Of course, one has a formula for homogeneous q-dimension, similar to that in
Remark 1.2 in all cases, considered in Sectins 2 and 3. We checked on the computer that in the
case of D4 it is compatible with the formula for q-dimension of L(−2Λ0) from [AK16].
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Remark 3.7. Note that ((γ|α) + 1)tγ(e
Λ+ρ̂) = 1

k+h∨Dαtγ(e
Λ+ρ̂), where Dα is the derivative

in the direction α. Hence the RHS of (3.10) is a linear combination of derivatives of theta
functions.

Remark 3.8. By Theorem 3.1 from [KRW03] one has:

R̂(g, f)chH(Λ)(τ, h) = (R̂nchΛ)(τ,−τx+ h, τ/4), where h ∈ hf ,

for any W -algebra W k(g, f), obtained by the quantum Hamiltonian reduction of the ĝ-module
L(Λ) of level k. Here R̂(g, f) is the denominator of W k(g, f), R̂n = qdim g/24R̂ is the normalised
affine Weyl denominator, chΛ = qmΛchL(Λ) is the normalized character [K90]. In particular,
if g = D4, E6, E7, E8, k = −b, f is the minimal nilpotent element of g, and L(Λ) is a module
of level k over the corresponding simple vertex algebra, then the simple W -algebra Wk(g, f) is
1-dimensional [AKMPP16], hence chH(Λ) = 1, and we get a formula relating R̂(g, f) to chL(Λ)
for z = −τx+ h.
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