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On characers of irreducible highest weight modules of negative
integer level over affine Lie algebras

Victor G. Kac* and Minoru Wakimoto!

To the memory of Bertram Kostant

Abstract

We prove a character formula for the irreducible modules from the category ) over the simple
affine vertex algebra of type A, and C),, (n > 2) of level £ = —1. We also give a conjectured
character formula for types Dy, Fg, Fr7, Eg and levels £ = —1,...,—b, where b = 2,3,4,6
respectively.

0 Introduction

Let g be a simple finite-dimensional Lie algebra over C, and let (. |.) be the invariant symmetric
bilinear form on g, normalized by the condition (a|a) = 2 for a long root «. Recall that the
affine Lie algebra g, associated to g is the infinite-dimensional Lie algebra over C

(0.1) g=gt,t'|®CK @ Cd

with the following commutation relations (a,b € g, m,n € Z):

(0.2) [at™, bt"] = [a, bt + mbpm —n(alb)K, [d,at™] =mat™, [K,g]=0.

The form (.|.) extends from g to a non-degenerate invariant symmetric bilinear form on g by

(0.3)  (at™|bt™) = 6y _n(ald), (g[t,t ']|CK +Cd) =0, (K|K)=(d|d)=0, (K|d)=1.
Choosing a Cartan subalgebra b of g, one defines the associated Cartan subalgebra of g :

(0.4) h=b+Cd+CK.
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The restriction of the bilinear form (.|.) from g to b is non-degenerate, and we identify § with
E* and h with h* using this form. Then d and K are identified with elements, traditionally
denoted by Ag and § respectively. We denote ¢ = e 9.
Choosing a Borel subalgebra b = h+n, of g, one defines the corresponding Borel subalgebra
of g: R
b=b+n +Pat™
n>0

Given A € 6*, one extends it to a linear function on b by zero on all other summands. Then
there exists a unique irreducible g-module L(A), which admits an eigenvector vy of b with
weight A. Since K is a central element of g, it is represented on L(A) by a scalar A(K), called
the level of L(A) (and of A).

Let a1, ..., ay be simple roots of g, 8 be the highest root, and A, .., Ay be its fundamental
weights, i.e. (Ajlay) = d;j, where o = 2a/(ale). Then ag = § — 6, ay,. .., o are simple roots
of g, and the fundamental weights A; of g are defined by (Ajla)) = &, Ai(d) =0, i,j =
0,1,...,¢0. Any A € H* can be uniquely written in the form

¢
(0.5) A= ZmiAi + ad, where m;,a € C.
i=0

A g-module can be “integrated” to the corresponding group, hence it is called integrable,
iff all m; are non-negative integers. In this case the level of L(A) is a non-negative integer.

The character of L(A) is defined as the following series, corresponding to the weight space
decomposition of L(A) with respect to b :

~

(ch L(A))(h) = tr (a)e", h € D.

This series is convergent in the domain {h € H]ai(h) >0, ¢=0,1,...,¢}. Note that, adding
b to A, where b € C, multiplies the character by ¢~°. Thus, ch L(A) depends essentially only
on the labels my, ..., my of A in (03).

If the g-module L(A) is integrable, its character is given by the Weyl-Kac character formula:

(0.6) Rch L(A) = Z e(w)w(eMP) = Z e(w)w Z t (M),

weWw weW veQv
Here R = ¢? [I.c N (1— e—a)mult(a) is the affine Weyl denominator, p is the affine Weyl vector:
(07) ﬁ: p+th0,

where p is the Weyl vector for g and h" is the dual Coxeter number (= % the eigenvalue on g

of the Casimir element). Furthermore, W =W {ta | € QV} is the affine Weyl group, where
W is the Weyl group of g, e(w) = detﬁ* w, QY = Zle Zay is the coroot lattice of g, and the

translation ¢, € End 6* for v € h* is defined by
(0.8) ty(A) = A+ AK)y — (A7) + 3AE)(7[9)5, A€ b,

The details of the above discussion may be found in the book [K90].



In the paper [KWS88] a similar character formula was proved for admissible L(A), defined
by the condition that for a € ﬁff, the set of real roots of g, the number (A + p|a") must be
a positive integer each time when it is an integer. Admissible g-modules include the integrable
ones, but exclude, for example the g-modules L(kAg), where k is a negative integer.

It is known for arbitrary (non-critical, i.e. of level # —h") A that

(0.9) Reh L(A) = Y c(w)w(eP),
weW

where c¢(w) are integers [KK79], and that c¢(w) can be computed via the Kazhdan-Lusztig

polynomials for w [KT00]. However the explicit formulas for the integers ¢(w) are unknown in

general.

In Sections 1 and 2 of the present paper we find explicit character formulas for level —1
modules L(A) over s/, and over §p, with n > 3, with highest weights A = —(1 + s)Ag + sA;
and A = —(1 + S)AO + SAn_l, s € Z, and A = —(1 —I—S)AO —|—8A1, s € ZZO and A = —2A0 —I—AQ,
respectively (see Theorems [[1], and 211 respectively). In particular, we compute in both
cases the character of L(—A), which are simple affine vertex algebras of level —1. (As shown
in [AP12] and [AP14], the above modules are all irreducible modules over these vertex algebras
in the category (?.) The main ingredients of the proof are the free field realization of these
modules, given in [KWOI], the irreducibility theorems from [AP14], [AP12], and the affine
denominator identity for that affine Lie superalgebras sf,,|; and 5po,,, given in [KW94],

In Section 3 we indicate a proof, under a certain hypothesis, of an explicit character formula
for certain modules L(A) of negative integer level over affine Lie algebras, and conjecture that
the hypothesis holds for the affine Lie algebras of Deligne series D4, E6, E7 and Eg

Throughout the paper the base field is C.

Both of us wish to thank ESI, Vienna, where we began discussion of this paper, for hos-
pitality. The first named author wishes to thank IHES, where the paper was completed, for
perfect working conditions.

1 Proof of the character formulas for g, where g = s/,

In this section we prove a character formula for certain highest weight mdules L(A) of level —1
over the affine Lie algebra s¢,,. The normalized invariant bilinear form (.|.) on s/, is the trace
form. We choose as its Cartan subalgebra , as usual, the subalgebra of all diagonal traceless

matrices. Then the simple roots of sf,, are a1 = &1 —¢€9,...,Qn_1 = En_1 — En, Where e1,...,e,
is the standard basis of the dual of all diagonal matrices, and its root (= coroot) lattice is
Q Zz 1 Zal

We will also use the embedding of s/, in the Lie superalgebra s/, ;. The trace form on
sty extends to the supertrace form (.|.) on sf,;, and its Cartan subalgebra embeds in the
Cartan subalgebra of sf,,; of supertraceless diagonal matrices. Then the simple roots of s,
are a1, ...,y 1,0, = €, — Ena1, Where o, is an odd root. Also, sf, and an‘l have the same
Weyl group, and their dual Coxeter numbers are n and n — 1 respectively.

Theorem 1.1. Let n > 3, and let L(A) be an irreducible level —1 sly-module with highest
weight
A=—1+s)Ag+sA,—1 (resp. = —(1+s)Ag + sA1), s € Z>o.



Then the character of L(A) is given by the following formula:

(1.1) Rch L(A) = Z e(w)w Z t, (eMP).
weW B v7EQ
(y|[An—1(resp. A1))>0

The proof of formula (I.T]) uses the free field construction, given in [KWOI], of the affine Lie
superalgebra g¢,,,, of level 1 in a Fock space F'in the case of m = 0 . Note that in that paper
we used the supertrace form, which is equal to the negative of the trace form on g, = gly,.

Hence we get a gAEn—module structure on F' of level —1. Recall some properties of this module,

described in [KWOI].

First, we have the charge decomposition into a direct sum of gAEn-submoduleS:

(1.2) F = pF..

SEL

Second, there is a Virasoro algebra acting on F, and leaving all subspaces Fs invariant, for
which all fields a(z), a € gf,, are primary of conformal weight 1, and each Fy in (L2) has a
unique, up to a constant factor, non-zero vector |s) with minimal Ly-eigenvalue (see Section 2
for more details). Moreover this vector is invariant with respect to the Cartan subalgebra of
gl,, and has the following weight:

—Ag — %5 +se; ifse ZZO’

13 weight |s) =
(1.3) ght |s) {—A0+§5+55n if s € Z<o.

Third, by formula (3.15) from [KW01], the character of the g¢,-module F is given by

ch F:= Zw ch F, = e H H — zeSigh 5)_1(1 - x_le_ejqk_%)_l.

SEL Jj=1k=1

Letting in this formula = = e‘anﬂq%, we obtain:

n (e e}
(1.4) e Mo H H eCi—En+1 k) (1 _ e—(Ej—€n+1)qk 1 Ze SE"“qZChF
j=1k=1

SEL

It was proved in that all gAE -modules Fs are irreducible, provided that n > 3.
Therefore, using (I]B]) we see that Fy = V(A\®)) @ L(A®), where V(A®)) is an irreducible
gﬁl module with highest weight A(*) € CY""" | &; + CJ and L(A®)) is an irreducible sf,-module
with highest weight

A®) = —Ag+ sA; (resp. — Ag—sA,_1) € h* if s > 0 (resp. s < 0),
where A®) @ A(®) = weight |s).
Hence, using that A; = Ag + A;, we obtain that the character of Fj is given by

(1.5) (q)ch Fy = {qges(ﬂ_m)ChL(—(l + 5)Ao + sAq) if s € Z>o,

g zesEnthn)eh [(—(1 — s)Ag — sA,_1) if s € Z<o.



Here and further ¢(¢) = [[,2,(1 — ¢"). Substituting (LH) in the RHS of (), we obtain:

LHS of (T) — (L S esler-ennlgsesMeh L(—(1+ 5)Ag + sy ).

(1‘6) s>0
Z s(en—€n+t1) SAn 1ch L( (1 — S)Ao - SAn—l))'

s<0

Next, we embed the Lie algebra s/, in the Lie superalgebra sf,; as described above. We

extend this embedding to the affine Lie (super)algebras by, < sAﬁn‘l. Then identitiy (L6) can
be rewritten as follows:

(1.7)
e Mu(q) [T [ (1 — et Fongh) (1 — et ronigh)y=1
j=1k=1
= Z st tan) gse=sMeh [(—(1 4 s)Ag + sAy) + Z e%neshn-1ch L(—(1 — 8)Ag — sAn_1).
5>0 s<0

We denote the 0-th fundamental weight and the Weyl vector for ;\KHH by A{, and p’ respec-
tively. Then, by (0.7)), we have, when restricted to SAEn :

(18) A6 = A(] and ,5’ = ﬁ— A(].

Recall the formulas for the Weyl denominator R for SAEn and the Weyl superdenominator R for
s@n‘l :

(1.9) R=elp(gm ' J] 1—e),

OCEArC

n o
(110) R =ePoq" [ —e H H (1 —ettotangh)y=l(1 — gm(@ittan)gh=t)=1
aEAre Jj=1

Multiplying both sides of (7)) by R, we obtain, using (I3) and (CI0):

_ Z esonttan)gse=sM Reh I(—(1 4 s)Ag + sAq)
>0

i Z eganesAnflﬁchL(_(l — S)AO — SAn—l)'
s<0

(1.11)

On the other hand, R’ can be computed by the superdenominator identity [KW94], [G11]:

~ P

vEQ



Expanding t’vm in the geometric series in the domain [e”®"| < 1, |¢| < 1, we obtain for

7 € Q (using (O.8)):
—L Do Z S JerHnmrpan g 25O h)+Hoh)—plan ),

1—en
p<0
( |OC7L)<O ('Ylan)>0

Using that nay,, = >, & — nM,_1, and that (ay|y) = —(Ap—1]y) for v € Q, we can rewrite
this formulas as

¢ = (P~ Dho( Z - Z Je~n Zim Sigpt(n=D)yEnin—1 "5t )+ (o) +p(Rn-1 ),

p=>0 p<0
(V[ An=1)>0  (y[An-1)<0

tfyl

— e Qn

Plugging this in (LI2) and using that ) . ;& is W-invariant, we obtain:

R = D0 N 5™ 0 N erplenthae) gt e (el
v7EQ  p>0 p<0
(1.13) (VAn-1)20  (7[An-1)<0
% Z wePtm— 1)y+pAn— 1
weW

Thus we obtain the identity

RHS of (LII) = RHS of (LI3).

Comparing the coefficient of e7P*" for p > 0 in this identity, we obtain:

Reh L(—(1 + p)Ag 4 pAy_q) = e~ Dho Z g7 O+ +pRaa )

eQ
(V[An-1)=0
% Z wep"‘ n—1)y+pAn_1 _ Z e(w)w Z tfye_(l"'p)AO"'pA”*l"‘ﬁ,
weW weW REY
(7| An—1)>0

This establishes formula (L)) for A = —(1 4 s)Ag + sA,—1. Formula for A = —(1 + s)Ag + sAy
follows by the involution of the Dynkin diagram of s/, which keeps the Oth node fixed.

Remark 1.2. Let A = —(1+s)Ag+sA; and let L(A) = & L(A); be the eigenspace decompo-
JE€Z>o

sition of L(A) with respect to —d. Let dimg L(A) = 3,5 ¢(dim L(A);)¢’ be the “homogeneous”
g-dimension of L(A). Dividing both sides of the last equality in the proof of (ILI)) by e~ Ao R,
where R is the Weyl denominator of g, and letting all elements of h* equal 0, we obtain by the
usual argument:

(‘D(q)dimg djmq L(A) = Z djm(SA1 4 (Tl _ 1),.}/)q”771(’y\'y)—l—(s/7\1+p|~/)7
VEQ
(A1]v)=0
where dim(A) = [],ea, (A + pla)/(pla) is the expression of the Weyl dimension formula for g.

Remark 1.3. For sly the characters of the above modules are very easy (see, e.g. [KWSS]):
eMo Rch L(—(l + S)A(] + SAl) =1- 6_(S+1)a1,8 € ZZO‘



2 Proof of the character formulas for g, where g = sp,

In order to prove the character formulas for $p,,, where n > 4, even, we use the embedding of
$pyn in sf,, obtained as the fixed point subalgebra of the involution o, corresponding to the flip
of the Dynkin diagram of s¢,,. The normalized invariant bilinear form (.|.) on sp, is again the

trace form. Let n’ = §.

We will also use the embedding of the Lie algebra sp, in the Lie superalgebra spo,o. The
simple roots of the latter are o, aq, ...,y _1, Q' where o, is an odd root, and oy, ..., «a, are
the simple roots of the former. We let QY = ZZ 1 Zey! be the coroot (# root) lattice of spy,.

In this section we prove the following two theorems.

Theorem 2.1. Letn > 4 be even, and let L(A) be an irreducible $p,,-module with highest weight
A.

(a) If A = —(1+4 s)Ao + sA1, where s € Z>1, then

hL(A)=RY c(ww Yty (eMP)

weW 'ngV
(v1A1)>0

(b) If A = —Ay, then

ch L(A) = %(]?2_1 Z e(w)w Z tw(eAJrﬁ) _AO H H (1—eg")™h),

weW ,ng\/ O!EA[ k€Zoqda>0
(v1A1)>0

where Ay is the set of long roots of sp,.

(¢) If A = —2Ag+ Ao, then ch L(A) is obtained by an expression, obtained from (b) by dividing
by q and replacing plus by minus between the summands.

Theorem 2.2. The characters of the $p,-modules L(—Ag) and L(—2A¢ + A2) can be written
in the form (@) as follows:

(a)
RehL(—Ag) = D e(wyw > ty(eP).

weW '\/ng
(v]A1)20
(I8, )e22

(b)
Rch L(—2Ag + Ay) = Z e(w)w Z t, (M),
weW _'\/GQ_V
(7/1R2—A1)>0
(V1A )€2Z



First letting in the character ch F' of the gAﬁn—module F, considered in Section 1, x =

Oy —E 7/

e n q%, and restricting the module F' to $p,,, we obtain, cf. (0.4)):

0 © n
e_AO H(l _ ea*qk)(l o e—a*qk—l) H H(l o ea*+a1+~~~+o¢iqk)(1 o e—a*—a1—~~~—aiqk—1)
k=1 k=11=1
oo n'—1
(21) % H H (1 _ ea*+a1+m+2ai+m+2an/71+an/ qk‘)(l o e—a*—041—"'—2047;—"'—20!”/,1—0!”/qk—l)
k=1 i=1
_ Zes(a*—an/)qgch FS‘sApn'
SEZ

Next, we embed the Lie algebra sp, in the Lie superalgebra spo,; as described above. We
denote the 0-th fundamental weight and the Weyl vector for 5po, o by Aj and p' respectively.
Then, by (01), we have again (L)), when restricted to sp,,.

Denote by R and R’ the Weyl denominator and Weyl superdenominator for sp,, and ?p\om2
respectively. Then we have by (L8)) for sp, :

(2.2) R' = o(q)R x (LHS of ).
On the other hand, the superdenominator identity for 5po,, o reads [KW94], [GIT]:

~

eP
1 —e o=

(2.3) R = Z e(w)w

weW

)

where W = W x {t, | v € Q"} is the Weyl group of $p,.
Using (ZI)-(23) and applying the same argument as in Section 1, we obtain for each
S € ZZO :

(2.4) @(q)ﬁ(cth)‘@n = eww D (M)
weWw '\/gQV
(v1A1)>0

This proves claim (a) of Theorem 271] since, due to [AP12], the restriction of the sl,-module
L(—Ag + sA1) to sp,, is irreducible for s > 0.
In order to prove claims (b) and (c), we need to study the module F' more carefully. Recall

that F' is the unique irreducible module over the Clifford algebra Cl with generators gol(f) and

§ i =1,...n, k € L+ 2, with relations 7 pl? — oo — 1 and = 0 in the rest

of the cases, which admits a non-zero vector |0), such that 90,(;)|0> =0= gp,(;)*|0> for all k£ >
0, i = 1,...,n. The charge decomposition (2] is defined by letting charge |0) = 0, charge
cp,(;) =1 = —charge cp,(;)*.

Note that the algebra C'l carries an involution o, defined by

olei!) = (1T

This involution induces an involution of the space Fp, denoted again by o, letting o|0) = |0),
so that we have its eigenspace decompositions

(2.5) Fy=F, o F;h.



The space Fj is spanned by monomials

(26) o=l el el 0).

I

Since

J(U):(_1)Zﬁzl(ip+jp>+m¢(_nl+1 ji) ..(p(_"l;l—w @;1—i1>*...¢@$—im>*|o>,

we see that, if v € Fo_l, we have (1 <p <m):

(2.7) Nt l—jp=tip, n+1l—ip=jp ="k

m
(2.8) Z’Lp—l—jp )+m=1 mod 2.

By @1) we have > 7" i = >0 (n + 1) — 3370, jp. Therefore 33, (i) + jp) = m mod 2,
which contradicts (Z8]). Hence F|; ! contains no monomials (Z8]).

Thus, for a monomial ([2.6]) we have: either o(v) = v, or v and o(v) are linearly independent.
Denote by Fg the subspace of Fj spanned by monomials fixed by o. From the above discussion
we obtain:

1
(2.9) ch Fjt = 5(ch Fy £ ch F).

Recall the construction of the representation of gl,, of level —1 in F [KWOT]. Let o (z) =
i) k-1 )% )%
Zke%—l—Z(pl(c)Z b2, 0% (2) = Zke +ZSD() k=3 Then

(2.10) eij(2) = oW (2)pW*(2) ;) K —1, d— —Lg

defines a representation of g¢, in F of level —1 (preserving (L2])). Here

n

S nt =0 S0l (2) : — 1 00 ()l () )

ke j=1

Is the representation in F' of the Virasoro algebra. In particular, the Heisenberg subalgebra H
of g/, is represented in F' as

Z:(Int’l‘z)z_’l‘t_1 — Zsz_k_l = Z o@D (2)D*(2) : .
keZ keZ i=1

Since the gl,,-module Fy is irreducible [APT4], we have the following decomposition of it as an
H @ sl,-module

(2.11) Fo =V ® L(—Ay),

where V is an irreducible H-module with highest weight vector |0), i.e. (I,,t*)[0) = 0 for k& > 0.
We obviously have:
V=C [H_k | ke Z>0] |0> and O'(Hk) = —H;.



Hence, in particular V' is o-invariant, so that we have the eigenspace decomposition with respect
too :V = V@ V-l Note that the action of 5p,, C g/, on Fy commutes with the action of
o on Fj, hence both FO1 and FO_1 are $p,,-modules. Moreover, due to [AP12], the gﬁn—module
L(—Ay), restricted to $p,,, is a direct sum of two irreducible modules, with highest weights —Ag
and —Ag + Ay mod C§. But it is easy to see that
(e + ¢

1
2 2

(n

~

Jo™)0)
2

(SIS

is a singular vector for 5p,,, and its weight is —Ag + Az — 6. Thus we obtain

Lemma 2.3. As an H @ sp,,-module, one has
Fy ~V'QL(—Ag) + V'@ L(—Ag+A2—0), Fy'=V'@L(~Ag)+V'®L(—Ag+Ay—9).

It is easy to see that

w11 vl
(212 Vs <90(<]) * w(q2)> ’
hence we have

N2 _ (V12 = 1
(2.13) (ch V7)* = (ch V™) o)

Next, we obviously have:

i n+1l—i)x ; 1
= [ 1 <i < ke G zao) )

hence

n
cth = e Mo H H(l — eei_E”“*iqk)_l.

k€Zoqa>o =1

It follows that

(2.14) ch Fg!s?n = e ho H H (1—e%g") L.

keZodd>O (XEA@

Now we are able to complete the proofs of claims (b) and (c) of Theorem 211 By Lemma
we have:

(2.15) ch VEch L(Ag) 4 ch VFch (—Ag + Ay — 6) = ch F;L.

From (2.9), 2I3) and (2.I5) we obtain:
1 1 1 -1 1 1 -1 g
mchL(Ao) =5 (chV!'—chV )ChF()!sApn + 5 (ch VI + ch V™ h)eh Flg, -
Now claim (b) follows from ([2I4]). Claim (c) follows from Lemma 23] and claims (a), (b).

Next, we turn to the proof of Theorem First from the denominator identity of A§2n)’—1
we deduce the following lemma.

10



Lemma 2.4. Let M = {’y € QV|(y|A,) € 2Z}. Then

i
e_AO R H (1—e¢") ! = Z e(w)w Z t, (e hotP),
[IIAV) weW yeEM
k€Zodd>0

Using this lemma, we can rewrite the character formulas, given by Theorem 2.1(b) and (c)
as follows

(2.16) ﬁmL@mg:%E:d@w(Ej Yty (erhote),

weW YEQY veEQY
(vIA1)=0  (v|A,)€2Z

(217) Ech( AO + A2 ,Ao-i-p ‘
U ST DRI DT
weW FYEQ vEQ
(v[A1)>0  (v|A,)€22Z
In order to rewrite these formulas into a nicer form we introduce a different Z-basis of QV:

Vv \Vi . /
vi=al + o), i=1,....n".

Then, letting v = >, jrVk, we have:

(2.18) (YIA) =71, (YA = Ay) = g2, (7|Aw) Z]k

Using that (—=Ag + p|d — ) = 0, we obtain
Lemma 2.5. For Q C Z" let

- {(_]1 - 17j27"'7jn')’(jlu"wjn’) S Q}

Z e(w)w Z b5y e (enA0+p) = Z e(w)w Z b, v (6"A0+p).

weWwW (J13emrdps )ESQ2 wew (1seedi)EQ
Introduce the following shorthand notation:
[condition (x) on 7] := Z e(w)w Z (e Ao+,

weWw ’yEQV
~ satisfies (*)

Applying Lemma to the set Q = {(j1,...,jn) € Z" | j1 > 0, Y i Jk € Zoda}, we obtain in
this notation:

(2.19) [(11R1) 2 0,(11Aw) € 1+22Z] = — [(71K1) < 0, (7I&n) € 22].

In the above notation, formula (ZI6]) becomes:

1

S((v[A1) = 0]+ [(v1Aw) € 22]).

EmLemg:2
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Using ([219]), this completes the proof of claim (c) of Theorem
Likewise in the above notation formula (Z.I7) becomes:

Reh L(=Ao + As) = —([(7/A1) = 0] — [(1]A) € 22]).

2%
Using (219]) this can be rewritten as
~ _ 1 )
(220) RChL(—AO + Az) = —— Z g(w)w Z tﬂy(e" Ao-i—p)‘
wew VEQY
(v]A1)<0
(“{|A7L/)€2Z

In order to rewrite this formula further we need the following properties of roots and weights
of sp,, which are straightforward.

Lemma 2.6. The weight \ :== Ay satisfies the following properties:

(a) X is a positive short root, given by
1
A=ar+2ar ot awn) +aw = 5+ ).

(b) Ayi) =114fi=1,2, and = 0 otherwise.

(c)
n' n'
mOQ k) = —jen — e+ Y dk ke
k=1 k=3
(d)
Ts-x = TAl—ny—ys-
(¢)

rs_x(n'Ag+p)=n'Ag+p+A—06=(=Ag+X—0)+p.
Using Lemma [Z6] we can rewrite (Z20)) as follows:

~ _ 1 <~
RCh L(—AO + Az) = —— Z g(w)w Z t’Yrj\zt—“ﬂ—’yQ (e—A0+A2+p—5)‘
(v[A1)<0
(vIA,) €27

= e(w)w E t ) r e
Z (w) L (—Ja—l)v1+(—11—1)72+22:3mk(
wew J1yesJnt €L

j1<0
>k JkE2Z

—A0+1_\2+,3).

Replacing in the last expression —jo — 1 by j; and —j; — 1 by jo2, we obtain:

RehL(—Ag+Ay) = D cw)w Yty iy (e70T217),
weWw j17"'7jn/€Z
J220
>k Jk€2Z

Now, by (ZI8), claim (b) of Theorem [2.2] follows.
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3 A character formula for the Deligne series modules

In this section we prove the following simple theorem.

Theorem 3.1. Let g be a simply laced Lie algebra of rank ¢ (so that o) = «;), and A be a
weight of g of level k € Zq, such that the following conditions hold:

(1) (Alew) € Zsg fori=1,...,¢,

(ii) there exists a positive root o of g, such that (A + pld —a) =0,
(iii) if B € £+ is orthogonal to A + p, then =106 — a,
(iv) (extra hypothesis) in the character formula [@9) one has:

c(y) = c(ty) = (linear function in v € Q)+ const.

Then

(3.1) Reh L(A) = % S c(wyw 3 ((aly) + Dty (M),

weWw YEQ

Note that Theorem [[LT] shows that the extra hypothesis fails for g = s¢,,, k = —1. However,
the comparison with [Kaw15], [AK16] indicates that the following conjecture may hold.

Conjecture 3.2. If g = Dy, FEg, E7, or Eg, then the extra hypothesis (iv) holds (hence the
character formula (31) holds).

Remark 3.3. If A = kA for k € Z, conditions (i)—(iii) of Theorem Bl hold for k = (—% -
1) + s, where s = 0,1,...,b— 1 and b = 2,3,4,6 for g = Dy, F§, E7, Eg respectively. This
explains the name “Deligne series modules”, cf. [Kaw15], [AKT6], [AMIG].

The proof of Theorem Blis easy (but it is probably quite hard to verify the exta hypothesis
(iv)). Indeed, by (i) ch L(A) is W-invariant, and, by (ii), k¥ + kY > 0, hence (0.9) holds and it
can be rewritten as

(3.2) Rch L(A) = Z e(w)w Z c(’y)tw(eAJrﬁ).

weW yEQ

Since, by (ii) we have rs_o(A +p) = A+ p, and also 75_o = Tal—a;TalyTa = tr,(y),E(WTa) =
—e(w),, we can rewrite ([B.2]) as

Reh L(A) == " e(w)w > e(tr, (y)—ale?).

weWw YEQ

Replacing in this formula v by 74(v) — «, we obtain

(3.3) Rch L(A) = — Z e(w)w Z c(ra () — a)t, (eMFP).

weWw vEQ
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Taking half the sum of (B2) and B3], we obtain

(3.4) Rch L(A) = % Z e(w)w Z’cv(’y)ty(emrﬁ)

weWw YEQ

where ¢(v) = ¢(y) — ¢(ra(y) — @). The function ¢(y) has the following two properties:

(3.5) c(y) = —c(ra(y) — ),y € Q,

(3.6) ¢(y) = (linear function in ) + const, v € Q.

By ([B.6), which holds due to the condition (iv), we can write for some § € h*,a € C :

(3.7) ) =0lB) +a, yeQ.
Then we obtain for all v € Q:
(3.8) cra(y) —a) = (718) — (@lB)(7le) — (alB) + a

Since, by &3), B7) = -(B.8)), we obtain:
2(718) — (alB)(ala) — (@lB) +2a = 0, for all v € Q.
Hence 8 = 1(a|B)a and a = & (a|B). Therefore, by ([B.7), we obtain

(3.9) ¢(y) = const. x ((y|la) + 1) for all v € Q.

By B4) and (39), we have:

(3.10) Rech L(A) =const. x Y e(w)w Y _ ((v]a) + L)ty (e 7).
weW YEQ

Since the stabilizer in W of any A\ € h* of positive level is generated by reflections r,, a € Af
fixing A [K90], by the conditions (ii) and (iii) we see that Wx,; = {1,75_4}. It follows that
const. = 3 in (BI0), proving BI).

Conjecture 3.4. If g = Dy, Fg,E7 or Eg and k = —1,—2,...,—b, where b = 2,3,4, or 6
respectively, then all irreducible modules from the category O of the vertex algebra L(kAg) are
those from Theorem [Tl (It follows from [AMI16] that all these vertex algebras are quasilisse,
hence, by [AK16l, have only finitely many irreducible modules in the category O.)

Ezample 3.5. Let g = Dy, k = —1. Then the following A’s satisfy the conditions (i), (ii), (iii)
of Theorem [B1] (we label the branching node of the Dynkin diagram of D4 by 2):

—Ao; —2A0 +A; (1=1,3,4); —3Ao + Ay;
- 3A0 + AZ + Aj ((27]) = (173)7 (174)7 (374))

Remark 3.6. Of course, one has a formula for homogeneous ¢-dimension, similar to that in
Remark [[.2]in all cases, considered in Sectins 2 and 3. We checked on the computer that in the
case of Dy it is compatible with the formula for ¢-dimension of L(—2Ag) from [AK16].
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Remark 3.7. Note that ((y|a) + 1)t,(eMP) = ﬁDatV(eA*'ﬁ), where D, is the derivative
in the direction a. Hence the RHS of (BI0) is a linear combination of derivatives of theta

functions.
Remark 3.8. By Theorem 3.1 from [KRW03] one has:

E(g,f)chH(A)(T, h) = (énchA)(T, —7x + h,7/4), where h € b/,

for any W-algebra W¥(g, f), obtained by the quantum Hamiltonian reduction of the g-module
L(A) of level k. Here R(g, f) is the denominator of W*(g, f), R, = ¢!™%24R is the normalised
affine Weyl denominator, chy = ¢"AchL(A) is the normalized character [K90]. In particular,
if g = Dy, Fg, E7, Eg, k = —b, f is the minimal nilpotent element of g, and L(A) is a module
of level k over the corresponding simple vertex algebra, then the simple W-algebra Wi(g, f) is
l-dimensional [AKMPP16], hence chg(n) = 1, and we get a formula relating R(g, f) to chL(A)
for z = —7x + h.
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