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 21 

Abstract 22 

While many Escherichia coli strains are considered commensals in mammals, 23 

strains encoding the cyclomodulin genotoxins are associated with clinical and 24 

subclinical disease in the urogenital and gastrointestinal tracts, meningitis, and 25 

inflammatory disorders. These genotoxins include the polyketide synthase (pks) 26 

pathogenicity island, cytolethal distending toxin (cdt), and hemolysin-associated 27 

cytotoxic necrotizing factor (cnf). E. coli strains are not excluded from rodents 28 

housed under specific-pathogen free (SPF) conditions in academic or vendor 29 

facilities. This study isolated and characterized genotoxin-encoding E. coli from 30 

laboratory rats obtained from four different academic institutions and three 31 

different vendors. Sixty-nine distinct E. coli isolates were cultured from fecal, rectal 32 

swab, or extra-intestinal regions of 52 different rats and biochemically 33 

characterized. Polymerase chain reaction for cyclomodulin genes and phylogroup 34 

was performed on all 69 isolates. Forty five of 69 isolates (65%) were positive for 35 

pks, 20/69 (29%) were positive for cdt, and 4/69 (6%) were positive for cnf. 36 

Colibactin was the sole genotoxin identifed in 21 of 45 pks+ isolates (47%), whereas 37 

cdt or cnf was also present in the remaining 24 isolates (53%). cdt or cnf was never 38 

present together or without pks. All genotoxin-associated strains were members of 39 

pathogen-associated phylogroup B2. Select E. coli isolates were characterized by 40 

HeLa cell in vitro cytotoxicity assays, serotyped, and whole genome sequenced by 41 

Illumina MiSeq. All isolates encoding cyclomodulins induced megalocytosis. 42 

Serotypes corresponded with vendor origin and cyclomodulin composition, with the 43 

cnf+ serotype representing a known human uropathogen. Whole genome 44 
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sequencing confirmed the presence of complete pks, cdt, and hemolysin-cnf 45 

pathogenicity islands. These findings indicate that genotoxin-encoding E. coli 46 

colonize laboratory rats from multiple commercial vendors and academic 47 

institutions and suggest potential to contribute to clinical disease and introduce 48 

confounding variables into experimental rat models. 49 

 50 

Introduction 51 

Escherichia coli is a gram-negative bacillus that colonizes the gastrointestinal 52 

tract of humans and animals.44 While some strains are considered commensals, 53 

various intestinal (IPEC) and extra-intestinal pathogenic E. coli (ExPEC) pathotypes 54 

are associated with a wide range of clinical disease states in the host;16,39 these 55 

strains are responsible for the deaths of more than 2 million humans annually.65 56 

Specific pathotypes often harbor similar virulence factors and correspond to distinct 57 

clinical and histological lesions. Intestinal pathotypes include enteropathogenic E. 58 

coli (EPEC), enterohemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), 59 

enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAggEC), diffusely 60 

adhering E. coli (DAEC), adherent-invasive E. coli (AIEC).65 Extra-intestinal 61 

pathotypes include uropathogenic E. coli (UPEC) and neonatal-meningitis E. coli 62 

(NMEC), which have an enhanced ability to translocate through the intestinal 63 

epithelium and cause severe clinical disease. 64 

Various strains are typically classified into one of the four major phylogenetic 65 

groups: A, B1, B2, or D.10,14,59 Groups B2 and D are often associated with 66 

pathogenicity, while fecal strains belonging to groups A and B1 generally lack 67 
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virulence factors.20,59 Strains belonging to pathogroup B2 have been isolated from 68 

feces of individuals from developed countries with increasing frequency.50,70 69 

These pathogenic strains encode various combinations of virulence genes 70 

and pathogenicity islands which promote invasion and colonization, evasion of host 71 

defenses, and damage to host tissues.  Associated virulence factors include 72 

cytotoxins such as genotoxic cyclomodulins, cytotoxic necrotizing factors (cnf), 73 

cytolethal distending toxin (cdt), and the genotoxin colibactin (pks). These virulence 74 

factors are known to modulate host cellular differentiation, proliferation, and 75 

apoptosis and promote cytopathic effects.7,19,69 76 

CNF is a 115 kDa cyclomodulin protein that induces cell cycle alterations and 77 

cytoskeletal changes by activating rho GTPases, which leads to a variety of aberrant 78 

phenotypic effects including micropinocytosis, megalocytosis, and 79 

multinucleation.61  cnf1 is chromosomally encoded21 while cnf2 is plasmid 80 

encoded64. cnf-producing E. coli are considered necrotoxigenic (NTEC) and are 81 

associated with intestinal, urinary,21 and meningeal infection of humans.39 cnf+ E. 82 

coli have previously been isolated from clinically normal and clinically ill ferrets,47 83 

cats,23 dogs,35,67 pigs,73 birds,40 and macaques.22  84 

Cytolethal distending toxins (CDTs) are encoded by three adjacent genes: 85 

cdtA, cdtB, and cdtC that can be either chromosomal or plasmid encoded. 72 86 

 All three genes are required for the production of this heat stable exotoxin, which 87 

bears considerable homology to DNAse I and causes DNA breaks.13 CDTs have been 88 

classified into subgroups I-V19 based on variations in amino acid sequences and 89 

genomic locations.32 Various EPEC serotypes carry this cyclomodulin, which, like 90 
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colibactin, also induces irreversible megalocytosis and G1 or G2 cell cycle arrest. 91 

cdt+ E. coli have been isolated from healthy and diseased humans as well as cattle, 92 

swine, and birds.32,56 93 

A 54kb polyketide synthase (pks) pathogenicity island encodes multiple clb 94 

genes (nonribosome peptide synthases) that are collectively responsible for 95 

colibactin synthesis.  The pks island was first identified in 2006 in a case of ExPEC-96 

induced neonatal meningitis55 and is associated with a variety of extra-intestinal 97 

infections in humans including bacterial meningitis, septicemia, and infections of the 98 

genitourinary tract.26,51 Additionally, it is associated with increased persistence in 99 

the gastrointestinal tract. Colibactin induces double stranded DNA breaks, which 100 

leads to chromosomal instability and subsequent promotion of carcinogenesis.51 In 101 

human studies, colibactin-producing E. coli are isolated from human colorectal 102 

tumors with significantly increased frequency.7 Furthermore, Cougnoux’s group 103 

found that pks+ E. coli promoted tumor survival by inducing cellular senescence via 104 

growth factor secretion.15 This association is recapitulated in laboratory animal 105 

models. Monoassociation of pks+ E. coli strain NC101 caused typhlitis42 and 106 

promoted invasive carcinoma in azoxymethane (AOM)-treated interleukin 10 107 

knockout (C57BLIL10-/-) mice;1 these effects were dependent on the presence of 108 

the pks island. In vitro studies have confirmed these findings by demonstrating that 109 

colibactin-encoding E. coli strains induce significant megalocytosis, double-stranded 110 

DNA breaks, phosphorylated γ-H2AX foci,1 and G2 cell-cycle arrest in eukaryotic 111 

cells.69 112 
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The presence of these genotoxins in human E. coli isolates is variable; 113 

prevalence is dependent on geographic location. In Puerto Rico, Gomez-Moreno et al 114 

found that of 41 stool samples tested, 8 isolates (20%) tested positive for pks. 115 

However, only 1 isolate was found to encode cnf whereas no isolates encoded cdt. 116 

The cnf-encoding isolate was also pks+28. Similarly, a group in France found that 117 

26% of their 81 patients harbored pks+ E. coli strains, 18% were cnf+, and 11% 118 

were cdt+.  cnf and cdt were often associated with pks, with a minority of genotoxin-119 

positive strains encoding cnf or cdt alone.60 Only 2 isolates (originating from colon 120 

cancer patients) were positive for all 3 genotoxins. All cnf+ strains demonstrated a 121 

hemolytic phenotype.60 In Mexico, a single uropathogenic strain (1/108) was found 122 

to encode both cnf and cdt; pks was not evaluated.45  123 

In research animals, our laboratory demonstrated that 88% of isolates from 124 

laboratory mice were colonized with pks+ E. coli and belonged to pathogen-125 

associated phylogroup B2.26 Genotoxic E. coli have been identified in several other 126 

species of laboratory animals: pks+ E. coli has also been identified in laboratory 127 

macaques and cnf+ E. coli in ferrets and nonhuman primates.47,22 128 

Rats constitute valuable models of both neonatal meningitis (NMEC) and 129 

uropathogenic (UPEC) E. coli infection. Young rats are commonly used to study 130 

systemic dissemination of NMEC K1 infection via the gastrointestinal tract17,79 and 131 

methods of prevention,82 intestinal barrier permeability,31 sequelae of bacterial 132 

neonatal meningitis.27 Neonatal rats have recently been used to model maternal to 133 

neonatal transmission of pks+ E. coli, which resulted in increased rates of intestinal 134 

epithelial cell proliferation, apoptosis, and permeability that was transmissible 135 
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through generations.58 In addition, numerous studies have utilized rats 136 

experimentally infected with cnf+ uropathogenic E. coli in order to study the 137 

dissemination and pathogenesis of E. coli associated recurrent urinary tract 138 

infections, pyelonephritis, and acute kidney injury (AKI).77,68,62 Potential novel 139 

treatments for these conditions such as photodynamic therapy33 and novel drug 140 

delivery methods are also investigated in these experimentally infected rat models. 141 

 Unfortunately, the prevalence of pks and other cyclomodulin positive E.coli 142 

strains in SPF laboratory rats is currently unknown; vendors typically do not 143 

include E. coli on their health surveillance reports. Thus, this study focused on 144 

determining the comparative prevalence of pks+, cdt+, and cnf + isolates from the 145 

gastrointestinal tract and several other sites from rats obtained from multiple 146 

institutions and vendors. Given previous work regarding prevalence in laboratory 147 

mice and its association with urosepsis and meningitis in immunocompromised 148 

mice,26,we hypothesized that the majority of isolates from rats encoded the pks 149 

genomic island regardless of institution or vendor and asked whether these isolates 150 

also encoded cdt or cnf.  151 

 152 

Methods 153 

Animals 154 

A total of 52 different rats from 3 distinct vendors originating from multiple barriers 155 

within each vendor facility and ultimately residing at 4 different academic 156 

institutions were included in this study.  Vendor A rats were housed in institutions 157 

W, X, and Z, whereas vendor B supplied rats for institutions Y and Z, and vendor C 158 
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supplied rats only to institution Z. The most commonly represented strain was 159 

Sprague Dawley; 4 animals were Long Evans and 3 were c-fos-lacZ transgenic rats. 160 

There was an even distribution of male and female rats. Based on health 161 

surveillance reports, all animals were considered specific-pathogen free (SPF). E. 162 

coli was absent from vendor surveillance reports. Samples were collected from 163 

2015-2017 and animals ranged in age from 8 weeks to 2 years. Animals were group 164 

housed at both the vendors and academic institutions; three out of four academic 165 

institutions maintained AAALAC accredited facilities. Rodent chow and water were 166 

provided ad libitum and housed in polycarbonate cages. All animals were on IACUC 167 

approved studies. 168 

 169 

Culture & Isolation 170 

E. coli was isolated from fecal contents, vagina, or nares of clinically normal rats 171 

immediately upon delivery to the academic institutions or after being housed in 172 

academic facilities. Sixty nine E.coli isolates were cultured from fecal/rectal swab 173 

(49), vaginal swabs (1), or nares (3). Fecal/rectal samples were collected directly 174 

from the rectum of the animals in shipping crates prior to their entrance into the 175 

institutional facilities. Fecal pellets or rectal swabs were placed into tubes 176 

containing sterile Gram Negative broth (BD) and incubated at 37C overnight. A 177 

broth swab was plated onto MacConkey lactose agar plates (Remel) and lactose-178 

positive colonies then plated onto sheep blood agar plates (Remel) based on distinct 179 

colony morphologies. The presence or absence of β-hemolysis was noted and 180 
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recorded; suspect E. coli isolates were biochemically characterized using API® 20 E 181 

(Biomérieux). 182 

 183 

DNA Extraction & PCR Amplification 184 

A loop of each of the 69 E. coli isolates grown overnight on sheep’s blood agar plates 185 

was placed in 500 ul of sterile phosphate-buffered saline (PBS) in a microfuge tube 186 

and swirled until thoroughly dissolved.  Samples were boiled for 10 minutes 187 

followed by 10 minutes of centrifugation at 12,000g. The supernatants were used in 188 

the PCR reactions. Two sets of primers (clbA, clbQ) were used to identify pks genes22. 189 

Multiplex PCR was used to amplify cnf and cdt genes. Five sets of primers for viaA, 190 

TSPE4.C2, chuA, svg and uidA genes were used in multiplex PCR to determine the 191 

phylogroup of each isolate.5,14 The phylogenetic groups were determined based on 192 

the PCR gel pattern.  193 

 194 

Serotyping 195 

Nine E. coli isolates chosen from different vendors, barriers, and institutions and 196 

representing pks-/cdt-/cnf−, pks+/cdt-/cnf−, pks+/cdt-/cnf+, pks+/cdt+/cnf-, and 197 

genotypes were submitted to the E. coli Reference Center at Penn State University 198 

for serotype testing, which included: O and H typing and PCR analyses for heat-199 

labile enterotoxin (elt), heat-stabile enterotoxin (estA and estB), Shiga-type toxin 1 200 

and 2 (stx1 and stx2), intimin gamma (eae), cnf1, and cnf2. 201 

 202 

Cytotoxicity Assay 203 
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Control strains included NC101 (pks+/cdt-/cnf−) and NC101Δpks (pks- mutant), 204 

which were gifts from Dr. Chris-tian Jobin. Other control strains included V27 (+, 205 

pks+/cdt+/cnf-, acquired from the E. coli Reference Center), and K12 (triple negative 206 

control). Eleven isolates representing all possible combinations of genotype, 207 

vendors, and institution were evaluated; these isolates included pks+, cdt+, and cnf+ 208 

isolates, triple negative isolates, and isolates from all anatomical locations sampled.  209 

 210 

Cell culture assay for colibactin cytotoxicity 211 

The cytotoxicity assay was performed as described previously with 212 

modifications26,55. HeLa S3 cells (ATCC CCL2.2) were grown and maintained in 213 

Eagle's Minimum Essential Medium (EMEM, ATCC) containing 10% Fetal Calf Serum 214 

(FCS, Sigma) and 1% Antibiotic-Antimycotic (Gibco) at 37 °C with 5% CO2. 5 × 103 215 

cells were seeded onto 96-well cell culture plates and incubated at 37 °C with 5% 216 

CO2 for 24 h. Overnight liquid cultures of E. coli strains were grown for 2 h at 37 °C 217 

and then adjusted to O.D.600 nm in 1% FCS EMEM media to concentrations 218 

corresponding to a multiplicity of infection (MOI; the number of bacteria per cell at 219 

the onset of infection) of 100. Following inoculation, plates were centrifuged at 220 

200 g for 10 min to facilitate bacterial interaction and then incubated at 37 °C with 221 

5% CO2 for 4 h. Cells were then washed with EMEM and replaced with EMEM 222 

containing 10% FCS and 200 µg/mL gentamicin (Gibco). Following 72 h incubation, 223 

plates were stained with Diff-quick stain (Thermo Scientific). Cells were then 224 

inspected under a microscope for confluence and morphological changes. Images 225 
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were captured with a Zeiss Axiovert-10 microscope using Image Pro-Plus software 226 

version 7.0 at 20× magnification. 227 

 228 

Cell culture assay for sonicate cytotoxicity  229 

Overnight cultures of E. coli strains were pelleted by centrifugation at 230 

12,000 rpm for 5 min.  The pellets were washed in 1 ml of PBS and pelleted again by 231 

centrifugation at 12,000 rpm for 5 min. Pellets were re-suspended in 2 ml of PBS 232 

and then sonicated on ice using the following program: amplitude: 35; power: 7 W; 233 

30 s intervals for a total of 5 min with 1 min breaks between intervals.  Sonicate 234 

samples were centrifuged at 12000 rpm for 10 min at 4 °C to remove large debris. 235 

Supernatant was collected and then filter-sterilized through 0.2 μm filters. Total 236 

protein was quantified using the BCA assay (Thermo Fisher Scientific). HeLa cells, 237 

5 × 103 were seeded onto 96-well cell culture plates and incubated at 37 °C with 5% 238 

CO2 for 24 h. Cells were treated with 1 or 40 μg/mL total protein of crude bacterial 239 

sonicate for 72 h. Cells were stained and microscopically analyzed for confluence 240 

and morphological changes as described above. 241 

 242 

Draft Genome Sequencing and Comparative Analysis 243 

Genomic DNA was isolated from 7 representative isolates using the 244 

MasterPure Complete DNA and RNA Purification Kit (Epicentre) following the 245 

manufacturer’s protocol for bacterial cell samples.  DNA libraries were prepared by 246 

the Sequencing Core at the Forsyth Institute (Cambridge, MA) using NextraXT for 247 

sequencing of 2x150 paired-end reads by Illumina MiSeq.  Raw sequencing reads 248 
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were decontaminated of adapter sequences and quality trimmed to a Phred quality 249 

score (Q) ≥ 10 using BBDuk from the BBMap package version 37.17 250 

(http://sourceforge.net/projects/bbmap/).  Decontaminated reads were then 251 

assembled into contigs with SPAdes3 and scaffolds with Ragout41 followed by 252 

genome annotation with RAST hosted by PATRIC2,6,78. Sequences encoding putative 253 

virulence factor and antibiotic resistance genes were identified using 254 

VirulenceFinder 1.534 and ResFinder 2.181 hosted by Center for Genomic 255 

Epidemiology.  Syntenic relationships of pks, cdt, and hemolysin-cnf operon genes 256 

between genomes were determined with SimpleSynteny.76    257 

 258 

Accession Numbers: GenBank accession numbers are available in Table 3.  259 

 260 

Results 261 

Microbiological Characterization 262 

E. coli was isolated from all 52 rats sampled, with all biological sampling locations 263 

(rectum, nares, vagina) yielding E. coli isolates. Sixty nine E. coli isolates were 264 

cultured; some animals harbored multiple E. coli isolates as determined by distinct 265 

API codes and colony morphology.  None of the isolates demonstrated hemolysis. 266 

Across all vendors and institutions, there was no correlation between API code and 267 

genotoxin genotypes. Differences in API codes indicated the ability of the isolates to 268 

ferment certain sugars and metabolize specific amino acids. The most common API 269 

code, 5144572, was observed in 41/69 isolates, while the second most common was 270 

5144552, observed in 23/69 isolates.  The major metabolic difference between 271 

http://sourceforge.net/projects/bbmap/
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these codes is that the most common code (5144572) has the ability to ferment 272 

sucrose whereas the latter does not. The API code 1144552 appeared in 4 isolates 273 

and the API codes 7144472 and 7144572 were observed in single isolates from 274 

vendor A.  Codes beginning with “1” are lacking lysine and arginine decarboxylase 275 

activity. Some correlation was evident between API code and genotype at the 276 

individual vendor level, which suggests a certain degree of clonality among isolates 277 

from each origin. However, these patterns did not hold when different vendors or 278 

institutions were compared.  For example, all 9 isolates from vendor B with the API 279 

code 5144552 harbored both pks and cdt, whereas all 11 isolates with the same API 280 

code from vendor A were negative for all genotoxins. The 4 isolates with API code 281 

1144552 originated from Vendor B rats cultured directly from the shipping crate 282 

after arriving at the institution.  This API code only occurred in isolates that were 283 

cnf+.  284 

 285 

Identification of pks, cdt, cnf genes 286 

Conventional PCR for pks genes clbA and clbQ (figure 1A) and multiplex PCR for cdt 287 

(figure 1B) and cnf genes (figure 1C) was performed on all isolates to identify the 288 

presence of genotoxin genetic elements. Overall, 45 of 69 (65%) of the total isolates 289 

were positive for both pks genes; there were no isolates that tested positive for one 290 

gene without the other; 20 of 69 (29%) isolates were positive for cdt and 4 of 69 291 

(6%) isolates were positive for cnf. pks was the sole genotoxin identifed in 21 of 45 292 

pks+ isolates (47%), whereas cdt or cnf was also present in the remaining 24 293 

isolates (53%). Cytolethal distending toxin or cnf was never present without pks and 294 
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cnf and cdt were never present together (Table 1). Roughly half (55%) of the 295 

isolates from vendor A animals were positive for pks with a 15% minority encoding 296 

cdt in addition. No vendor A animals tested positive for cnf. Conversely, all isolates 297 

from vendor B animals were pks+ and 69% of them encoded cdt. Isolates that did 298 

not encode cdt had cnf instead. Thus, all isolates from vendor B were positive for 299 

multiple genotoxins (Table 1). Fifty one to eighty percent of isolates from animals 300 

arriving at institutions W and X were pks+, with a minority of isolates (15-17%) 301 

carrying cdt in addition. All isolates from institutions Y and Z were pks+, with the 302 

majority of isolates also harboring cdt (64-100%). All rats from vendor C encoded 303 

pks and cdt.  Those E. coli isolates from institution Y that did not have cdt encoded 304 

for cnf instead (36%) (Table 2).  305 

 306 

Phylogenetic Analysis 307 

Phylogroup was determined based on the amplification pattern of multiplex PCR for 308 

viaA, TSPE4.C2, chuA, svg and uidA genes (Figure 2a).  The presence of 3 or more 309 

bands identifies the isolate as a member of phylogroup B2. All isolates were 310 

members of phylogroup B, with 24/69 (35%) of isolates belonging to group B1 and 311 

45/69 (65%) of isolates belonging to pathogen-associated phylogroup B2. Only 2 312 

isolates that were members of phylogroup B2 did not test positive for any of the 313 

cyclomodulins under evaluation. All genotoxin-positive isolates belonged to group 314 

B2 (Figure 2b).   315 

 316 

Serotyping 317 
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The most common serotype among isolates was O7:H7; all originated at vendor A, 318 

but each isolate originated from rats housed at a different institution (Table 2). Two 319 

of these isolates were pks+ only and the third encoded both pks and cdt. The next 2 320 

most common serotypes were found in duplicate. The two pks+, cdt+ isolates from 321 

vendor B (rats housed at different institutions) were serotype O166:H6. Two triple-322 

negative E. coli isolates from vendor A were O179:H8. The pks+, cdt+ E. coli isolate 323 

from vendor C was OM:H6 and the pks+, cnf+ isolate from vendor B was O4:H5, a 324 

known uropathogen in humans.57,36 None of the E. coli isolates serotyped were 325 

positive for elt, estA, estB, stx1, stx2, eae, and cnf2 genes. 326 

 327 

In vitro cytotoxicity of E. coli isolates 328 

Cell culture assays were performed to determine if in vitro infection or 329 

sonicates of representative rat E. coli isolates caused cytotoxicity to HeLa cells.  A 330 

total of 17 isolates encompassing representatives from all institutions, vendors and 331 

barriers, anatomical areas of isolation, genotoxin status, and phylogroup were 332 

evaluated. Live bacteria were used rather than sonicate as whole cells are required 333 

for the complete expression of colibactin.7 Conversely, CDT and CNF cytotoxicity are 334 

only detectable using sonicate preparations. Viable pks+ E. coli isolates induced 335 

megalocytic cytotoxicity to HeLa cells, indicating contact-dependent colibactin 336 

expression (figure 3a).  HeLa cells treated with sonicate from cdt+ or cnf+ E. coli 337 

isolates also displayed cell body and nuclei enlargement, which are characteristic of 338 

these cytotoxin (figure 3b).  E. coli isolates PCR-negative for pks or cdt lacked 339 

cytotoxicity in their respective sonicate based-cell culture assays. These results 340 
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indicate rat E. coli isolates exhibit cytotoxic pks, cdt , and cnf activity in vitro, as their 341 

genotypes suggest. 342 

 343 

Draft Genome Sequencing and Comparative Analysis 344 

The draft genome sequences of seven representative rat E. coli isolates were 345 

obtained for comparative analysis of the pks, cdt, and cnf genes as well as for 346 

identification of other virulence factor and antibiotic resistance genes.  The rat E. 347 

coli isolate genomes have similar genome sizes, G+C% contents, and protein and 348 

RNA genes as the representative pks+ E. coli strains IHE3034 and NC101, as 349 

summarized in Table 3.  Homologous genes for all pks genes were identified in the 350 

rat E. coli isolates and showed identical synteny to IHE3034 and NC101.  Compared 351 

to IHE3034, all PKS genes from the rat E. coli isolates had ≥98% sequence coverage 352 

and identity, except the clbJ and clbK genes from isolate S15 had ~90% and ~45% 353 

sequence coverage, respectively.  Further analysis of the clbJ and clbK genes from 354 

isolate S15 suggests they could be expressed as a hybridized gene (see 355 

supplementary results/discussion). Cytolethal distending toxin genes were detected 356 

in 3 out of 7 genomes. All 3 genomes had complete tripartite cdt holotoxin island 357 

including cdtA, cdtB, and cdtC. The cnf gene was intact, but the adjacent hemolysin 358 

operon demonstrated an insertional event that interrupted the hlyA gene (see 359 

supplementary results/discussion).  None of these cnf+ isolates were hemolytic. All 360 

rat isolates encoding cyclomodulin genes induced megalocytosis in HeLa cells 361 

(figure 3), indicating cyclomodulin expression. Other virulence factor genes were 362 

also identified in the rat E. coli isolate genomes and included toxins (astA, cdtABC, 363 
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pic, vat), bacteriocin synthesis genes (cba, celb, cma, mchB, mchC, mchF, mcmA), 364 

nutrient/survival factors (gad, iroN, iss), and adherence (lpfA, sfaS) (table 3).  Gene 365 

sequences for cell cycle inhibiting factor (cif) were not detected in any of the 7 366 

genomes.  Antibiotic resistance genes were also not detected in any of the rat E. coli 367 

isolates.  The genomic results suggest the rat E. coli isolates encode pks gene islands, 368 

cdt, cnf and other virulence genes that endow them with pathogenic potential.   369 

 370 

Discussion 371 

As a major commensal organism of the human and animal intestinal tract, a 372 

thorough understanding of E. coli is warranted in both humans and animals. A shift 373 

in genetic makeup of these E. coli colonizing the gut from phylogroups A and B1 to 374 

pathogen-associated phylogroups B2 and D has occurred in recent years in 375 

industrialized countries; this shift affects both humans and animals.50,70 Colibactin 376 

production induces double stranded DNA breaks, activation of the DNA damage 377 

response, and subsequent genomic instability in the mammalian host. Senescence, 378 

cell death, and carcinogenesis are associated with colonization of pks+ E. coli strains. 379 

Similarly, cdt encodes a DNAse genotoxin that causes single and double-stranded 380 

DNA breaks which results in increased mutagenesis; this cyclomodulin has been 381 

detected in E. coli isolated from proximal and distal colon cancer tissues from 382 

human patients.7,60 Cytotoxic necrotizing factor is a third cyclomodulin that is 383 

known to induce cell cycle disturbances and abnormal cytoskeletal effects. 384 

There is a paucity of information regarding the E. coli status of laboratory 385 

rats and the variability of genotoxin expressing E. coli in animals from different 386 
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vendors and institutions. This is the first report to our knowledge to characterize 387 

colibactin, cdt, and cnf presence in unmanipulated laboratory rats. In this study, we 388 

demonstrated significant variability in the prevalence of pks+, cdt+, and cnf+ E. coli 389 

across multiple, commonly used vendors and 4 separate academic institutions. 390 

Overall, the majority of isolates (65%) were pks+ and members of phylogroup B2 391 

(65%). There was a strong association of genotoxin-positive strains with 392 

phylogroup B2, as is the case in human isolates.19 Surprisingly, as cdt and cnf were 393 

not identified in E. coli colonizing mice,26 cyclomodulins cdt and cnf were present in 394 

laboratory rats; 29% of rat E. coli isolates carried cdt, whereas only 6% carried cnf. 395 

This is in contrast to our hypothesis and available human surveys, where cnf-396 

positive E. coli (39.5%) is isolated much more commonly than cdt-positive E. coli (1-397 

6%).7 Cytolethal distending toxin and cnf were never present in the E. coli strains 398 

without colibactin or in strains with each other. The co-association of pks and cdt in 399 

some E. coli strains suggests mechanisms that potentiate genotoxicity, although pks 400 

and cdt are not commonly identified within the same human E. coli isolate.25,28 401 

Double-positive isolates (pks+/cnf+) have been characterized from both healthy 402 

humans and urosepsis patients.19 This is in contrast to surveys in humans and other 403 

laboratory animals where cnf is occasionally present in colibactin-negative 404 

isolates.47,22,60  Many previous studies have shown a correlation between cnf and 405 

hemolysis,43,47,49 which is consistent with the proximity of the hemolysin to the cnf 406 

gene. Interestingly, none of the cnf+ isolates from laboratory rats demonstrated 407 

hemolysis due to an insertion event in the hylA gene. All cnf+ E. coli strains isolates 408 

were isolated from vendor B rats. 409 
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The results of both the whole cell and sonicate cytotoxicity assays correlated 410 

with the presence or absence of pks, cdt, and cnf. As cell contact is required for 411 

colibactin cytotoxicity,69 HeLa cell death and megalocytosis was due to cdt or cnf in 412 

the sonicate assay. Genotoxin-negative E. coli isolates produced results that were 413 

indistinguishable from those of the non-pathogenic strain K12, which suggests 414 

attenuated pathogenicity due to lack of genotoxins. While only 55% of E. coli isolates 415 

from vendor A encoded the pks island, 100% of isolates from vendor B were pks+. 416 

Institutional pks+ E. coli prevalence in rats was consistent with reported rat vendor 417 

usage and origin, with vendor A institutions having lower E. coli genotoxin 418 

prevalence in rats versus rats housed in vendor B institutions. In addition, serotype 419 

patterns tended to correlate with vendor origin rather than institution (Table 1). 420 

This pattern underscores that genotoxin-positive E. coli efficiently colonize and 421 

likely persist in the bowel throughout life;65 these strains likely colonize rats at the 422 

vendors and inhabit the alimentary tract of the rats for the duration of their studies 423 

performed at destination institutions.  424 

Comparative genomic analysis of the pks islands revealed that clbJ and clbK 425 

genes from isolate S15 have ~90% and ~45% sequence coverage, respectively, 426 

compared to IHE3034.  The clbJ gene appears to be missing 624 bp at the 3’ end 427 

including the stop codon, but retains two nonribosomal peptide synthetase (NRPS) 428 

modules.  clbK appears to lack 3,540 bp at the 5’ end including a start codon and the 429 

PKS module, but retains the NRPS module and the oxidase domain.  Further analysis 430 

of the putative clbJ and clbK genes shows their sequences overlap by 1,480 bp in the 431 

genome, suggesting they are not expressed as separate genes and instead form a 432 
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single, continuous gene sequence.  When the clbJ start codon is used as the position 433 

of the open reading frame, the predicted sequence is translated into a 2,240 amino 434 

acid product (7,323 bp) that includes the clbJ and clbK sequences and terminates at 435 

the clbK stop codon.  This suggests the putative clbJ and clbK sequences may be 436 

transcribed and translated into a hybridized protein (designated clbJK-hybrid).  The 437 

predicted clbJK-hybrid protein would contain two NPRS modules as well as an 438 

oxidase domain (Figure 4a).  A BLAST search found identical clbJK-hybrid gene 439 

sequences in the three other genomes: neonatal meningitis-causing E. coli Strain 440 

NMEC O18 (GenBank: CP007275), Klebsiella pneumoniae str. Kp52.145 (GenBank: 441 

FO834906), and K. pneumoniae subsp. pneumoniae strain KPNIH32 (GenBank: 442 

CP009775).  This indicates other E. coli and K. pneumoniae strains have a putative 443 

clbJK-hybrid sequence instead of separate clbJ and clbK genes in their PKS islands.  444 

Isolate S15 still induced megalocytosis to HeLa cells, indicating cytotoxic colibactin 445 

expression despite having a putative clbJK-hybrid gene.  Whether E. coli Strain 446 

NMEC O18 and the two other K. pneumoniae strains also exhibit colibactin 447 

cytotoxicity has not been reported.   448 

The clb genes encoded on the PKS island constitute an “assembly line” of 449 

enzymes that produce pre-colibactin and colibactin metabolites by complex and 450 

incompletely defined biosynthetic pathways.  Furthermore, these metabolites can be 451 

formed or modified by the clb enzymes via alterative pathways, leading to a large 452 

structural diversity of molecules that has not been entirely catalogued.  In particular, 453 

recent reports have indicated the PKS module in clbK can be biochemically bypassed 454 

to yield an alternative pre-colibactin metabolite with unknown cytopathogenic 455 
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properties.74,83 This alternative pathway still requires the NRPS modules and 456 

oxidase activity from clbJ and clbK.  The putative clbJK-hybrid gene detected in 457 

isolate S15 is predicted to contain two NRPS modules and an oxidase domain, but 458 

lacks the PKS module from clbK.  As a result, it may be possible for the putative 459 

clbJK-hybrid gene to synthesize pre-colibactin metabolites in analogous fashion to 460 

the alternate scheme mentioned above.  461 

All 3 cdt genes in the cdt island are intact and conserved among isolates 462 

(Figure 4b). While the cnf island itself was intact, the hemolysin hlyA gene was 463 

disrupted by an approximately 500 bp insertion consisting of insertion element IS1 464 

protein InsB, which is the most common transposase in the E. coli genome (Figure 465 

4c). Transposable IS1 elements have been reported to disrupt other portions of the 466 

hemolysin operon.9 467 

Aside from pks, cdt, and cnf, other virulence factor genes were identified in 468 

the rat E. coli isolates that are known to enhance colonization/survival and promote 469 

disease in the host.  Glutamate decarboxylase (gad) and increased serum 470 

survival/bor protein precursor (iss) promote survival in the host by neutralizing 471 

stomach acid during oral transmission4,29,66 and by promoting resistance against 472 

host complement protein,37,46,52 respectively, while enterobactin siderophore 473 

receptor protein (iroN) allows uptake of the essential nutrient iron into the 474 

pathogen.12,24,39  Long polar fimbriae (lpfA) and s-fimbriae minor subunit (sfaS) are 475 

both adhesion factors for colonization of host epithelial cells.38,48,63,71  Colicin B (cba), 476 

colicin E (celb), colicin M (cma), and microcin H47 (mchB, mchC, mchF, mcmA) are 477 

bacteriocins produced by pathogenic E. coli strains that target and kill susceptible 478 
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bacteria.8,11,53,54  As a result, bacteriocin-producers may have competitive 479 

advantages in niches with scare essential nutrients like iron.  Enteroaggregative E. 480 

coli heat-stable enterotoxin 1 (astA) is a cytotoxin that actives guanylyl cyclase in 481 

the gastrointestinal epithelium resulting in ion secretion that contributes to watery 482 

diarrheal disease.16,39,75  Protease involved in intestinal colonization (pic) and 483 

vacuolating autotransporter toxin (vat) are both serine protease autotransporters of 484 

Enterobacteriaceae (SPATE) that degrade the mucous barrier to facilitate invasion18 485 

and cause intracellular vacuolation,18,30 respectively.  Of particular interest, 486 

cytolethal distending toxin (CDT) genes were identified in genomic sequence of 487 

three isolates (S11, 14, S15).  488 

The presence or absence of cyclomodulin genotoxins in laboratory rats may 489 

have unintended impacts on experimental results and repeatability across 490 

institutions. As E. coli is not included on vendor surveillance reports, rats from 491 

various institutions may have vastly different gastrointestinal microbiota, producing 492 

inherent variability in results and conclusions. Genotoxic E. coli colonizing rats 493 

arriving from vendors may interfere with studies of experimental E. coli infection. 494 

This is especially relevant as neonatal rats are an extremely popular model of E. coli 495 

K1 infection and sequelae,79 in which the K1 capsule protects the bacteria from the 496 

host’s immune response. This strain is another early colonizer of the neonatal GI 497 

tract that can translocate from lumen to blood. These rats are used to characterize 498 

changes in oxidative responses following E. coli inoculation throughout life,27 track 499 

vertical transmission of pks+ E. coli from mothers to offspring,58 and to evaluate the 500 

efficacy of a variety of antimicrobial agents against genotoxic E. coli infection.31,80,82  501 
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 If genotoxic E. coli species are present at the initiation of these and other 502 

relevant studies, comparisons between sham and experimental groups may be 503 

erroneous. Additionally, the possibility of zoonotic transfer from rats to humans 504 

should not be overlooked, especially given that O4:H5 E. coli isolated from rats in 505 

this study are associated with urosepsis in humans.35,57 This possibility emphasizes 506 

the importance of proper hygiene and personal protective equipment, even in 507 

seemingly low risk areas. Together, the identification of virulence factor genes from 508 

genotoxin-encoding rat E. coli isolates suggests these pathobionts have the potential 509 

to cause clinical or subclinical disease in rats and significantly confound rat research 510 

models.   511 
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Table 1. Distribution of genotoxin prevalence by vendor origin and institution 
destination. 
 
 Vendor A 

 Total Institution W Institution X Institution Z 

Total pks+ E.coli 29/53 
(55%) 

4/5 (80%) 24/47 
(51%) 

1/1 

Total cdt+ E.coli 8/53 (15%) 0/5 (0%) 8/47 (17%) 0/1 

Total cnf + E. coli 0/53 (0%) 0/5 (0%) 0/47 (0%) 0/1 

pks-/ cdt-/ cnf- 24 1 23 0 

pks-/ cdt+/cnf- 0 0 0 0 

pks-/cdt-/cnf+ 0 0 0 0 

pks+/ cdt-/cnf - 21 4 16 1 

pks+/ cdt+/cnf- 8 0 8 0 

pks+/ cdt-/cnf+ 0 0 0 0 

 

 

 

 

 

 

 

 

 

 

 Vendor B 

 Total Institution Y Institution Z 

Total pks+ E.coli 13/13(100%) 11/11 
(100%) 

2/2 (100%) 

Total cdt+ E.coli 9/13 (69%) 7/11 (64%) 2/2 (100%) 

Total cnf + E. coli 4/13 (31%) 4/11 (36%) 0/2 (0%) 

pks-/ cdt-/ cnf- 0 0 0 

pks-/ cdt+/cnf- 0 0 0 

pks-/cdt-/cnf+ 0 0 0 

pks+/ cdt-/cnf - 0 0 0 

pks+/ cdt+/cnf- 9 7 2 

pks+/ cdt-/cnf+ 4 4 0 

Vendor C 

  Institution Z 

Total pks+ E.coli 3/3(100%) 

Total cdt+ E.coli 3/3 (100%) 

Total cnf + E. coli 0/3 (0%) 

pks-/ cdt-/ cnf- 0 

pks-/ cdt+/cnf- 0 

pks-/cdt-/cnf+ 0 

pks+/ cdt-/cnf - 0 

pks+/ cdt+/cnf- 3 

pks+/ cdt-/cnf+ 0 

All Isolates 

  Total 
Total pks+ E. coli 45/69 (65%) 
Total cdt+ E. coli 20/69 (29%) 
Total cnf + E. coli 4/69 (6%) 
pks-/ cdt-/ cnf- 24 
pks-/ cdt+/cnf- 0 
pks-/cdt-/cnf+ 0 
pks+/ cdt-/cnf - 21 
pks+/ cdt+/cnf- 20 
pks+/ cdt-/cnf+ 4 
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Table 2:  Serotype and virulence factors testing results of E. coli isolates from rats 

Sample# O-

type 

H-

type 

Vendor Institution elt estA estB stx1 stx2 eae cnf1 cnf2 

S1: pks-, cdt-, 

cnf- 

179 8 A W NEG NEG NEG NEG NEG NEG NEG NEG 

S16: pks-, cdt-

, cnf- 

179 8 A X NEG NEG NEG NEG NEG NEG NEG NEG 

S5: pks+, cdt-, 

cnf- 

7 7 A Z NEG NEG NEG NEG NEG NEG NEG NEG 

S2: pks+, cdt-, 

cnf- 

7 7 A W NEG NEG NEG NEG NEG NEG NEG NEG 

S14: pks+, 

cdt+, cnf- 

7 7 A X NEG NEG NEG NEG NEG NEG NEG NEG 

S4: pks+, 

cdt+, cnf- 

166 6 B Z NEG NEG NEG NEG NEG NEG NEG NEG 

S8: pks+, 

cdt+, cnf- 

166 6 B Y NEG NEG NEG NEG NEG NEG NEG NEG 

S7: pks+, 

cdt+, cnf- 

M 6 C Z NEG NEG NEG NEG NEG NEG NEG NEG 

S9: pks+, cdt-, 

cnf+ 

4 5 B Y NEG NEG NEG NEG NEG NEG POS NEG 
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Table 3.  Novel rat E. coli genomes have similar statistics as pathogenic, PKS-encoding E. coli strains IHE3034 and NC101.  
Virulence factor genes for toxins, survival factors, and adhesions were identified in the rat E. coli genomes. astA: EAST-1 heat-
stable toxin; cba: Colicin B; cdtABC: Cytolethal distending toxin subunits A, B,C ; celb: Endonuclease colicin E2; cma: Colicin M; 
gad: Glutamate decarboxylase; iroN: Enterobactin siderophore receptor protein; iss: Increased serum survival; lpfA: Long polar 
fimbriae; mchB: Microcin H47 part of colicin H; mchC: MchC protein; mchF: ABC transporter protein MchF; mcmA: Microcin M 
part of colicin H; pic: serine protease autotransporters of Enterobacteriaceae (SPATE); PKS: polyketide synthetase (colibactin); 
sfaS: S-fimbriae minor subunit; vat: vacuolating autotransporter toxin 
 

Strain 
Isolation 

Source 

Genome 

Length 
(bp) 

Contigs 
G+C% 

Content 

Protein Coding 

Sequences 
(CDS) 

tRNA rRNA Virulence Factors Genes 
GenBank 

Accession 

S11 

Research 
rat 

5201802 32 49.72 5149 81 10 
cdtABC, gad, iroN, iss, mchB, 
mchC, mchF, mcmA, pic, PKS, vat 

NHYT00000000 

S14 5208467 37 49.64 5153 81 10 
NHYQ00000000 

S12 5092914 14 50.04 4995 77 11 iroN, iss, PKS, sfaS, vat NHYS00000000 

S13 5296109 47 48.57 5101 73 9 astA, cba, cma, gad, lpfA, pic, PKS NHYR00000000 

S15 5248403 58 47.71 5078 79 8 celb, gad, iss, PKS NHYP00000000 

S16 5623575 140 45.33 5509 70 3 cdtABC, celb, gad, iss, PKS NHYO00000000 

S17 5139109 40 49.47 5022 76 9 
cnf1, gad, iroN, mchB, mchC, 
mchF, mcmA, PKS, vat 

QLVH00000000 

IHE3034 

Human 

neonatal 

meningitis 

5108383 

1 

(complete 

genome) 

50.70 5045 97 22 
gad, iroN, iss, PKS, sfaS, vat, 
cdtABC 

CP001969.1 

NC101 
Research 

mouse 
5021144 27 50.57 4917 72 4 gad, iroN, iss, PKS, sfaS, vat AEFA00000000.1 

K-12 

substr. 
DH10B 

Human 

non-
pathogenic 

4686137 

1 

(complete 
genome) 

50.80 4606 87 14 gad, iss CP000948.1 

 

 


