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OPINION

Whatmodelscanandcannot tellusaboutCOVID-19
Alexander F. Siegenfelda,b,1

, Nassim N. Talebc, and Yaneer Bar-Yamb

The coronavirus disease 2019 (COVID-19) pandemic,
caused by the novel coronavirus severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2), has
already claimed more than 470,000 deaths world-
wide at the time of this writing (1) and is likely to claim
many more. Models can help us determine how to stop
the spread of the virus.

But it is important to distinguish between what
models can and cannot predict. All models’ assump-
tions fail to describe the details of most real-world sys-
tems. However, these systems may possess large-scale
behaviors that do not depend on all these details (2). A
simple model that correctly captures these large-scale
behaviors but gets some details wrong is useful; a

complicated model that gets some details correct
but mischaracterizes the large-scale behaviors is mis-
leading at best. The accuracy and sophistication of a
model’s details matter only if the model’s general as-
sumptions correctly describe the real-world behaviors
of interest.

Carefully delineating models’ strengths and short-
comings will not only clarify how they can help but also
temper expectations among policymakers andmembers
of the public looking to understand the full impact of
the virus in the weeks and months ahead. More impor-
tant even than prediction is the ability of models to
guide actions that can change this impact, including
actions that can potentially drive the virus to extinction.

Chaotic systems such as pandemics are fundamentally unpredictable. A constructive role for science is to identify
interventions—including social distancing, mask wearing, policies of isolation, and travel restrictions—that will help the
number of active infections to decline exponentially. Image credit: Shutterstock/Travelerpix.
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Model Capability
Understanding what models cannot predict is some-
times more important than understanding what they
can. For example, in a chaotic system such as the
weather, only very short-term predictions are accu-
rate; small changes in the present can result in very
large changes in the future. Likewise in the case of the
pandemic’s trajectory: Because the number of infec-
tions depends exponentially on the growth rate of the
epidemic, small inaccuracies in the prediction of the
growth rate will lead to large changes in the number of
deaths after enough time. Furthermore, the growth or
decay rate of the epidemic depends on the precise
implementation details of interventions, and a very
small change in the strength of interventions could
be the difference between two hugely different out-
comes: exponential growth versus exponential decay.
Gaining an approximate understanding of the trajec-
tory of the epidemic is important. But given the
considerable uncertainty arising from underlying disease
and social dynamics—not to mention the uncertainty
over exactly how interventions will be implemented—
detailed refinements to models often create a mis-
leading sense of certainty and precision.

More generally, trying to pin down details in
models is futile if any accuracy gained is swamped by
uncertainty in the measurements or by inaccuracies in
the core model assumptions. What’s the point of re-
fining a model by 10% if there is a 50% uncertainty
stemming from other aspects or assumptions of the

model? What’s the point of a sophisticated adjust-
ment to a model if there is a relevant large-scale be-
havior of the modeled system that the model fails to
capture altogether?

Models that attempt to capture a system’s small-
scale detailed behavior (e.g., ref 3) will inevitably in-
clude some details and leave out others. Depending
on which details are included, such models may mis-
characterize the system’s large-scale behavior. When they
do work, it is often because their specific assumptions are a
special case of a simpler, more general model. Thus,
sometimes it is not the complicated models but the de-
ceptively simple ones that are most effective for un-
derstanding a system’s large-scale behavior.

Phase Transition
For COVID-19, one large-scale behavior is an exponen-
tial increase in infections in the absence of intervention
(unless the number of people infected is approaching
saturation); the exact growth rate depends on the loca-
tion and the precise details of disease transmission. In-
terventions may change this growth rate. And robust
interventions, such as lockdowns, may result in expo-
nential decay rather than exponential growth.

Another large-scale behavior is the fact that trans-
mission is predominantly local, with travel creating the
possibility of long-range spread. The number of infec-
tions does not change uniformly all over the world at
once but rather more or less independently in each
region. The probability that the disease is transmitted
from one region to another depends on the number of
infections in the first region and the travel rate from the
first to the second among contagious individuals. There
are many small-scale details to the disease transmis-
sion process, but the large-scale dynamics seem to be
captured by the rate of increase or decrease within a
region and the rates of transmission between regions
(both of which may change over time as a result of in-
terventions, saturation effects, or other variations in
external conditions).

Depending on the dynamics of these parameters, a
collection of regions can exist in one of two phases: a
stable phase, in which the disease dynamics tend to-
wards a stable fixed point of elimination (i.e., no in-
fected regions within the collection), and an unstable
phase, in which the number of infected regions grows
until a saturation point is reached (see Fig. 1).* For a
collection of regions to be in the stable phase, it is not
necessary for regions to be under constant lockdown
after they have been cleared of the virus but rather only
for each region to be ready to lockdown in the event
that it experiences another uncontained outbreak (6). If

Fig. 1. A collection of geographic regions can exist in one of two phases with
respect to COVID-19. In the stable phase the disease is extinguished over time,
whereas in the unstable phase it grows exponentially only to be bounded by the
population size as a whole. Which regime a collection of regions is in depends on
1) the size of local outbreaks, which in turn depends on (among other factors)
how quickly regions take action if they experience another uncontained
outbreak, and 2), the rate of travel-driven transmission between regions (4–6).

*A lockdown within a single geographic region can itself be ana-
lyzed using Fig. 1, if each household is considered as a “region.”
In this case, the mean size of an outbreak would be the average
number of individuals within a household expected to get
COVID-19 if one individual in the household is infected, with
the disease transmission between “regions’” corresponding to
the probability that an infected individual in one household has
of infecting an individual in a different household. The primary
purpose of a lockdown is to control this probability.
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the virus is introduced or reintroduced into a collection
of regions in the unstable regime, the number of in-
fected regions will exponentially grow. But if the virus is
introduced or reintroduced into a collection of regions
in the stable regime, the collection of regions will return
to its uninfected state.

Mismodeling
If the large-scale behaviors of a system are correctly
described, specific details can be understood in terms
of their effects on these behaviors. But if a model’s
assumptions do not yield the same general large-scale
behaviors of the system being modeled, adding ad-
ditional details to the model will serve only to create a
false sense of confidence.

For example, models using continuous variables
to represent fractions or probabilities of individuals
being infected may predict that although a lock-
down can produce an exponential decline in cases,
the number of cases will inevitably rebound once
the lockdown is lifted. However, the assumption of
approximately continuous behavior breaks down for
small numbers of infections.

We know that zero cases cannot grow back—and
even a few may not grow back. If a total case number
that is fractional appears in the final output of the
model, human judgment can correct for the error (e.g.,
by interpreting a fraction of a case in the model as the
virus having been eliminated in reality). But if these
small numbers arise as intermediate values in the
model, the model will mistakenly predict exponential
growth once the lockdown is lifted, despite the fact that
the model is no longer valid in this regime because
there may in fact be zero cases.†

A rebound in infections after lockdown measures
are lifted is a potential large-scale behavior of the
system, but it is not inevitable (as predicted by con-
tinuous models). Rather, it depends on our actions: If
interventions strong enough to create an exponential
decay in the number of active infections are held in
place for a sufficient amount of time, the virus will be
eliminated.‡

Some might object that even if the fraction of the
population infected becomes very small, if the size of
the population being considered is large enough,
then the number of cases will nonetheless be large
enough to be approximated as continuous. How-
ever, whereas models often consider the entire
population of a country together, disease trans-
mission is far more local in reality (and can be made
even more so with lockdowns and travel reductions).
Thus, the sizes of the populations for which the
models apply will be far smaller than that of an entire
country. The locality in the dynamics (the degree of

which can be increased by travel restrictions) makes it
more likely that a small fraction of the population
infected in the model corresponds to the virus being
eliminated in reality, and it also allows for the lockdown
to be lifted region by region, rather than remaining in all
regions until the entire country is cleared of the virus.
The specific detailed assumptions of particular models
may differ from this example; ultimately, what matters

is whether or not they appropriately characterize the
large-scale behaviors of the disease.

Modeling for Policy
Finally, “What will happen?’” is a different question
than “What should we do?” For COVID-19 the latter
question is far easier to answer than the former. In the
absence of a full understanding of a system’s details,
answering the latter question involves understanding
how our potential actions impact the relevant large-
scale parameters of the system, which for COVID-
19 are the rate of growth or decay in each region
and the probabilities of transmission between regions.

Even if we cannot precisely predict the impact of
any given intervention, we know of many interventions
that will reduce the rates of transmission within and
between regions. And based on the empirical un-
derstanding of COVID-19 transmission and the fact
that many countries have eliminated or nearly elimi-
nated the virus, we know that combining enough in-
terventions together will reduce the rate of
transmission sufficiently to achieve exponential de-
cline and stop the outbreak (7). This, in and of itself, is
a simple but powerful formal model that captures the
large-scale behaviors of interest.

The question of predicting the disease trajectory
is less important than questions related to what’s
necessary to 1) cause an exponential decrease rather
than increase in new infections and 2) cause this de-
crease to occur as quickly as possible. The point is not
the specific predictions for each intervention, such as
social distancing, mask wearing, isolation in and out-
side of homes, testing/contact tracing/quarantines,
and travel restrictions. The point is that if enacted in
concert they can eliminate the virus.

This distinction is of particular importance be-
cause scientists often make predictions based on
the assumption that societies are unwilling or unable to
eliminate the virus. It’s an assumption that’s been
invalidated by the actual actions and outcomes in
countries such as Australia, Belize, China, Estonia,
Greece, New Zealand, Norway, Slovakia, Switzerland,
Thailand, Vietnam, and many others, as well as U.S.

The question of predicting the disease trajectory is less
important than questions related to what’s necessary to
1) cause an exponential decrease rather than increase in
new infections and 2) cause this decrease to occur as
quickly as possible.

†The virus may still be reimported, but if elimination is a stable
fixed point of a collection of regions (Fig. 1), the number of
regions with nonzero infections will decrease to zero over time.

‡The elimination of the virus can be hastened by testing, contact
tracing, and quarantine, which may become more feasible and/
or effective once the number of infections has been
sufficiently reduced.
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states such as Montana and Vermont. These regions
controlled their outbreaks and have had little or no
community transmission at the time of writing (1). Fur-
thermore, the assumption that the virus cannot
be beaten without a vaccine can become a self-fulfilling
prophecy; policymakers may not take doable steps
because they are discouraged by purported scientific
predictions.

More generally, the use of models in pandemic
response showcases a key difference between ac-
ademically relevant research and policy-relevant
analysis. The former can tolerate assumptions and
models that are exploratory in nature, increasing
our knowledge of the wide range of conditions that

might happen at some time in the future or some
location—or even in an alternative reality—thereby in-
creasing the scope of our understanding. The latter
must focus on validated assumptions and real-world
risk, including uncertainty in both our data and our
understanding. Policy actions must be guided by
only sound assumptions, because mistaken assump-
tions may cost millions of lives. Instead of assuming that
we fundamentally differ from all of the countries that
have achieved or are nearing elimination (an assump-
tion that becomes increasingly implausible as the
number of these countries grows), we should instead
focus on how we can replicate their common success.

1 Johns Hopkins Center for Systems Science and Engineering, COVID-19 dashboard. https://coronavirus.jhu.edu/map.html. Accessed
17 June 2020.

2 Y. Bar-Yam, From big data to important information. Complexity 21 (S2), 73–98 (2016).
3 N. M. Ferguson et al., Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand.
Imperial College COVID-19 Response Team (2020).

4 F. Ball, D. Mollison, G. Scalia-Tomba, Epidemics with two levels of mixing. Ann. Appl. Probab. 7, 46–89 (1997).
5 V. Colizza, A. Vespignani, Invasion threshold in heterogeneous metapopulation networks. Phys. Rev. Lett. 99, 148701 (2007).
6 A. F. Siegenfeld, Y. Bar-Yam, Eliminating COVID-19: The impact of travel and timing. arXiv:2003.10086 (2020).
7 H. V. Fineberg, Ten weeks to crush the curve. N. Engl. J. Med. 382, e37 (2020).
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