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Abstract

The conserved and essential DEAD-box RNA helicase Ded1p from yeast and its mammalian 

ortholog DDX3 are critical for translation initiation1. Mutations in DDX3 are linked to 

tumorigenesis2–4 and intellectual disability5, and the enzyme is targeted by diverse viruses6. How 

Ded1p and its orthologs engage RNAs in translation initiation has been a longstanding, unresolved 

question. Here we integrate transcriptome-wide analyses of RNA translation, structure, and 

Ded1p-RNA binding and show that the impact of Ded1p on translation initiation is connected to 

near-cognate initiation codons in 5′UTRs. Ded1p associates with the scanning translation pre-
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initiation complex at the mRNA entry channel. Repression of Ded1p activity leads to 

accumulation of RNA structure in 5′UTRs, translation initiation from near-cognate start codons 

immediately upstream of these structures and decreased protein synthesis from the corresponding 

main ORFs. The data reveal a program for translation regulation that links Ded1p, activation of 

near-cognate start codons and mRNA structure. We show that this program plays a role in meiosis 

where a marked decrease in Ded1p levels is accompanied by activation of alternative translation 

initiation sites seen with repressed Ded1p activity. Our observations indicate that Ded1p impacts 

translation initiation by controlling the use of near-cognate initiation codons that are proximal to 

mRNA structure in 5′UTRs.

To systematically analyze how the essential Ded1p impacts translation initiation in cells, we 

first examined how a mutation in the enzyme altered the spectrum of ribosome footprints in 

cells7. We utilized the ded1-95 mutation (Ded1pT408I), which reduces affinity of Ded1p for 

RNA, diminishes RNA unwinding, and confers a temperature-sensitive growth defect to the 

budding yeast S. cerevisiae8. The mutation does not impact pre-mRNA splicing or ribosome 

biogenesis9. We performed ribosome profiling on wild type (WT) and ded1-95 strains before 

and after temperature shift from 30°C to 37°C for 5 minutes (Extended data Fig. 1a–h). The 

short time was chosen to minimize effects on ribosome footprints arising from broad 

translation defects that are secondary to the direct impact of Ded1p.

At 30°C, WT and ded1-95 strains showed virtually indistinguishable RNA expression and 

translation profiles (Extended data Fig. 1i,j). After the temperature shift, translation broadly 

decreased in ded1-95, compared to WT (Extended data Fig. 1k–n). These observations 

indicate that Ded1p promotes translation initiation for most mRNAs, consistent with 

previous findings10,11. However, translation of a subset of mRNAs coding for proteins 

involved in gluconeogenesis, cell wall synthesis and transcripts encoding histones were less 

affected by Ded1p than other mRNAs (Extended data Fig. 2a,b).

The fraction of ribosomes on 5′UTRs markedly increased upon temperature shift inded1-95, 

compared to WT (Fig. 1a, Extended data Fig. 3a). The majority of mRNAs showed higher 

ribosome occupancy of the 5′UTR in ded1-95, which correlated with lower translation 

efficiency of the main open reading frame (ORF) (Fig. 1b, Extended data Fig. 3b). To 

examine the link between elevated ribosome occupancy in the 5′UTR and diminished 

translation of the main ORF, we performed polysome fractionation, followed by Northern 

Blot analysis of individual mRNAs. The PSA1 mRNA, whose translation efficiency is 

markedly affected by Ded1p, showed a distinct shift from polysomes to monosomes in 

ded1-95, compared to WT upon temperature shift, but not at 30°C (Fig. 1c,d, Extended data 

Fig. 3c). TDH2 mRNA, which is largely unaffected by Ded1p, did not show a comparable 

shift (Fig. 1c,d). Collectively, these observations suggest that increased ribosome occupancy 

on 5′UTRs correlates with binding of the mRNA to only a single ribosome. This notion is 

consistent with previous reports.12 Ribosome profiling on only the 80S monosome fraction 

upon temperature shift also showed more footprints on 5′UTRs in ded1-95, compared to 

WT (Extended data Fig. 3d), indicating that ribosome occupancy on 5′UTRs broadly 

correlates with binding of mRNAs to single ribosomes.
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A large number of sites on 5′UTRs with increased ribosome footprints in ded1-95 were 

enriched with near-cognate initiation codons (Fig. 1e–g), which differ from the canonical 5′-

AUG-3′ initiation codon by a single nucleotide and can create alternative translation 

initiation sites (aTISs).13 Increased ribosome occupancy on AUG codons in 5′UTRs was 

also seen in ded1-95 (Fig. 1f), but only few of these sites exist in the yeast transcriptome, 

compared to nine different near-cognate initiation codons, which constitute roughly 14% of 

all codons.14 Ribosomes translate from the ded1-95-activated aTISs, as demonstrated by 

ribosome profiles on small ORFs starting at these aTISs and finishing at the respective 

termination codons, by lack of ribosome accumulation at aTISs when translation was not 

arrested, and by the periodicity of ribosome footprints starting from aTISs (Extended data 

Fig. 3e–l). Collectively, the data indicate that defective Ded1p leads to aTIS activation in 

5′UTRs, which decreases polysome formation on the main ORFs and thereby overall 

protein production. We conclude that Ded1p function suppresses use of aTISs.

While aTIS activation in ded1-95 was extensive, only a subset of all near-cognate initiation 

codons was used. We detected no preferred length or register of the corresponding small 

ORFs relative to the main ORFs. However, in the aTISs, near-cognate codons from which 

translation initiation is most efficient were over-represented, while near-cognate codons 

from which translation initiation is least efficient were underrepresented15,16 (Extended data 

Fig. 4a). These observations show that aTIS activation is influenced by inherent codon 

preferences of the pre-initiation complex (PIC), although these preferences do not fully 

explain the aTIS activation pattern (Extended data Fig. 4b–e).

To better understand this pattern, we examined whether remodeling of mRNA secondary 

structure by Ded1p is linked to aTIS activation. As an RNA helicase, Ded1p has been 

implicated in RNA structure remodeling11,17, but it is not known which mRNA structures 

Ded1p alters in cells. To delineate cellular mRNA structures remodeled by Ded1p, we used 

DMS probing in vivo18 and measured changes in mRNA structure in ded1-95 and WT 

strains upon temperature shift. (Extended data Fig. 5a,b, ref.8). Unwinding of mRNA 

structure by Ded1p was most pronounced in 5′UTRs, compared to other mRNA regions 

(Fig. 2a, Extended data Fig. 5c). Strikingly, ded1-95 activated aTISs were generally located 

5′ of unwound RNA regions (Fig. 2b,c). Even near-cognate codons for which translation 

initiation is least efficient were activated, if located 5′ of mRNA structure (Fig. 2b). Our 

observations link the inability of ded1-95 to resolve mRNA structure to aTIS activation, 

suggesting that Ded1p suppresses aTIS activation by unwinding mRNA structure.

To investigate how Ded1p physically accomplishes this function, we determined which 

cellular RNAs bound to WT Ded1p using high-throughput crosslinking-based approaches 

(xl-RAP-seq) and the iCLIP technique to map Ded1p-binding sites on these RNAs19 

(Extended data Fig. 6a–c). Ded1p crosslinked predominantly to mRNAs and ribosomal RNA 

(Extended data Fig. 6b), especially to the 40S ribosomal subunit (Fig. 3a), which as part of 

the PIC scans 5′UTRs.20 The most frequently crosslinked position maps to Helix 16, located 

at the mRNA entry channel (Fig. 3a). Notable crosslinking was also observed at Helix 26, 

located at the mRNA exit site, and in the Extension segment 6, around nucleotide 720, 

which is located in the vicinity of the other crosslink sites on the solvent side of the 40S 

subunit (Fig. 3a). Ded1p binding to Helices16 and 26 is consistent with reported interactions 
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between Ded1p and eIF3c and the eIF3b/g/i sub-complex, that bind near these sites 

(Extended data Fig. 7a,b).21,22 Human DDX3X also binds to Helix16.3

Ded1p further crosslinked to virtually all expressed mRNAs, predominantly in 5′UTRs (Fig. 

3b,c). This crosslinking pattern is consistent with the physical link of Ded1p to the PIC. 

Aside from a modest preference for A and U, no sequence motifs could be identified in the 

mRNA crosslinking sites (Extended data Fig. 7c). However, peaks of Ded1p crosslinking on 

5′UTRs were frequently proximal to ded1-95 activated aTISs (Fig. 3c,d), and unwound 

mRNA structure was located 3′ of Ded1p crosslinking sites (Fig. 3c,f).

Collectively, the data link Ded1p binding to mRNA, unwound mRNA structure, aTIS 

location and binding of Ded1p to the PIC. This link is best illustrated by an example, here a 

segment of the PSA1 mRNA (Fig. 4a). Ded1p binding is most pronounced 5′ of unwound 

RNA structure, indicating that Ded1p does not exclusively contact mRNA structure, but also 

regions 5′ of the structure. This finding is consistent with the notion that Ded1p functions in 

the context of the scanning PIC. The scanning process is slowed by RNA structure20,23, and 

a slowed PIC conceivably permits Ded1p to survey the mRNA for structured regions that it 

then unwinds. Biochemical data show higher functional affinity of Ded1p for unstructured, 

compared to structured RNA8, rationalizing the contacts of Ded1p to unpaired mRNA 5′ of 

unwound mRNA structure, as the helicase travels 5′ to 3′ with the PIC.

Our data collectively indicate that failure of Ded1p to resolve mRNA structure leads to aTIS 

activation. To directly probe the link between mRNA unwinding and aTIS activation, we 

generated a PSA1 mRNA with a mutation in an activated aTIS 5′ of unwound RNA 

structure. (Fig. 4b). The mutation markedly diminished the sensitivity to Ded1p-deficiency 

seen with the native PSA1 mRNA (Fig. 4b,c). Alterations in the RNA structure 3′ of the 

aTIS also decreased sensitivity to Ded1p (Extended data Fig. 8a,b). Identical observations 

were made for mutations in an aTIS and the corresponding RNA structure in the ATP5 
mRNA (Extended data Fig. 8c–f). These results show that the impact of Ded1p on 

translation initiation depends not only on RNA unwinding, but also on proximal aTISs. 

Without a proximal aTIS, failure of Ded1p to unwind 5′UTR structures does not abrogate 

scanning of the PIC and subsequent translation of the main ORF (Extended data Fig. 9). 

This finding challenges the notion that cellular 5′UTR structures alone are insurmountable 

hindrances for the scanning PIC.

Together, our results suggest the following function of Ded1p on 5′UTRs (Fig. 4d). The 

enzyme associates with the PIC in the vicinity of the mRNA entry site of the small 

ribosomal subunit (Fig. 3a). This site is in close proximity to eIF4G and eIF4A (Extended 

data Fig. 7b), both of which bind Ded1p with high affinity and might therefore be important 

for recruitment and function of Ded1p on the PIC.8,24,25 The density of Ded1p crosslinking 

sites on 5′UTRs increases with distance from the 5′-cap (Fig. 3b), suggesting gradual 

recruitment of Ded1p to the mRNA entry site during the scanning process. This notion is 

consistent with the reported increase of Ded1p function with greater distance from the 5′-

cap and with 5′UTR length11. The mRNA binding pattern of Ded1p further suggests that 

Ded1p is targeted to its sites of action through association with the scanning PIC. This is an 

effective way to deploy the enzyme exactly at sites where it is needed, even though these 
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sites lack common sequence or defined structure signatures. If Ded1p is missing or 

defective, mRNA structure persists, the PIC stalls and either dissociates from the mRNA, 

continues slowed scanning through the structure, or undergoes subunit joining and 

translation initiation if a near-cognate codon is present (Fig. 4d). Ribosomes initiating on an 

aTIS block subsequent scanning ribosomes from reaching the canonical initiation site, 

thereby decreasing translation efficiency for the main ORF (Fig. 1b). Unless an aTIS marks 

an N-terminal extension of the main ORF, PICs initiating at an aTIS are likely to be deterred 

from translating the main ORF. PICs encountering 5′UTR structures without proximal aTIS 

also interfere with scanning, but the kinetic pause introduced by PIC stalling, slowed 

scanning through the structure, or a combination of thereof, is shorter than on an activated 

aTIS. Slowed PICs will eventually reach the main ORF (Extended data Fig. 9), and 

therefore, 5′UTR structure alone impacts main ORF translation markedly less than in 

combination with proximal aTISs. Our model for Ded1p function does not preclude 

additional roles of the enzyme before the PIC scanning process25. However, the Ded1p 

function outlined above largely accounts for the observed Ded1p interactions with mRNA, 

and therefore, additional roles of Ded1p are likely restricted to transient Ded1p - mRNA 

interactions.

Finally, our data reveal a straightforward mechanism for activation of upstream ORFs. The 

mRNA structures in the 5′UTRs represent a large set of riboswitches that are sensitive to 

Ded1p. Active Ded1p turns the switches “off”, suppresses aTIS activation and allows 

efficient translation of the main ORF. Inactivation of the helicase, either by post-translational 

modifications1, by metabolites such as AMP26, by decreased Ded1p levels, or by 

sequestration of Ded1p in RNP granules25,27 turns the switches “on”, activating the aTISs 

and thereby inhibiting translation from the corresponding main ORFs. Certain peptides 

translated from activated aTISs might also have direct biological functions28, but the 

regulation described here appears independent of functional peptides.

This mechanism for activation of upstream ORFs is likely utilized in biological processes. 

This notion is supported by several lines of evidence. First, there is a marked increase in 

sequence conservation in the RNA regions around activated aTIS (Extended data Fig. 10a). 

Second, the ded1-95 activated aTIS in the ALA1 transcript produces an N-terminal 

extension that targets Ala1p to the mitochondria29 (Extended data Fig. 10b). Third, during 

meiosis, aTIS activation15 occurs in a pattern highly similar to the aTIS activation pattern 

seen with ded1-95 upon temperature shift (Fig. 4e,f, Extended data Fig. 10c). Strikingly, we 

find markedly reduced Ded1p levels during meiosis (Fig. 4g, Extended data Fig. 10d). This 

link between Ded1p levels and activation of aTISs proximal to 5′UTR structures during 

meiosis suggests a role of Ded1p levels in this process. Collectively, our observations show 

that the regulatory program linking Ded1p to mRNA structure and aTIS activation is used in 

a physiological cellular process. The results indicate that intricate translation control and 

activation of upstream ORFs can be based on simple, ubiquitous elements: a helicase, 

mRNA structure and near-cognate initiation codons.
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MATERIALS AND METHODS

Materials

Yeast strains, Plasmids and Oligonucleotides—Yeast strains used in this study are 

listed in Supplementary Information Table S1. Strains were grown at 30°C unless stated 

otherwise. Primers, Northern blot probes and other DNA oligonucleotides are listed in 

Supplementary Information Table S2, RNA oligonucleotides are listed in Supplementary 

Information Table S3, DNA plasmids are listed in Supplementary Information Table S4.

Generation of yeast strain expressing Ded1p-HTBH—Construction of plasmid 

pEJ21 containing the N-terminally HA-tagged Ded1p was described previously24. pEJ21was 

then used to generate the plasmid pEJ5. The HA-tag was replaced by a sequence containing 

aHpaI and a SphI site (amplification with primers X1 and X2), generating pEJ1. The HTB-

tag was amplified from pFA6-HTB-kanMX6 plasmid (gift by Peter Kaiser, UC Irvine, CA, 

USA) with primers X3 and X4. The resultant PCR product was cloned into pEJ1 via its HpaI 

and SphI sites yielding pEJ2. A second His6-Tag was introduced by site-directed 

mutagenesis with primers X5 and X6 generating pEJ3. The C-terminal HTBH-Tag was 

introduced into pEJ424 by amplification of pEJ3 with primers X8 and X9 and subcloning 

with PflMI and SpeI into pEJ4, yielding pEJ5. pEJ5 was linearized and used to transform 

BY4741 by standard lithium acetate transformation yielding yeast strain yEJ2.

Generation of yeast strain expressing Ded1p-His6FLAG3—Yeast strain yDPB740, 

containing a C-terminal His6FLAG3 tag on the endogenous DED1 allele, was generated 

from BY4742 using standard methods. Briefly, a homologous recombination template was 

designed comprising the 40 nucleotides upstream and downstream of the DED1 stop codon 

flanking the His6FLAG3 tag (with stop codon) and kanMX6 drug resistance cassette. This 

template was generated by amplifying from pFA6a-6xHis-3xFLAG-kanMX6 plasmid with 

primers DW1 and DW2. PCR product was used to transform BY4742 by standard lithium 

acetate transformation yielding yeast strain yDPB740.

Generation of yeast strain expressing WT, −Δ2° and −ΔaTIS PSA1 and ATP5 
mRNAs—FLAG-tagged PSA1 and ATP5 strains were generated from the respective 

cDNAsusing standard methods as described above (pEJ14, pEJ15 and pEJ18, pEJ19, 

respectively). The FLAG-tag was appendedat the 3′ terminus of the PSA1 and ATP5 ORF, 

respectively. For PSA1, mutations in the aTIS in the 5′UTR(PSA1-ΔaTIS, pEJ16, Fig. 4b,c) 

contained the following changes: (c.-51A>C, c.-49A>C, c.-45T>A). Mutations in the 

5′UTR mRNA structure (PSA1-Δ2°, pEJ17, Extended data Fig. 8a,b), contained the 

following changes: (c.-39_- 38AG>TC, c.-36_-35TA>AT, c.-32A>T,c.-24_-22AAA>TCT, 

c.-19_-18AA>CT). For ATP5, mutations in the aTIS in the 5′UTR (ATP5-ΔaTIS, pEJ20, 

Extended data Fig. 8e,f) contained the following changes: (c.-126A>C, c.-120_119TT>CC, 

c.-109A>C). Mutations in the 5′UTR mRNA structure (PSA1-Δ2°, pEJ22, Extended data 

Fig. 8e,f), contained the following changes: (c.-102C>A, c.-99C>A, c.-96G>A, c.-83G>A, 

c.-81C>A, c.-76G>A, c.-74G>A).
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Methods

Polysome analysis—Polysome analysis using 20U (A260) lysate was performed as 

described31, with a lower final concentration of cycloheximide (50 μg/ml). Briefly, following 

centrifugation through a 15 – 45 % (w/v) sucrose gradient, sixteen fractions were collected 

at a pump speed of S = 0.9 ml/min. RNA in each fraction was precipitated by adding 2 

volumes of ice-cold ethanol incubating overnight at −80°C. RNA was extracted with phenol-

chloroform according to standard protocols. Samples were applied to an 1.4 % agarose gel 

containing 6 % (v/v) formaldehyde, and electrophoresis was performed as described 31. 

RNA was visualized with EtBr. The amount of 18S rRNA in each fraction of the gradient 

was quantified with ImageQuant 5.2 software (Molecular Dynamics).

Northern blot analysis—For ribosome association of individual mRNAs, gel 

electrophoresis following polysome analysis and fractionation was performed as described 

above. RNA was subsequently transferred to nitrocellulose membranes 

(AmershamHybond™–N, GE Healthcare) and further processed as described 31. DNA 

oligonucleotides (Supplementary Information Table S2 [X85, X96, X105, X114]) were 

radiolabeled with PNK according to standard procedures. Probes were incubated with the 

membranes in hybridization buffer (6 × SSC, 0.1% SDS, 10 × Denhardt’s reagent) overnight 

at 42°C. Membranes were subsequently washed three times with wash buffer (6 × SSC, 

0.1% SDS). Probe signals were visualized by a Molecular Dynamics Phosphorimager (GE 

Healthcare) and quantified by ImageQuant 5.2 software (Molecular Dynamics). Normalized 

signal intensities were compiled for fractions corresponding to monosomes, light and heavy 

polysomes and averaged from at least three biological replicates.

Western blot analysis—Lysates from yeast strain A14201 at vegetative phase and stage 

11 (ndt80 release timecourse) were prepared as described.15 After loading equal amounts of 

protein on a 10% NEXT gel, denaturing gel electrophoresisand transfer to a PVDF 

membrane, Western blotting was performedwith anti-Ded1p (Rabbit; 1:5000) and anti-

Hexokinase(Rabbit;1:10,000; US Biological) antibodies. Chemiluminescencewas quantified 

by Imagequant software. Hexokinaseserved as a loading control for normalization.

Ribosome profiling—Yeast cultures (500 ml) were grown at 30°C in rich media to mid-

log phase (OD600 ~ 0.4) and divided into two equal volumes. Cycloheximide (final 

concentration, 50μg/ml) was added to one sample. Cells were rapidly harvested by 

centrifugation at 4,000 g for 2 min, and snap-frozen on dry ice. One volume of pre-warmed 

media (44°C) was added to the remaining sample, resulting in a temperature of 37°C for the 

entire volume. The temperature of 37°C was verified. The entire sample was immediately 

moved to a shaking incubator at 37°C. Five minutes after temperature shift, the yeast culture 

was treated with cycloheximide and cells were harvested as mentioned above. For run-off 

experiments, yeast cells were harvested in the absence of cycloheximide (Extended data Fig. 

3e).

Cell lysis, RNase I treatment (Ambion) and sucrose gradient centrifugation was performed 

as described32 for 25 units A260 per sample. In addition, lysates (~ 150 μl) were treated with 

3.25 μl Turbo DNase I for 1h at 25°C. Purification and processing of ribosome-protected 
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fragments were carried out as described 32, except that rRNA depletion with the RiboZero 

kit (Illumina) was omitted. Depletion of rRNA was performed at the level of circularized 

cDNA, as described 7 (1μl of a 5 μM mix of biotinylated DNA oligonucleotides, 

Supplementary Information Table S2 (X66–X80) and MyOne Streptavidin C1 DynaBeads 

(Invitrogen)). PCR amplification and sequencing was performed as described7.

Monosome-protected fragments were isolated as described.12 Briefly, sucrose gradient 

centrifugation of lysates was performed and fractions corresponding to monosomes were 

pooled and treated with 1/10 U RNase I per unit A260 lysate and 0.4U Turbo DNase I per 

unit A260 lysate for 1 h at 25 °C. Reactions were stopped by phenol-chloroform extraction of 

RNA. Monosome-protected fragments were processed as ribosome-protected fragments.

The fragmented mRNA control libraries were generated as described.32 Sizing, 

concentration and quality of each DNA library was assessed with the High Sensitivity DNA 

kit on an Agilent2100 Bioanalyzer system. Up to eight DNA libraries were pooled before 

performing 50 bp single end read sequencing on an Illumina HiSeq2500 V2 in rapid run 

mode.

Processing of ribosome profiling data was performed as described.32 Briefly, adaptor 

sequences and ribosomal reads were removed. Remaining reads were mapped to the sacCer3 

genome with the TopHat software (parameters set as: --no-novel-juncs -N 2 --read-edit-dist 

2 -- max-insertion-length 3 --max-deletion-length 3 -g 2. (www.yeastgenome.org)). All other 

parameters were kept at default settings.33 The abundance of mRNAs in ribosome or 

monosome-protected fragments as well as in the fragmented RNA control libraries were 

determined using Cufflinks software.33 These values were used to calculate translational 

efficiencies as described.14 For the calculation of log2 ΔTE values we also included a 

constant factor reflecting the change in overall size of the mRNA pool, derived from spike-in 

RNA controls (Supplementary Information Table S3).

P-sites in ribosome-protected fragments (RPFs) were determined using the13th position from 

the 5′ end of reads with 28 or 29 nt.14 The fraction of ribosomes on 5′UTRs was calculated 

for each mRNA by counting all RPFs on the 5′UTR (excluding positions −3 to −1), divided 

by the number of all RPFs mapped to the entire mRNA. mRNAs with 5′UTRs containing 

fewer than 10 nt were excluded from the analysis. The center of ribosome density (CRD) 

was calculated as described.34 The shift in the CRD (ΔCRD) in ded1-95 compared to WT 

DED1 upon temperature shift was defined relative to the entire length of the mRNA 

according to:

ΔCRD = [(CRD ded1 − 95) − (CRD WT DED1)]/ mRNA length

A negative ΔCRD value marks increased ribosome accumulation in the 5′UTR in ded1-95.

Alternative Translation Initiation Sites (aTIS) were identified according to a previously 

described algorithm.15 Briefly, a position is considered an aTIS, if (i) minimal ribosome 

count value (±1nt of the nucleotide under consideration) is greater than 9 (high stringency 

aTIS) or 4 (medium stringency aTIS) in all replicates; if (ii) the ratio of ribosome occupancy 
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between two neighboring nucleotides 5′ to 3′ (posn-1/posn) is greater than or equal to 3 

(high stringency aTIS) in all replicates, or greater or equal of 3 in one and greater than or 

equal to 1.75 in the other replicate (medium stringency aTIS); and if (iii) the normalized 

ribosome count in ded1-95 cells 5′ after temperature shift to 37°C is 1.5 fold higher that in 

WT DED1 in all replicates. This algorithm identified 396 high stringency aTIS and 2,126 

medium stringency aTIS. Near-cognate codons were identified in 259 high stringency aTIS 

(65%) and 1,382 medium stringency aTIS (65%) within a moving window of ± 1nt. 

Canonical AUG initiation codons were found in 4% high stringency aTIS, and in 3% 

medium stringency aTIS. As control set, we collected all near-cognate codons on 5′UTRs of 

mRNA genes with a 5′UTR length between 20 and 500 nt. After removal of near-cognate 

codons in medium stringency aTIS, we identified 60,666 near cognate codons.

Cross-linking aided RNA affinity precipitation (xl-RAP-seq)—Yeast cells 

containing HTBH-tagged DED1 were grown in rich media to an OD600 of 1.0 – 1.5, 

harvested by brief centrifugation at 4,000 g, re-suspended in ice-cold water or remaining 

YPD media, transferred to a Petridish, and subjected to UV-light in a Stratalinker (600 

mJ/cm2, 254 nm) on ice. Cells were washed in ice-cold water, sedimented by centrifugation 

for 5 min at 5,250 g, frozen on dry ice and stored at −80°C.

Frozen cells were lysed in QIA-1M buffer (100 mMNaH2PO4 pH 8, 10 mM Tris, 1M NaCl, 

8 M Urea, 10 mM imidazole, 0.5% (w/v) IGEPAL, 2.5 mM beta-mercaptoethanol, 1 mM 

PMSF, proteaseinhibitor cocktail [Roche]) with glass beads six times for 30 s in a 

Beadbeater system (Biospec products). Glass beads were removed, and lysates were 

centrifuged at 5,250g for 30 min. Cleared lysates were incubated with Ni2+-Agarose (40 μl 

slurry per g dry pellet weight, pre- equilibrated in buffer QIA-1M; Qiagen) overnight at 4°C. 

Ni2+-beads were washed in 25 ml of wash buffer 1 (0.3 M NaCl, 10 mM Tris, 100 mM 

NaH2PO4, 8 M Urea, 10 mM imidazole) and sample was eluted with 10 ml elution buffer1 

(0.3 M NaCl, 100 mM Tris, 50 mM NaH2PO4, 8 M Urea, 500 mM imidazole, 10% (v/v) 

glycerol). Eluates were then incubated with12.5 μl equilibrated Streptavidin-conjugated 

agarose resin (Pierce Technologies) per g dry pellet weight overnight at 4°C. Streptavidin 

beads were washed with 12.5 ml wash buffer 2 (0.3 M NaCl, 100 mM Tris, 8 M Urea, 0.5 

mM EDTA) – containing 2% SDS, with wash buffer 2 (12.5 ml) without SDS, and with 1 × 

TEV buffer. Beads were next incubated with 50 U AcTEV (Invitrogen) for 2 h at 4°C. The 

sample was eluted with 2 × 0.9 ml TEV elution buffer (300 mMNaOAc, pH 6, 8 M Urea, 

0.5% NP-40). Eluates were incubated with 175 μl Proteinase K (4 mg/ml; Roche), and the 

reaction was stopped by standard phenol/chloroform extraction. Released RNA was 

precipitated by ethanol precipitation overnight. RNA was re-suspended in 1 x Turbo DNAse 

buffer and incubated with 0.4 μl TurboDNAse (Ambion) in a final volume of 20 μl for 20 

min at 37°C. Turbo DNAsewas inactivated according to the manufacturer’s instruction and 

the RNA precipitated with ethanol.

cDNA was generated from the RNA sample using the “template switch” activity of M-MLV 

reverse transcriptase.35 Reactions were performed in 20 μl according to the instructions of 

the manufacturer mix (Invitrogen) with 0.5 μl Superscript II and 0.05 μM final concentration 

of tailed random hexamer primer (X13, Supplementary Information Table S2). Reaction 

conditions were as follows:
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20°C: 10 min; 37°C: 10 min, 42°C: 45 min. Next, 0.25 μM of primers (X14 – X17, 

Supplementary Information Table S2) containing a 7 nt index and three guanosine 

ribonucleotides at their 3′ end were added to the reaction mix and reactions were performed 

at 42°C for 30 min. 4 μl of the resultant cDNA were used as template for amplification with 

primers X18 and X19 (Supplementary Information Table S2) and Advantage 2 polymerase 

mix (Clontech) for 30 cycles, according to the manufacturer’s instructions. PCR products 

were precipitated and washed with 75 % ethanol. DNA libraries were sequenced as 36 bp 

single end reads on an Illumina Genome Analyzer. Reads were mapped to sacCer2 genome 

with bowtie software with default settings.

Reads were excluded from further analysis if their location was outside of the boundaries of 

a mRNA or other transcribed regions of the genome as previously defined.36 Genes were 

only considered to be bound by Ded1p, if more than 10 FPKM mapped to the respective 

mRNA gene.

iCLIP—iCLIP experiments were performed independently with two different approaches, 

(i) using Ded1p-HTBH and (ii) Ded1p-His6FLAG3, both on the endogenous DED1 allele. 

For iCLIP withDed1p-HTBH, cell growth, crosslinking, and tandem affinity purification on 

Ni2+-Agarose and Streptavidin beads was performed as described above for the xl-RAP-Seq 

procedure. Streptavidin beads were washed twice in 1xPNK buffer and split into two 

samples (80% -”L”, 20% -”H”). 200 ng RNAse I was added per gram dry pellet weight to 

the “L”-sample and 0.1 ng RNAse I to the “H”- sample. The samples were incubated for 5 

min at 37°C on a rotator. Resins were subsequently washed with ~1.5 ml wash buffer 2 (2% 

(w/v) SDS), followed by 1.5 ml wash buffer 2 without SDS, and a wash with1.5 ml 1 x PNK 

buffer. The supernatant was removed and beads were re-suspended in 67 μl RNase-free 

water, 3 μl alkaline phosphatase (NEB) and 2 μl RNasin (Roche), and incubated for 20 min 

at 37°C. Beads were washed twice with 1.5 ml 1 x PNK buffer.

3′-ligation was performed by re-suspending the resin in 32 μl RNase-free water with 8 μl of 

20 μM RL3 RNA Linker (Supplementary Information Table S3). Reactions were performed 

overnight at 4°C in 40 μl, containing 22 μl RNase-free water, 8 μl 10 x T4 RNA ligase 

buffer, 8 μl BSA (0.2 μg/μl), 3 μl T4 RNA ligase (all NEB).

The resin was washed with 1.5 ml 1 x TEV-salt buffer (50 mM Tris pH 7.5, 300 mM NaCl, 

0.5 mM EDTA, 1mM DTT) and twice with 1.5 ml 1 x PNK buffer. Beads were re-suspended 

in 64 μl RNase-free water, 8 μl 10 x PNK Buffer, 4 μl32P-γ-ATP, 4 μl T4 PNK (all NEB). 

Reactions were performed for 50 min in a shaking thermoblock at 37°C. Beads were washed 

twice with 1.5 ml TEV-salt buffer and twice with 1.5 mlTEV-elution buffer. Beads were 

subsequently mixed with SDS loading dye and subjected to PAGE on a 10% NEXT gel 

(Amresco) according to the manufacturer’s conditions. Gels were subsequently blotted with 

nitrocellulose membranes (Amersham™ Protran™, GE Healthcare) and exposed to X-ray 

film. RNA was then liberated by Proteinase K treatment as described.37The purified RNAs 

were re-suspended in 89 μl RNase- free water, 11 μl 10 x DNase I Buffer, 5 μl RNasin, 5 μl 

RQ1 DNase (all Promega) and incubated for 20 min at 37°C. The reaction was stopped by 

standard phenol-chloroform extraction and RNA was ethanol-precipitated overnight.
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The DNase-treated RNA was re-suspended in 1.4 μl RNase-free water, 0.2 μl 10 mMdNTPs, 

1μl 20 nM RT primer X97 (Supplementary Information Table S2), and incubated for 5 min 

at 65°C. Next, 0.8 μl 5 x first strand buffer, 0.2 μl 1M DTT, 0.2 μl RNase Inhibitor, 0.2 μl 

Superscript III (all Invitrogen) were added and incubated for 30 min at 50°C. RNA was 

degraded by alkaline hydrolysis (after addition of 0.5 μl of 1N NaOH and incubation at 98°C 

for 15 min). After addition of loading buffer, cDNA as applied to 10% denaturing PAGE and 

staining with SYBR Gold. Fragments of 100 – 125 nt were cut from the gel. The gel slices 

were crushed and cDNA was recovered by incubation in 500 μl diffusion buffer (20 mM 

Tris-HCl pH 7.5, 250 mMNaOAc, 1mM EDTA, 0.25% (w/v) SDS) overnight at 4°C, 

followed by ethanol precipitation.

The cDNA was suspended in 15 μl RNase-free water and circularized with CircLigase I 

(Epicentre) according to the manufacturer’s instructions. The circularized cDNA was 

utilized for amplification with Phusion polymerase (NEB) and primers X98 and X99 

(Supplementary Information Table S2). PCR settings were: 30 s at 98°C, followed by 24 

PCR cycles (10 s at 98°C, 30 s at 58°C, 30 s at 72°C). PCR products were applied to 10% 

non-denaturing PAGE and visualized by SYBR Gold. Products with 75 – 90bp were 

extracted from cut gel slices, and ethanolprecipitated as described above. PCR products were 

amplified with Phusion polymerase and primers X100 and X101 for 5 cycles utilizing the 

same PCR settings as above. PCR products were then separated on a 2% Agarose gel, cut 

out and subjected to Illumina sequencing using primer X102.

For iCLIP with Ded1p-His6FLAG3, cells were grown in SD–TRP media to OD600 = 0.5 – 

0.6. The culture was subsequently transferred to a 245 mm × 245 mm × 25 mm square 

Petridish. UV-crosslinking was performed in a Stratalinker 2400 (150 mJ/cm2, 254nm) at 

room temperature. Cells were harvested by centrifugation for 5 min at 2000g, washed twice 

in ice-cold PBS, frozen in liquid nitrogen, and stored at −80°C.

Frozen cells were lysed in CLIP Lysis Buffer (50 mM Tris-HCl, pH 7.8, 300 mM NaCl, 1% 

Triton X-100, 1 mM PMSF, protease inhibitor cocktail [Roche]) with glass beads six times 

for 1 min in a Disruptor Genie system (Scientific Industries). Lysates were centrifuged after 

removal of the glass beads at 10,000 g, twice for 5 min. Cleared lysates (~26.5 A260 units) 

were incubated with anti-FLAG M2 Magnetic Beads (20 μl slurry pre-equilibrated in CLIP 

Lysis Buffer; Sigma) in a total volume of 1 ml overnight at 4°C. Beads were washed twice in 

1 ml FLAG Wash Buffer (50 mM Tris-HCl pH 7.8, 1 M NaCl, 0.1% NP-40) and twice in 1 

ml FLAG Elution Buffer (50 mM Tris-HCl pH7.8, 150 mM NaCl, 0.1% NP-40). Proteins 

were eluted twice in 95 μl FLAG Elution Buffer containing 150 ng/μl 3 x FLAG tag peptide 

(Sigma). Pooled eluates were incubated with 10μl RNase I (Ambion), diluted 1:500,000 in 

FLAG Elution Buffer for 15 min at room temperature. Reactions were quenched with 960 μl 

8 M guanidine-HCl, 90 μl Dilution Buffer (600 mM Tris-HCl pH 7.8, 3.93 M NaCl), 6.4 μl 2 

M imidazole, 10.8 μl 10% NP-40 and 12.8 μl 500 mM beta-mercaptoethanol. RNase-treated 

eluates were incubated further with Ni- NTA Magnetic Agarose Beads (50 μl slurry pre-

equilibrated in Ni-NTA Binding Buffer [50mM Tris-HCl pH 7.8, 300mM NaCl, 10mM 

imidazole, 6 M guanidine-HCl, 0.1% NP-40, 5mM beta- mercaptoethanol]; Qiagen) 

overnight at 4°C.
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Ni2+-beads were washed twice in 1 ml CLIP Wash Buffer I (50mM Tris-HCl pH 7.8, 

500mM NaCl, 10mM imidazole, 6M guanidine-HCl, 0.1% NP-40, 5mM beta-

mercaptoethanol) and three times in 1ml 1 x PNK Buffer (50 mM Tris-HCl pH 7.8, 10 mM 

MgCl2, 0.5% NP-40, 10 mM beta- mercaptoethanol). Beads were subsequently incubated 

with 30 μl Dephosphorylation Mix (50 mMTris-HCl pH 7.8, 10 mM MgCl2, 10 mM beta-

mercaptoethanol, 3 M BU TSAP [Promega], 30U SUPERase-In [Ambion]) for 30 min at 

37°C in a Thermomixer at 1000 rpm. Reactions were terminated by adding 1 ml CLIP Wash 

Buffer I, and beads were washed three times in 1 ml 1 x PNK Buffer, re-suspended in 30 μl 

Ligation Mix (50 mM Tris-HCl, pH 7.8, 10 mM MgCl2, 10 mM beta-mercaptoethanol, 10% 

PEG8000 [NEB], 10% DMSO, 2 μM 3′ adenylated adapter X103, 30U T4 RNA Ligase 1 

[NEB], 30 U SUPERase-In [Ambion]) and incubated for 3 h at 22°C in a thermomixer at 

1000 rpm. Reactions were terminated by adding 1ml CLIP Wash Buffer I. Beads were 

washed three times in 1ml 1 x PNK Buffer, re-suspended in 30 μl Kinase Mix (50 mM Tris-

HCl, pH 7.8, 10 mM MgCl2, 10 mM beta-mercaptoethanol, 30 U PNK [NEB], 5 μCi γ-32P-

ATP, 30 U SUPERase-In [Ambion]) and incubated for 30 min at 37°C in a thermomixer 

(1000 rpm). Reactions were terminated adding 1 ml CLIP Wash Buffer I. Beads were 

washed three times in 1mL CLIP Wash Buffer I, and three times in 1 ml CLIP Wash Buffer 

II (50 mM Tris-HCl, pH 7.8, 50 mM NaCl, 10 mM imidazole, 0.1% NP-40, 5 mM beta-

mercaptoethanol). Proteins were eluted with 35 μl CLIP Wash Buffer II containing 200 mM 

imidazole 3 times for 5 min at 22°C in a thermomixer (1000 rpm).

Pooled eluates were digested with Proteinase K (Invitrogen) at 50°C for 1h. The reaction 

was stopped by standard phenol/chloroform extraction. Released RNA was precipitated by 

ethanol precipitation overnight in the presence of 1μl GlycoBlue (Ambion) and 1pmol 

reverse- transcription DNA primer X104. RNA was converted to first-strand cDNA in a 10 

μl standard reaction mix with 0.5 μl Superscript III (Invitrogen) and the co-precipitated DNA 

primer. The reaction conditions were as follows: 25°C for 5 min, 42°C for 20 min, 50°C for 

40 min. RNA degraded with 1.67 μl of 1 M NaOH for 10 min at 90°C. The cDNA was 

ethanol precipitated with GlycoBlue for >2h. cDNA fragments of 120–200 nt were gel 

purified on a urea-denaturing 6% acrylamide gel and ethanol precipitated with GlycoBlue 

overnight. cDNA was circularized in a 10 μl reaction mix using 0.5 μlCircLigase I 

(Epicentre) in the presence of 1 M betaine at 60°C for 1hr. The reaction was then 

supplemented with additional 0.5 μl CircLigase I and incubated at 60°C for 1hr. The enzyme 

was inactivated at 80°C for 10 min. PCR and formamide-gel purification of PCR products 

were performed as described 38, using 20 cycles of PCR and isolating 120–200 nucleotide 

ssDNA fragments.

Sequencing reads were processed as described previously 37,39. Briefly, after trimming of 

adaptor sequences, reads were mapped to sacCer3 with Bowtie2 or TopHat software with 

similar settings used for Ribosome profiling data, outlined above. Identical reads were 

subsequently collapsed and duplications removed. The crosslink position of Ded1p to RNA 

was defined as 1 nt 5′ of the 5′ mapped nucleotide of a sequencing read.37

DMS-MaPseq—Yeast strains (WT-DED1 and ded1-95) were grown in YPD at 30°C. 

Overnight cultures were diluted to OD600 of ~ 0.09 and grown to an OD600 = 0.6. An equal 

volume of 44°C YPD media was added to achieve an immediate temperature shift to 37°C, 
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as outlined for the ribosome profiling experiments. Cultures were incubated in a 37°C water 

bath for 3 min. At this time, dimethyl sulfate (DMS, Sigma) was added to a 5% (v/v) final 

concentration and incubation was continued with stirring for 3 min. DMS was quenched by 

adding 30 ml of ice-cold stop solution (30% β-mercaptoethanol, 50% (v/v) isoamyl alcohol). 

Cells were quickly transferred to ice, collected by centrifugation at 3,500 g at 4°C for 4 min, 

and washed with 10 ml 30% β-mercaptoethanol solution. Cells were re-suspended in 0.6 ml 

RNA lysis buffer (6 mM EDTA, 45 mMNaOAc, pH 5.5). Total RNA was purified with hot 

acid phenol (Ambion) and ethanol precipitation. Sequencing libraries were prepared as 

previously described.17

Raw fastq files were stripped of linker sequences and filtered for overall quality using the 

FASTX-Toolkit Clipper and Quality Filter functions (http://hannonlab.cshl.edu/

fastx_toolkit/), respectively, requiring that 80% of sequenced bases have a quality score >25. 

Reads were aligned against the yeast genome (sacCer3) using Tophat v2.1.0 with bowtie2 

with the following settings for a 50 bp sequencing run: --no-novel-juncs -N 5 --read-gap-

length 7 --read-edit-dist 7 --max-insertion-length 5 --max-deletion-length 5 -g 3. All non-

uniquely aligned reads were then removed. Due to empirically determined mutation 

enrichment from non-template addition, we trimmed 2 nucleotides from the 5′ end of each 

read. Mismatches located within 3 nucleotides of an indel were also discarded for future 

analysis.

Bioinformatic analyses—Yeast genomic sequence conservation scores were obtained 

from Saccharomyces cerevisiae genome database (www.yeastgenome.org). Positional 

coordinates of mRNAs including transcription start sites and polyadenylation sites are based 

on sacCer3 and reported measurement.40 Genome-wide datasets were visualized by IGV 

software 41. Structural models of the small and large ribosomal subunits including initiation 

factors were generated with the Chimera software.30,42 Analyses of Gene Ontology term 

enrichment were carried out with GOrilla software utilizing a single ranked list of genes.43

RNA structure prediction was carried out with sequences 0 – 99 nt 3′ of the first nucleotide 

of an alternative start codon using the RNAfold web server.44 Constraint settings were 

derived from DMS-MaPseq data as follows: a nucleotide was set as “unpaired” if the DMS-

MaPseq counts of a given nucleotide exceeded the value of 0.49 relative to the third highest 

count number in the range of 100 nt downstream of an aTIS.

Statistical significance of enrichment or depletion in certain regions (e.g. Figs. 2c, 3d,e, 

Extended data Fig. 10a) was determined by comparing weighted data vectors of the 

observed variable to the background value. To this end, we calculated t-values with the 

wtd.t.test – function in R. The algorithm is based on the mean and 1/(standard errors)2 as 

estimate of the means accuracy. The given p-values correspond to a two-tailed t-test.

Further bioinformatic analyses and multiple linear regressions were performed with R with 

customized scripts using RStudio Software.45,46 Code is available upon request. 

Normalization of datasets including ribosome protected fragments, monosome-protected 

fragments, Ded1p iCLIP-Seq and DMS-MaPseq counts were performed relative to the total 

number of counts of the entire mRNA.42
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To compute Ded1p binding density, DMS-MapSeq ratios, or sequence conservation values 

in the vicinity of aTIS, it was important to normalize for inherent positional trends within 

the exact region in the respective iCLIP, DMS-MapSeq and sequence conservation datasets. 

For example, values for DMS-MapSeq ratios (counts ded1-95/counts WT), and iCLIP reads 

show an upward trend with increasing distance from the 5′ cap in 5′UTRs. To normalize for 

inherent positional trends, we calculated a background distribution for the vicinity of each 

aTIS. We randomly choose a position in the respective section of a given mRNA, and 

determined the signal distribution in the vicinity of this position (for example, position -5 

relative to the 5′ nt of an aTIS). This process was repeated four times. The background 

value reflects the average of these five calculated values. Reported enrichment values 

represent the ratio of the measured signal over the background value at each indicated 

position. Values are given in all plots as log2 (signalmeasured/signalbackground). Statistical 

significance of enrichment or depletion was determined by calculating the t-value of the 

observed variable based on the mean and standard deviation ofthe background value.

Metagene profiles were calculated by averaging normalized Ded1p iCLIP counts and DMS- 

MaPseq counts after binning transcript coordinates from 5′UTRs, ORFs and 3′UTRs in bins 

reflecting 2% of each section of mRNA. Ded1p binding sites and the midpoint of RNA 

secondary structures were determined by Piranha peak calling software (http://

smithlabresearch.org).

Calling parameters were optimized based on visual inspection. To call peak sites of RNA 

secondary structures, a genome-wide dataset of log2(counts of DMS-MaPseq WT/ded1-95) 

was utilized as input file.

Data Availability

The data that support the findings of this study have been deposited in the Gene Expression 

Omnibus (GEO) repository with the accession code GSE93959. All other data are available 

from the corresponding author upon reasonable request.
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Extended Data

Extended Data Figure 1. mRNA expression, and translation profiles in WT DED1 and ded1-95
a, Correlation of ribosome footprint counts between two biological replicates in WT DED1 
at 30°C (N = 5,523; R: Pearson correlation coefficient).

b, Correlation of mRNA expression levels between two biological replicates in WT DED1 at 

30°C (N = 5,372)

c, Correlation of ribosome footprint counts between two biological replicates in WT DED1, 

5 min after temperature shift to 37°C (N = 5,523).

d, Correlation of mRNA expression levels between two biological replicates in WT DED1, 5 

min after temperature shift to 37°C (N = 5,372)

e, Correlation of ribosome footprint counts between two biological replicates in ded1-95 at 

30°C (N = 5,523)

f, Correlation of mRNA expression levels between two biological replicates in ded1-95 at 

30°C (N = 5,372)

g, Correlation of ribosome footprint counts between two biological replicates in ded1-95, 5 

min after temperature shift to 37°C (N = 5,523)
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h, Correlation of mRNA expression levels between two biological replicates in ded1-95, 5 

min after temperature shift to 37°C (N = 5,372)

i, Correlation of mRNA expression levels between WT DED1 and ded1-95 at 30°C (N = 

2,976). Each datapoint represents the average of at least two replicates.

j, Correlation of translational efficiencies between WT DED1 and ded1-95 at 30°C (N = 

2,976). Each datapoint represents the average of at least two replicates.

k, Representative polysome profiles of WT DED1 and ded1-95 strains at 30°C and 5 min 

after shift to 37°C. Similar results were obtained in three independent experiments.

l, Changes in translational efficiencies (ΔTE) for mRNAs in ded1-95, compared to WT 

DED1, 5 min after temperature shift (mean of two biological replicates). The dotted line 

indicates no change.

m, Fraction of 18S rRNA in polysome fractions, compared to the entire sample, at 30°C and 

5 minutes after temperature shift to 37°C. Each bar represents the average of three 

independent experiments. Empty circles represent each replicate.

n, Cumulative distribution of translational efficiencies of WT DED1 and ded1-95, 5 minutes 

after temperature shift to 37°C (N = 2,976). Each datapoint represents the average of at least 

two replicates.

Extended Data, Figure 2. A subset of mRNAs is largely insensitive to Ded1p
a, GO term defined mRNA groups whose translation are strongly impacted (green) or 

largely unaffected by Ded1p (blue). Boxplots (group median) of changes in translational 

efficiencies (ΔTE, box boundaries: upper and lower quartiles, error bars: 1.5 x interquartile 

range). The black boxplot marks changes in translational efficiencies for all mRNAs (Fig. 

1b). mRNAs for each GO-term were extracted from the SGD47. The FDR q-value indicates 

the enrichment p-value according to a hypergeometric model after correction for multiple 

testing using the Benjamini and Hochberg method48.
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b, Boxplots (as in panel a) of 5′UTR lengths and median of the shift in the normalized 

center of ribosome density (Fig. 1b) for GO term defined mRNA groups, color-coded as in 

panel (a).

Extended Data, Figure 3. Activation of aTIS in ded1-95 upon temperature shift
a, Fraction of ribosome footprints on 5′UTRs in WT DED1 and ded1-95, (5 min, 37°C, N = 

3,273). The red line indicates the mean. Statistical significance for the difference between 

ded1-95 and WT DED1: p = 1.2e-119 (two tailed t-test). A similar result was obtained in an 

independent replicate (p = 5.4e-47).

b, Changes in the fraction of ribosomes on 5′UTRs for all mRNAs (N = 2,660) in WT 

DED1 compared to ded1-95, 5 min after temperature shift to 37°C. The values on the x-axis 

represent the ratio (log2) of the fraction of ribosomes on each 5′UTR in WT, divided by the 

fraction of ribosomes on the same 5′UTR in ded1-95. Each value represents the average of 

two independent biological replicates.

c, Representative Northern blots of PSA1 after sucrose gradient centrifugation for WT 

DED1 and ded1-95, at 30ºC. A similar result was obtained in an independent biological 

replicate.

d, Fraction of ribosome footprints on 5′UTRs in WT DED1 and ded1-95, (5 min, 37°C), 

measured only in 80S monosomes (N = 973, reads from two independent experiments 

combined). Statistical significance for the difference between ded1-95 and WT DED1: p = 

1.2e-50 (two tailed t-test).

e, Mean ribosome occupancy within 10 nt 3′ and 5′ of the high confidence aTIS in 5′UTRs 

(moving average: ± 1nt, 5 min, 37°C), measured without cycloheximide.

f, Mean ribosome occupancy within 10 nt 3′ and 5′ of the high confidence aTIS in 5′UTRs 

(N = 274) in 80S monosomes (moving average: ± 1nt, 5 min, 37°C).
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g, Mean ribosome occupancy within 10 nt 3′ and 5′ of all near cognate initiation codons (N 

= 61,614; excluding medium confidence aTIS) in 5′UTRs (moving average: ± 1nt, 5 min, 

37°C).

h, Ribosome occupancy of 3′ ends in small upstream open reading frames (smORFs) 

initiating at high confidence aTIS in ded1-95 before (t = 0) and after (t = 5 min) temperature 

shift. SmORFs were included in this analysis if its length exceeds 3 codons and if the 

smORF terminates at least 11 nt upstream of the main AUG (N = 76).

i, Ribosome occupancy of 3′ ends of smORFsdefined in panel (e) in WT DED1 before (t = 

0) and after (t = 5 min) temperature shift.

j, Ribosome occupancy 4 nt 5′ and 20 nt 3′ of high confidence aTIS on 5′UTRs (N = 274) 

for ded1-95, 5 min after temperature shift. The dashed lines indicate the first nucleotide of 

the marked in-frame codons.

k, Ribosome occupancy 4 nt 5′ and 20 nt 3′ of the main AUG of mRNAs containing high 

confidence aTIS on 5′UTRs for ded1-95, 5 min after temperature shift. For mRNAs with 

multiple high confidence aTIS in their 5′UTR, the main AUG was counted only once. The 

dashed lines indicate the first nucleotide of the marked in-frame codons.

l, Ribosome occupancy 4 nt 5′ and 20 nt 3′ of high confidence aTIS-matched random 

position (averaged from five randomizations) on 5′UTRs (N = 274) for ded1-95, 5 min after 

temperature shift. The dashed line indicates the first nucleotide.

Extended Data, Figure 4. Characteristics of small open reading frames associated with activated 
aTIS
a, Enrichment or depletion of each near-cognate codon in aTISs over the background 

distribu- tion of the codon (p values determined according to a two-tailed t-test).

b, Mean translation initiation site score (positions −6 to +6, excluding +1 to +3) calculated 

according to Miyasaka49 for high stringency aTIS (N = 274, red), and TIS of main ORFs (N 

= 4,972, grey). A TIS score exceeding 0.01 is considered a potential translational initiation 

site14.

c, Changes in translational efficiencies (ΔTE) for mRNAs in ded1-95, compared to WT 

DED1, 5 min after temperature shift for all mRNAs (Fig. 1b) and aTIS-containing mRNAs.
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d, Length of the small open reading frames (smORFs) associated with ded1-95-activated 

aTIS. SmORFs encoding N-terminal extensions were excluded from the analysis.

e, Type of smORFs associated with ded1-95-activated aTIS. The bargraphs show the fraction 

of smORFs that falls into each category. The distribution of changes in translation efficiency 

(ΔTE) for RNAs with either type of smORF did not differ significantly.

Extended Data, Figure 5. mRNA structure unwinding by Ded1p in cells using DMS MaPSeq
a, Schematic for DMS-MaPseq approach to monitor RNA structure unwinding by Ded1p). 

All DMS-MapSeq experiments were performed 5 minutes after temperature shift.

b, Representative DMS MaPSeq tracks in the PSA1 5′UTR 5 min after temperature shift for 

WT DED1 (grey) and ded1-95 (red). Bars show normalized RT stops. A similar result was 

obtained in an independent replicate. The Average Pearson correlation coefficient of DMS-

MaPseq counts per 5′UTR between two replicates (5 min after temperature shift to 37°C) is 

for WT: R = 0.57 (N = 864), and for ded1-95: R = 0.63 (N = 692). The ribosome occupancy 

track for ded1-95 is shown for reference.

c, Unwinding of mRNA structure by Ded1p for different mRNA regions. Similar results 

were obtained in two independent experiments.
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Extended Data, Figure 6. xl-RAP-Seq and iCLIP
a, Correlation of sequence reads (FPKM) per mRNA for two independent biological xl-

RAP-Seq replicates (N = 2,992, R: Pearson Correlation Coefficient)

b, Fraction of mRNA (40%) and rRNA (44%) crosslinked to WT Ded1p as fraction of all 

sequencing reads (mean of two independent experiments). N = 4,280 mRNAs exceed a 

minimal read count of FPKM ≥ 10.

c, Correlation of the number of RT stops (FPKM) per mRNA for the two independent iCLIP 

approaches (Replicate 1:Flag-tagged Ded1p, Replicate 2: HTBH-tagged Ded1p, N = 4,007, 

R: Pearson Correlation Coefficient)

Extended Data, Figure 7. Ded1p binding sites on 18S RNA and mRNAs
a, Ded1p binding sites on Helix 720 (exit) and Helix 16 (entry) (red) are in close proximity 

to binding sites of eIF3c (purple) and eIF3b (green) on the 40S ribosomal subunit (rRNA: 

grey, ribosomal proteins: cyan)42.

b, Localization of Ded1p (apricot) on Helix 16 of the PIC. (Schematic model of the yeast 

PIC with eIF3: http://www.bangroup.ethz.ch/research/eukaryotic_translation_initiation.html 

and references therein, position of eIF4G572-853 and eIF4A (Ref.50). The position of the 
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eIF4G C- terminus is hypothetical. The helicase core of Ded1p was modeled in analogy to 

the DDX3 core structure51, with the RNA binding site in contact with Helix16 at the main 

iCLIP crosslink sites. The position of the low complexity N-terminus of Ded1p is 

hypothetical.

c, Sequence logo of Ded1p binding sites on mRNAs.Sets of 104 binding sites were randomly 

sampled from all Ded1p crosslinking sites and used as input to create a sequence logo 

(http://weblogo.berkeley.edu). All subsets yielded essentially the same sequence logo as 

shown here. Position zero denotes the RT stop.

Extended Data, Figure 8. Representative Northern Blots of PSA1 (Δ2º) and ATP5 (ΔaTIS, Δ2º) 
for WT DED1 and ded1-95
a, Representative RNA blots (5 min, 37ºC) for the PSA1 mRNA with altered secondary 

structure, 3′ of the aTIS (Δ2º). Similar results were obtained in three independent biological 

replicates.

b, Quantification of RNA blots for accumulation of the PSA1 Δ2º mRNA in Monosomes in 

ded1-95, compared to WT DED1. The line indicates the average. The p-value for the 

difference in monosome accumulation was determined by a one-tailed t-test.
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c, Representative ribosome profiling tracks for the 5′UTR of ATP5 in WTDED1 and 

ded1-95 (30°C and after temperature shift). The near-cognate initiation codon is highlighted 

by a star. For comparison, Ded1p crosslinking (yellow track) and differential DMS-MaPseq 

tracks ([log2(ded1-95/WT)], unwound mRNA regions marked by red bars, negative values) 

for the 5′UTR of the ATP5 mRNA are shown. Similar results were obtained in two 

independent experiments.

d, DMS-MapSeq constrained secondary structure model of a fragment of the ATP5 mRNA 

5′UTR. The aTIS is marked by a line. Ded1p crosslinking (iCLIP) and unwinding (DMS-

MapSeq) for each nucleotide are indicated. The ratio of normalized DMS-MapSeq counts of 

WT/ded1-95 in two categories: yellow triangles: 0.6 – 1.0 (moderately unwound), and red 

triangles: > 1.0 (strongly unwound).

e, Representative RNA blots (5 min, 37ºC) for ATP5 mRNA WT, with mutations in the aTIS 

(ΔaTIS) and with altered secondary structure, 3′ of the aTIS (Δ2º) for WT DED1 and 

ded1-95. Similar results were obtained in three independent experiments.

f, Quantification of RNA blots for accumulation of the ATP5 ΔaTIS and Δ2º mRNA in 

Monosomes in ded1-95, compared to WT DED1. The lines indicate the averages. p-values 

were determined by a one-tailed t-test.

Extended Data, Figure 9. Ded1p binding and mRNA remodeling can occur without decreased 
translation efficiency if nonear-cognate initiation codon is present
Ded1p iCLIP track, differential DMS-MaPseq track (5 min, 37ºC) and ribosome occupancy 

tracks (5 min, 37ºC) of WT DED1 and ded1-95 for ADH3 mRNA, whose translation is 

largely unaffected by Ded1p (ΔTE = − 0.1). 5′UTR and ORF are marked. iCLIP and DMS-

MaPseq tracks show Ded1p binding and remodeling of the 5′UTR, ribosome profiling 

tracks indicate no significant accumulation of ribosomes in the 5′UTR. Similar results were 

obtained in two independent experiments.
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Extended Data, Figure 10. aTIS conservation across fungi and Ded1p-mediated activation of 
uORFs starting from near-cognate initiation codons
a, Sequence conservation in fungi around high confidence aTIS (moving average of ± 1 nt). 

Positive values indicate higher sequence conservation than the average of five randomly 

chosen positions on the same 5′UTR for each aTIS, negative values indicate less sequence 

conservation (conservation scores were obtained from the sacCer3 phastCons7way dataset, 

based on sequence homology between following species: S. cerevisiae, S. paradoxus, S. 
katae, S. kudriavzevii, S. bayanus, S. castelli, S. kluyveri)52.

b, Ribosome occupancy tracks (30ºC and 5 min, 37ºC) of WT DED1 and ded1-95 for ALA1 

mRNA. 5′UTR and ORF are marked. The ACG initiation codon (−25, highlighted by star) 

has been previously shown to function as aTIS for the mitochondrial isoform of Ala1p (Ref.
29). Similar results were obtained in two independent biological replicates for each 

experiment.

c, Ribosome occupancy tracks (5 min, 37ºC) of ded1-95 and WT DED1 (vegetative control 

and Anaphase II) for PSA1 mRNA. aTISs are marked by dashed lines. Similar results were 

obtained in two (vegetative control) and four (Anaphase II) independent experiments.

d, Ribosome-protected fragments mapping to DED1 in vegetative cells and cells in 

Anaphase II (average of two [vegetative] and four [Anaphase II] independent experiments, 

circles represent each replicate).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Defects in Ded1p activate alternative translation initiation sites
a, Ribosome profiling tracks of the 5′UTR of PSA1 mRNA for WT DED1 and ded1-95, 

before and 5 min after temperature shift. Bars mark the ribosome P-site, the star an 

alternative translation initiation site. Similar results were obtained in two independent 

experiments for each dataset.

b, Correlation between change in translational efficiency (ΔTE) and change in the center of 

ribosome density of WT DED1, compared to ded1-95 (N = 2,837, 5 min, 37°C, (R: Pearson 

correlation coefficient).

c, Representative RNA blots of PSA1 (log2ΔTEPSA1 = −2.1) and TDH2 (log2ΔTETDH2 = 

0.7) after polysome fractionation for WT DED1 and ded1-95, 5 min after temperature shift. 

M: 80S monosomes, LP: light polysomes, HP heavy polysomes. Similar results were 

obtained in three independent experiments.

d, Quantification of PSA1 and TDH2 RNA blots. Bars indicate the fraction of the mRNA in 

monosomes (M), light polysomes (LP), and heavy polysomes (HP) (* p = 0.036; **p = 

0.004, two-tailed t-test).

e, Representative ribosome profiling track for a segment in the 5′UTR of PSA1 (indicated 

by star in panel (a) in ded1-95 (5 min, 37°C). The near-cognate initiation codon is 

highlighted. Similar results were obtained two independent experiments

f, Fraction of near-cognate and cognate initiation codons at sites with marked ribosome 

accumulation (red bars, aTISs, N = 396), and at randomly chosen control positions (grey) in 

5′UTRs in ded1-95. (*** - statistical significance of the differences between WT DED1 and 
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ded1-95 (two-tailed t-test) for near-cognate codons: p = 1.1e-4, for cognate codons: p = 

3.1e-5.)

k, Mean ribosome occupancy 10 nt 3′ and 5′ of high confidence aTIS on 5′UTRs (moving 

average: ± 1nt) for ded1-95 (red) and WT DED1 (5 min, 37°C).
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Figure 2. mRNA structure unwinding by Ded1p and aTIS activation
a, Metagene profile of mRNA unwinding by Ded1p on 5′UTRs and the 5′ moiety of ORFs 

(moving average: ± 1nt). Similar results were obtained in two independent experiments.

b, Representative differential DMS-MaPseq track for the 5′UTR of the PSA1 mRNA (upper 

track, mRNA regions unwound in WT DED1marked by red bars, the more negative the 

value, the stronger the unwinding). Similar results were obtained in two independent 

experiments. For comparison, ribosome profiling traces of the 5′UTR of PSA1 mRNA for 

WT DED1 and ded1-95 are shown. Near-cognate codons are color-coded according to their 

initiation efficiency, as indicated. Green lines mark activated aTISs.

c, Localization of unwound mRNA structure 3′ of activated aTISs. Enrichment of 

differential DMS-MaPseq counts. Negative values indicate unwound mRNA regions in WT 

DED1 within 20 nt of high stringency aTISs (N = 274), compared to all other near-cognate 

codons (N = 60,666; excluding aTIS). The shaded area marks a significant difference in 2° 

RNA structure between the regions downstream of an aTIS and downstream of any near 

cognate codon (p = 0.00004, two-tailed t-test). The dashed line marks the 5′ nucleotide of 

the aTISs or the near- cognate codon.
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Figure 3. Ded1p crosslinking to the 40S ribosomal subunit and to mRNAs
a, Fraction of iCLIP RT stops on 18S rRNA (moving average: ± 2nt, values represent the 

average from two independent experiments). Numbers denote predominant crosslinking 

sites. Position of the three predominant Ded1p crosslinking sites (red) in the crystal structure 

of the 40S ribosomal subunit 30 (RNA: grey, ribosomal proteins: cyan, Ded1p crosslink sites: 

red, ES6: Extension segment 6).

b, Metagene profile of Ded1p association to mRNAs, calculated from two independent 

iCLIP experiments (moving average: ± 1nt; TSS, transcription start site; AUG, translation 

start site; Stop, translation stop site; PAS, polyadenylation site).

c, Ded1p crosslinking to the 5′UTR of the PSA1 mRNA (top trace: fraction of RT-stops per 

nt, normalized to transcript). For comparison, differential DMS-MapSeq and ribosome 

profiling tracks of the 5′UTR of PSA1 mRNA for WT DED1 and ded1-95 are shown (5 

min, 37°C). Similar results were obtained in two independent experiments.

d, Enrichment of Ded1p crosslinking within 20 nt of aTISs (N = 274) normalized to the 

background distribution of Ded1p binding (moving average: ± 1nt, RT stops normalized for 

each mRNA). The dashed line marks the aTIS position. The shaded area marks a significant 

difference in Ded1p binding between the regions in vicinity of an aTIS and in vicinity of a 

random position within the same 5′UTR (p = 0.013, two-tailed t-test).
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e, Enrichment of differential DMS-MaPseq counts (Fig. 2c) within 40 nt of Ded1p binding 

sites (N = 178, high stringency aTIS) on 5′UTRs. The shaded area marks a significant 

difference in RNA structure between the regions downstream of a Ded1p binding site and 

downstream of a random position within the same 5′UTR (p = 0.008, two-tailed t-test).
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Figure 4. Ded1p function on 5′UTRs
a, DMS-MapSeq constrained secondary structure model of a fragment of the PSA1 mRNA 

5′UTR. The aTIS is marked by a line. Shading indicates Ded1p crosslinking (iCLIP). 

Triangles indicate unwinding (DMS-MapSeq) for each nucleotide (log2 ratio of normalized 

DMS-MapSeq counts of WT/ded1-95 in two categories); yellow triangles: 0.35 - 0.7 

(moderately unwound), and red triangles: > 0.7 (strongly unwound).

b, Representative RNA blots, following sucrose gradient centrifugation for WT DED1 and 

ded1-95, (5 min, 37°C) for constructs expressing PSA1-FLAG mRNA with wildtype 5′UTR 

(aTIS + 2º), or with a mutated aTIS (ΔaTIS). Similar results were obtained in three 

independent experiments.

c, Quantification of RNA blot experiments (panel b), indicating the fold change in the 

fraction of PSA1 mRNA in monosomes in ded1-95, compared to WT upon temperature 

shift. (3 independent biological replicates, the line marks the average). Statistical 

significance of the differences between WT and ded1-95: p = 0.034 (two-tailed t-test).

d, Schematic model of Ded1p function on 5′UTRs. mRNA is depicted as black line, mRNA 

structure as schematic hairpin, the PIC as grey shape, Ded1p as red oval, and the near 

cognate codon as green rectangle.

e, Ribosome occupancy tracks (5 min, 37ºC) of ded1-95 and WT DED1 (vegetative control 

and Anaphase II) for GLY1 mRNA. aTISs are marked by dashed lines. Similar results were 

obtained in two (vegetative control) and four (Anaphase II) independent experiments.

f, Mean ribosome occupancy 10 nt 3′ and 5′ of high confidence aTIS on 5′UTRs (moving 

average: ± 1nt) for WT DED1 (vegetative control and Anaphase II).
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g, Representative Western blot of Ded1p and Hxk1p (loading control) in vegetative cells and 

cells in Anaphase II. Numbers indicate the relative expression level of Ded1p from four 

independent experiments (Error: standard deviation).
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