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SUMMARY

Regulatory T cells (Tregs) can impair anti-tumor im-
mune responses and are associated with poor prog-
nosis in multiple cancer types. Tregs in human tumors
span diverse transcriptional states distinct from
those of peripheral Tregs, but their contribution to tu-
mor development remains unknown. Here, we use
single-cell RNA sequencing (RNA-seq) to longitudi-
nally profile dynamic shifts in the distribution of Tregs
in a genetically engineered mouse model of lung
adenocarcinoma. In this model, interferon-respon-
sive Tregs are more prevalent early in tumor develop-
ment, whereas a specialized effector phenotype
characterized by enhanced expression of the inter-
leukin-33 receptor ST2 is predominant in advanced
disease. Treg-specific deletion of ST2 alters the evo-
lution of effector Treg diversity, increases infiltration
of CD8+ T cells into tumors, and decreases tumor
burden. Our study shows that ST2 plays a critical
role in Treg-mediated immunosuppression in
cancer, highlighting potential paths for therapeutic
intervention.
INTRODUCTION

The clinical success of immune checkpoint inhibitors in the treat-

ment of non-small cell lung cancer (NSCLC) highlights how tar-

geting immunosuppression in the tumor microenvironment can

be an effective therapeutic strategy (Makkouk and Weiner,

2015; Soria et al., 2015). However, only some patients respond

to immune therapies, suggesting that an improved understand-
2998 Cell Reports 29, 2998–3008, December 3, 2019 ª 2019 The Au
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ing of other immunosuppressive mechanisms is needed for

effective treatment.

One major mechanism of immunosuppression is posed by

CD4+ regulatory T cells (Tregs), which can impair anti-tumor im-

mune responses (Tanaka and Sakaguchi, 2017). Tregs are critical

for maintaining immune tolerance and preventing autoimmunity

(Josefowicz et al., 2012). Tregs are associated with poor prog-

nosis in several cancers, including lung adenocarcinoma (Shang

et al., 2015; Suzuki et al., 2013). In mouse models, Treg depletion

can enhance anti-tumor immunity (Bos et al., 2013; Joshi et al.,

2015; Marabelle et al., 2013), and antibodies directed against

CTLA-4 act in part by depleting Tregs (Simpson et al., 2013).

Due to their phenotypic diversity, Tregs differentially impact tu-

mor immune responses, such that effector Tregs promote tumor

growth (Green et al., 2017), whereas poorly immunosuppressive

Tregs contribute to anti-tumor immunity (Overacre-Delgoffe et al.,

2017; Saito et al., 2016). This functional diversity may be re-

flected in their transcriptional programs. Tregs in distinct tissues

and inflammatory contexts have transcriptional profiles related

to their tissue-resident functions (Panduro et al., 2016). In human

tumors, Tregs have a program that may be shared across cancer

types and is associated with clinical outcome (De Simone et al.,

2016;Magnuson et al., 2018; Plitas et al., 2016). Characterization

of pro-tumorigenic Treg subsets may guide efforts to target these

populations.

Inducible, autochthonous models of cancer are ideal for

studying mechanisms of tumor tolerance because they recapit-

ulate the longitudinal development and features of the endoge-

nous tumor microenvironment better than transplanted, more

‘‘foreign’’ tumors (Dranoff, 2011). Our group has previously

developed a model of lung adenocarcinoma in which activation

of oncogenic K-rasG12D and loss of Trp53 are driven by intratra-

cheal delivery of a lentivirus expressing Cre recombinase

(KP: LSL-KrasG12D, p53fl/fl) (DuPage et al., 2009; Jackson et al.,

2005). Using a lentivirus that also expresses known T cell
thor(s).
commons.org/licenses/by/4.0/).
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antigens (LucOS: luciferase fused to chicken ovalbumin [Ova]

and the peptide SIYRYYGL), we can monitor tumor-specific

T cell responses (DuPage et al., 2011). T cell infiltration of these

tumors delays tumor growth, but the number and activity of anti-

tumor CD8+ T cells decline over time, and the development of

immune tolerance is partly due to the expansion of lung Tregs
(Joshi et al., 2015). Treg depletion results in T cell infiltration of tu-

mors, suggesting that Tregs actively suppress anti-tumor immune

responses. Because Treg-depleted animals succumb to sys-

temic autoimmunity, a strategy targeting features of lung tu-

mor-specific Tregs is required to minimize self-directed

cytotoxicity.

Here, we map the diversity of conventional CD4+ T cells

(Tconvs) and Tregs throughout tumor development in the KPmodel

using single-cell RNA sequencing (scRNA-seq). Whereas Tconv
subsets were stable over time, Treg diversity changed with tumor

progression. At early time points, Tregs expressed genes associ-

ated with interferon (IFN) signaling, whereas mice with advanced

disease hadmore killer cell lectin-like receptor 1 (Klrg1)+ and am-

phiregulin (Areg)+ Tregs. Analyzing these data, we identified ST2

as a potential mediator of effector Treg phenotypes during tumor

development. Treg-specific ablation of ST2 altered longitudinal

patterns of Treg diversity, increased CD8+ T cell infiltration of tu-

mors, and reduced tumor size. Our high-resolution characteriza-

tion of Treg diversity in the tumor microenvironment thus allows

us to refine ways to target Treg function in cancer.
RESULTS

scRNA-Seq Reveals Lung-Specific Transcriptional
Programs for Tumor-Associated CD4+ Tconvs and Tregs

Consistent with prior reports that lung Tregs expand during KP tu-

mor development (Joshi et al., 2015), the fraction of Ki-67+ Tregs
by flow cytometry was elevated in lungs with early tumors (Fig-

ure 1A), whereas the fraction of Ki-67+ Tconvs was modestly

increased at 5 and 8 weeks but returned to baseline by 12 weeks

(Figure S1A).

We hypothesized that this early proliferation of Tregs may be

associated with changes in Treg diversity. We used scRNA-seq

to characterize heterogeneity in tumor-associated CD4+ T cells

over time and the relationship between Treg and Tconv diversity.

We profiled by full-length scRNA-seq 1,254 Tconvs and 1,679

Tregs from the lungs and mediastinal lymph nodes (msLNs) of

non-tumor-bearing and tumor-bearing KP, Foxp3GFPmice along

a time course after tumor induction (Figure 1B).
Figure 1. scRNA-Seq Reveals Distinctive Lung CD4+ T Cell Signatures

(A) Treg proliferation peaks early in tumor development. Percent Ki-67+ Tregs throu

Error bars: SEM. ***p < 0.001, Tukey’s multiple comparisons test. NS, non-signifi

(B) Experiment overview. KP, Foxp3GFP mice were harvested at the indicated we

lung and msLNs were profiled by plate-based scRNA-seq.

(C) Lung-specific gene expression programs include genes shared by, and uniq

(STARMethods) between cells from lung versus msLNs for Tregs and Tconvs (colum

genes. Bottom: cell expression scores for corresponding lung and LN signatures

(D) Lung cells show particular diversity. Diffusion component (DC) embedding of a

lung (bottom left) or msLN (bottom right) programs. Top right: distribution of DC

(E) Lung Tregs and Tconvs have highly correlated programs. Spearman’s correlation

and Treg programs (rows) (STAR Methods).
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Tissue-specific programs included both genes shared by lung

Tconvs and Tregs and genes uniquely upregulated in each (Fig-

ure 1C; Table S1). Lung Tregs expressed high levels of Il1rl1,

Cxcr4, Areg, and Klrg1 compared with msLN Tregs, whereas

Tconvs expressed Cd44, Ccr4, and Itgb1 (Figure 1C). Gene pro-

grams associated with a recently described transcriptional tra-

jectory of tissue-resident Tregs (Miragaia et al., 2019) were

consistent with those highlighted by our scRNA-seq profiles of

lung cells (Figure S1B). msLN Tregs and Tconvs expressed genes

associated with a naive or central memory phenotype, including

Lef1, Sell, and Ccr7 (Figures 1C and S1C), whereas lung cells

were more activated (Figure 1C). Subsets of lung Tconvs and Tregs
that scored high for the msLN signature also expressed genes

associated with T cell receptor (TCR) signaling, including

Nr4a1 and Junb, suggesting that they may be recently activated

(Figure S1C).

Both lung and msLN cells spanned a spectrum of cell states,

with lung cells showing higher diversity. This was apparent

when lung and msLN signature genes were used to create a

diffusion map (Figures 1D and S1D; STAR Methods; Haghverdi

et al., 2015).

Lung Tconv and Treg Subsets Share a Limited Number of
Expression Programs, Including a Th17-like Phenotype
To assess the different transcriptional programs of Tconv and Treg
subsets in the lung, we performed PAthway and Gene set Over-

Dispersion Analysis (PAGODA) (Fan et al., 2016) to identify

groups of genes with co-varying expression (STAR Methods;

Figures S1E and S1F; Table S2). The relative proportions of cells

expressing markers of different Tconv programs remained stable

during tumor development (Figure S1G). Tconv and Treg subsets

expressed several overlapping programs, including programs

associated with naive/resting T cells and IFN signaling

(Figure 1E).

Of the Tconv programs associated with effector CD4+ T cell

subsets, only the Th17 program was correlated with a Treg pro-

gram (program 13; Figure 1E). Program 13 marks Tregs that ex-

press Rorc and Il17a (Figure S1H), reminiscent of Th17-like

effector Tregs (Tr17), which are thought to inhibit Th17 responses

(Kim et al., 2017). By flow cytometry, RORgt+ Tregs comprise

�10% of lung Tregs throughout tumor development (Figure S1I).

Expression of program 13 and lung Treg signature genes was

inversely correlated (Figures S1J and S1K), suggesting that

Tr17-like cells represent a distinct state.

Remarkably, TCR clonotypes shared between Tregs and Tconvs
were predominantly Tr17-like and Th17-like cells, respectively.
and Overlapping Tconv and Treg Diversity

ghout KP tumor development from two to three experiments (dot: one mouse).

cant.

eks after tumor induction with Lenti-LucOS. 1,254 Tconvs and 1,679 Tregs from

ue to, Tconvs and Tregs. Genes (rows, row-normalized) differentially expressed

ns). Left black bars indicate significantly differentially expressed Treg and Tconv
. Color indicates cell type and tissue of origin.

ll cells (dots), colored by cell type and tissue of origin (top left), or Z score of the

scores.

coefficient (color bar) of Tconv expression Z scores for Tconv programs (columns)



Twelve TCR clonotypes were shared across Tregs and Tconvs
(Table S3; STAR Methods). Of the 19 Tregs and 20 Tconvs
belonging to these shared TCR clonotypes, 13 Tregs were Tr17-

like (Figures S1L and S1M). Due to the small number of identified

clonotypic families, no temporal trend could be reliably detected.

Overall, this suggests that Tr17 differentiation may reflect a

shared clonal origin with Th17 cells.

A Klrg1+Areg+ Effector-like Treg Program Becomes
Predominant during Tumor Development
In contrast with Tr17-like cells, which represented a fixed pro-

portion of lung Tregs during tumor development, other Treg pro-

grams changed in prominence over time (Figure 2A). After

8 weeks, there was decreased expression of programs 1, 3, 8,

and 9, which marked cycling cells (Figure 2A), corresponding

to the decline in Ki67+ Tregs (Figure 1A). Two other programs

also changed over time, reflecting an IFN response (programs

6 and 23; Figures 2A–2C; Figure S2A) and a Klrg1+Areg+ (KA)

effector-like program (programs 12 and 21; Figures 2A–2C; Fig-

ures S2A and S2B).

The IFN-responsive Treg program (‘‘IFNstim_TR’’) included

many IFN-stimulated genes (ISGs) downstream of either type I

or II IFN signaling. Twenty-eight genes from the IFNstim_TR

program were significantly downregulated in Tregs during tumor

progression (Figure S2C; STAR Methods). IFNg promotes a

T-bet+CXCR3+ Treg population that can suppress Th1 responses

(Hall et al., 2012; Koch et al., 2009, 2012). Neither Cxcr3 nor

Tbx21 are IFNstim_TR genes, but IFNstim_TR expression was

correlated with Tbx21 expression (Figure S2D). Moreover, cells

scoring highly for the IFNstim_TR program also scored highly

for a lymphoid tissue Treg program (Figure S2E), and msLN Tregs
had higher expression of IFNstim_TR genes compared with lung

Tregs at 12 and 20 weeks post induction (p.i.) (Figure S2F). Taken

together, Tregs expressing the IFN-responsive program

(‘‘IR Tregs’’) were most prevalent early in tumor development

and in msLNs, and may thus have recently arrived to the lung.

Meanwhile, the Klrg1+Areg+ effector-like Treg program

(‘‘KA_TR’’) included genes upregulated in Tregs from mouse

non-lymphoid tissues and human cancers (Figure S2E; STAR

Methods). Tregs expressing the KA_TR program (‘‘KA Tregs’’) ex-

pressed Ccr6, but not Cxcr3, representing a population distinct

from IR Tregs (Figure S2G). Klrg1 and Areg expression have

been associated with Treg differentiation and tissue repair,

respectively (Arpaia et al., 2015; Burzyn et al., 2013; Cheng

et al., 2012). 40% of lung Tregs from KP mice with advanced dis-

ease have been shown to be CD103+KLRG1+ (double-positive

[DP]) (Joshi et al., 2015). The KA_TR program was enriched for

genes upregulated in DP Tregs (Figures S2H and S2I; STAR

Methods), including genes associated with T cell activation

and putative Treg effector functions (e.g., Nr4a1, Cd69, Il1rl1,

Areg, Srgn, and Fgl2). KA and DP Tregs are highly similar and

are likely representative of a KLRG1+ effector Treg population.

The IR and KA Treg programs represented distinct Treg pheno-

types within each time point and followed opposite temporal pat-

terns: expression of IFNstim_TR genes was highest in cells from

week 5 and declined thereafter, whereas expression of KA_TR

genes increased and remained elevated (Figures 2A–2C). This

trend was reflected by individual genes: Cxcr3 expression
decreased, whereas Pdcd1 and Lilrb4 expression increased dur-

ing tumor development (Figure S2J). More generally, KA_TR

genes were upregulated in DP Tregs, whereas Cxcr3 and

IFNstim_TR genes were significantly downregulated (Figures

S2H andS2K). Indeed, CXCR3protein levels decreased, and pro-

teins encoded by KA_TR genes, including CD85k, CD69, CXCR6,

PD-1, and ST2, increased during tumor progression (Figure 2D).

Taken together, our data suggest that tumor progression may

be associatedwith a shift from the IR to KA Treg programs.We hy-

pothesize that the immunosuppression associated with late-

stage tumors may be because of the prevalence of KA Tregs.

ST2MayPromote theKATreg Phenotype inMice Bearing
Advanced Lung Tumors
Il1rl1, a KA_TR gene that encodes the interleukin-33 (IL-33) recep-

tor ST2, marked a heterogeneous Treg population that had higher

expression of KA_TR genes. ST2 was most highly expressed in

DP lung Tregs (Figure 3A), consistent with prior data that ST2marks

a tissueTreg program that expressesKLRG1andGATA3 (Delacher

et al., 2017). Il1rl1+ and Il1rl1� Tregs bothspanneda full spectrumof

cell states (Figure S3A) and had similar transcriptional diversity

(FigureS3B;STARMethods).Nevertheless, Il1rl1+ Tregs had higher

expressionofKA_TRandDPgenes and lower expressionof Th17-

like and resting Treg genes (Figures 3B, S3C, and S3D). Il1rl1+ Tregs
also had lower expression of IFNstim_TR genes compared with

Il1rl1� Tregs in non-tumor-bearing lungs (Figure S3C). Il1rl1+ and

Il1rl1� Tregs had similar expression of cell-cycle genes and Ki-67

(Figures S3C and S3E), suggesting that proliferation does not ac-

count for the observed differences in phenotype. Genes differen-

tially expressed between Il1rl1+ and Il1rl1� Tregs fromhuman colon

cancer were also enriched for KA_TR genes (Figure 3C; STAR

Methods). ST2 signaling may thus be a conserved pathway in hu-

man and mouse Tregs that promotes the KA/DP Treg phenotype

and/or the proliferation of KA/DP Tregs. Consistent with the pres-

ence of ST2 signaling throughout tumor development, IL-33, the

only known ligand of ST2, was highly expressed in normal lung

and in early and late KP tumors (Figure 3D). IL-33 was predomi-

nantly expressed on surfactant protein C (SPC+) type II epithelial

(AT2) cells in normal lung (Figure S3F), and AT2 andmesenchymal

cells in tumor-bearing lungs (Figure S3G), consistent with prior re-

ports (Treutlein et al., 2014).

ST2 protein was preferentially expressed by lung Tregs late in

tumor development. ST2 levels on lung Tregs increased with

time (Figure 2D), and ST2 was expressed primarily by Tregs,

with lower expression in CD8+ T cells and Tconvs (Figures 3E

and S3H). We hypothesized that the expansion of ST2+ Tregs
may drive the increase in KA/DP Tregs during lung tumor

development.

Treg-Specific ST2 Is Required for the Increase in DP Tregs

during Tumor Progression
To test whether ST2 signaling was necessary to develop the KA/

DP Treg response, we studied the effects of Treg-specific Il1rl1

deletion. We used a modified KP model, where FlpO recombi-

nase induces expression of oncogenic K-ras and loss of p53

(KPfrt: FSF-KrasG12D, p53frt/frt) (Lee et al., 2012), allowing us to

use the Cre-lox system to delete Il1rl1 in Tregs. We crossed KPfrt

and Foxp3YFP-Cre, Il1rl1fl/flmice tomodel lung adenocarcinoma in
Cell Reports 29, 2998–3008, December 3, 2019 3001
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Figure 2. A Klrg1+Areg+ Treg Phenotype Becomes Dominant during Tumor Development

(A) Changes in prominence of cycling, IFN-stimulated, and Treg effector-like programs with tumor development. Linear regression analysis of program expression

Z scores as a function of time since tumor initiation. Dot plot shows for each program (row) and time point (column) the coefficient of the time point covariate

(color scale) with non-tumor-bearing lung as reference and the percentage of cells with Z score > 1.5 (dot size).

(B and C) An IFN and a Klrg1+Areg+ effector-like program peak early and late in tumor development, respectively. Two-dimensional force-directed layout

embedding of lung Tregs colored by normalized program Z score for the KA_TR program (B, top, programs 12 and 21), IFNstim_TR program (B, bottom, programs

6 and 23), and time point (C).

(D) Percentage of Tregs expressing the indicated protein (y axis) throughout KP tumor development (x axis) from two to three experiments (dot: one mouse). Error

bars: SEM. **p < 0.01, ***p < 0.001, ****p < 0.0001, Tukey’s multiple comparisons test.
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Figure 3. ST2 Marks a Diverse Population of KA/DP Tregs in Lung Tumor-Bearing Mice

(A) ST2 is most highly expressed in DP lung Tregs. Representative distributions of ST2 expression on CD103�KLRG1� (DN, gray), CD103+KLRG1� (SP, blue), and

CD103+KLRG1+ (DP, red) Tregs isolated from tumor-bearing lungs.

(B) KA_TR genes are upregulated in Il1rl1+ Tregs throughout tumor development. Empirical cumulative distribution functions (ECDFs) of the scores of programs 12

(top) and 21 (bottom) of Il1rl1+ (blue) versus Il1rl1� Tregs (gray) by time point after tumor induction.

(C) Il1rl1+ Tregs in human colon cancer have higher expression of KA_TR genes. Overlap of genes upregulated in Il1rl1+ Tregs in human colon cancer (blue) and

programs 12 (top, p = 1.5 3 10�5) and 21 (bottom, p = 5.3 3 10�6) genes (STAR Methods). p values: hypergeometric test.

(D) IL-33 is highly expressed in lung adenocarcinoma. Immunohistochemistry (IHC) staining of tumor-bearing lungs from KP mice at weeks 13 and 22 p.i. with

Lenti-LucOS. Two representative images are shown per time point. Scale bar: 20mm.

(E) Lung Tregs are enriched for ST2+ cells in late-stage tumors. Percent ST2+ among lung andmsLN Tregs and Tconvs from tumor-bearing KPmice at week 20 p.i. as

measured by flow cytometry. Error bars: SEM. ****p < 0.0001, *p < 0.05, Tukey’s multiple comparisons test.
the setting of Treg-specific ST2 deficiency (Figure 4A). We in-

fected the mice with a lentivirus expressing FlpO recombinase

and GFP fused to Ova and SIYRGYYL (FlpO-GFP-OS) in order

to induce tumors that would express the same T cell antigens

as those in the LucOS model. Confirming Treg-specific recombi-

nation of the Il1rl1 locus, ST2 expression was unchanged in

CD8+ T cells and Tconvs (Figure S4A).

Early-stage KPfrt, Foxp3YFP-Cre, Il1rl1fl/fl (KPF-ST2FL) and

KPfrt, Foxp3YFP-Cre (KPF) mice had similar fractions of Tconvs
and Tregs (Figure S4B), but late in tumor progression KPF-

ST2FL mice had a lower proportion of Tregs, of which fewer

were DP Tregs (Figures 4B and 4C). Notably, DP Tregs from KPF

and KPF-ST2FL mice had similar Ki-67 expression, suggesting

that the decreased fraction of DP Tregs in KPF-ST2FL mice was

not due to impaired proliferation (Figure S4C). msLNs and

splenic Tregs did not have fewer DP Tregs (Figure S4D). Propor-

tions of Th1, Th17, CD8+ T cells, tumor antigen-specific CD8+

T cells, and alveolar macrophages were also comparable among

KPF-ST2FL mice and controls (Figures S4E–S4H).

Bulk RNA-seq of DP, single-positive (SP), and double-nega-

tive (DN) Tregs from KPF-ST2FL and KPF mice identified an

expression signature lower in KPF-ST2FL versus KPF Tregs and

highest among KPF DP Tregs (Figures 4D and S4I). The signature

was enriched for DP signature genes, includingDgat2, Furin, and

Nfkbia, genes preferentially expressed in Il1rl1+ Tregs (p = 1.2 3
10�13, hypergeometric test) and genes upregulated by Tregs in

human NSCLC (Figures S4J and S4K). KPF-ST2FL Tregs also

showed higher expression of some genes, including Itgb1, Il10,

Klf6, and Fos (Figure 4D), suggesting that they may adopt alter-

native phenotypes.

We hypothesized that KPF-ST2FL mice may have altered pro-

portions of Tr17-like and CXCR3+ Tregs. Indeed, CXCR3
+CCR6�

Tregs were increased, whereas CXCR3�CCR6+ Tregs were

decreased, in KPF-ST2FL mice compared with KPF mice (Fig-

ures 4E and S4L). However, RORgt expression was unchanged

(Figure S4M), suggesting that a CCR6+ Treg population exclusive

of Tr17-like cells decreases in KPF-ST2FL mice. Earlier in tumor

development, CXCR3+ Tregs from KPF-ST2FL mice also had

increased fluorescence intensity of CXCR3 (Figure S4N). Taken

together, our data support the hypothesis that ST2 regulates

Treg diversity over time by promoting the KA/DP Tregs over alter-

nate phenotypes.

Treg-Specific ST2 Ablation Leads to Increased CD8+

T Cell Infiltration and a Reduction in Tumor Burden
Tumors from KPF-ST2FL mice had >50% higher CD8+ T cell infil-

tration than tumors from KPF mice, resulting in higher CD8/Treg
ratios (Figure 4F). KPF-ST2FL mice also had a lower tumor

burden and smaller tumors compared with controls (Figures

4G and S4O), suggesting that greater CD8+ T cell infiltration of
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Figure 4. Treg-Specific ST2 Ablation Alters Treg Diversity and Enhances CD8+ T Cell Infiltration of Tumors

(A) Experiment overview. KPF and KPF-ST2FL mice were infected with FlpO-GFP-OS.

(B, C, and E) Flow cytometric analyses of KPF-ST2FL and KPF mice at 24–25 weeks p.i. All data are from two to three experiments; n = 3–5 mice per group.

Error bars: SEM.

(B) Percent Tregs (left) and Tconvs (right) of CD4
+ lung cells. *p < 0.05, two-tailed Student’s t test.

(C) Percent CD103�KLRG1+ (gray), DN (black), SP (blue), and DP (red) of Tregs. ****p < 0.0001, *p < 0.05, Sidak’s multiple comparisons test.

(D) Bulk RNA-seq identifies expression signature distinguishing KPF from KPF-ST2FL Tregs from tumor-bearing mice. Row-normalized expression (Z score) of

select signature genes (rows, STAR Methods) across Treg populations (columns, colored as in C).

(E) Percent CXCR3+CCR6� (left) and CXCR3�CCR6+ (right) of Tregs. **p < 0.01, two-tailed Student’s t test.

(F) Increased CD8+ T cell infiltration in KPF-ST2FL mice. CD8+ cells per tumor area (left) and CD8/Treg ratio (right) in pooled tumors from KPF-ST2FL and KPF mice

as measured by immunohistochemistry (IHC) staining of cross sections of tumor-bearing lungs. Error bars: SEM. **p < 0.01, ****p < 0.0001, Mann-Whitney test.

(G) Reduced tumor burden in KPF-ST2FL mice. Percent of total lung occupied by tumor (left, p = 0.0315) and average tumor size (right, p = 0.0106) in KPF-ST2FL

and KPF mice. Error bars: SEM. Mann-Whitney test was used.

NS, non-significant.
tumors may result in better inhibition of tumor growth. Moreover,

tumor infiltration by Foxp3+ T cells was also greater in KPF-ST2FL

mice (Figure S4P), supporting the hypothesis that loss of ST2

signaling encourages a pro-inflammatory Treg phenotype rather

than reducing Treg numbers. Overall, our study suggests that

Treg-specific inhibition of ST2 signalingmay result in a less immu-

nosuppressive tumor microenvironment characterized by

increased anti-tumor CD8+ T cell activity and lower tumor

burden.
3004 Cell Reports 29, 2998–3008, December 3, 2019
DISCUSSION

Mice with Treg-specific ST2 deficiency have impaired growth of

transplanted and chronic inflammation-associated tumors

(Ameri et al., 2019; Magnuson et al., 2018; Pastille et al., 2019).

We show in an autochthonousmousemodel of oncogene-driven

lung adenocarcinoma that Treg-specific ST2 loss altered Treg di-

versity and increased CD8+ T cell infiltration, suggesting that KA

Tregs curb anti-tumor CD8+ T cell activity. Lung CD8+ T cells



express low levels of ST2, suggesting that the observed pheno-

type is not due to increased ST2 signaling in CD8+ T cells.

Indeed, the proportion and phenotype of CD8+ T cells in KPF-

ST2FL mice are similar to that of control mice (data not shown).

Our data point to the potential value of disrupting ST2 signaling

in cancer, especially in concert with other immunotherapies

that improve CD8+ T cell function.

We observed a slight reduction in lung Tregs in KPF-ST2FL

mice, consistent with reports that IL-33 can stimulate TCR-inde-

pendent expansion of Tregs (Arpaia et al., 2015; Kolodin et al.,

2015). However, we did not find differences in proliferation be-

tween Tregs from KPF-ST2FL mice and controls. Instead, ST2-

deficient Tregs may adopt multiple alternate states because of

loss of IL-33 signaling. In contrast with a recent report that colon

ST2+ Tregs have lower expression of Th17-associated genes, and

that recombinant IL-33 inhibits Tr17 differentiation (Pastille et al.,

2019), KPF-ST2FL mice did not have a greater proportion of

RORgt+ or IL-17+ Tregs. Rather, loss of IL-33 signaling favored

a CXCR3+ phenotype, and DP Tregs from KPF-ST2FL mice had

lower expression of DP genes, suggesting that ST2 may help

regulate the KA/DP Treg phenotype. IL-33 has been shown to in-

crease expression of Foxp3 and GATA-3 (Kolodin et al., 2015;

Vasanthakumar et al., 2015), transcription factors critical for

Treg differentiation. KA/DP Tregs have similar features to previ-

ously described ‘‘tissue-protective’’ Tregs in muscle, lung, and tu-

mors (Arpaia et al., 2015; Burzyn et al., 2013; Green et al., 2017),

providing a basis for how ST2-mediated promotion of these Tregs
may aid tumor growth. Indeed, KA/DP Tregs express a program

similar to that of Tregs in human cancers (De Simone et al.,

2016; Guo et al., 2018), including TNFRSF9+ Tregs in human

NSCLC (Zheng et al., 2017).

CXCR3 directs Tregs to sites of Th1 inflammation (Koch et al.,

2009), whichmay explain the prominence of the IFNstim_TR pro-

gram during early tumorigenesis at the peak of CD8+ T cell tumor

infiltration and IFN signaling (DuPage et al., 2011). CXCR3 may

mark recently arrived Tregs that have distinct functions from KA

Tregs, and temporal shifts in IFNstim_TR and KA_TR gene

expression may reflect Treg adaptation to the tumor microenvi-

ronment over time. Alternatively, the decline in CXCR3+ Tregs
during tumor development may reflect cellular turnover and/or

outgrowth of KA Tregs because of reduced IFN even as IL-33 re-

mains abundant. Increased expression of CXCR3 in Tregs in KPF-

ST2FL mice compared with controls suggests that loss of IL-33

signaling results in greater IFN signaling, which is likely associ-

ated with enhanced infiltration of tumors by CD8+ T cells, a major

source of IFNg (data not shown). Differential expression of

CXCR3 and CCR6 also suggests that Treg localization may be

altered in KPF-ST2FL mice, consistent with greater Foxp3+ cell

infiltration observed in their tumors. Several reports have

described an IFN signature or a distinct population of CXCR3+

Tregs in human tumors, although their significance is not well

defined (Halim et al., 2017; Johdi et al., 2017; Redjimi et al.,

2012).

Longitudinal scRNA-seq in the KP model provides a window

into the natural history of Tconv and Treg diversity in cancer that

is challenging to achieve using bulk populations or patient

samples. Tr17-like, IFN-responsive, and KA/DP effector Treg
populations have been described previously in human tumors,
and we show that these states exist simultaneously and their

relative proportions vary with tumor development and ST2

activity. Moreover, loss of ST2 signaling in Tregs can alter

Treg composition and ultimately impact tumor growth.

Although Treg transcriptional heterogeneity may pose a chal-

lenge for targeting tumor Treg activity, our study provides

proof of concept that pathways that control Treg diversity,

maturation, and function may be useful targets for future

therapies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

KLRG1 2F1 PE-Cy7 Thermo Fisher RRID: AB_1518768

CD103 2E7 APC BioLegend RRID: AB_1227502

CD4 RM4-5 APC-eFluor780 Thermo Fisher RRID: AB_1272183

Foxp3 FJK-16 s FITC Thermo Fisher RRID: AB_465243

IL-17 eBio17B7 PerCP-Cy5.5 Thermo Fisher RRID: AB_925753

CD44 IM7 Alexa Fluor 700 Thermo Fisher RRID: AB_494011

CD62L MEL-14 eFluor450 Thermo Fisher RRID: AB_1963590

CCR6 29-2L17 PE/Dazzle 594 BioLegend RRID: AB_2687019

RORgt Q31-378 Alexa Fluor 647 BD Biosciences RRID: AB_2738916

T-bet O4-46 PE BD Biosciences RRID: AB_10564071

PD-1 J43 PE-Cy7 BioLegend RRID: AB_572017

CD69 H1.2F3 BV785 BioLegend RRID: AB_2629640

CXCR3 CXCR3-173 BV421 BD Biosciences RRID: AB_10900974

ST2 U29-93 Brilliant Blue 700 BD Biosciences RRID: AB_2743483

CD85k H1.1 PE Biolegend RRID: AB_2561653

Ki-67 B56 BV786 BD Biosciences RRID: AB_2732007

CD45.2 104 V500 BD Biosciences RRID: AB_10897142

Thy1.2 30-H12 APC-eFluor780 Thermo Fisher RRID: AB_1272187

CD103 2E7 BV510 BioLegend RRID: AB_2562713

CD4 RM4-5 BUV737 BD Biosciences RRID: AB_2738734

CD8a 53-6.7 BUV395 BD Biosciences RRID: AB_2739421

CD45 30-F11 PE-CF594 BD Biosciences RRID: AB_11154401

CD45 30-F11 APC-Ef780 Thermo Fisher RRID: AB_1548781

CXCR6 SA051D1 PE/Dazzle 594 Biolegend RRID: AB_2721700

KLRG1 2F1 BV711 BioLegend RRID: AB_2629721

CD11c HL3 PE-Cy7 BD Biosciences RRID: AB_469590

Siglec F E50-2440 PE BD Biosciences RRID: AB_394341

CD4 RM4-4 PE Biolegend RRID: AB_313691

CD8b eBioH35-17.2 PE Thermo Fisher RRID: AB_657768

IHC and IF: Goat anti-mouse IL-33 R&D Biosystems RRID: AB_884269

IHC: Rat anti-mouse CD8alpha Thermo Fisher RRID: AB_2637159

IF: Rabbit anti-mouse proSP-C Millipore RRID: AB_91588

Chemicals, Peptides, and Recombinant Proteins

Recombinant mouse IL-33 BioLegend Biolegend 580506

Cell Stimulation Cocktail Thermo Fisher Cat: 00-4970-03

SIINFEKL-Kb monomer NIH Tetramer Core

Critical Commercial Assays

Thru-Plex-FD Library Prep Kit Rubicon Genomics

Nextera XT Library Prep Kit Illumina FC-131-1096

Deposited Data

Bulk and single cell RNA sequencing GEO GEO: GSE139232
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Mouse: B6.129S4-Krastm4Tyj/J RRID: IMSR_JAX:008179

Mouse: B6.129P2-Trp53tm1Brn/J Jackson Laboratory RRID: IMSR_JAX:008462

Mouse: C57BL/6-Foxp3tm1Flv/J RRID: IMSR_JAX:008374

Mouse: Foxp3tm1Kuch Bettelli et al., 2006 MGI:3718527

Mouse: B6.129(Cg)-Foxp3tm4(YFP/icre)Ayr/J Jackson Laboratory RRID: IMSR_JAX:016959

Mouse: Il1rl1tm1.1Rlee Chen et al., 2015 MGI:5818148

Oligonucleotides

See Table S7. This paper N/A

Recombinant DNA

Plasmid: Lenti-LucOS Addgene Addgene_22777

Plasmid: pGK::GFP-LucOS::EFS::FlpO (FlpO-GFP-OS) This paper Available upon request

Software and Algorithms

Code generated for this study This paper Available upon request

SCDE Fan et al., 2016 http://hms-dbmi.github.io/scde/

Bowtie Langmead et al., 2009 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

RSEM v1.2.8 Li and Dewey, 2011 https://bmcbioinformatics.biomedcentral.com/

articles/10.1186/1471-2105-12-323

JADE v1.1.0 Miettinen et al. 2017 https://cran.r-project.org/web/packages/

JADE/index.html

Tracer Stubbington et al., 2016 https://github.com/Teichlab/tracer

Gephi Bastian et al., 2009 https://gephi.org

EnrichmentMap (Cytoscape) Merico et al., 2010 https://www.cytoscape.org

QuPath Bankhead et al., 2017 https://qupath.github.io/

Prism GraphPad
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Tyler

Jacks (tjacks@mit.edu). Plasmids generated in this study are being submitted to Addgene. All unique/stable reagents generated

in this study are available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
KP, KPfrt, Foxp3GFP, Foxp3RFP, Foxp3YFP/Cre, and Il1rl1fl/fl mice, all on a C57BL/6 background, have been previously described (Bet-

telli et al., 2006; Chen et al., 2015; DuPage et al., 2011; Rubtsov et al., 2008;Wan and Flavell, 2005; Young et al., 2011). Bothmale and

female mice were used for all experiments, and mice were gender and age-matched within experiments. Experimental and control

mice were co-housed whenever appropriate. All studies were performed under an animal protocol approved by the Massachusetts

Institute of Technology (MIT) Committee on Animal Care. Mice were assessed formorbidity according toMIT Division of Comparative

Medicine guidelines and humanely sacrificed prior to natural expiration.

METHOD DETAILS

Mouse studies
For in vivo labeling of circulating immune cells, anti-CD4-PE (eBioscience, RM4-4, 1:400) and anti-CD8b-PE (eBioscience, 1:400)

were diluted in PBS and administered by IV injection 5 minutes before harvest (Anderson et al., 2012). Alternatively, anti-CD45-

PE-CF594 (30-F11, BDBiosciences, 1:200) was also used for intravascular labeling andwas administered 2minutes before sacrifice.
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Lentiviral production and tumor induction
The lentiviral backbone Lenti-LucOS has been described previously (DuPage et al., 2011). Lentiviral plasmids and packaging vectors

were prepared using endo-free maxiprep kits (QIAGEN). The pGK::GFP-LucOS::EFS::FlpO lentiviral plasmid was cloned using

Gibson assembly (Akama-Garren et al., 2016; Gibson et al., 2009). Briefly, GFP-OS was created as a protein fusion of GFP and oval-

bumin257-383, which includes the SIINFEKL and AAHAEINEA epitopes, and SIYRYYGL antigen. Lentiviral plasmids and packaging

vectors were prepared using endo-free maxiprep kits (QIAGEN). Lentiviruses were produced by co-transfection of 293FS* cells

with Lenti-LucOS or FlpO-GFP-OS, psPAX2 (gag/pol), and VSV-G vectors at a 4:3:1 ratio, respectively, with Mirus TransIT LT1 (Mirus

Bio, LLC). Virus-containing supernatant was collected 48 and 72h after transfection and filtered through 0.45mm filters before con-

centration by ultracentrifugation (25,000 RPM for 2 hours with low decel). Virus was then resuspended in 1:1 Opti-MEM (GIBCO) -

HBSS. Aliquots of virus were stored at �80�C and titered using the GreenGo 3TZ cell line (Sánchez-Rivera et al., 2014).

For tumor induction, mice between 8-15 weeks of age received 2.5 x104 PFU of Lenti-LucOS or 4.5 3 104 PFU of FlpO-GFP-OS

intratracheally as described previously (DuPage et al., 2009).

Tissue isolation and preparation of single cell suspensions
After sacrifice, lungs were placed in 2.5mL collagenase/DNase buffer (Joshi et al., 2015) in gentleMACS C tubes (Miltenyi) and pro-

cessed using program m_impTumor_01.01. Lungs were then incubated at 37�C for 30 minutes with gentle agitation. The tissue sus-

pension was filtered through a 100 mm cell strainer and centrifuged at 1700 RPM for 10 minutes. Red blood cell lysis was performed

by incubation with ACK Lysis Buffer (Life Technologies) for 3 minutes. Samples were filtered and centrifuged again, followed by re-

suspension in RPMI 1640 (VWR) supplemented with 1% heat-inactivated FBS and 1X penicillin-streptomycin (GIBCO), and 1X

L-glutamine (GIBCO).

Spleens and lymph nodes were dissociated using the frosted ends of microscope slides into RPMI 1640 supplemented with 1%

heat-inactivated FBS and 1X penicillin-streptomycin (GIBCO), and 1X L-glutamine (GIBCO). Spleen cell suspensions were spun

down at 1500 RPM for 5 minutes, and red blood cell lysis with ACK Lysis Buffer was performed for 5 minutes. Cells were filtered

through 40 mm nylon mesh and, after centrifugation, resuspended in supplemented RPMI 1640. Lymph node suspensions were

filtered through a 40 mm nylon mesh, spun down at 1500 RPM for 5 minutes, and resuspended in supplemented RPMI 1640.

For ex vivo T cell stimulation experiments to detect intracellular cytokines, 0.53 105 cells were plated in a 96-well U-bottom plate

(BD Biosciences) in RPMI 1640 (VWR) supplemented with 10% heat-inactivated FBS, 1X penicillin-streptomycin (GIBCO), 1X

L-glutamine (GIBCO), 1X HEPES (GIBCO), 1X GlutaMAX (GIBCO), 1mM sodium pyruvate (Thermo Fisher), 1X MEM non-essential

amino acids (Sigma), 50mM b-mercaptoethanol (GIBCO), 1X Cell Stimulation Cocktail (eBioscience), 1X monensin (BioLegend),

and 1X brefeldin A (BioLegend). Cells were incubated in a tissue culture incubator at 37�C with 5% CO2 for 4 hours.

Staining for flow cytometric analysis
Approximately 0.5-13 106 cells were stained for 15-30minutes at 4�C in 96-well U-bottom plates (BDBiosciences) with directly con-

jugated antibodies (Table S7). SIINFEKL-Kb tetramer was prepared using streptavidin-APC (Prozyme) and SIINFEKL-Kb monomer

from the NIH Tetramer Core.

After staining, cells were fixed with Cytofix/ Cytoperm Buffer (BD). Samples that were destined for Foxp3 or other transcription

factor staining were fixed with the Foxp3 Transcription Factor Staining Buffer Kit (eBioscience). Intracellular cytokine and transcrip-

tion factor stainingwere performed right before analysis using either the BDPerm/Wash Buffer (BD) or the Foxp3 Transcription Factor

Staining Buffer Kit (eBioscience); staining was performed for 45 minutes at 4�C. Analysis of Tregs (i.v.negCD4+Foxp3+) and Tconv
(i.v.negCD4+Foxp3-) was performed on an LSR II (BD) with 405, 488, 561, and 635 lasers. Data analysis was performed using FlowJo

software.

Isolation of Treg populations for bulk RNA-Seq
For sequencing of CD103-KLRG1- (DN), CD103+KLRG1- (SP), andCD103+KLRG1+ (DP) Tregs: 100-200DP, SP, andDNTreg cells from

LucOS-infected, KP, Foxp3RFPmice were sorted using aMoFlo Astrios cell sorter. cDNAwas prepared by the SMART-Seq2 protocol

(Picelli et al., 2013) with the following modifications: RNA was purified using 2.2X RNAclean SPRI beads (Beckman Coulter) without

final elution, after which beads were air-dried and immediately resuspended with water and oligoDT for annealing, and 18 cycles of

preamplification were used for cDNA. cDNA was then mechanically sheared and prepared into sequencing libraries using the Thru-

Plex-FD Kit (Rubicon Genomics). Sequencing was performed on an Illumina HiSeq 2000 instrument to obtain 50 nt paired-end reads.

For comparison of KPF and KPF-ST2FL Tregs: 100-200 DP, SP, and DN Tregs were sorted into Buffer TCL (QIAGEN) plus 1% b-mer-

captoethanol and cDNA was prepared with 14 cycles of preamplification. Nextera library preparation was performed as previously

described (Picelli et al., 2013) and sequencing was performed with 50 3 25 paired end reads using two kits on the NextSeq500 5

instrument.
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Single-cell sorting of Tconv and Treg populations for RNA sequencing
Tconv (DAPI

neg, i.v.neg, Thy1.2+CD4+Foxp3-GFPneg) and Treg (DAPI
neg, i.v.neg, Thy1.2+CD4+Foxp3-GFPpos) cells were isolated from�4

mice per time point and single-cell sorted into Buffer TCL (QIAGEN) plus 1% b-mercaptoethanol in 96-well plates using a MoFlo As-

trios cell sorter. Each plate had a 30-100 cell population well and an empty well as controls. Following sorting, plates were spun down

for 1’’ at 2000 RPM and frozen immediately at �80C.

Droplet-based scRNA-seq of CD45+ and CD45- populations from tumor-bearing lungs
Tumors were microdissected under dissection microscope and dissociated into single cell suspensions as previously described.

Samples were pelleted at 1700 RPM for 5 minutes and resuspended in 500ul of MACS buffer containing PBS, 0.5% bovine serum

albumin (BSA), and 2mM EDTA. CD45+ and CD45- cells were then magnetically separated using MACS CD45 MicroBeads (Miltenyi

Biotec) as per manufacturer’s instructions. Briefly, cells were stained with CD45 MicroBeads for 15 minutes at 4�C. Samples were

washedwithMACS buffer and pelleted at 1700rpm for 5minutes. Samples were resuspended in 1ml ofMACS buffer and added to LS

MACS column on LS Separator magnet (Miltenyi Biotec). Flow throughwas collected as CD45- population. Columns werewashed 3x

withMACS buffer and flow-throughwas added to CD45- population. 5ml of MACS buffer was then then added to column, the column

was removed from the magnet, and cells were expelled from column into conical using plunger; this was the CD45+ sample. CD45+

and CD45- samples were pelleted at 1700RPM for 5 minutes and resuspended in PBS with 0.01%BSA before proceeding to droplet

based scRNaseq.

Single cells were processed through the 10XGenomics Single Cell 30 platform using the ChromiumSingle Cell 30 Library &Gel Bead

Kit V2 kit (10X Genomics), per manufacturer’s protocol. Briefly, 6,000 cells were loaded onto each channel and partitioned into Gel

Beads in Emulsion in the Chromium instrument. Cell lysis and barcoding occur, followed by amplification, fragmentation, adaptor

ligation and index library PCR. Libraries were sequenced on an Illumina HiSeqX at a read length of 98 base pairs.

Preparation of scRNaseq libraries
Plates were thawed and RNA was purified using 2.2X RNAclean SPRI beads (Beckman Coulter) without final elution (Shalek et al.,

2013). SMART-seq2 and Nextera library preparation was performed as previously described (Picelli et al., 2013), with some modifi-

cations as described in a previous study (Singer et al., 2017). Plates were pooled into 384 single-cell libraries, and sequenced 503 25

paired end reads using a single kit on the NextSeq500 5 instrument.

Quantitative PCR for validation of RNA-Seq experiments
Quantitative PCR was performed using various primer sets (Table S7). 1ng of cDNA generated using SMART-Seq2 was included in a

reaction with 1mL of each primer (2mM stock) and 5mL of KAPA SYBR Fast LightCycler 480 (KAPA Biosystems). Cp values were

measured using a LightCycler 480 Real-Time PCR System (Roche). Relative fold-change in expression values were calculated using

the following formula: 2(DCp(Sample) - DCp(Spleen)), where DCp(Sample) = Sample CpGene of Interest - Sample CpGAPDH, and DCp(Spleen) =

Spleen CpGene of Interest - Spleen CpGAPDH.

Immunohistochemistry (IHC) and immunofluorescence staining
Lung lobes and spleens allocated for IHC and IF were perfused with 4% paraformaldehyde in PBS and fixed overnight at 4�C. Lung
lobes and/ or spleen were transferred to histology cassettes and stored in 70% ethanol until paraffin embedding and sectioning (KI

Histology Facility). H&E stains were performed by the core facility using standard methods.

For IHC, 5 mm unstained slides were dewaxed, boiled in citrate buffer (1 g NaOH, 2.1 g citric acid in 1L H2O, pH 6), for 5 minutes at

125�C in a decloaking chamber (Biocare Medical), washed with 3X with 0.1% Tween-20 (Sigma) in TBS, and blocked and stained in

Sequenza slide racks (Thermo Fisher). Slides were blocked with Dual Endogenous Peroxidase and Alkaline Phosphatase Block

(Dako) and then with 2.5% Horse Serum (Vector Labs). Slides were incubated in primary antibody overnight, following by washing

and incubation in HRP-polymer-conjugated secondary antibodies (ImmPRESS HRPmouse-adsorbed anti-rat and anti-goat, Vector

Laboratories). Slides were developed with ImmPACT DAB (Vector Laboratories). Primary antibodies used were goat anti-IL-33 (R&D,

AF3626), rat anti-CD8a (Thermo Fisher, 4SM16), and rat anti-Foxp3 (Thermo Fisher, FJK-16 s). Stains were counterstained with

hematoxylin using standard methods before dehydrating and mounting.

After fixation, lung lobes and spleen allocated for IF were perfused with 30% sucrose in PBS for cryoprotection for 6-8h at 4�C.
Tissues were then perfused with 30% optimum cutting temperature (O.C.T.) compound (Tissue-Tek) in PBS and frozen in 100%

O.C.T in cryomolds on dry ice. 6mm sections were cut using a CryoStar NX70 cryostat (Thermo), and air-dried for 60-90 minutes

at room temperature. Sections were incubated in ice-cold acetone (Sigma) for 10 minutes at �20�C and then washed 33 5 minutes

with PBS. Samples were permeabilized with 0.1% Triton X-100 (Sigma) in PBS followed by blocking with 0.5% PNB in PBS (Perkin

Elmer). Primary antibodies were incubated overnight. Primary antibodies used were rabbit anti-prosurfactant protein C (SPC) (Milli-

pore, AB3786, 1:500) and goat anti-IL-33 (R&D, AF3626, 1:200). After washing 3 3 5 minutes, samples were incubated in species-

specific secondary antibodies conjugated to Alexa Fluor 568 and Alexa Fluor 488, respectively, at 1:500. Sections were then fixed in

1% PFA and mounted using Vectashield mounting media with DAPI (Vector Laboratories).
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Immunohistochemistry and immunofluorescence tissue section images were acquired using a Nikon 80 Eclipse 80i fluorescence

microscope using 10x and 20x objectives and an attached Andor camera. Stained IHC slides were scanned using the Aperio

ScanScope AT2 at 20X magnification.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bulk RNA-seq data pre-processing
Bulk RNA-Seq reads that passed quality metrics were mapped to the annotated UCSC mm9 mouse genome build (http://genome.

ucsc.edu/) using RSEM (v1.2.12) (http://deweylab.github.io/RSEM/) (Li and Dewey, 2011) using RSEM’s default Bowtie (v1.0.1) align-

ment program (Langmead et al., 2009). Expected read counts estimated from RSEM were upper-quartile normalized to a count of

1000 per sample (Bullard et al., 2010). Genes with normalized counts less than an upper-quartile threshold of 20 across all samples

were considered lowly expressed and excluded from further analyses to increase the robustness of signature scoring, as previously

described (Rau et al., 2013; Sha et al., 2015). As outlined below, signature analyses were conducted either on a log2 transformed

version of the filtered gene expressionmatrix to overcome data skewness, or on the non-transformed version for increased sensitivity

by avoiding compression of weaker signals (Ashour et al., 2015; Singh and Shree, 2016).

Signature analysis in bulk RNA-Seq
Signature analyses between bulk Treg cell populations were performed using a blind source separation methodology based on Inde-

pendent Component Analysis (ICA) (Hyvärinen and Oja, 2000), using the R implementation of the core JADE algorithm (Joint Approx-

imate Diagonalization of Eigenmatrices) (Biton et al., 2014; Miettinen et al., 2017; Rutledge and Jouan-Rimbaud Bouveresse, 2013)

along with custom R utilities. Multi-sample signatures were visualized using relative signature profile boxplots (Li et al., 2018). Heat-

maps were generated with the Heatplus package in R using agglomerative hierarchical clustering with default euclidean distance

measure, Ward’s minimum variance method for row-clustering, and complete linkage for column clustering (Figures 4D and S2H).

DP Treg signature
We identified a signature distinguishing CD103+KLRG1+ lung Tregs from other populations. The non-transformed expression matrix

was decomposed using ICA with the JADE algorithm (described above) as: E = AS where E is the expression matrix (input), A is the

mixing matrix (mixing weights, basis vectors), and S is the signature matrix (independent components or latent variables yielding

standardized gene-scores per signature). Biologically relevant signatures were identified through two approaches: (1) Quantitative

assessment of significance using a 2-sample Mann-Whitney-Wilcoxon non-parametric test between mixing weights (from A)

grouped by biological condition per signature; and (b) visual inspection of a Hinton plot derived from the mixing matrix A. Corre-

sponding signatures from S were selected for downstream analyses. Up and down genes per signature were selected using a |

gene-score| > = 3 threshold (standardized score, #s.d. above/below mean). Genes with |z-score| > 3 were selected for downstream

analysis (75 upregulated and 31 downregulated genes). An additional expression level filter was implemented to narrow the list of

genes of interest. For upregulated genes, expression in all CD103+KLRG1+ lung Treg samples had to be greater than all but a

maximum of 3 other samples (3 out of a total 8 other samples). A similar filtering scheme was employed in the other direction for

downregulated genes. This yielded a total of 43 upregulated and 2 downregulated genes in CD103+KLRG1+ lung Tregs. This set of

genes was used to illustrate gene expression level changes across samples (Figure S2H).

ST2-deficient Tregs Signature
A signature distinguishing ST2-deficient Tregs fromwild-type Tregs (Table S5) was identified using ICA on the non-transformed expres-

sion matrix. To identify particular genes of interest, signature genes (|z-score| > 3) were filtered to include only genes that had an ab-

solute fold change exceeding 1.5x within any of the CD103+KLRG1+ (DP), CD103+KLRG1- (SP), CD103-KLRG1- (DN) sample types

between wild-type and ST2-deficient Tregs. These gene lists were further filtered to retain only those genes that appeared in at least

two of the three sample types (i.e., up/downregulated in wild-type or ST2-deficient in at least two of DP/DN/SP comparisons). Genes

with opposite directionality across the three sample types (n = 5 genes) were dropped. Expression levels of the resulting curated set

of 14 genes were visualized using a row-normalized heatmap (Figure 4D). Signature correlation scores (z-scores) for each gene are

included in Table S5.

Gene Set Enrichment Analysis (GSEA)
Selected signatures (from S) were run through the Gene Set Enrichment Analysis (GSEA) using the rank-based input format. All genes

per signature were used, ranked by gene-scores from S. We used gene-sets from MsigDB v5.1 (Subramanian et al., 2005). Custom

gene set additions were made to version 4.0 of the MSigDB immunologic signatures library (c7) (Table S6). Normalized Enrichment

Score (NES), p values and FDR for the custom gene-sets were calculated in the context of the combined c7 v4.0 MSigDB collection.

Network representations of GSEA results were generated using EnrichmentMap (http://www.baderlab.org/Software/

EnrichmentMap) for Cytoscape v3.3.0 (https://www.cytoscape.org/).
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Pre-processing of SMART-Seq2 scRNA-seq data
BAM files were converted to de-multiplexed FASTQs using the Illumina-provided Bcl2Fastq software package v2.17.1.14. Paired-

end readsweremapped to the UCSCmm10mouse transcriptome using Bowtie with parameters ‘-n 0 -m 10’, which allows alignment

of sequences with zero mismatches and allows for multi-mapping of a maximum of ten times.

Expression levels of genes were quantified using TPM values calculated by RSEM v1.2.8 in paired-end mode. For each cell, the

number of detected genes (TPM > 0) was calculated and cells with less than 600 or more than 4,000 genes detected were excluded

as well as cells that had a mapping rate to the transcriptome below 15%. To further remove potential doublets (mostly of B cells and

epithelial cells), we calculated the sum log2(TPM+1) over Cd79a, Cd19, Lyz1, Lyz2 and Sftpc, and excluded any cell that scored

higher than 3. We retained only genes expressed above log2TPM of 3 in at least five cells in the whole dataset.

Since we could not sort for Treg for two of the mice (#336 and #338), we had to infer which cells are Tregs from these data. To this

end, we trained a random forest classifier for mice for which we have sorted both Tconv and Tregs, using the train function from the

caret package in R, based on the expression of the following genes: Foxp3, Ikzf2, Areg, Il1rl1, Folr4, Wls, Tnfrsf9, Klrg1, Il2ra,

Dusp4, Ctla4, Neb, Itgb1, and Cd40lg. The labeled data was partitioned into training and test sets. The model has a sensitivity

and specificity above 90% in cross validation. We then applied the classifier on the unlabeled data and cells with a probability above

0.6 to be either Tconv or Treg were given the corresponding label. The remaining 4% of cells were discarded as unambiguous.

Identifying tissue-specific gene programs for Treg and Tconv

To identify genes that are differentially expressed between lung and msLN in Treg and/or Tconv, we performed a regression analysis.

We focused on the proportion of cells expressing a gene, and hence on logistic regression. We performed logistic regression using

the bayesglm function from the arm package in R, including only those mice (# 338, #3642, #3839, #3889) for which we had matched

cells from both lung and msLN, as well as for Treg and Tconv, and excluding all genes expressed in > 95% or < 5% of cells in lung and

msLN. We ran the logistic regression with expression data binarized at a log2(TPM+1) of 2 and using the following full model: gene

expression �genes detected + batch effect + tissue versus a reduced model: gene expression �genes detected + batch effect. We

corrected for multiple hypothesis by computing an FDR of the likelihood ratio test p value, and retained genes as differentially ex-

pressed between lung and msLN with p < 10�5 and an |coefficient| > 2.

Comparing the extent of cell heterogeneity between lung and msLN
Diffusion components were calculated on a gene expression matrix limited to genes that were differentially expressed between lung

and msLN using the DiffusionMap function from the destiny package in R (Angerer et al., 2016) with a k of 30 and a local sigma. In

order to be able to compare the variance in distributions in diffusion component 1 and 2 between lung andmsLN Treg/Tconv, we down-

sampled the cells from the lung to the (lower) numbers of cells from the msLN. To test for significant differences in variance in the

distributions of lung and msLN Treg/Tconv, we used Levene’s test for the equality of variances on the distributions of the coefficients

of the downsampled cells in each of diffusion components 1 and 2.

Identifying gene programs and their time dependence
Gene programs were identified using PAGODA using the scde R package version 2.6.0. (Fan et al., 2016) on the counts table from

RSEM after cleaning the data using the clean.counts function (min.lib.size = 600,min.detected = 5). The knn.error.model function was

run using a k of 30, which is much lower than default, but yields statistically indistinguishable results from the default k (# cells / 4). We

then ran the pagoda.varnorm to normalize gene expression variance, and the pagoda.subtract.aspect function to control for

sequencing depth which then allowed us to run pagoda.gene.clusters which identifies de-novo correlated genes in the dataset.

We forced PAGODA to return 100 programs. We identified programs with a significance z.score above 1.96. We removed several

highly significant newly identified gene programs consisting of paralog groupswith high expression correlation, likely because ofmul-

timapping of reads.

Mean program expression was calculated by averaging over the genes in each program of the centered and scaled gene expres-

sion table and transforming to a z-score over 1,000 randomly selected gene sets with matched mean-variance patterns. First, genes

were grouped into 10 bins based on their mean expression, and into 10 (separate) bins based on their variance of expression across

all cells. Given a list of genes (e.g., genes in a program), a cell-specific signature score was computed for each cell as follows: First,

1,000 random gene lists were generated, where each instance of a random gene-list was generated by sampling (with replacement)

for each gene in the gene-list a gene from the equivalent mean and variance bin it was placed in. Then, the sum of centered and

scaled gene expression in the given cell was computed for all 1000 random gene-lists generated and the z-score of the original

gene-list for the generated 1,000 sample distribution is returned, as in (Singer et al., 2017).

Another program of highly correlated genes identified by PAGODA showed no biological relevance based on gene annotation, but

was associated with cells processed on specific dates, suggested they reflect a contamination or batch effect. We scored each cell

for this program with the above described method for scoring cells for gene signatures. When testing for differential gene expression

over tumor development (described below), we included this batch effect score as a covariate in the regression analysis to control for

genes that are correlated with it.

To test if a program’s expression changes over the course of tumor development, we estimated a linear model for each

program and compared with a likelihood ratio test a full model: program.activity �detected genes + time point to a reduced
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model: program.activity �detected genes. For the time point covariate, healthy lung was taken as reference. We corrected the likeli-

hood ratio test p values for multiple hypotheses for the number of programs using the p.adjust function computing the false discovery

rate in the stats package.

Dimensionality reduction using diffusion component analysis
Diffusion components were calculated on a gene expressionmatrix limited to genes from programs of interest: programs 1,4,5,14,15

and 21 for Tconv, and programs 1,3,6,8,9,12,13,18,21,23 and 26 for Treg. Gene expression was scaled for Tregs only across all cells.

Diffusion components were calculated using the DiffusionMap function from the destiny package in R (Angerer et al., 2016) with a k of

30 and a local sigma. Significant diffusion components identified by the elbow in the eigenvalues were further used for dimensionality

reduction to two dimensions. The eigenvectors of the significant diffusion components were imported into gephi 0.9.2 and a force

directed layout using forceatlas 2 was run until it converged to get a two dimensional embedding.

Testing for differential gene expression during tumor development
To test whether individual genes change in gene expression over the course of tumor growth, we performed a two-step regression

analysis. We focused on the proportion of cells expressing a gene, and hence on logistic regression. We performed logistic regres-

sion using the bayesglm function from the arm package in R. Because gender is often confounded with a particular time point in our

experiment, we did not include it as a covariate in the model, but did remove all Y chromosome genes from analysis. We also

excluded all genes expressed in > 95% or < 5% of cells in each mouse. We ran the logistic regression with expression data binarized

at a log2(TPM+1) of 2 and using the following full model: gene expression�genes detected + batch effect + week p.i. (healthy lung as

reference) versus a reducedmodel: gene expression�genes detected + batch effect.We identified a threshold for significance by the

elbow method, identifying the peak of the second derivative of the ordered fdr distribution of the likelihood ratio test for each time

point. To remove significant genes whose signal was driven by only one mouse, we performed another logistic regression using a

mixed effect model, accounting for mouse variability: To this end, we added to the significant genes 1,000 randomly selected genes

that were non-significant by the initial test to serve as background genes, and performed a mixed effect logistic regression using the

glmer function of the lme4 package in R, with the model gene expression�tmp + (1|mouse), allowing the intercept to vary by mouse.

We combined the elbow method above and the background genes to select an FDR cutoff for significance of 0.01. A gene was clas-

sified as significantly varying during tumor development if it passed this FDR cutoff in at least one time point.

T cell receptor (TCR) reconstruction and clonotype calling
TCRwere reconstructed using Tracer (Stubbington et al., 2016), run in short readmodewith the following settings ‘–inchworm_only =

T–trinity_kmer_length = 17’. To call shared clonotypes between Treg and Tconv cells, we required all cells of a clone to have identical

productive TCRA and TCRB.

Comparison of bulk and scRNA-seq signatures to published signatures
Lists of differentially expressed genes in human cancer Tregs, mouse tissue Tregs, Tr17 cells from mice, and mouse activated Tregs
(Table S4) were collected either from the supplementary tables of the relevant publications, or generously provided by the authors

upon request (De Simone et al., 2016; Guo et al., 2018; Kim et al., 2017;Magnuson et al., 2018;Miragaia et al., 2019; Plitas et al., 2016;

Tan et al., 2016; Zheng et al., 2017).

ST2 transcriptional programs in human colorectal cancer Tregs

To examine the generalizability of our findings and their relevance to human cancer, we identified gene programs that co-vary with

ST2 expression in human colorectal cancer Tregs (Zhang et al., 2018). We compared cells in which ST2 was detected (ST2+) and cells

in which ST2 was not detected (ST2-) to identify an ST2+ program. Differential expression analysis was performed using t test on the

log-transformed TPM values. We confirmed that the program was not confounded by cell quality and ensured that it captured dif-

ferences between ST2+ and ST2- cells within each tumor (data not shown). To this end, we first computed the overall expression

(OE) of the program across the relevant T cells, in a way that eliminates technical noise, as previously described (Jerby-Arnon

et al., 2018). We then tested whether the OE of the program was higher in ST2+ cells compared to ST2- by using a mix-effected

multilevel (random intercepts) regression model, where the program OE is the dependent variable and ST2 detection is provided

as a binary covariate. The model included patient-specific intercepts to control for the dependency between the scRNA-seq profiles

of cells from the same tumor, and controlled for cell complexity with a covariate that denotes the number of genes detected in each

cell. The model was implemented using the lme4 and lmerTest R packages (https://cran.r-project.org/web/packages/lme4/

index.html).

Processing and analysis of droplet-based scRNA-seq
De-multiplexing, alignment to the mm10 transcriptome and unique molecular identifier (UMI)-collapsing were performed using the

Cellranger toolkit from 10X Genomics version 1.1.0. For each cell, we quantified the number of genes for which at least one read

was mapped, and then excluded all cells with fewer than 500 detected genes. Genes that were detected in less than 3 cells were

excluded. Expression values Ei,j for gene i in cell j were calculated by dividing UMI counts for gene i by the sum of the UMI counts
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in cell j, to normalize for differences in coverage, and then multiplying by 10,000 to create TPM-like values (TP10K), and finally

computing log2(TP10K + 1).

Selection of variable genes was performed by fitting a logistic regression to the cellular detection fraction (often referred to as a),

using the total number of UMIs per gene as a predictor (Montoro et al., 2018). Outliers from this curve are genes that are expressed in

a lower fraction of cells than would be expected given the total number of UMIs mapping to that gene, that is, likely cell-type or state-

specific genes. We used a threshold of deviance of <�0.15 and a minimum of 100 total UMIs. We restricted the expression matrix to

this subset of variable genes and values were centered and scaled and capped at a z-score of 10.

We restricted the expression matrix to the subsets of variable genes and high-quality cells noted above, and then centered and

scaled values before inputting them into principal component analysis (PCA), implemented using ‘RunPCA’ in Seurat which runs

the irlba function. After PCA, significant principal components were identified using the elbow-method when looking at the distribu-

tion of singular values. Scores from only those significant principal components were used as the input to further analysis. For visu-

alization purposes, the dimensionality of the datasets was further reduced to 2D embeddings using the RunUMAP() function on the

first 24 PCs and clusters were identified using the FindNeighbors() and FindClusters() functions of the Seurat package in R. Clusters

were post hoc merged to six major cell populations using canonical markers for all cell types detected.

Analysis of IHC Images
QuPath software was used to annotate tumor and lobe areas (Bankhead et al., 2017). CD8-stained and Foxp3-stained images were

standardized to a common set of stain vector parameters. CD8+ cell detection was performed using the PositiveCellDetection plugin

with the following parameters:

runPlugin(‘qupath.imagej.detect.nuclei.PositiveCellDetection’, ‘{’’detectionImageBrightfield’’: ‘‘Optical density sum,’’

‘‘requestedPixelSizeMicrons’’: 0.5, ‘‘backgroundRadiusMicrons’’: 8.0, ‘‘medianRadiusMicrons’’: 0.0, ‘‘sigmaMicrons’’: 1.5,

‘‘minAreaMicrons’’: 7.0, ‘‘maxAreaMicrons’’: 125.0, ‘‘threshold’’: 0.3, ‘‘maxBackground’’: 2.0, ‘‘watershedPostProcess’’:

true, ‘‘excludeDAB’’: false, ‘‘cellExpansionMicrons’’: 2.0, ‘‘includeNuclei’’: false, ‘‘smoothBoundaries’’: false,

‘‘makeMeasurements’’: true, ‘‘thresholdCompartment’’: ‘‘Cytoplasm: DAB OD max,’’ ‘‘thresholdPositive1’’: 0.7,

‘‘thresholdPositive2’’: 0.4, ‘‘thresholdPositive3’’: 0.6, ‘‘singleThreshold’’: true}’);

Foxp3+ cell detection was performed using the PositiveCellDetection plugin with the following parameters:

runPlugin(‘qupath.imagej.detect.nuclei.PositiveCellDetection’, ‘{’’detectionImageBrightfield’’: ‘‘Optical density sum,’’

‘‘requestedPixelSizeMicrons’’: 0.5, ‘‘backgroundRadiusMicrons’’: 8.0, ‘‘medianRadiusMicrons’’: 0.0, ‘‘sigmaMicrons’’: 1.5,

‘‘minAreaMicrons’’: 7.0, ‘‘maxAreaMicrons’’: 125.0, ‘‘threshold’’: 0.3, ‘‘maxBackground’’: 2.0, ‘‘watershedPostProcess’’: true,

‘‘excludeDAB’’: false, ‘‘cellExpansionMicrons’’: 2.0, ‘‘includeNuclei’’: false, ‘‘smoothBoundaries’’: false, ‘‘makeMeasurements’’:

true, ‘‘thresholdCompartment’’: ‘‘Cell: DAB OD mean,’’ ‘‘thresholdPositive1’’: 0.3, ‘‘thresholdPositive2’’: 0.4,

‘‘thresholdPositive3’’: 0.6, ‘‘singleThreshold’’: true}’);

Scored cells were normalized to tumor area.

Additional statistical analyses
Unpaired, two-tailed Student’s t tests, Mann-Whitney tests, Tukey’s multiple comparisons tests, and Sidak’s multiple comparisons

tests were used for all statistical comparisons using GraphPad Prism software.

DATA AND CODE AVAILABILITY

The accession number for the bulk and scRNA-Seq data reported in this paper is GEO: GSE139232. All code is available upon

request.
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