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Microbial therapeutics: New opportunities for drug delivery

Miguel Jimenez'@®, Robert Langer®?3, and Giovanni Traverso*>@®

With >40 clinical trials underway, we are nearing the first FDA-approved live microbial therapeutic. Here, Giovanni Traverso, MIT and
Harvard Medical School Assistant Professor, and colleagues Miguel Jimenez and Institute Professor Robert Langer from MIT discuss the
significant challenges of administering live microorganisms to patients and the opportunities for drug delivery of these new complex

therapeutics.

Microorganisms can cure disease

For a majority of modern medical history,
germ theory has cast microbes as our en-
emies; however, it is now abundantly clear
that they can be used as therapeutics. In
fact, there are now a burgeoning number
of companies with product pipelines filled
with microbial therapeutic leads in clinical
development (Table 1). Nevertheless, sig-
nificant drug delivery challenges remain
for the successful translation of these mi-
crobial therapeutics to wide patients
populations.

The potential of microbial therapeutics is
evident in the few existing live bacterial
prophylactic vaccines and more recent work
using fecal microbiota transplant (FMT) to
cure recurrent Clostridium difficile infections
(Detmer and Glenting, 2006; Kelly, 2013).
While FMT against C. difficile has been the
most striking initial success of microbial
therapies, these procedures remain experi-
mental, and there is much ongoing work to
standardize and regulate this approach
(Table 1; Food and Drug Administration,
2016b). This early success demonstrates
that the targeted use of microorganisms to
treat disease is possible. Predating this re-
cent work, the idea of microbiome health
and its potential modulation has permeated
to the general public, stimulating the com-
mercial development of probiotics marketed
as food supplements. However, these food
supplements have shown mixed results
when applied to a range of conditions
(Gareau et al., 2010). In contrast, the new
field of microbial drug development aims to
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Microbial APIs range from well-characterized, engineered strains to undefined, fecal-derived microbiota.
These APIs are being tested for efficacy in clinical trials using dosage forms that range in ease of use and
stability, and with dosage regimens that vary widely (Table 1). Improved drug delivery of microbial APIs will be

critical in developing effective microbial therapeutics.

generate microorganisms with well-defined,
targeted, therapeutic functions.

This focused activity has been spurred by
our ability to engineer functions more pre-
cisely through the advent of synthetic biol-
ogy tools and to understand the mechanistic
impact of microorganism on human health
through microbiome research (Mimee et al.,
2016). Leveraging these tools, companies are
now targeting several therapeutic modali-
ties, such as scavenging of toxic molecules
(e.g., Synlogic); in situ production of thera-
peutic molecules (e.g., ActoBio); intracellu-
lar delivery of a genetic payloads (e.g.,
Adhera); displacing infectious pathogens
(e.g., Seres); immune system modulation
(e.g., Evelo); and reestablishing a standard-
ized microbiome (e.g., NuBiyota).

Over the last decade, this growing technical
expertise has been matched by venture capital
funding, enabling many companies to tackle
the drug approval process. In 2012, the US
Food and Drug Administration (FDA) issued
guidance on the use of “live biotherapeutic
products” in early clinical trials (Food and
Drug Administration, 2016a). Now, as com-
panies move beyond Phase I clinical trials, the
FDA has continued this dialog on the appro-
priate way to manufacture and evaluate this
new class of active pharmaceutical ingredient
(APL; Food and Drug Administration, 2018).
The field is starting to tackle the challenges of
scaling, standardizing, and formulating these
microbial APIs in order to enable large-scale
Phase III clinical trials and, eventually, wide
use in patient populations.
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Microbial APIs present unique but
challenging therapeutic opportunities
Live microbial APIs are entirely distinct
from biologics and small molecule APIs.
This difference is at the core of their po-
tential but presents significant challenges
in manufacturing, drug delivery, and
evaluation. Unlike purified single mole-
cules, live microbial APIs contain all the
molecular machinery of a living cell, al-
lowing for self-renewal, genetically en-
coded functions, multiple mixed molecular
interactions, and adaptive responses.

Self-renewal
Self-renewal holds the potential for devel-
oping therapeutics that only need to be
taken once yet can have a significant ther-
apeutic effect over a long period. While this
ability may hold the key to developing
vaccine-like therapeutics for chronic dis-
eases, self-renewal greatly complicates the
pharmacokinetics (PK) of microbial APIs.
The rate of microbial cell division may be
highly dependent on patient-specific factors
such as food intake, native microbiome, and
disease status. Therefore, self-renewal of
microbial APIs may actually introduce sig-
nificant variability, posing a challenge for
establishing effective dosing regimens based
on small-scale Phase I clinical trials.
Additionally, self-renewal undermines bi-
ocontainment and enables genetic drift of the
microbial API over time. Companies like
Synlogic have chosen to make their microbial
APIs auxotrophic for an essential nutrient
only supplied during manufacturing (Kurtz
et al., 2019). This prevents replication in pa-
tients, simplifying PK models and lowering
genetic drift. Others have designed genetic
kill switches to cause self-destruction of es-
caped microbial cells (Lee et al., 2018).

Genetically encoded functions

The genetic basis of microbial APIs allows
them to be flexible therapeutic platforms.
Drug discovery and lead optimization can
take advantage of the myriad of genetic tools
for building and screening engineered mi-
croorganisms. Companies such as Ginkgo
Bioworks are commodifying this DNA-
driven build-design-test cycle, giving us an
early look at the scale at which microbial
APIs may be developed in the future. Com-
plementary to this, companies such as Finch
Therapeutics are using next-generation se-
quencing to define and isolate potential
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therapeutic microorganisms from patients’
own microbiomes.

However, as the ultimate therapeutic
functions are encoded in DNA, they are
susceptible to mutation and horizontal gene
transfer. Methods to limit genetic drift will
be critical to ensure genetic stability of mi-
crobial APIs (Lee et al., 2018). In addition,
whole-genome sequencing throughout the
drug development process can be used to
understand the genetic failure modes of
each microbial APIL

Mixed molecular interactions

Microbial APIs present a very large number
of molecular interactions simultaneously
(i.e., proteins, peptides, carbohydrates, lip-
ids, metabolites, and nucleic acids), each
with the potential for a therapeutic effect.
For example, the live microbial vaccines and
other immune modulating microbial APIs
rely on these mixed molecular interactions
to function as their own adjuvants.

While promising, such mixed molecular
interactions will be present even if they are
not designed with a therapeutic effect in
mind. This represents a significant possibility
for multiple off-target interactions. Even so,
since most microbial APIs will be confined to
the lumen of the GI tract, many of these in-
teractions are shielded from the broader hu-
man biology. Nevertheless, working with
such complex APIs poses a manufacturing
challenge, as there may be inherent hetero-
geneity in the cell-to-cell stoichiometry of
these interactions. Multiple types of bio-
chemical validation will be necessary to
supplement genetic characterization.

Adaptive responses

The ability of microbial APIs to adapt and
respond to their environment holds great
potential for making closed-loop thera-
pies. Genetically encoded biosensors that
detect clinically relevant biomarkers could
be used to control therapeutic functions
(Mimee et al., 2016). Nevertheless, while
advanced, adaptive functions can be de-
signed to work in laboratory environ-
ments, it remains to be seen if they will
function robustly in the gut. Likely be-
cause of this design challenge, the first
generation of microbial APIs moving
through the approval pipeline are either
unmodified or implement single function
genetic designs (Table 1). As the field
learns more about the impact of the gut
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environment on these APIs, we expect a
second generation of microbial therapeu-
tics to incorporate more advanced adap-
tive functions.

While difficult, developing such adaptive
systems could in turn be used to overcome
many of the challenges outlined above, as
adaptive microbial APIs could be designed
for a consistent therapeutic effect across a
heterogeneous patient population. Alterna-
tively, unmodified microbial APIs isolated
directly from native microbiomes may al-
ready rely on endogenous adaptive systems.
Efforts to understand these mechanisms
will serve to inform the development of
advanced microbial API designs.

Microbial APIs require rethinking

drug delivery

Microbial APIs pose unique challenges and op-
portunities for drug delivery and manufactur-
ing. Since these APIs are living cells, the
standard pharmacological processes (absorp-
tion, distribution, metabolism, and excretion,
also known as ADME) are significantly differ-
ent. For microbial APIs intended to be confined
to the gastrointestinal tract, we may instead
consider gastrointestinal distribution, attach-
ment, replication, and shedding (giDARS). This
changes how we consider modulation of PK
through formulation and dosage form design.
Furthermore, pharmaceutical manufacturing
must be adapted to accommodate this sensi-
tive micron-sized API.

Preservation methods used for probiotics
and by microbial strain banks have provided
starting points for current clinical trials.
This means dosing patients with freshly
thawed liquid microbial suspensions or re-
frigerated gelatin capsules filled with freeze-
dried microbial biomass. These methods
provide an immediate route for testing mi-
crobial APIs in patients. However, they are
not scalable and leave little room for modu-
lating the giDARS to target specific disease
profiles. The challenge for the field will be to
adapt current drug delivery approaches to
enable scalable dosing, long-term stability,
and precise targeting of microbial APIs.

Dosing

Current clinical trials provide an initial look
at the required doses and dosing regimens of
microbial APIs. For immune-modulation,
which likely requires lower doses, patients
are dosed with 10°-10'° CFU once to twice a
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day for 14 to 28 d (e.g., Evelo and Adhera).
This is in line with the dose of live, oral
microbial vaccines (4 x 108-10°), which are
dosed only one to four times over 1 wk (Food
and Drug Administration, 2013, 2016c). For
scavenging or protein delivery applications,
which likely require higher doses, patients
are dosed with 10-10'2 CFU once to thrice a
day for 14 d to 9 wk (e.g., Synlogic and
Oragenics; Kurtz et al., 2019). Aligned with
this, Seres recently pointed to a low dose of
108 as a likely cause of poor efficacy in a
Phase II clinical trial (Henn et al., 2018).
Can these doses and regimens be improved
through better drug delivery to enhance
stability and targeting of the microbial API?

Stability

Like current biologics, microbial APIs also
suffer from heat and chemical denaturation.
However, microbial APIs also contain deli-
cate lipid membranes. This fragility presents
a stability challenge during manufacturing,
storage, and administration.

Current manufacturing processes expose
APIs to harsh solvents, temperatures, and
pressures. Will these processes be adaptable
for microbial APIs? Large-scale production of
viable yeast biomass for food production has
shown that this is possible; however, yeast is
known to have intrinsic stress resistance
(Attfield, 1997). Furthermore, current bio-
manufacturing processes already produce
large quantities of microbial biomass for
protein production; however, little focus is
placed on cell viability (Huang et al., 2012).

In terms of storage stability, current mi-
crobial APIs require cold-chain storage to
maintain potency. In some cases, this even
means storage at cryogenic temperatures
(Kurtz et al., 2019). Will patients adhere to
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these strict requirements or will they be
required to visit dedicated dosing facilities?
Can we learn from food-grade yeast sachets
that are stable at room temperature?

Once administered, microbial APIs must
contend with the low pH of the stomach and
high bile salt content of the duodenum.
Current live microbial vaccines use enteric-
coated gelatin capsules or buffers to over-
come some of these challenges (Food and
Drug Administration, 2013, 20l6c). Can
other formulation approaches to be adapted
to protect microbial APIs from bile acids?

Targeting

Current microbial formulations provide lit-
tle targeting beyond the intrinsic distribu-
tion dictated by the microorganism’s biology.
To enhance the efficacy of microbial thera-
peutics, targeting the microbial API to the
site of disease will be critical. Targeting may
entail localization to a specific anatomical
location (e.g., jejunum, ilium, or colon) or
subcompartment (e.g., lumen, mucus layer,
or epithelium). Additionally, targeting may
involve delivery to a specific ecological niche
(Lemon et al., 2012).

Targeted delivery may be approached
through the use of materials with enteric,
colon-targeting, omniphobic, mucoadhesive,
or mucus-penetrating properties. Ecological
targeting may be achieved through the co-
administration of selective antibiotics to
open a target niche. Alternatively, genetically
encoded features of the microbial API can be
used to modify its intrinsic anatomical and
ecological distribution (Mimee et al., 2016).

Conclusions
It is clear that we are just years away from the
first FDA-approved microbial therapeutic. A

Microbial therapeutics: New opportunities for drug delivery

handful of companies are paving the way by
tackling the complex but necessary process
of drug approval. In so doing, these efforts
have raised critical questions regarding the
manufacturing and drug delivery of micro-
organisms as APIs. As the field pushes for-
ward, new methods and approaches will
be necessary to overcome these challenges.
Novel formulations and dosage forms will
complement the genetic design of microbial
APIs to enhance the efficacy of microbial
therapeutics.
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