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Abstract: The Information Bottleneck (IB) method provides an insightful and principled approach for
balancing compression and prediction for representation learning. The IB objective I(X; Z)− βI(Y; Z)
employs a Lagrange multiplier β to tune this trade-off. However, in practice, not only is β chosen
empirically without theoretical guidance, there is also a lack of theoretical understanding between β,
learnability, the intrinsic nature of the dataset and model capacity. In this paper, we show that if β is
improperly chosen, learning cannot happen—the trivial representation P(Z|X) = P(Z) becomes the
global minimum of the IB objective. We show how this can be avoided, by identifying a sharp phase
transition between the unlearnable and the learnable which arises as β is varied. This phase transition
defines the concept of IB-Learnability. We prove several sufficient conditions for IB-Learnability,
which provides theoretical guidance for choosing a good β. We further show that IB-learnability
is determined by the largest confident, typical and imbalanced subset of the examples (the conspicuous
subset), and discuss its relation with model capacity. We give practical algorithms to estimate the
minimum β for a given dataset. We also empirically demonstrate our theoretical conditions with
analyses of synthetic datasets, MNIST and CIFAR10.

Keywords: learnability; information bottleneck; representation learning; conspicuous subset

1. Introduction

Tishby et al. [1] introduced the Information Bottleneck (IB) objective function which learns a
representation Z of observed variables (X, Y) that retains as little information about X as possible but
simultaneously captures as much information about Y as possible:

min IBβ(X, Y; Z) = min[I(X; Z)− βI(Y; Z)] (1)

I(·) is the mutual information. The hyperparameter β controls the trade-off between compression and
prediction, in the same spirit as Rate-Distortion Theory [2] but with a learned representation function
P(Z|X) that automatically captures some part of the “semantically meaningful” information, where
the semantics are determined by the observed relationship between X and Y. The IB framework has
been extended to and extensively studied in a variety of scenarios, including Gaussian variables [3],
meta-Gaussians [4], continuous variables via variational methods [5–7], deterministic scenarios [8,9],
geometric clustering [10] and is used for learning invariant and disentangled representations in deep
neural nets [11,12].

From the IB objective (Equation (1)) we see that when β→ 0 it will encourage I(X; Z) = 0 which
leads to a trivial representation Z that is independent of X, while when β → +∞, it reduces to a
maximum likelihood objective (e.g., in classification, it reduces to cross-entropy loss). Therefore, as we
vary β from 0 to +∞, there must exist a point β0 at which IB starts to learn a nontrivial representation
where Z contains information about X.
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As an example, we train multiple variational information bottleneck (VIB) models on binary
classification of MNIST [13] digits 0 and 1 with 20% label noise at different β. The accuracy vs. β is
shown in Figure 1. We see that when β < 3.25, no learning happens and the accuracy is the same
as random guessing. Beginning with β > 3.25, there is a clear phase transition where the accuracy
sharply increases, indicating the objective is able to learn a nontrivial representation. In general, we
observe that different datasets and model capacity will result in different β0 at which IB starts to learn
a nontrivial representation. How does β0 depend on the aspects of the dataset and model capacity
and how can we estimate it? What does an IB model learn at the onset of learning? Answering these
questions may provide a deeper understanding of IB in particular and learning on two observed
variables in general.

In this work, we begin to answer the above questions. Specifically:

• We introduce the concept of IB-Learnability and show that when we vary β, the IB objective will
undergo a phase transition from the inability to learn to the ability to learn (Section 3).

• Using the second-order variation, we derive sufficient conditions for IB-Learnability, which
provide upper bounds for the learnability threshold β0 (Section 4).

• We show that IB-Learnability is determined by the largest confident, typical and imbalanced subset of
the examples (the conspicuous subset), reveal its relationship with the slope of the Pareto frontier at
the origin on the information plane I(X; Z) vs. I(Y; Z) and discuss its relation to model capacity
(Section 5).

• We prove a deep relationship between IB-Learnability, our upper bounds on β0,
the hypercontractivity coefficient, the contraction coefficient and the maximum correlation
(Section 5).

Figure 1. Accuracy for binary classification of MNIST digits 0 and 1 with 20% label noise and varying
β. No learning happens for models trained at β < 3.25.

We also present an algorithm for estimating the onset of IB-Learnability and the conspicuous
subset, which provide us with a tool for understanding a key aspect of the learning problem (X, Y)
(Section 6). Finally, we use our main results to demonstrate on synthetic datasets, MNIST [13] and
CIFAR10 [14] that the theoretical prediction for IB-Learnability closely matches experiment, and show
the conspicuous subset our algorithm discovers (Section 7).

2. Related Work

The seminal IB work [1] provides a tabular method for exactly computing the optimal encoder
distribution P(Z|X) for a given β and cardinality of the discrete representation, |Z|. They did not
consider the IB learnability problem as addressed in this work. Chechik et al. [3] presents the Gaussian
Information Bottleneck (GIB) for learning a multivariate Gaussian representation Z of (X, Y), assuming
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that both X and Y are also multivariate Gaussians. Under GIB, they derive analytic formula for the
optimal representation as a noisy linear projection to eigenvectors of the normalized regression matrix
Σx|yΣ−1

x and the learnability threshold β0 is then given by β0 = 1
1−λ1

where λ1 is the largest eigenvalue
of the matrix Σx|yΣ−1

x . This work provides deep insights about relations between the dataset, β0 and
optimal representations in the Gaussian scenario but the restriction to multivariate Gaussian datasets
limits the generality of the analysis Another analytic treatment of IB is given in [4], which reformulates
the objective in terms of the copula functions. As with the GIB approach, this formulation restricts the
form of the data distributions—the copula functions for the joint distribution (X, Y) are assumed to be
known, which is unlikely in practice.

Strouse and Schwab [8] present the Deterministic Information Bottleneck (DIB), which minimizes
the coding cost of the representation, H(Z), rather than the transmission cost, I(X; Z) as in IB. This
approach learns hard clusterings with different code entropies that vary with β. In this case, it
is clear that a hard clustering with minimal H(Z) will result in a single cluster for all of the data,
which is the DIB trivial solution. No analysis is given beyond this fact to predict the actual onset of
learnability, however.

The first amortized IB objective is in the Variational Information Bottleneck (VIB) of Alemi et al. [5].
VIB replaces the exact, tabular approach of IB with variational approximations of the classifier
distribution (P(Y|Z)) and marginal distribution (P(Z)). This approach cleanly permits learning
a stochastic encoder, P(Z|X), that is applicable to any x ∈ X , rather than just the particular X seen
at training time. The cost of this flexibility is the use of variational approximations that may be less
expressive than the tabular method. Nevertheless, in practice, VIB learns easily and is simple to
implement, so we rely on VIB models for our experimental confirmation.

Closely related to IB is the recently proposed Conditional Entropy Bottleneck (CEB) [7]. CEB
attempts to explicitly learn the Minimum Necessary Information (MNI), defined as the point in the
information plane where I(X; Y) = I(X; Z) = I(Y; Z). The MNI point may not be achievable even in
principle for a particular dataset. However, the CEB objective provides an explicit estimate of how
closely the model is approaching the MNI point by observing that a necessary condition for reaching
the MNI point occurs when I(X; Z|Y) = 0. The CEB objective I(X; Z|Y)− γI(Y; Z) is equivalent to IB
at γ = β + 1, so our analysis of IB-Learnability applies equally to CEB.

Kolchinsky et al. [9] show that when Y is a deterministic function of X, the “corner point” of the IB
curve (where I(X; Y) = I(X; Z) = I(Y; Z)) is the unique optimizer of the IB objective for all 0 < β′ < 1
(with the parameterization of Kolchinsky et al. [9], β′ = 1/β), which they consider to be a “trivial
solution”. However, their use of the term “trivial solution” is distinct from ours. They are referring
to the observation that all points on the IB curve contain uninteresting interpolations between two
different but valid solutions on the optimal frontier, rather than demonstrating a non-trivial trade-off
between compression and prediction as expected when varying the IB Lagrangian. Our use of “trivial”
refers to whether IB is capable of learning at all given a certain dataset and value of β.

Achille and Soatto [12] apply the IB Lagrangian to the weights of a neural network, yielding
InfoDropout. In Achille and Soatto [11], the authors give a deep and compelling analysis of how
the IB Lagrangian can yield invariant and disentangled representations. They do not, however,
consider the question of the onset of learning, although they are aware that not all models will learn a
non-trivial representation. More recently, Achille et al. [15] repurpose the InfoDropout IB Lagrangian
as a Kolmogorov Structure Function to analyze the ease with which a previously-trained network can
be fine-tuned for a new task. While that work is tangentially related to learnability, the question it
addresses is substantially different from our investigation of the onset of learning.

Our work is also closely related to the hypercontractivity coefficient [16,17], defined as
supZ−X−Y

I(Y;Z)
I(X;Z) , which by definition equals the inverse of β0, our IB-learnability threshold. In [16],

the authors prove that the hypercontractivity cofficient equals the contraction coefficient ηKL(PY|X , PX)

and Kim et al. [18] propose a practical algorithm to estimate ηKL(PY|X , PX), which provides a measure
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for potential influence in the data. Although our goal is different, the sufficient conditions we provide
for IB-Learnability are also lower bounds for the hypercontractivity coefficient.

3. IB-Learnability

We are given instances of (x, y) drawn from a distribution with probability (density) P(X, Y) with
support of X ×Y , where unless otherwise stated, both X and Y can be discrete or continuous variables.
We use capital letters X, Y, Z for random variables and lowercase x, y, z to denote the instance of
variables, with P(·) and p(·) denoting their probability or probability density, respectively. (X, Y) is
our training data and may be characterized by different types of noise. The nature of this training data
and the choice of β will be sufficient to predict the transition from unlearnable to learnable.

We can learn a representation Z of X with conditional probability p(z|x), such that X, Y, Z obey
the Markov chain Z ← X ↔ Y. Equation (1) above gives the IB objective with Lagrange multiplier β,
IBβ(X, Y; Z), which is a functional of p(z|x): IBβ(X, Y; Z) = IBβ[p(z|x)]. The IB learning task is to find
a conditional probability p(z|x) that minimizes IBβ(X, Y; Z). The larger β, the more the objective favors
making a good prediction for Y. Conversely, the smaller β, the more the objective favors learning a
concise representation.

How can we select β such that the IB objective learns a useful representation? In practice,
the selection of β is done empirically. Indeed, Tishby et al. [1] recommends “sweeping β”. In this
paper, we provide theoretical guidance for choosing β by introducing the concept of IB-Learnability
and providing a series of IB-learnable conditions.

Definition 1. (X, Y) is IBβ-learnable if there exists a Z given by some p1(z|x), such that
IBβ(X, Y; Z)|p1(z|x) < IBβ(X, Y; Z)|p(z|x)=p(z), where p(z|x) = p(z) characterizes the trivial representation
where Z = Ztrivial is independent of X.

If (X; Y) is IBβ-learnable, then when IBβ(X, Y; Z) is globally minimized, it will not learn a trivial
representation. On the other hand, if (X; Y) is not IBβ-learnable, then when IBβ(X, Y; Z) is globally
minimized, it may learn a trivial representation.

3.1. Trivial Solutions

Definition 1 defines trivial solutions in terms of representations where I(X; Z) = I(Y; Z) = 0.
Another type of trivial solution occurs when I(X; Z) > 0 but I(Y; Z) = 0. This type of trivial solution
is not directly achievable by the IB objective, as I(X; Z) is minimized but it can be achieved by
construction or by chance. It is possible that starting learning from I(X; Z) > 0, I(Y; Z) = 0 could
result in access to non-trivial solutions not available from I(X; Z) = 0. We do not attempt to investigate
this type of trivial solution in this work.

3.2. Necessary Condition for IB-Learnability

From Definition 1, we can see that IBβ-Learnability for any dataset (X; Y) requires β > 1. In fact,
from the Markov chain Z ← X ↔ Y, we have I(Y; Z) ≤ I(X; Z) via the data-processing inequality.
If β ≤ 1, then since I(X; Z) ≥ 0 and I(Y; Z) ≥ 0, we have that min(I(X; Z) − βI(Y; Z)) = 0 =

IBβ(X, Y; Ztrivial). Hence (X, Y) is not IBβ-learnable for β ≤ 1.
Due to the reparameterization invariance of mutual information, we have the following theorem

for IBβ-Learnability:

Lemma 1. Let X′ = g(X) be an invertible map (if X is a continuous variable, g is additionally required to be
continuous). Then (X, Y) and (X′, Y) have the same IBβ-Learnability.
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The proof for Lemma 1 is in Appendix A.2. Lemma 1 implies a favorable property for any
condition for IBβ-Learnability: the condition should be invariant to invertible mappings of X. We will
inspect this invariance in the conditions we derive in the following sections.

4. Sufficient Conditions for IB-Learnability

Given (X, Y), how can we determine whether it is IBβ-learnable? To answer this question, we
derive a series of sufficient conditions for IBβ-Learnability, starting from its definition. The conditions
are in increasing order of practicality, while sacrificing as little generality as possible.

Firstly, Theorem 1 characterizes the IBβ-Learnability range for β, with proof in Appendix A.3:

Theorem 1. If (X, Y) is IBβ1 -learnable, then for any β2 > β1, it is IBβ2 -learnable.

Based on Theorem 1, the range of β such that (X, Y) is IBβ-learnable has the form β ∈ (β0,+∞).
Thus, β0 is the threshold of IB-Learnability.

Lemma 2. p(z|x) = p(z) is a stationary solution for IBβ(X, Y; Z).

The proof in Appendix A.6 shows that both first-order variations δI(X; Z) = 0 and δI(Y; Z) = 0
vanish at the trivial representation p(z|x) = p(z), so δIBβ[p(z|x)] = 0 at the trivial representation.

Lemma 2 yields our strategy for finding sufficient conditions for learnability: find conditions
such that p(z|x) = p(z) is not a local minimum for the functional IBβ[p(z|x)]. Based on the necessary
condition for the minimum (Appendix A.4), we have the following theorem (The theorems in this
paper deal with learnability w.r.t. true mutual information. If parameterized models are used to
approximate the mutual information, the limitation of the model capacity will translate into more
uncertainty of Y given X, viewed through the lens of the model.):

Theorem 2 (Suff. Cond. 1). A sufficient condition for (X, Y) to be IBβ-learnable is that there exists a
perturbation function h(z|x) (so that the perturbed probability (density) is p′(z|x) = p(z|x) + ε · h(z|x))
with

∫
h(z|x)dz = 0, such that the second-order variation δ2IBβ[p(z|x)] < 0 at the trivial representation

p(z|x) = p(z).

The proof for Theorem 2 is given in Appendix A.4. Intuitively, if δ2IBβ[p(z|x)]
∣∣

p(z|x)=p(z) < 0,
we can always find a p′(z|x) = p(z|x) + ε · h(z|x) in the neighborhood of the trivial representation
p(z|x) = p(z), such that IBβ[p′(z|x)] < IBβ[p(z|x)], thus satisfying the definition for IBβ-Learnability.

To make Theorem 2 more practical, we perturb p(z|x) around the trivial solution p′(z|x) =

p(z|x) + ε · h(z|x) and expand IBβ[p(z|x) + ε · h(z|x)]− IBβ[p(z|x)] to the second order of ε. We can
then prove Theorem 3:

Theorem 3 (Suff. Cond. 2). A sufficient condition for (X, Y) to be IBβ-learnable is X and Y are not
independent and

β > inf
h(x)

β0[h(x)] (2)

where the functional β0[h(x)] is given by

β0[h(x)] =
Ex∼p(x)[h(x)2]−

(
Ex∼p(x)[h(x)]

)2

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2
]
−
(
Ex∼p(x)[h(x)]

)2

Moreover, we have that
(

infh(x) β[h(x)]
)−1

is a lower bound of the slope of the Pareto frontier in the
information plane I(Y; Z) vs. I(X; Z) at the origin.
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The proof is given in Appendix A.7, which also shows that if β > infh(x) β0[h(x)] in
Theorem 3 is satisfied, we can construct a perturbation function h(z|x) = h∗(x)h2(z) with h∗(x) =

arg minh(x) β0[h(x)],
∫

h2(z)dz = 0,
∫ h2

2(z)
p(z) dz > 0 for some h2(z), such that h(z|x) satisfies Theorem 2.

It also shows that the converse is true: if there exists h(z|x) such that the condition in Theorem 2 is true,
then Theorem 3 is satisfied, that is, β > infh(x) β0[h(x)]. (We do not claim that any h(z|x) satisfying
Theorem 2 can be decomposed to h∗(x)h2(z) at the onset of learning. But from the equivalence of
Theorems 2 and 3 as explained above, when there exists an h(z|x) such that Theorem 2 is satisfied,
we can always construct an h′(z|x) = h∗(x)h2(z) that also satisfies Theorem 2.) Moreover, letting the
perturbation function h(z|x) = h∗(x)h2(z) at the trivial solution, we have

pβ(y|x) = p(y) + ε2Cz(h∗(x)− h
∗
x)
∫

p(x, y)(h∗(x)− h
∗
x)dx (3)

where pβ(y|x) is the estimated p(y|x) by IB for a certain β, h
∗
x =

∫
h∗(x)p(x)dx and Cz =

∫ h2
2(z)

p(z) dz > 0
is a constant. This shows how the pβ(y|x) by IB explicitly depends on h∗(x) at the onset of learning.
The proof is provided in Appendix A.8.

Theorem 3 suggests a method to estimate β0: we can parameterize h(x) for example, by a
neural network, with the objective of minimizing β0[h(x)]. At its minimization, β0[h(x)] provides an
upper bound for β0, and h(x) provides a soft clustering of the examples corresponding to a nontrivial
perturbation of p(z|x) at p(z|x) = p(z) that minimizes IBβ[p(z|x)].

Alternatively, based on the property of β0[h(x)], we can also use a specific functional form for
h(x) in Equation (2) and obtain a stronger sufficient condition for IBβ-Learnability. But we want to
choose h(x) as near to the infimum as possible. To do this, we note the following characteristics for the
R.H.S of Equation (2):

• We can set h(x) to be nonzero if x ∈ Ωx for some region Ωx ⊂ X and 0 otherwise. Then we obtain
the following sufficient condition:

β > inf
h(x),Ωx⊂X

Ex∼p(x),x∈Ωx [h(x)2]

(Ex∼p(x),x∈Ωx [h(x)])
2 − 1

∫ dy
p(y)

(
Ex∼p(x),x∈Ωx [p(y|x)h(x)]

Ex∼p(x),x∈Ωx [h(x)]

)2
− 1

(4)

• The numerator of the R.H.S. of Equation (4) attains its minimum when h(x) is a constant within
Ωx. This can be proved using the Cauchy-Schwarz inequality: 〈u, u〉〈v, v〉 ≥ 〈u, v〉2, setting
u(x) = h(x)

√
p(x), v(x) =

√
p(x) and defining the inner product as 〈u, v〉 =

∫
u(x)v(x)dx.

Therefore, the numerator of the R.H.S. of Equation (4) ≥ 1∫
x∈Ωx p(x) − 1 and attains equality when

u(x)
v(x) = h(x) is constant.

Based on these observations, we can let h(x) be a nonzero constant inside some region Ωx ⊂ X
and 0 otherwise and the infimum over an arbitrary function h(x) is simplified to infimum over Ωx ⊂ X
and we obtain a sufficient condition for IBβ-Learnability, which is a key result of this paper:

Theorem 4 (Conspicuous Subset Suff. Cond.). A sufficient condition for (X, Y) to be IBβ-learnable is X
and Y are not independent and

β > inf
Ωx⊂X

β0(Ωx) (5)

where

β0(Ωx) =

1
p(Ωx)

− 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
]

Ωx denotes the event that x ∈ Ωx, with probability p(Ωx).
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(infΩx⊂X β0(Ωx))
−1 gives a lower bound of the slope of the Pareto frontier in the information plane

I(Y; Z) vs. I(X; Z) at the origin.

The proof is given in Appendix A.9. In the proof we also show that this condition is invariant to
invertible mappings of X.

5. Discussion

5.1. The Conspicuous Subset Determines β0

From Equation (5), we see that three characteristics of the subset Ωx ⊂ X lead to low β0: (1)
confidence: p(y|Ωx) is large; (2) typicality and size: the number of elements in Ωx is large or the
elements in Ωx are typical, leading to a large probability of p(Ωx); (3) imbalance: p(y) is small for the
subset Ωx but large for its complement. In summary, β0 will be determined by the largest confident,
typical and imbalanced subset of examples or an equilibrium of those characteristics. We term Ωx at the
minimization of β0(Ωx) the conspicuous subset.

5.2. Multiple Phase Transitions

Based on this characterization of Ωx, we can hypothesize datasets with multiple learnability
phase transitions. Specifically, consider a region Ωx0 that is small but “typical”, consists of all elements
confidently predicted as y0 by p(y|x) and where y0 is the least common class. By construction, this Ωx0

will dominate the infimum in Equation (5), resulting in a small value of β0. However, the remaining
X −Ωx0 effectively form a new dataset, X1. At exactly β0, we may have that the current encoder,
p0(z|x), has no mutual information with the remaining classes in X1; that is, I(Y1; Z0) = 0. In this case,
Definition 1 applies to p0(z|x) with respect to I(X1; Z1). We might expect to see that, at β0, learning
will plateau until we get to some β1 > β0 that defines the phase transition for X1. Clearly this process
could repeat many times, with each new dataset Xi being distinctly more difficult to learn than Xi−1.

5.3. Similarity to Information Measures

The denominator of β0(Ωx) in Equation (5) is closely related to mutual information. Using the
inequality x− 1 ≥ log(x) for x > 0, it becomes:

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y)
− 1
]
≥ Ey∼p(y|Ωx)

[
log

p(y|Ωx)

p(y)

]
= Ĩ(Ωx; Y)

where Ĩ(Ωx; Y) is the mutual information “density” at Ωx ⊂ X . Of course, this quantity is also
DKL[p(y|Ωx)||p(y)], so we know that the denominator of Equation (5) is non-negative. Incidentally,
Ey∼p(y|Ωx)

[ p(y|Ωx)
p(y) − 1

]
is the density of “rational mutual information” [19] at Ωx.

Similarly, the numerator of β0(Ωx) is related to the self-information of Ωx:

1
p(Ωx)

− 1 ≥ log
1

p(Ωx)
= −log p(Ωx) = h(Ωx)

so we can estimate β0 as:

β0 ' inf
Ωx⊂X

h(Ωx)

Ĩ(Ωx; Y)
(6)

Since Equation (6) uses upper bounds on both the numerator and the denominator, it does not give us
a bound on β0, only an estimate.

5.4. Estimating Model Capacity

The observation that a model cannot distinguish between cluster overlap in the data and its own
lack of capacity gives an interesting way to use IB-Learnability to measure the capacity of a set of
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models relative to the task they are being used to solve. For example, for a classification task, we can
use different model classes to estimate p(y|x). For each such trained model, we can estimate the
corresponding IB-learnability threshold β0. A model with smaller capacity than the task needs will
translate to more uncertainty in p(y|Ωx), resulting in a larger β0. On the other hand, models that give
the same β0 as each other all have the same capacity relative to the task, even if we would otherwise
expect them to have very different capacities. For example, if two deep models have the same core
architecture but one has twice the number of parameters at each layer and they both yield the same β0,
their capacities are equivalent with respect to the task. Thus, β0 provides a way to measure model
capacity in a task-specific manner.

5.5. Learnability and the Information Plane

Many of our results can be interpreted in terms of the geometry of the Pareto frontier illustrated
in Figure 2, which describes the trade-off between increasing I(Y; Z) and decreasing I(X; Z). At any
point on this frontier that minimizes IBmin

β ≡ min I(X; Z)− βI(Y; Z), the frontier will have slope β−1

if it is differentiable. If the frontier is also concave (has negative second derivative), then this slope
β−1 will take its maximum β−1

0 at the origin, which implies IBβ-Learnability for β > β0, so that the
threshold for IBβ-Learnability is simply the inverse slope of the frontier at the origin. More generally,
as long as the Pareto frontier is differentiable, the threshold for IBβ-learnability is the inverse of its
maximum slope. Indeed, Theorem 3 and Theorem 4 give lower bounds of the slope of the Pareto
frontier at the origin.
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Figure 2. The Pareto frontier of the information plane, I(X; Z) vs. I(Y; Z), for the binary classification
of MNIST digits 0 and 1 with 20% label noise described in Section 1 and Figure 1. For this problem,
learning happens for models trained at β > 3.25. H(Y) = 1 bit since only two of ten digits are
used and I(Y; Z) ≤ I(X; Y) ≈ 0.5 bits < H(Y) because of the 20% label noise. The true frontier
is differentiable; the figure shows a variational approximation that places an upper bound on both
informations, horizontally offset to pass through the origin.

5.6. IB-Learnability, Hypercontractivity and Maximum Correlation

IB-Learnability and its sufficient conditions we provide harbor a deep connection with
hypercontractivity and maximum correlation:

1
β0

= ξ(X; Y) = ηKL ≥ sup
h(x)

1
β0[h(x)]

= ρ2
m(X; Y) (7)
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which we prove in Appendix A.11. Here ρm(X; Y) ≡ max f ,g E[ f (X)g(Y)] s.t. E[ f (X)] = E[g(Y)] = 0

and E[ f 2(X)] = E[g2(Y)] = 1 is the maximum correlation [20,21], ξ(X; Y) ≡ supZ−X−Y
I(Y;Z)
I(X;Z) is

the hypercontractivity coefficient and ηKL(p(y|x), p(x)) ≡ supr(x) 6=p(x)
DKL(r(y)||p(y))
DKL(r(x)||p(x)) is the contraction

coefficient. Our proof relies on Anantharam et al. [16]’s proof ξ(X; Y) = ηKL. Our work reveals the
deep relationship between IB-Learnability and these earlier concepts and provides additional insights
about what aspects of a dataset give rise to high maximum correlation and hypercontractivity: the
most confident, typical, imbalanced subset of (X, Y).

6. Estimating the IB-Learnability Condition

Theorem 4 not only reveals the relationship between the learnability threshold for β and the
least noisy region of P(Y|X) but also provides a way to practically estimate β0, both in the general
classification case and in more structured settings.

6.1. Estimation Algorithm

Based on Theorem 4, for general classification tasks we suggest Algorithm 1 to empirically
estimate an upper-bound β̃0 ≥ β0, as well as discovering the conspicuous subset that determines β0.

We approximate the probability of each example p(xi) by its empirical probability, p̂(xi). For
example, for MNIST, p(xi) =

1
N , where N is the number of examples in the dataset. The algorithm

starts by first learning a maximum likelihood model of pθ(y|x), using for example, feed-forward neural
networks. It then constructs a matrix Py|x and a vector py to store the estimated p(y|x) and p(y) for all
the examples in the dataset. To find the subset Ω such that the β̃0 is as small as possible, by previous
analysis we want to find a conspicuous subset such that its p(y|x) is large for a certain class j (to make
the denominator of Equation (5) large) and containing as many elements as possible (to make the
numerator small).

We suggest the following heuristics to discover such a conspicuous subset. For each class j, we
sort the rows of (Py|x) according to its probability for the pivot class j by decreasing order and then
perform a search over ileft, iright for Ω = {ileft, ileft + 1, ..., iright}. Since β̃0 is large when Ω contains

too few or too many elements, the minimum of β̃
(j)
0 for class j will typically be reached with some

intermediate-sized subset and we can use binary search or other discrete search algorithm for the
optimization. The algorithm stops when β̃

(j)
0 does not improve by tolerance ε. The algorithm then

returns the β̃0 as the minimum over all the classes β̃
(1)
0 , ...β̃(N)

0 , as well as the conspicuous subset that
determines this β̃0.

After estimating β̃0, we can then use it for learning with IB, either directly or as an anchor for a
region where we can perform a much smaller sweep than we otherwise would have. This may be
particularly important for very noisy datasets, where β0 can be very large.
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Algorithm 1 Estimating the upper bound for β0 and identifying the conspicuous subset

Require: Dataset D = {(xi, yi)}, i = 1, 2, ...N. The number of classes is C.
Require ε: tolerance for estimating β0
1: Learn a maximum likelihood model pθ(y|x) using the dataset D.
2: Construct matrix (Py|x) such that (Py|x)ij = pθ(y = yj|x = xi).

3: Construct vector py = (py1, .., pyC) such that pyj =
1
N ∑N

i=1(Py|x)ij.
4: for j in {1, 2, ...C}:
5: P(sortj)

y|x ←Sort the rows of Py|x in decreasing values of (Py|x)ij.

6: β̃
(j)
0 , Ω(j) ←Search ileft, iright until β̃

(j)
0 = Getβ(Py|x, py, Ω) is minimal with tolerance ε,

where Ω = {ileft, ileft + 1, ...iright}.
7: end for
8: j∗ ← arg minj{β̃

(j)
0 }, j = 1, 2, ...N.

9: β̃0 ← β̃
(j∗)
0 .

10: P(β̃0)
y|x ← the rows of P(sortj∗)

y|x indexed by Ω(j∗).

11: return β̃0, P(β̃0)
y|x

subroutine Getβ(Py|x, py, Ω):
s1: N ← number of rows of Py|x.
s2: C ← number of columns of Py|x.
s3: n← number of elements of Ω.
s4: (py|Ω)j ← 1

n ∑i∈Ω(Py|x)ij, j = 1, 2, ..., C.

s5: β̃0 ←
N
n −1

∑j

[ (py|Ωx )
2
j

pyj
−1
]

s6: return β̃0

6.2. Special Cases for Estimating β0

Theorem 4 may still be challenging to estimate, due to the difficulty of making accurate estimates
of p(Ωx) and searching over Ωx ⊂ X . However, if the learning problem is more structured, we may
be able to obtain a simpler formula for the sufficient condition.

6.2.1. Class-Conditional Label Noise

Classification with noisy labels is a common practical scenario. An important noise model is
that the labels are randomly flipped with some hidden class-conditional probabilities and we only
observe the corrupted labels. This problem has been studied extensively [22–26]. If IB is applied to this
scenario, how large β do we need? The following corollary provides a simple formula.

Corollary 1. Suppose that the true class labels are y∗ and the input space belonging to each y∗ has no overlap. We
only observe the corrupted labels y with class-conditional noise p(y|x, y∗) = p(y|y∗) and Y is not independent
of X. We have that a sufficient condition for IBβ-Learnability is:

β > inf
y∗

1
p(y∗) − 1

∑y
p(y|y∗)2

p(y) − 1
(8)

We see that under class-conditional noise, the sufficient condition reduces to a discrete formula
which only depends on the noise rates p(y|y∗) and the true class probability p(y∗), which can be
accurately estimated via, for example, Northcutt et al. [26]. Additionally, if we know that the noise is
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class-conditional but the observed β0 is greater than the R.H.S. of Equation (8), we can deduce that
there is overlap between the true classes. The proof of Corollary 1 is provided in Appendix A.10.

6.2.2. Deterministic Relationships

Theorem 4 also reveals that β0 relates closely to whether Y is a deterministic function of X,
as shown by Corollary 2:

Corollary 2. Assume that Y contains at least one value y such that its probability p(y) > 0. If Y is a
deterministic function of X and not independent of X, then a sufficient condition for IBβ-Learnability is β > 1.

The assumption in the Corollary 2 is satisfied by classification and certain regression
problems. (The following scenario does not satisfy this assumption: for certain regression problems
where Y is a continuous random variable and the probability density function pY(y) is bounded, then
for any y, the probability P(Y = y) has measure 0.)This corollary generalizes the result in Reference [9]
which only proves it for classification problems. Combined with the necessary condition β > 1 for any
dataset (X, Y) to be IBβ-learnable (Section 3), we have that under the assumption, if Y is a deterministic
function of X, then a necessary and sufficient condition for IBβ-learnability is β > 1; that is, its β0 is 1.
The proof of Corollary 2 is provided in Appendix A.10.

Therefore, in practice, if we find that β0 > 1, we may infer that Y is not a deterministic function of
X. For a classification task, we may infer that either some classes have overlap or the labels are noisy.
However, recall that finite models may add effective class overlap if they have insufficient capacity for
the learning task, as mentioned in Section 4. This may translate into a higher observed β0, even when
learning deterministic functions.

7. Experiments

To test how the theoretical conditions for IBβ-learnability match with experiment, we apply them
to synthetic data with varying noise rates and class overlap, MNIST binary classification with varying
noise rates and CIFAR10 classification, comparing with the β0 found experimentally. We also compare
with the algorithm in Kim et al. [18] for estimating the hypercontractivity coefficient (=1/β0) via the
contraction coefficient ηKL. Experiment details are in Section A.12.

7.1. Synthetic Dataset Experiments

We construct a set of datasets from 2D mixtures of 2 Gaussians as X and the identity of the
mixture component as Y. We simulate two practical scenarios with these datasets: (1) noisy labels with
class-conditional noise and (2) class overlap. For (1), we vary the class-conditional noise rates. For (2),
we vary class overlap by tuning the distance between the Gaussians. For each experiment, we sweep β

with exponential steps and observe I(X; Z) and I(Y; Z). We then compare the empirical β0 indicated
by the onset of above-zero I(X; Z) with predicted values for β0.

7.1.1. Classification with Class-Conditional Noise

In this experiment, we have a mixture of Gaussian distribution with 2 components, each of which
is a 2D Gaussian with diagonal covariance matrix Σ = diag(0.25, 0.25). The two components have
distance 16 (hence virtually no overlap) and equal mixture weight. For each x, the label y ∈ {0, 1} is
the identity of which component it belongs to. We create multiple datasets by randomly flipping the
labels y with a certain noise rate ρ = P(y = 0|y∗ = 1) = P(y = 1|y∗ = 0). For each dataset, we train
VIB models across a range of β and observe the onset of learning via random I(X; Z) (Observed). To
test how different methods perform in estimating β0, we apply the following methods: (1) Corollary 1,
since this is classification with class-conditional noise and the two true classes have virtually no overlap;
(2) Algorithm 1 with true p(y|x); (3) The algorithm in Kim et al. [18] that estimates η̂KL, provided with
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true p(y|x); (4) β0[h(x)] in Equation (2); (2′) Algorithm 1 with p(y|x) estimated by a neural net; (3′)
η̂KL with the same p(y|x) as in (2′). The results are shown in Figure 3 and in Table 1.

0.0 0.1 0.2 0.3 0.4 0.5
noise rate

100

101

102

103
Observed
(1) Corollary 1
(2) Alg. 1 true p(y|x)
(3) KL true p(y|x)
(4) Eq. 2
(2') Alg. 1
(3') Contraction coefficient ( KL)

Figure 3. Predicted vs. experimentally identified β0, for mixture of Gaussians with varying
class-conditional noise rates.

Table 1. Full table of values used to generate Figure 3.

(2) Algorithm 1 (3) η̂KL

Noise Rate Observed (1) Corollary 1 True p(y|x) True p(y|x) (4) Equation (2) (2′) Algorithm 1 (3′) η̂KL

0.02 1.06 1.09 1.09 1.10 1.08 1.08 1.10
0.04 1.20 1.18 1.18 1.21 1.18 1.19 1.20
0.06 1.26 1.29 1.29 1.33 1.30 1.31 1.33
0.08 1.40 1.42 1.42 1.45 1.42 1.43 1.46
0.10 1.52 1.56 1.56 1.60 1.55 1.58 1.60
0.12 1.70 1.73 1.73 1.78 1.71 1.73 1.77
0.14 1.99 1.93 1.93 1.99 1.90 1.91 1.95
0.16 2.04 2.16 2.16 2.24 2.15 2.15 2.16
0.18 2.41 2.44 2.44 2.49 2.43 2.42 2.49
0.20 2.74 2.78 2.78 2.86 2.76 2.77 2.71
0.22 3.15 3.19 3.19 3.29 3.19 3.21 3.29
0.24 3.75 3.70 3.70 3.83 3.71 3.75 3.72
0.26 4.40 4.34 4.34 4.48 4.35 4.31 4.17
0.28 5.16 5.17 5.17 5.37 5.12 4.98 4.55
0.30 6.34 6.25 6.25 6.49 6.24 6.03 5.58
0.32 8.06 7.72 7.72 8.02 7.63 7.19 7.33
0.34 9.77 9.77 9.77 10.13 9.74 8.95 7.37
0.36 12.58 12.76 12.76 13.21 12.51 11.11 10.09
0.38 16.91 17.36 17.36 17.96 16.97 14.55 10.49
0.40 24.66 25.00 25.00 25.99 25.01 20.36 17.27
0.42 39.08 39.06 39.06 40.85 39.48 30.12 10.89
0.44 64.82 69.44 69.44 71.80 76.48 51.95 21.95
0.46 163.07 156.25 156.26 161.88 173.15 114.57 21.47
0.48 599.45 625.00 625.00 651.47 838.90 293.90 8.69
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From Figure 3 and Table 1 we see the following. (A) When using the true p(y|x), both Algorithm 1
and η̂KL generally upper bound the empirical β0 and Algorithm 1 is generally tighter. (B) When using
the true p(y|x), Algorithm 1 and Corollary 1 give the same result. (C) Comparing Algorithm 1 and η̂KL

both of which use the same empirically estimated p(y|x), both approaches provide good estimation in
the low-noise region; however, in the high-noise region, Algorithm 1 gives more precise values than η̂KL,
indicating that Algorithm 1 is more robust to the estimation error of p(y|x). (D) Equation (2) empirically
upper bounds the experimentally observed β0 and gives almost the same result as theoretical estimation
in Corollary 1 and Algorithm 1 with the true p(y|x). In the classification setting, this approach does
not require any learned estimate of p(y|x), as we can directly use the empirical p(y) and p(x|y) from
SGD mini-batches.

This experiment also shows that for dataset where the signal-to-noise is small, β0 can be very high.
Instead of blindly sweeping β, our result can provide guidance for setting β so learning can happen.

7.1.2. Classification with Class Overlap

In this experiment, we test how different amounts of overlap among classes influence β0. We use
the mixture of Gaussians with two components, each of which is a 2D Gaussian with diagonal
covariance matrix Σ = diag(0.25, 0.25). The two components have weights 0.6 and 0.4. We vary the
distance between the Gaussians from 8.0 down to 0.8 and observe the β0,exp. Since we do not add
noise to the labels, if there were no overlap and a deterministic map from X to Y, we would have
β0 = 1 by Corollary 2. The more overlap between the two classes, the more uncertain Y is given X.
By Equation (5) we expect β0 to be larger, which is corroborated in Figure 4.

Figure 4. I(Y; Z) vs. β, for mixture of Gaussian datasets with different distances between the two
mixture components. The vertical lines are β0,predicted computed by the R.H.S. of Equation (8).
As Equation (8) does not make predictions w.r.t. class overlap, the vertical lines are always just
above β0,predicted = 1. However, as expected, decreasing the distance between the classes in X space
also increases the true β0.

7.2. MNIST Experiments

We perform binary classification with digits 0 and 1 and as before, add class-conditional noise
to the labels with varying noise rates ρ. To explore how the model capacity influences the onset of
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learning, for each dataset we train two sets of VIB models differing only by the number of neurons in
their hidden layers of the encoder: one with n = 512 neurons, the other with n = 128 neurons. As we
describe in Section 4, insufficient capacity will result in more uncertainty of Y given X from the point
of view of the model, so we expect the observed β0 for the n = 128 model to be larger. This result is
confirmed by the experiment (Figure 5). Also, in Figure 5 we plot β0 given by different estimation
methods. We see that the observations (A), (B), (C) and (D) in Section 7.1 still hold.

0.8 1.0 1.2 1.4
β

0.00
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0.10

0.15

I(Y
;Z

)

1.2 1.4 1.6 1.8 2.0
β

0.00

0.05

0.10

0.15

I(Y
;Z

)

2.5 3.0 3.5
β

0.0

0.2

0.4

I(Y
;Z

)

4 6 8
β

0.0

0.2

0.4

0.6

0.8

I(Y
;Z

)

observed, n=512
observed, n=128

   
(2) Alg. 1 true p(y|x)

(3) η̂KL true p(y|x)
(4) Eq. 2

(2') Alg. 1
(3') η̂KL

(1) Corollary 1

Figure 5. I(Y; Z) vs. β for the MNIST binary classification with different hidden units per layer n and
noise rates ρ: (upper left) ρ = 0.02, (upper right) ρ = 0.1, (lower left) ρ = 0.2, (lower right) ρ = 0.3.
The vertical lines are β0 estimated by different methods. n = 128 has insufficient capacity for the
problem, so its observed learnability onset is pushed higher, similar to the class overlap case.

7.3. MNIST Experiments Using Equation (2)

To see what IB learns at its onset of learning for the full MNIST dataset, we optimize Equation (2)
w.r.t. the full MNIST dataset and visualize the clustering of digits by h(x). Equation (2) can be
optimized using SGD using any differentiable parameterized mapping h(x) : X → R. In this
case, we chose to parameterize h(x) with a PixelCNN++ architecture [27,28], as PixelCNN++ is a
powerful autoregressive model for images that gives a scalar output (normally interpreted as log p(x)).
Equation (2) should generally give two clusters in the output space, as discussed in Section 4. In this
setup, smaller values of h(x) correspond to the subset of the data that is easiest to learn. Figure 6
shows two strongly separated clusters, as well as the threshold we choose to divide them. Figure 7
shows the first 5776 MNIST training examples as sorted by our learned h(x), with the examples above
the threshold highlighted in red. We can clearly see that our learned h(x) has separated the “easy” one
(1) digits from the rest of the MNIST training set.
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Figure 6. Histograms of the full MNIST training and validation sets according to h(X). Note that both
are bimodal and the histograms are indistinguishable. In both cases, h(x) has learned to separate most
of the ones into the smaller mode but difficult ones are in the wide valley between the two modes.
See Figure 7 for all of the training images to the left of the red threshold line, as well as the first few
images to the right of the threshold.

Figure 7. The first 5776 MNIST training set digits when sorted by h(x). The digits highlighted in red
are above the threshold drawn in Figure 6.

7.4. CIFAR10 Forgetting Experiments

For CIFAR10 [14], we study how forgetting varies with β. In other words, given a VIB model
trained at some high β2, if we anneal it down to some much lower β1, what I(Y; Z) does the model
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converge to? Using Algorithm 1, we estimated β0 = 1.0483 on a version of CIFAR10 with 20% label
noise, where the Py|x is estimated by maximum likelihood training with the same encoder and classifier
architectures as used for VIB. For the VIB models, the lowest β with performance above chance was
β = 1.048 (Figure 8), a very tight match with the estimate from Algorithm 1. See Appendix A.12
for details.

1.00 1.05 1.10 1.15
¯

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

I(
Y
;Z
)

Figure 8. Plot of I(Y; Z) vs. β for CIFAR10 training set with 20% label noise. Each blue cross
corresponds to a fully-converged model starting with independent initialization. The vertical black
line corresponds to the predicted β0 = 1.0483 using Algorithm 1. The empirical β0 = 1.048.

8. Conclusions

In this paper, we have presented theoretical results for predicting the onset of learning and
have shown that it is determined by the conspicuous subset of the training examples. We gave a
practical algorithm for predicting the transition as well as discovering this subset and showed that
those predictions are accurate, even in cases of extreme label noise. We proved a deep connection
between IB-learnability, our upper bounds on β0, the hypercontractivity coefficient, the contraction
coefficient and the maximum correlation. We believe that these results provide a deeper understanding
of IB, as well as a tool for analyzing a dataset by discovering its conspicuous subset and a tool for
measuring model capacity in a task-specific manner. Our work also raises other questions, such as
whether there are other phase transitions in learnability that might be identified. We hope to address
some of those questions in future work.
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Appendix A

The structure of the Appendix is as follows. In Appendix A.1, we provide preliminaries for
the first-order and second-order variations on functionals. We prove Theorem 1 and Theorem 1 in
Appendixes A.2 and A.3, respectively. In Appendix A.4, we prove Theorem 2, the sufficient condition
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1 for IB-Learnability. In Appendix A.5, we calculate the first and second variations of IBβ[p(z|x)] at
the trivial representation p(z|x) = p(z), which is used in proving Lemma 2 (Appendix A.6) and the
Sufficient Condition 2 for IBβ-learnability (Appendix A.7). In Appendix A.8, we prove Equation (3)
at the onset of learning. After these preparations, we prove the key result of this paper, Theorem 4,
in Section A.9. Then two important Corollaries 1, 2 are proved in Appendix A.10. In Appendix A.11 we
explore the deep relation between β0, β0[h(x)], the hypercontractivity coefficient, contraction coefficient
and maximum correlation. Finally in Appendix A.12, we provide details for the experiments.

Below are some implicit conventions of the paper: for integrals, whenever a variable W is discrete,
we can simply replace the integral (

∫
·dw) by summation (∑w ·).

Appendix A.1. Preliminaries: First-Order and Second-Order Variations

Let functional F[ f (x)] be defined on some normed linear space R. Let us add a perturbative
function ε · h(x) to f (x), and now the functional F[ f (x) + ε · h(x)] can be expanded as

∆F[ f (x)] = F[ f (x) + ε · h(x)]− F[ f (x)]

= ϕ1[ f (x)] + ϕ2[ f (x)] +O(ε3||h||2)

where ||h|| denotes the norm of h, ϕ1[ f (x)] = ε
dF[ f (x)]

dε is a linear functional of ε · h(x), and is called the

first-order variation, denoted as δF[ f (x)]. ϕ2[ f (x)] = 1
2 ε2 d2F[ f (x)]

dε2 is a quadratic functional of ε · h(x),
and is called the second-order variation, denoted as δ2F[ f (x)].

If δF[ f (x)] = 0, we call f (x) a stationary solution for the functional F[·].
If ∆F[ f (x)] ≥ 0 for all h(x) such that f (x) + ε · h(x) is at the neighborhood of f (x), we call f (x) a

(local) minimum of F[·].

Appendix A.2. Proof of Lemma 1

Proof. If (X, Y) is IBβ-learnable, then there exists Z ∈ Z given by some p1(z|x) such that
IBβ(X, Y; Z) < IB(X, Y; Ztrivial) = 0, where Ztrivial satisfies p(z|x) = p(z). Since X′ = g(X) is a
invertible map (if X is continuous variable, g is additionally required to be continuous), and mutual
information is invariant under such an invertible map [29], we have that IBβ(X′, Y; Z) = I(X′; Z)−
βI(Y; Z) = I(X; Z) − βI(Y; Z) = IBβ(X, Y; Z) < 0 = IB(X′, Y; Ztrivial), so (X′, Y) is IBβ-learnable.
On the other hand, if (X, Y) is not IBβ-learnable, then ∀Z, we have IBβ(X, Y; Z) ≥ IB(X, Y; Ztrivial) = 0.
Again using mutual information’s invariance under g, we have for all Z, IBβ(X′, Y; Z) = IBβ(X, Y; Z) ≥
IB(X, Y; Ztrivial) = 0, leading to that (X′, Y) is not IBβ-learnable. Therefore, we have that (X, Y) and
(X′, Y) have the same IBβ-learnability.

Appendix A.3. Proof of Theorem 1

Proof. At the trivial representation p(z|x) = p(z), we have I(X; Z) = 0, and I(Y; Z) = 0 due to the
Markov chain, so IBβ(X, Y; Z)|p(z|x)=p(z) = 0 for any β. Since (X, Y) is IBβ1-learnable, there exists
a Z given by a p1(z|x) such that IBβ1(X, Y; Z)|p1(z|x) < 0. Since β2 > β1, and I(Y; Z) ≥ 0, we
have IBβ2(X, Y; Z)|p1(z|x) ≤ IBβ1(X, Y; Z)|p1(z|x) < 0 = IBβ2(X, Y; Z)|p(z|x)=p(z). Therefore, (X, Y) is
IBβ2 -learnable.

Appendix A.4. Proof of Theorem 2

Proof. To prove Theorem 2, we use the Theorem 1 of Chapter 5 of Gelfand et al. [30] which gives a
necessary condition for F[ f (x)] to have a minimum at f0(x). Adapting to our notation, we have:

Theorem A1 ([30]). A necessary condition for the functional F[ f (x)] to have a minimum at f (x) = f0(x) is
that for f (x) = f0(x) and all admissible ε · h(x),

δ2F[ f (x)] ≥ 0.
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Applying to our functional IBβ[p(z|x)], an immediate result of Theorem A1 is that, if at p(z|x) =
p(z), there exists an ε · h(z|x) such that δ2IBβ[p(z|x)] < 0, then p(z|x) = p(z) is not a minimum for
IBβ[p(z|x)]. Using the definition of IBβ learnability, we have that (X, Y) is IBβ-learnable.

Appendix A.5. First- and Second-Order Variations of IBβ[p(z|x)]

In this section, we derive the first- and second-order variations of IBβ[p(z|x)], which are needed
for proving Lemma 2 and Theorem 3.

Lemma A1. Using perturbative function h(z|x), we have

δIBβ[p(z|x)] =
∫

dxdzp(x)h(z|x)log
p(z|x)
p(z)

− β
∫

dxdydzp(x, y)h(z|x)log
p(z|y)
p(z)

δ2IBβ[p(z|x)] =
1
2

[ ∫
dxdz

p(x)2

p(x, z)
h(z|x)2 − β

∫
dxdx′dydz

p(x, y)p(x′, y)
p(y, z)

h(z|x)h(z|x′)

+ (β− 1)
∫

dxdx′dz
p(x)p(x′)

p(z)
h(z|x)h(z|x′)

]
Proof. Since IBβ[p(z|x)] = I(X; Z)− βI(Y; Z), let us calculate the first and second-order variation
of I(X; Z) and I(Y; Z) w.r.t. p(z|x), respectively. Through this derivation, we use ε · h(z|x) as a
perturbative function, for ease of deciding different orders of variations. We assume that h(z|x) is
continuous, and there exists a constant M such that

∣∣ h(z|x)
p(z|x)

∣∣ < M, ∀(x, z) ∈ X × Z . We will finally
absorb ε into h(z|x).

Denote I(X; Z) = F1[p(z|x)]. We have

F1[p(z|x)] = I(X; Z) =
∫

dxdzp(z|x)p(x)log
p(z|x)
p(z)

In this paper, we implicitly assume that the integral (or summing) are only on the support
of p(x, y, z).

Since
p(z) =

∫
p(z|x)p(x)dx

We have
p(z)|p(z|x)+εh(z|x) = p(z)|p(z|x) + ε

∫
h(z|x)p(x)dx

Expanding F1[p(z|x) + εh(z|x)] to the second order of ε, we have
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F1[p(z|x) + εh(z|x)]

=
∫

dxdzp(x)[p(z|x) + εh(z|x)]log
p(z|x) + εh(z|x)

p(z) + ε
∫

h(z|x′)p(x′)dx′

=
∫

dxdzp(x)p(z|x)
(

1 + ε
h(z|x)
p(z|x)

)
log

p(z|x)
(

1 + ε
h(z|x)
p(z|x)

)
p(z)

(
1 + ε

∫
h(z|x′)p(x′)dx′

p(z)

)
=
∫

dxdzp(x)p(z|x)
(

1 + ε
h(z|x)
p(z|x)

)
log
[

p(z|x)
p(z)

(
1 + ε

h(z|x)
p(z|x)

)(
1− ε

∫
h(z|x′)p(x′)dx′

p(z)

+ ε2
(∫

h(z|x′)p(x′)dx′

p(z)

)2)]
+O(ε3)

=
∫

dxdzp(x)p(z|x)
(

1 + ε
h(z|x)
p(z|x)

)
log
[

p(z|x)
p(z)

(
1 + ε

(
h(z|x)
p(z|x) −

∫
h(z|x′)p(x′)dx′

p(z)

)
+ ε2

(∫
h(z|x′)p(x′)dx′

p(z)

)2

− ε2 h(z|x)
p(z|x)

∫
h(z|x′)p(x′)dx′

p(z)

)]
+O(ε3)

=
∫

dxdzp(x)p(z|x)
(

1 + ε
h(z|x)
p(z|x)

) [
log

p(z|x)
p(z)

+ ε

(
h(z|x)
p(z|x) −

∫
h(z|x′)p(x′)dx′

p(z)

)
+ ε2

(∫
h(z|x′)p(x′)dx′

p(z)

)2

− ε2 h(z|x)
p(z|x)

∫
h(z|x′)p(x′)dx′

p(z)
− 1

2
ε2
(

h(z|x)
p(z|x) −

∫
h(z|x′)p(x′)dx′

p(z)

)2]
+O(ε3)

Collecting the first order terms of ε, we have

δF1[p(z|x)]

= ε
∫

dxdzp(x)p(z|x)
(

h(z|x)
p(z|x) −

∫
h(z|x′)p(x′)dx′

p(z)

)
+ ε

∫
dxdzp(x)p(z|x) h(z|x)

p(z|x) log
p(z|x)
p(z)

= ε
∫

dxdzp(x)h(z|x)− ε
∫

dx′dzp(x′)h(z|x′) + ε
∫

dxdzp(x)h(z|x)log
p(z|x)
p(z)

= ε
∫

dxdzp(x)h(z|x)log
p(z|x)
p(z)

Collecting the second order terms of ε2, we have

δ2F1[p(z|x)]

= ε2
∫

dxdzp(x)p(z|x)
[ (∫

h(z|x′)p(x′)dx′

p(z)

)2

− h(z|x)
p(z|x)

∫
h(z|x′)p(x′)dx′

p(z)
− 1

2

(
h(z|x)
p(z|x) −

∫
h(z|x′)p(x′)dx′

p(z)

)2]
+ ε2

∫
dxdzp(x)p(z|x) h(z|x)

p(z|x)

(
h(z|x)
p(z|x) −

∫
h(z|x′)p(x′)dx′

p(z)

)
=

ε2

2

∫
dxdz

p(x)2

p(x, z)
h(z|x)2 − ε2

2

∫
dxdx′dz

p(x)p(x′)
p(z)

h(z|x)h(z|x′)

Now let us calculate the first and second-order variation of F2[p(z|x)] = I(Z; Y). We have

F2[p(z|x)] = I(Y; Z) =
∫

dydzp(z|y)p(y)log
p(y, z)

p(y)p(z)
=
∫

dxdydzp(z|y)p(x, y)log
p(y, z)

p(y)p(z)

Using the Markov chain Z ← X ↔ Y, we have

p(y, z) =
∫

p(z|x)p(x, y)dx

Hence
p(y, z)|p(z|x)+εh(z|x) = p(y, z)|p(z|x) + ε

∫
h(z|x)p(x, y)dx
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Then expanding F2[p(z|x) + εh(z|x)] to the second order of ε, we have

F2[p(z|x) + εh(z|x)]

=
∫

dxdydzp(x, y)p(z|x)
(

1 + ε
h(z|x)
p(z|x)

)
log

p(y, z)
(

1 + ε
∫

h(z|x′)p(x′ ,y)dx′

p(y,z)

)
p(y)p(z)(1 + ε

∫
h(z|x′′)p(x′′)dx′′

p(z) )

=
∫

dxdydzp(x, y)p(z|x)
(

1 + ε
h(z|x)
p(z|x)

) [
log

p(y, z)
p(y)p(z)

+ ε

(∫
h(z|x′)p(x′, y)dx′

p(y, z)
−
∫

h(z|x′)p(x′)dx′

p(z)

)
+ ε2

[(∫
h(z|x′)p(x′)dx′

p(z)

)2

−
∫

h(z|x′)p(x′, y)dx′

p(y, z)

∫
h(z|x′′)p(x′′)dx′′

p(z)
− 1

2

(∫
h(z|x′)p(x′, y)dx′

p(y, z)
−
∫

h(z|x′)p(x′)dx′

p(z)

)2]
+O(ε3)

Collecting the first order terms of ε, we have

δF2[p(z|x)]

= ε
∫

dxdydzp(x, y)h(z|x)log
p(y, z)

p(y)p(z)
+ ε

∫
dxdydzp(x, y)p(z|x)

∫
h(z|x′)p(x′, y)dx′

p(y, z)

− ε
∫

dxdydzp(x, y)p(z|x)
∫

h(z|x′)p(x′)dx′

p(z)

= ε
∫

dxdydzp(x, y)h(z|x)log
p(y, z)

p(y)p(z)
+ ε

∫
dx′dydzh(z|x′)p(x′, y)− ε

∫
dzh(z|x′)p(x′)dx′

= ε
∫

dxdydzp(x, y)h(z|x)log
p(z|y)
p(z)

Collecting the second order terms of ε, we have

δ2F2[p(z|x)]

= ε2
∫

dxdydzp(x, y)p(z|x)
[(∫

h(z|x′)p(x′)dx′

p(z)

)2

−
∫

h(z|x′)p(x′, y)dx′

p(y, z)

∫
h(z|x′′)p(x′′)dx′′

p(z)

]
− ε2

2

∫
dxdydzp(x, y)p(z|x)

(∫
h(z|x′)p(x′, y)dx′

p(y, z)
−
∫

h(z|x′)p(x′)dx′

p(z)

)2

+ ε2
∫

dxdydzp(x, y)p(z|x) h(z|x)
p(z|x)

(∫
h(z|x′)p(x′, y)dx′

p(y, z)
−
∫

h(z|x′)p(x′)dx′

p(z)

)
=

ε2

2

∫
dxdx′dydz

p(x, y)p(x′, y)
p(y, z)

h(z|x)h(z|x′)− ε2

2

∫
dxdx′dz

p(x)p(x′)
p(z)

h(z|x)h(z|x′)

Finally, we have

δIBβ[p(z|x)] = δF1[p(z|x)]− β · δF2[p(z|x)]

= ε

( ∫
dxdzp(x)h(z|x)log

p(z|x)
p(z)

− β
∫

dxdydzp(x, y)h(z|x)log
p(z|y)
p(z)

) (A1)
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δ2IBβ[p(z|x)] =δ2F1[p(z|x)]− β · δ2F2[p(z|x)]

=
ε2

2

∫
dxdz

p(x)2

p(x, z)
h(z|x)2 − ε2

2

∫
dxdx′dz

p(x)p(x′)
p(z)

h(z|x)h(z|x′)

− βε2
[

1
2

∫
dxdx′dydz

p(x, y)p(x′, y)
p(y, z)

h(z|x)h(z|x′)− 1
2

∫
dxdx′dz

p(x)p(x′)
p(z)

h(z|x)h(z|x′)
]

=
ε2

2

[ ∫
dxdz

p(x)2

p(x, z)
h(z|x)2

− β
∫

dxdx′dydz
p(x, y)p(x′, y)

p(y, z)
h(z|x)h(z|x′) + (β− 1)

∫
dxdx′dz

p(x)p(x′)
p(z)

h(z|x)h(z|x′)
]

Absorb ε into h(z|x), we get rid of the ε factor and obtain the final expression in Lemma A1.

Appendix A.6. Proof of Lemma 2

Proof. Using Lemma A1, we have

δIBβ[p(z|x)] =
∫

dxdzp(x)h(z|x)log
p(z|x)
p(z)

− β
∫

dxdydzp(x, y)h(z|x)log
p(z|y)
p(z)

Let p(z|x) = p(z) (the trivial representation), we have that log p(z|x)
p(z) ≡ 0. Therefore, the two integrals

are both 0. Hence,
δIBβ[p(z|x)]

∣∣
p(z|x)=p(z) ≡ 0

Therefore, the p(z|x) = p(z) is a stationary solution for IBβ[p(z|x)].

Appendix A.7. Proof of Theorem 3

Proof. Firstly, from the necessary condition of β > 1 in Section 3, we have that any sufficient condition
for IBβ-learnability should be able to deduce β > 1.

Now using Theorem 2, a sufficient condition for (X, Y) to be IBβ-learnable is that there exists
h(z|x) with

∫
h(z|x)dx = 0 such that δ2IBβ[p(z|x)] < 0 at p(z|x) = p(x).

At the trivial representation, p(z|x) = p(z) and hence p(x, z) = p(x)p(z). Due to the Markov
chain Z ← X ↔ Y, we have p(y, z) = p(y)p(z). Substituting them into the δ2IBβ[p(z|x)] in Lemma A1,
the condition becomes: there exists h(z|x) with

∫
h(z|x)dz = 0, such that

0 > δ2IBβ[p(z|x)] =
1
2

[ ∫
dxdz

p(x)2

p(x)p(z)
h(z|x)2 − β

∫
dxdx′dydz

p(x, y)p(x′, y)
p(y)p(z)

h(z|x)h(z|x′) + (β− 1)
∫

dxdx′dz
p(x)p(x′)

p(z)
h(z|x)h(z|x′)

] (A2)

Rearranging terms and simplifying, we have

∫ dz
p(z)

G[h(z|x)] =
∫ dz

p(z)

[ ∫
dxh(z|x)2 p(x)− β

∫ dy
p(y)

( ∫
dxh(z|x)p(x)p(y|x)

)2

+ (β− 1)
( ∫

dxh(z|x)p(x)
)2]

< 0

where

G[h(x)] =
∫

dxh(x)2 p(x)− β
∫ dy

p(y)

( ∫
dxh(x)p(x)p(y|x)

)2

+ (β− 1)
( ∫

dxh(x)p(x)
)2

Now we prove that the condition that ∃h(z|x) s.t.
∫ dz

p(z)G[h(z|x)] < 0 is equivalent to the
condition that ∃h(x) s.t. G[h(x)] < 0.

If ∀h(z|x), G[h(z|x)] ≥ 0, then we have ∀h(z|x),
∫ dz

p(z)G[h(z|x)] ≥ 0. Therefore, if ∃h(z|x) s.t.∫ dz
p(z)G[h(z|x)] < 0, we have that ∃h(z|x) s.t. G[h(z|x)] < 0. Since the functional G[h(z|x)] does not
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contain integration over z, we can treat the z in G[h(z|x)] as a parameter and we have that ∃h(x) s.t.
G[h(x)] < 0.

Conversely, if there exists an certain function h(x) such that G[h(x)] < 0, we can find some h2(z)

such that
∫

h2(z)dz = 0 and
∫ h2

2(z)
p(z) dz > 0, and let h1(z|x) = h(x)h2(z). Now we have

∫ dz
p(z)

G[h(z|x)] =
∫ h2

2(z)dz
p(z)

G[h(x)] = G[h(x)]
∫ h2

2(z)dz
p(z)

< 0

In other words, the condition Equation (A2) is equivalent to requiring that there exists an h(x)
such that G[h(x)] < 0 . Hence, a sufficient condition for IBβ-learnability is that there exists an h(x)
such that

G[h(x)] =
∫

dxh(x)2 p(x)− β
∫ dy

p(y)

( ∫
dxh(x)p(x)p(y|x)

)2

+ (β− 1)
( ∫

dxh(x)p(x)
)2

< 0 (A3)

When h(x) = C = constant in the entire input space X , Equation (A3) becomes:

C2 − βC2 + (β− 1)C2 < 0

which cannot be true. Therefore, h(x) = constant cannot satisfy Equation (A3).
Rearranging terms and simplifying, we have

β

[ ∫ dy
p(y)

(∫
dxh(x)p(x)p(y|x)

)2
−
(∫

dxh(x)p(x)
)2 ]

>
∫

dxh(x)2 p(x)−
(∫

dxh(x)p(x)
)2

(A4)

Written in the form of expectations, we have

β ·
(
Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2
]
−
(
Ex∼p(x)[h(x)]

)2
)
> Ex∼p(x)[h(x)2]−

(
Ex∼p(x)[h(x)]

)2
(A5)

Since the square function is convex, using Jensen’s inequality on the L.H.S. of Equation (A5),
we have

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2]
≥
(
Ey∼p(y)

[
Ex∼p(x|y)[h(x)]

])2

=
(
Ex∼p(x)[h(x)]

)2

The equality holds iff Ex∼p(x|y)[h(x)] is constant w.r.t. y, i.e., Y is independent of X. Therefore,
in order for Equation (A5) to hold, we require that Y is not independent of X.

Using Jensen’s inequality on the innter expectation on the L.H.S. of Equation (A5), we have

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2]
≤ Ey∼p(y)

[
Ex∼p(x|y)[h(x)2]

]
= Ex∼p(x)[h(x)2] (A6)

The equality holds when h(x) is a constant. Since we require that h(x) is not a constant, we have
that the equality cannot be reached.

Similarly, using Jensen’s inequality on the R.H.S. of Equation (A5), we have that

Ex∼p(x)[h(x)2] >
(
Ex∼p(x)[h(x)]

)2

where we have used the requirement that h(x) cannot be constant.
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Under the constraint that Y is not independent of X, we can divide both sides of Equation (A5),
and obtain the condition: there exists an h(x) such that

β >
Ex∼p(x)[h(x)2]−

(
Ex∼p(x)[h(x)]

)2

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2
]
−
(
Ex∼p(x)[h(x)]

)2

i.e.,

β > inf
h(x)

Ex∼p(x)[h(x)2]−
(
Ex∼p(x)[h(x)]

)2

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2
]
−
(
Ex∼p(x)[h(x)]

)2

which proves the condition of Theorem 3.
Furthermore, from Equation (A6) we have

β0[h(x)] > 1

for h(x) 6≡ const, which satisfies the necessary condition of β > 1 in Section 3.

Proof of lower bound of slope of the Pareto frontier at the origin: Now we prove the second
statement of Theorem 3. Since δI(X; Z) = 0 and δI(Y; Z) = 0 according to Lemma 2, we have(

∆I(Y;Z)
∆I(X;Z)

)−1
=
(

δ2 I(Y;Z)
δ2 I(X;Z)

)−1
. Substituting into the expression of δ2 I(Y; Z) and δ2 I(X; Z) from

Lemma A1, we have(
∆I(Y; Z)
∆I(X; Z)

)−1

=

(
δ2 I(Y; Z)
δ2 I(X; Z)

)−1

=

ε2

2

∫
dxdz p(x)2

p(x)p(z)h(z|x)2 − ε2

2

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)
ε2

2

∫
dxdx′dydz p(x,y)p(x′ ,y)

p(y)p(z) h(z|x)h(z|x′)− ε2

2

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)

=

(∫
dxp(x)h(x)2 −

∫
dxdx′p(x)p(x′)h(x)h(z|x′)

) ∫ h2(z)2

p(z) dz(∫
dxdx′dy p(x,y)p(x′ ,y)

p(y) h(x)h(z|x′)−
∫

dxdx′p(x)p(x′)h(x)h(z|x′)
) ∫ h2(z)2

p(z) dz

=

∫
dxp(x)h(x)2 −

∫
dxdx′p(x)p(x′)h(x)h(z|x′)∫

dxdx′dy p(x,y)p(x′ ,y)
p(y) h(x)h(z|x′)−

∫
dxdx′p(x)p(x′)h(x)h(z|x′)

=
Ex∼p(x)[h(x)2]−

(
Ex∼p(x)[h(x)]

)2

Ey∼p(y)
[ (

Ex∼p(x|y)[h(x)]
)2 ]
−
(
Ex∼p(x)[h(x)]

)2

=

Ex∼p(x) [h(x)2]

(Ex∼p(x) [h(x)])
2 − 1

Ey∼p(y)

[ (
Ex∼p(x|y) [h(x)]
Ex∼p(x) [h(x)]

)2 ]
− 1

= β0[h(x)]

Therefore,
(

infh(x) β0[h(x)]
)−1

gives the largest slope of ∆I(Y; Z) vs. ∆I(X; Z) for perturbation

function of the form h1(z|x) = h(x)h2(z) satisfying
∫

h2(z)dz = 0 and
∫ h2

2(z)
p(z) dz > 0, which is a lower
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bound of slope of ∆I(Y; Z) vs. ∆I(X; Z) for all possible perturbation function h1(z|x). The latter is the
slope of the Pareto frontier of the I(Y; Z) vs. I(X; Z) curve at the origin.

Inflection point for general Z: If we do not assume that Z is at the origin of the information plane,
but at some general stationary solution Z∗ with p(z|x), we define

β(2)[h(x)] =
(

δ2 I(Y; Z)
δ2 I(X; Z)

)−1

=

ε2

2

∫
dxdz p(x)2

p(x,z)h(z|x)2 − ε2

2

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)
ε2

2

∫
dxdx′dydz p(x,y)p(x′ ,y)

p(y,z) h(z|x)h(z|x′)− ε2

2

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)

=

∫
dxdz p(x)2

p(x,z)h(z|x)2 −
∫

dxdx′dz p(x)p(x′)
p(z) h(z|x)h(z|x′)∫

dxdx′dydz p(x,y)p(x′ ,y)
p(y,z) h(z|x)h(z|x′)−

∫
dxdx′dz p(x)p(x′)

p(z) h(z|x)h(z|x′)

=

∫ dz
p(z)

[∫
dx p(x)2

p(x|z)h(z|x)2 − (
∫

dxp(x)h(z|x))2
]

∫ dz
p(z)

[∫ dy
p(y|z) (

∫
dxp(x, y)h(z|x))2 − (

∫
dxp(x)h(z|x))2

]

=

∫ dz
p(z)

[ ∫
dx p(x)2

p(x|z) h(z|x)2

(
∫

dxp(x)h(z|x))2 − 1

]
∫ dz

p(z)

[ ∫ dy
p(y|z) (

∫
dxp(x,y)h(z|x))2

(
∫

dxp(x)h(z|x))2 − 1

]

=

∫
dz

[ ∫
dx p(x)

p(z|x) h(z|x)2

(
∫

dxp(x)h(z|x))2 − 1
p(z)

]
∫

dz

[ ∫ dy
p(z|y)p(y) (

∫
dxp(x,y)h(z|x))2

(
∫

dxp(x)h(z|x))2 − 1
p(z)

]

=

∫
dz
[∫

dx p(x)
p(z|x)h(z|x)2 − 1

p(z) (
∫

dxp(x)h(z|x))2
]

∫
dz
[∫ dy

p(z|y)p(y) (
∫

dxp(x, y)h(z|x))2 − 1
p(z) (

∫
dxp(x)h(z|x))2

]
which reduces to β0[h(x)] when p(z|x) = p(z). When

β > inf
h(z|x)

β(2)[h(z|x)] (A7)

it becomes a non-stable solution (non-minimum), and we will have other Z that achieves a better
IBβ(X, Y; Z) than the current Z∗.

Appendix A.8. What IB First Learns at Its Onset of Learning

In this section, we prove that at the onset of learning, if letting h(z|x) = h∗(x)h2(z), we have

pβ(y|x) = p(y) + ε2Cz(h∗(x)− h
∗
x)
∫

p(x, y)(h∗(x)− h
∗
x)dx (A8)

where pβ(y|x) is the estimated p(y|x) by IB for a certain β, h∗(x) = infh(x) β0[h(x)], h
∗
x =∫

h∗(x)p(x)dx, Cz =
∫ h2

2(z)
p(z) dz is a constant.
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Proof. In IB, we use pβ(z|x) to obtain Z from X, then obtain the prediction of Y from Z using pβ(y|z).
Here we use subscript β to denote the probability (density) at the optimum of IBβ[p(z|x)] at a specific
β. We have

pβ(y|x) =
∫

pβ(y|z)pβ(z|x)dz

=
∫

dz
pβ(y, z)pβ(z|x)

pβ(z)

=
∫

dz
pβ(z|x)
pβ(z)

∫
p(x′, y)pβ(z|x′)dx′

When we have a small perturbation ε · h(z|x) at the trivial representation, pβ(z|x) = pβ0(z) + ε ·
h(z|x), we have pβ(z) = pβ0(z) + ε ·

∫
h(z|x′′)p(x′′)dx′′. Substituting, we have

pβ(y|x) =
∫

dz
pβ0(z)

(
1 + ε · h(z|x)

pβ0
(z)

)
pβ0(z)

(
1 + ε ·

∫
h(z|x′′)p(x′′)dx′′

pβ0
(z)

) ∫ p(x′, y)pβ0(z)

(
1 + ε · h(z|x′)

pβ0(z)

)
dx′

=
∫

dz
1 + ε · h(z|x)

pβ0
(z)

1 + ε ·
∫

h(z|x′′)p(x′′)dx′′

pβ0
(z)

∫
p(x′, y)pβ0(z)

(
1 + ε · h(z|x′)

pβ0(z)

)
dx′

The 0th-order term is
∫

dzdx′p(x′, y)pβ0(z) = p(y). The first-order term is

δpβ(z|x) =ε ·
∫

dzdx′
(

h(z|x) + h(z|x′)−
∫

h(z|x′′)p(x′′)dx′′
)

p(x′, y)

=ε ·
∫

dx′
(∫

dzh(z|x) +
∫

dzh(z|x′)
)
− ε ·

∫
dx′dx′′p(x′, y)p(x′′)

∫
dzh(z|x′′)

=0− 0

=0

since we have
∫

h(z|x)dz = 0 for any x.
For the second-order term, using h(z|x) = h∗(x)h2(z) and Cz =

∫ dz
pβ0

(z)h2
2(z), it is

δ2 pβ(y|x) =ε2 ·
∫

dz

(∫
h(z|x′′)p(x′′)dx′′

pβ0(z)

)2 ∫
p(x′, y)pβ0(z)dx′

− ε2 ·
∫

dz
h(z|x)

∫
h(z|x′′)p(x′′)dx′′

(pβ0(z))
2

∫
p(x′, y)pβ0(z)dx′

+ ε2
∫

dz
(

h(z|x)−
∫

h(z|x′′)p(x′′)dx
) ∫

p(x′, y)
h(z|x′)
pβ0(z)

dx′

=ε2Cz ·
(∫

h∗(x′′)p(x′′)dx′′
)2

p(y)

− ε2Cz · h∗(x)
∫

h∗(x′′)p(x′′)dx′′p(y)

+ ε2Cz · h∗(x)
∫

p(x′, y)h∗(x′)dx′

− ε2Cz ·
∫

h∗(x′′)p(x′′)dx
∫

p(x′, y)h∗(x′)dx′

=ε2Cz(h∗(x)− h
∗
x)

[(∫
p(x′, y)h∗(x′)dx′

)
− h
∗
x p(y)

]
=ε2Cz(h∗(x)− h

∗
x)
∫

p(x′, y)
(

h∗(x′)− h
∗
x

)
dx′
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where h
∗
x =

∫
h∗(x)p(x)dx. Combining everything, we have up to the second order,

pβ(y|x) = p(y) + ε2Cz(h∗(x)− h
∗
x)
∫

p(x, y)(h∗(x)− h
∗
x)dx

Appendix A.9. Proof of Theorem 4

Proof. According to Theorem 3, a sufficient condition for (X, Y) to be IBβ-learnable is that X and Y
are not independent, and

β > inf
h(x)

Ex∼p(x) [h(x)2]

(Ex∼p(x) [h(x)])
2 − 1

Ey∼p(y)

[ (
Ex∼p(x|y) [h(x)]
Ex∼p(x) [h(x)]

)2 ]
− 1

(A9)

We can assume a specific form of h(x), and obtain a (potentially stronger) sufficient condition.
Specifically, we let

h(x) =

{
1, x ∈ Ωx

0, otherwise
(A10)

for certain Ωx ⊂ X . Substituting into Equation (A10), we have that a sufficient condition for (X, Y) to
be IBβ-learnable is

β > inf
Ωx⊂X

p(Ωx)
p(Ωx)2 − 1∫

dyp(y)
( ∫

x∈Ωx dxp(x|y)dx
p(Ωx)

)2
− 1

> 0 (A11)

where p(Ωx) =
∫

x∈Ωx
p(x)dx.

The denominator of Equation (A11) is

∫
dyp(y)

(∫
x∈Ωx

dxp(x|y)dx

p(Ωx)

)2

− 1

=
∫

dyp(y)
(

p(Ωx|y)
p(Ωx)

)2

− 1

=
∫

dy
p(y|Ωx)2

p(y)
− 1

= Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y)
− 1
]

Using the inequality x− 1 ≥ log x, we have

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y)
− 1
]
≥ Ey∼p(y|Ωx)

[
log

p(y|Ωx)

p(y)

]
≥ 0

Both equalities hold iff p(y|Ωx) ≡ p(y), at which the denominator of Equation (A11) is equal to 0
and the expression inside the infimum diverge, which will not contribute to the infimum. Except this
scenario, the denominator is greater than 0. Substituting into Equation (A11), we have that a sufficient
condition for (X, Y) to be IBβ-learnable is

β > inf
Ωx⊂X

p(Ωx)
p(Ωx)2 − 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
] (A12)
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Since Ωx is a subset of X , by the definition of h(x) in Equation (A10), h(x) is not a constant in the
entire X . Hence the numerator of Equation (A12) is positive. Since its denominator is also positive, we
can then neglect the “> 0", and obtain the condition in Theorem 4.

Since the h(x) used in this theorem is a subset of the h(x) used in Theorem 3, the infimum for
Equation (5) is greater than or equal to the infimum in Equation (2). Therefore, according to the second
statement of Theorem 3, we have that the (infΩx⊂X β0(Ωx))

−1 is also a lower bound of the slope for
the Pareto frontier of I(Y; Z) vs. I(X; Z) curve.

Now we prove that the condition Equation (5) is invariant to invertible mappings of X. In fact,
if X′ = g(X) is a uniquely invertible map (if X is continuous, g is additionally required to be
continuous), let X ′ = {g(x)|x ∈ Ωx}, and denote g(Ωx) ≡ {g(x)|x ∈ Ωx} for any Ωx ⊂ X , we have
p(g(Ωx)) = p(Ωx), and p(y|g(Ωx)) = p(y|Ωx). Then for dataset (X, Y), let Ω′x = g(Ωx), we have

1
p(Ω′x)

− 1

Ey∼p(y|Ω′x)

[
p(y|Ω′x)

p(y) − 1
] =

1
p(Ωx)

− 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
] (A13)

Additionally we have X ′ = g(X ). Then

inf
Ω′x⊂X ′

1
p(Ω′x)

− 1

Ey∼p(y|Ω′x)

[
p(y|Ω′x)

p(y) − 1
] = inf

Ωx⊂X

1
p(Ωx)

− 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
] (A14)

For dataset (X′, Y) = (g(X), Y), applying Theorem 4 we have that a sufficient condition for it to
be IBβ-learnable is

β > inf
Ω′x⊂X ′

1
p(Ω′x)

− 1

Ey∼p(y|Ω′x)

[
p(y|Ω′x)

p(y) − 1
] = inf

Ωx⊂X

1
p(Ωx)

− 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
] (A15)

where the equality is due to Equation (A14). Comparing with the condition for IBβ-learnability for
(X, Y) (Equation (5)), we see that they are the same. Therefore, the condition given by Theorem 4 is
invariant to invertible mapping of X.

Appendix A.10. Proof of Corollary 1 and Corollary 2

Appendix A.10.1. Proof of Corollary 1

Proof. We use Theorem 4. Let Ωx contain all elements x whose true class is y∗ for some certain y∗,
and 0 otherwise. Then we obtain a (potentially stronger) sufficient condition. Since the probability
p(y|y∗, x) = p(y|y∗) is class-conditional, we have

inf
Ωx⊂X

1
p(Ωx)

− 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
]

= inf
y∗

1
p(y∗) − 1

Ey∼p(y|y∗)

[
p(y|y∗)

p(y) − 1
]

By requiring β > infy∗
1

p(y∗)−1

Ey∼p(y|y∗)
[

p(y|y∗)
p(y) −1

] , we obtain a sufficient condition for IBβ learnability.
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Appendix A.10.2. Proof of Corollary 2

Proof. We again use Theorem 4. Since Y is a deterministic function of X, let Y = f (X). By the
assumption that Y contains at least one value y such that its probability p(y) > 0, we let Ωx contain
only x such that f (x) = y. Substituting into Equation (5), we have

1
p(Ωx)

− 1

Ey∼p(y|Ωx)

[
p(y|Ωx)

p(y) − 1
]

=

1
p(y) − 1

Ey∼p(y|Ωx)

[
1

p(y) − 1
]

=

1
p(y) − 1

1
p(y) − 1

=1

Therefore, the sufficient condition becomes β > 1.

Appendix A.11. β0, Hypercontractivity Coefficient, Contraction Coefficient, β0[h(x)],
and Maximum Correlation

In this section, we prove the relations between the IB-Learnability threshold β0,
the hypercontractivity coefficient ξ(X; Y), the contraction coefficient ηKL(p(y|x), p(x)), β0[h(x)] in
Equation (2), and maximum correlation ρm(X, Y), as follows:

1
β0

= ξ(X; Y) = ηKL(p(y|x), p(x)) ≥ sup
h(x)

1
β0[h(x)]

= ρ2
m(X; Y) (A16)

Proof. The hypercontractivity coefficient ξ is defined as [16]:

ξ(X; Y) ≡ sup
Z−X−Y

I(Y; Z)
I(X; Z)

By our definition of IB-learnability, (X, Y) is IB-Learnable iff there exists Z obeying the Markov
chain Z− X−Y, such that

I(X; Z)− β · I(Y; Z) < 0 = IBβ(X, Y; Z)|p(z|x)=p(z)

Or equivalently there exists Z obeying the Markov chain Z− X−Y such that

0 <
1
β
<

I(Y; Z)
I(X; Z)

(A17)

By Theorem 1, the IB-Learnability region for β is (β0,+∞), or equivalently the IB-Learnability
region for 1/β is

0 <
1
β
<

1
β0

(A18)

Comparing Equations (A17) and (A18), we have that

1
β0

= sup
Z−X−Y

I(Y; Z)
I(X; Z)

= ξ(X; Y) (A19)
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In Anantharam et al. [16], the authors prove that

ξ(X; Y) = ηKL(p(y|x), p(x)) (A20)

where the contraction coefficient ηKL(p(y|x), p(x)) is defined as

ηKL(p(y|x), p(x)) = sup
r(x) 6=p(x)

DKL(r(y)||p(y))
DKL(r(x)||p(x))

where p(y) = Ex∼p(x)[p(y|x)] and r(y) = Ex∼r(x)[p(y|x)]. Treating p(y|x) as a channel, the contraction
coefficient measures how much the two distributions r(x) and p(x) becomes “nearer" (as measured by
the KL-divergence) after passing through the channel.

In Anantharam et al. [16], the authors also provide a counterexample to an earlier result by
Erkip and Cover [31] that incorrectly proved ξ(X; Y) = ρ2

m(X; Y). In the specific counterexample
Anantharam et al. [16] design, ξ(X; Y) > ρ2

m(X; Y).
The maximum correlation is defined as ρm(X; Y) ≡ max f ,g E[ f (X)g(Y)] where f (X) and g(Y) are

real-valued random variables such that E[ f (X)] = E[g(Y)] = 0 and E[ f 2(X)] = E[g2(Y)] = 1 [20,21].
Now we prove ξ(X; Y) ≥ ρ2

m(X; Y), based on Theorem 3. To see this, we use the alternate
characterization of ρm(X; Y) by Rényi [32]:

ρ2
m(X; Y) = max

f (X):E[ f (X)]=0,E[ f 2(X)]=1
E[(E[ f (X)|Y])2] (A21)

Denoting h = Ep(x)[h(x)], we can transform β0[h(x)] in Equation (2) as follows:

β0[h(x)] =
Ex∼p(x)[h(x)2]−

(
Ex∼p(x)[h(x)]

)2

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2
]
−
(
Ex∼p(x)[h(x)]

)2

=
Ex∼p(x)[h(x)2]− h

2

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)]

)2
]
− h

2

=
Ex∼p(x)[(h(x)− h)2]

Ey∼p(y)

[(
Ex∼p(x|y)[h(x)− h]

)2
]

=
1

Ey∼p(y)

[(
Ex∼p(x|y)[ f (x)]

)2
]

=
1

E[(E[ f (X)|Y])2]

where we denote f (x) = h(x)−h

(Ex∼p(x) [(h(x)−h)2])
1/2 , so that E[ f (X)] = 0 and E[ f 2(X)] = 1.

Combined with Equation (A21), we have

sup
h(x)

1
β0[h(x)]

= ρ2
m(X; Y) (A22)

Our Theorem 3 states that
sup
h(x)

1
β0[h(x)]

≤ 1
β0

(A23)
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Combining Equations (A18), (A22) and Equation (A23), we have

ρ2
m(X; Y) ≤ ξ(X; Y) (A24)

In summary, the relations among the quantities are:

1
β0

= ξ(X; Y) = ηKL(p(y|x), p(x)) ≥ sup
h(x)

1
β0[h(x)]

= ρ2
m(X; Y) (A25)

Appendix A.12. Experiment Details

We use the Variational Information Bottleneck (VIB) objective from [5]. For the synthetic
experiment, the latent Z has dimension of 2. The encoder is a neural net with 2 hidden layers,
each of which has 128 neurons with ReLU activation. The last layer has linear activation and 4 output
neurons; the first two parameterize the mean of a Gaussian and the last two parameterize the log
variance. The decoder is a neural net with 1 hidden layer with 128 neurons and ReLU activation. Its
last layer has linear activation and outputs the logit for the class labels. It uses a mixture of Gaussian
prior with 500 components (for the experiment with class overlap, 256 components), each of which is
a 2D Gaussian with learnable mean and log variance, and the weights for the components are also
learnable. For the MNIST experiment, the architecture is mostly the same, except the following: (1)
for Z, we let it have dimension of 256. (2) For the prior, we use standard Gaussian with diagonal
covariance matrix.

For all experiments, we use Adam [33] optimizer with default parameters. We do not add any
explicit regularization. We use learning rate of 10−4 and have a learning rate decay of 1

1+0.01×epoch .
We train in total 2000 epochs with mini-batch size of 500.

For estimation of the observed β0 in Figure 3, in the I(X; Z) vs. βi curve (βi denotes the i-th β),
we take the mean and standard deviation of I(X; Z) for the lowest 5 βi values, denoting as µβ, σβ

(I(Y; Z) has similar behavior, but since we are minimizing I(X; Z)− β · I(Y; Z), the onset of nonzero
I(X; Z) is less prone to noise). When I(X; Z) is greater than µβ + 3σβ, we regard it as learning a
non-trivial representation, and take the average of βi and βi−1 as the experimentally estimated onset
of learning. We also inspect manually and confirm that it is consistent with human intuition.

For estimating β0 using Algorithm 1, at step 6 we use the following discrete search algorithm.
We fix ileft = 1 and gradually narrow down the range [a, b] of iright, starting from [1, N]. At each
iteration, we set a tentative new range [a′, b′], where a′ = 0.8a + 0.2b, b′ = 0.2a + 0.8b, and calculate
β̃0,a′ = Getβ(Py|x, py, Ωa′), β̃0,b′ = Getβ(Py|x, py, Ωb′) where Ωa′ = {1, 2, ...a′} and Ωb′ = {1, 2, ...b′}.
If β̃0,a′ < β̃0,a, let a← a′. If β̃0,b′ < β̃0,b, let b← b′. In other words, we narrow down the range of iright
if we find that the Ω given by the left or right boundary gives a lower β̃0 value. The process stops
when both β̃0,a′ and β̃0,b′ stop improving (which we find always happens when b′ = a′ + 1), and we
return the smaller of the final β̃0,a′ and β̃0,b′ as β̃0.

For estimation of p(y|x) for (2′) Algorithm 1 and (3′) η̂KL for both synthetic and MNIST
experiments, we use a 3-layer neuron net where each hidden layer has 128 neurons and ReLU activation.
The last layer has linear activation. The objective is cross-entropy loss. We use Adam [33] optimizer
with a learning rate of 10−4, and train for 100 epochs (after which the validation loss does not go down).

For estimating β0 via (3′) η̂KL by the algorithm in [18], we use the code from the GitHub repository
provided by the paper (At https://github.com/wgao9/hypercontractivity), using the same p(y|x)
employed for (2′) Algorithm 1. Since our datasets are classification tasks, we use Aij = p(yj|xi)/p(yj)

instead of the kernel density for estimating matrix A; we take the maximum of 10 runs as estimation
of µ.

https://github.com/wgao9/hypercontractivity
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CIFAR10 Details

We trained a deterministic 28 × 10 wide resnet [34,35], using the open source implementation
from Cubuk et al. [36]. However, we extended the final 10 dimensional logits of that model through
another 3 layer MLP classifier, in order to keep the inference network architecture identical between
this model and the VIB models we describe below. During training, we dynamically added label noise
according to the class confusion matrix in Table A1. The mean label noise averaged across the 10
classes is 20%. After that model had converged, we used it to estimate β0 with Algorithm 1. Even with
20% label noise, β0 was estimated to be 1.0483.

Table A1. Class confusion matrix used in CIFAR10 experiments. The value in row i, column j means
for class i, the probability of labeling it as class j. The mean confusion across the classes is 20%.

Plane Auto. Bird Cat Deer Dog Frog Horse Ship Truck

Plane 0.82232 0.00238 0.021 0.00069 0.00108 0 0.00017 0.00019 0.1473 0.00489
Auto. 0.00233 0.83419 0.00009 0.00011 0 0.00001 0.00002 0 0.00946 0.15379

Bird 0.03139 0.00026 0.76082 0.0095 0.07764 0.01389 0.1031 0.00309 0.00031 0
Cat 0.00096 0.0001 0.00273 0.69325 0.00557 0.28067 0.01471 0.00191 0.00002 0.0001

Deer 0.00199 0 0.03866 0.00542 0.83435 0.01273 0.02567 0.08066 0.00052 0.00001
Dog 0 0.00004 0.00391 0.2498 0.00531 0.73191 0.00477 0.00423 0.00001 0
Frog 0.00067 0.00008 0.06303 0.05025 0.0337 0.00842 0.8433 0 0.00054 0

Horse 0.00157 0.00006 0.00649 0.00295 0.13058 0.02287 0 0.83328 0.00023 0.00196
Ship 0.1288 0.01668 0.00029 0.00002 0.00164 0.00006 0.00027 0.00017 0.83385 0.01822

Truck 0.01007 0.15107 0 0.00015 0.00001 0.00001 0 0.00048 0.02549 0.81273

We then trained 73 different VIB models using the same 28 × 10 wide resnet architecture for the
encoder, parameterizing the mean of a 10-dimensional unit variance Gaussian. Samples from the
encoder distribution were fed to the same 3 layer MLP classifier architecture used in the deterministic
model. The marginal distributions were mixtures of 500 fully covariate 10-dimensional Gaussians, all
parameters of which are trained. The VIB models had β ranging from 1.02 to 2.0 by steps of 0.02, plus
an extra set ranging from 1.04 to 1.06 by steps of 0.001 to ensure we captured the empirical β0 with
high precision.

However, this particular VIB architecture does not start learning until β > 2.5, so none of these
models would train as described. (A given architecture trained using maximum likelihood and with no
stochastic layers will tend to have higher effective capacity than the same architecture with a stochastic
layer that has a fixed but non-trivial variance, even though those two architectures have exactly the
same number of learnable parameters.) Instead, we started them all at β = 100, and annealed β down
to the corresponding target over 10,000 training gradient steps. The models continued to train for
another 200,000 gradient steps after that. In all cases, the models converged to essentially their final
accuracy within 20,000 additional gradient steps after annealing was completed. They were stable over
the remaining ∼180,000 gradient steps.
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