
MIT Open Access Articles

Frequency-dependent current noise in quantum 
heat transfer: A unified polaron calculation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Liu, Junjie et al. “Frequency-dependent current noise in quantum heat transfer: A 
unified polaron calculation.” The Journal of chemical physics, vol. 148, no. 23, 2018, 234104 © 
2018 The Author(s)

As Published: 10.1063/1.5025367

Publisher: AIP Publishing

Persistent URL: https://hdl.handle.net/1721.1/126060

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/126060


Frequency-dependent current noise in quantum heat transfer: A unified polaron
calculation
Junjie Liu, Chang-Yu Hsieh, Changqin Wu, and Jianshu Cao

Citation: The Journal of Chemical Physics 148, 234104 (2018); doi: 10.1063/1.5025367
View online: https://doi.org/10.1063/1.5025367
View Table of Contents: http://aip.scitation.org/toc/jcp/148/23
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1742681036/x01/AIP-PT/MB_JCPArticleDL_WP_042518/large-banner.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Liu%2C+Junjie
http://aip.scitation.org/author/Hsieh%2C+Chang-Yu
http://aip.scitation.org/author/Wu%2C+Changqin
http://aip.scitation.org/author/Cao%2C+Jianshu
/loi/jcp
https://doi.org/10.1063/1.5025367
http://aip.scitation.org/toc/jcp/148/23
http://aip.scitation.org/publisher/


THE JOURNAL OF CHEMICAL PHYSICS 148, 234104 (2018)

Frequency-dependent current noise in quantum heat transfer:
A unified polaron calculation

Junjie Liu,1,2 Chang-Yu Hsieh,1,2 Changqin Wu,3 and Jianshu Cao1,2
1Singapore-MIT Alliance for Research and Technology (SMART) Center, 1 CREATE Way,
Singapore 138602, Singapore
2Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, Massachusetts 02139, USA
3State Key Laboratory of Surface Physics and Department of Physics, Fudan University,
Shanghai 200433, China

(Received 9 February 2018; accepted 28 May 2018; published online 20 June 2018)

To investigate frequency-dependent current noise (FDCN) in open quantum systems at steady states,
we present a theory which combines Markovian quantum master equations with a finite time full
counting statistics. Our formulation of the FDCN generalizes previous zero-frequency expressions
and can be viewed as an application of MacDonald’s formula for electron transport to heat transfer.
As a demonstration, we consider the paradigmatic example of quantum heat transfer in the context
of a non-equilibrium spin-boson model. We adopt a recently developed polaron-transformed Red-
field equation which allows us to accurately investigate heat transfer with arbitrary system-reservoir
coupling strength, arbitrary values of spin bias, and temperature differences. We observe a turn-over
of FDCN in the intermediate coupling regimes, similar to the zero-frequency case. We find that the
FDCN with varying coupling strengths or bias displays a universal Lorentzian-shape scaling form
in the weak coupling regime, and a white noise spectrum emerges with zero bias in the strong cou-
pling regime due to distinctive spin dynamics. We also find that the bias can suppress the FDCN in
the strong coupling regime, in contrast to its zero-frequency counterpart which is insensitive to bias
changes. Furthermore, we utilize the Saito-Utsumi relation as a benchmark to validate our theory
and study the impact of temperature differences at finite frequencies. Together, our results provide
detailed dissections of the finite time fluctuation of heat current in open quantum systems. Published
by AIP Publishing. https://doi.org/10.1063/1.5025367

I. INTRODUCTION

The rapid development in nanotechnologies opens an
avenue for studying heat transfer in mesoscopic systems.1–4

At the nano-scales, fluctuations of heat become increasingly
relevant5 to the performance and stability of nanostructured
devices. To better characterize the fluctuations, higher order
statistics of heat transfer beyond the stationary heat current are
needed and cannot be directly obtained from the standard heat
conductance measurements. Hence, it is desirable to formulate
a theoretical framework to analyze heat-transfer statistics for
these systems.

So far, analytical results on the heat-transfer statistics
are limited to the infinite time limit (i.e., the zero frequency
limit) where well-established frameworks such as the large
deviation theory,6 steady state fluctuation theorem,7–9 and full
counting statistics (FCS)10–12 can be utilized. Both the sta-
tionary heat current13–15 and variance of heat current have
been studied for open quantum systems at steady states.16–21

However, this is by no means the complete story. Finite-
frequency components of heat fluctuations provide a rich
set of new information about the steady state heat statis-
tics beyond what could be inferred from the zero-frequency
component, as already demonstrated for electronic heat trans-
port in the wide-band limit.22 Apart from this example, and

some notable exceptions,23,24 the behaviors of the finite fre-
quency heat-transfer statistics are still largely unexplored due
to the absence of a general theoretical framework that can
extract finite time fluctuation properties of heat at steady
states.

In this work, we present a theoretical method to study
the frequency-dependent current noise (FDCN) for nonequi-
librium open quantum systems.25–27 We extend MacDonald’s
formula28,29 in electron transport to heat current which for-
mally expresses the FDCN in terms of an integral of the time-
dependent second order cumulant of transferred heat evaluated
at steady states, thus generalizing previously expressions for
zero-frequency heat current noise.18–21 In order to calculate
the time-dependent cumulant of heat involved in the FDCN,
we follow the scheme of a finite time FCS developed for elec-
tron transport30,31 and propose an analogous framework. Our
theory can be applied to open quantum systems described
by Markovian quantum master equations and possesses good
adaptability. Figure 1 clearly summarizes the physical picture
underlying the finite-time heat fluctuation we introduce in the
present work.

To illustrate the formalism, we study the case of a
nonequilibrium spin-boson (NESB) model26,33 which is a
paradigmatic example for quantum heat transfer.13 By combin-
ing a recently developed nonequilibrium polaron-transformed
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FIG. 1. Illustration of the “finite time” parameter regime. The total system
has reached the steady state at t = 0. The two-time measurements are taken at
t = 0 and t with a nonzero counting field χ.

Redfield equation (NE-PTRE) for the reduced spin
dynamics14,20 and the finite time FCS, we are able to study
the FDCN of the NESB from a unified perspective. New phe-
nomena are found and explained analytically. These results
manifest the versatility of our proposed framework and how it
can be used to study FDCN in a variety of quantum transport
setups.34–36

The paper is organized as follows. We first propose our
general theory for the FDCN in Sec. II. In Sec. III, we introduce
the NESB model and the NE-PTRE with FCS. In Sec. IV,
we study the FDCN of the NESB in detail by analyzing the
impact of coupling strength, bias, and temperature differences.
In Sec. V, we summarize our findings.

II. THEORY
A. Frequency-dependent heat current noise power

We consider heat transfer systems, consisting of a central
region attached to non-interacting bosonic reservoirs at dif-
ferent temperatures. This setup can be described by a general
Hamiltonian

H = Hs + HI + HB, (1)

where Hs refers to the system, HB =
∑
v=L,R Hv

B =
∑

k,v=L,R

ωk,vb
†

k,vbk,v is the bosonic reservoirs’ part with b†k,v and bk,v

being the bosonic creation and annihilation operators for the
mode k of frequency ωk,v in the vth reservoir characterized
by an inverse temperature βv ≡ T−1

v (TL , TR), H I =
∑
vVv

⊗Bv is the interaction between the system and reservoirs which
assumes a bilinear form with Bv being an arbitrary operator
of the vth reservoir and Vv being the corresponding system
operator. This setup encompasses a broad range of dissipative
and transport settings. Throughout the paper, we set ~ = 1 and
kB = 1.

The stationary heat current is defined by

〈Iv(t)〉 = −
d
dt
〈Hv

B(t)〉, (2)

where we denote 〈· · · 〉 ≡ Tr[· · · ρss] with ρss being the total
steady state density matrix. Due to the energy conservation,
we introduce 〈I〉 ≡ 〈IL〉 = −〈IR〉. We simply focus on the heat
current I and its fluctuation statistics. It is worthwhile to men-
tion that the above definition is consistent with the quantum
thermodynamics and can be applied in the strong coupling
regime.37

We assume that the total system has reached the unique
steady state at t = 0 and then the heat current noise at
finite times is described by the symmetrized auto-correlation

function22

S(t1, t2) =
1
2
〈{∆I(t1),∆I(t2)}〉 (3)

with ∆I(s) = I(s) − 〈I〉 being the fluctuation of time depen-
dent heat current I(s) = − d

ds HL
B (s) from its average value,

where the anti-commutator {A, B} = AB + BA ensures the
Hermitian property. At steady states, the correlation func-
tion only depends on the time difference such that S(t1, t2)
= S(τ) with τ = |t1 − t2| being the time interval. Therefore,
the Fourier transform yields the FDCN S(ω) for the heat
current

S(ω) = S(−ω) =
∫ ∞
−∞

dτeiωτS(τ) ≥ 0. (4)

Since S(ω) is an even function in frequency and strictly semi-
positive in accordance with the Wiener-Khintchine theorem,
in the following we consider positive values of the frequency,
ω > 0, only.

According to the definition of heat current in Eq. (2), we
can introduce Q(t) = HL

B (t) − HL
B (0) as the heat transferred

from the left reservoir to the right reservoir in the time span 0
to t12 [we assume that the left reservoir has a higher tempera-
ture and HL

B (t) is the Hamiltonian operator in the Heisenberg
picture] with 〈Q(t)〉 = 〈I〉t, and in analogy with MacDon-
ald’s formula in electron charge transport,28,29 we find (for
completeness, we present a derivation for heat transfer in the
Appendix)

S(ω) = ω
∫ ∞

0
dt sin(ωt)

∂

∂t
〈Q2(t)〉c, (5)

where we define the second order cumulant of heat as
〈Q2(t)〉c ≡ 〈Q2(t)〉 − 〈Q(t)〉2. Equation (5) can be viewed
as an application of MacDonald’s formula in electron charge
transport to heat transfer. However, in contrast to the electron
charge current, the above MacDonald-like formula represents
the total heat current noise spectrum due to the absence of a
displacement current component in heat transfer setups. This
formally exact relation enables us to calculate FDCN from the
finite time heat statistics. The second order cumulant involved
in the above definition can be obtained from the cumulant
generating function (CGF) which is the main focus of the
FCS (see, e.g., Ref. 8 and reference therein). However, instead
of considering the FCS in the infinite time limit as in previ-
ous heat transfer studies, we should follow the framework of
a finite time FCS developed for electron transport30,31 such
that finite time properties of cumulants of transferred heat
which are essential for the finite-frequency noise power can be
extracted.

The above finite frequency definition for S(ω) can recover
the well-known zero-frequency expression. To see this, we
introduce the regularization38

ω sinωt = (ω sinωt + ε cosωt)e−εt , ε → 0+, (6)

which ensures correct results at the ω = 0 case. Then Eq. (5)
reduces to

S(0) = ε

∫ ∞
0

e−εt ∂

∂t
〈Q2(t)〉c

�����ε→0+

. (7)
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By using the final value theorem of the Laplace transform, we
obtain

S(0) =
∂

∂t
〈Q2(t)〉c

�����t→∞
. (8)

In the infinite time limit (see Fig. 1), all cumulants increase lin-
early in time t as guaranteed by the FCS,8 then the above rela-
tion is just the expression utilized in recent studies on S(0).18–21

Therefore, Eq. (5) generalizes previous zero-frequency expres-
sions.

B. Finite time full counting statistics
1. Finite time generating functions

In accordance with the definition of heat current, we study
the statistics of heat Q(t) transferred from the left reservoir to
the right reservoir during a time interval [0, t]. The specific
measurement of the net transferred heat Q(t) is performed
using a two-time measurement protocol:8,39 Initially at time
t = 0 where the total system has reached the steady state, we
introduce a projector Kq0 = |q0

〉〈
q0 | with |q0〉 being one of the

eigen-states of the left bath Hamiltonian HL
B to measure the

quantity HL
B , giving an outcome q0. A second measurement

is performed at time t with a projector Kqt = |qt
〉〈

qt | (|qt〉 is
also one of the eigen-states of the left bath Hamiltonian HL

B at
time t) and an outcome qt . Hence, the measurement outcome
of net transferred heat is determined by Q(t) = qt − q0. The
corresponding joint probability to measure q0 at t = 0 and qt

at time t reads

P[qt , q0] ≡ Tr{Kqt U(t, 0)Kq0 ρ(0)Kq0 U†(t, 0)Kqt }, (9)

where U(t, 0) is the unitary time evolution operator of the
total system and ρ(0) is the total density matrix when the
counting starts. We should choose ρ(0) = ρss as we are inter-
ested in fluctuations at steady states. Such an initial condition
can be constructed by switching on the interaction H I from
the infinite past, where the density matrix ρ(−∞) is given
by a direct product of density matrices of the system ρs and
bosonic baths ρB. The corresponding counting scheme is illus-
trated in Fig. 1. The probability distribution for the difference
Q(t) = qt − q0 between the outputs of the two measurements is
given by

p(Q, t) =
∑
qt ,q0

δ
[
Q(t) − (qt − q0)

]
P[qt , q0], (10)

where δ(x) denotes the Dirac distribution. Then we can
introduce a finite time moment generating function (MGF)
associated with this probability,

Z(χ, t) =
∫

dQ(t)p(Q, t)eiχQ(t) (11)

with χ being the counting-field parameter. Its logarithm gives
the CGF G(χ, t) = ln Z(χ, t).

To derive explicit expressions for generating functions
that are suitable for analytical as well as numerical studies, we
focus on open quantum systems described by a reduced den-
sity matrix ρs(t) which obeys a generalized Markovian master
equation

ρ̇s(t) = −Lρs(t) (12)

with Ȧ(t) ≡ ∂A(t)
∂t and L being the Liouvillian operator driv-

ing the dynamics of the system. Although we limit ourselves
to Markovian master equations, an extension to include non-
Markovian effects40–42 is possible, which will be addressed in
the future work.

In order to investigate the statistics of transferred heat
during the time span [0, t] at steady states, we proceed by pro-
jecting the reduced density matrix ρs(t) onto the subspace of Q
net transferred heat and denote this Q-resolved density matrix
as ρs(Q, t), in analogy with the n-resolved density matrix in
quantum optics43 and mesoscopic electron transport.44 The
probability p(Q, t) in Eq. (10) is just

p(Q, t) = Tr[ρs(Q, t)]. (13)

The MGF can conveniently be expressed as

Z(χ, t) = Tr[ρs(χ, t)] (14)

in terms of the χ-dependent density matrix ρs(χ, t)
= ∫ dQeiχQρs(Q, t). We note that by setting χ = 0, we recover
the original density matrix: ρs(χ = 0, t) = ρs(t).

To evaluate the MGF and CGF, we consider a modified
master equation governing the evolution of the χ-dependent
density matrix. According to Eq. (12), the modified master
equation takes the form of

ρ̇s(χ, t) = −Lχ ρs(χ, t) (15)

with a χ-dependent Liouvillian Lχ. Since Eq. (15) is a linear
differential equation for ρs(χ, t), it can be rewritten as

| ρ̇s(χ, t)
〉〉
= −Lχ |ρs(χ, t)

〉〉
, (16)

where |ρs(χ, t)
〉〉

is the vector representation of ρs(χ, t) and
Lχ is the matrix representation of Lχ in the Liouville space.8

Here we use double angle brackets to distinguish these vectors
from the ordinary quantum mechanical “bras” and “kets.” By
formally solving the above equation, we find

|ρs(χ, t)
〉〉
= e−Lχ t |ρstat

s
〉〉

, (17)

as we require that the system at t = 0 has reached the steady
state defined by L|ρstat

s
〉〉
= 0 or by simply tracing out the

reservoir degrees of freedom in the total steady state ρss.
Since the Liouvillian L conserves probability, it holds that
Tr[Lρs(t)] = 0 for any density matrix. This implies that the
left zero-eigenvector of L is the vector representation of the
trace operation, i.e.,

〈〈
0̃|L = 0 and

〈〈
0̃|ρstat

s
〉〉
= Tr[ρstat

s ] = 1.
Combining Eqs. (14) and (17), we then obtain the following
compact expression:

Z(χ, t) =
〈〈

0̃|e−Lχ t |ρstat
s

〉〉
≡

〈〈
e−Lχ t〉〉, (18)

which holds for a system that has been prepared in an arbi-
trary state in the distant past. The system has then evolved
until t = 0, where it has reached the steady state. At t = 0,
we start collecting statistics to construct the probability dis-
tribution p(Q, t) for Q net transferred heat in the time span
[0, t].

We then diagonalize the Lχ as

Lχ =
∑

n

µn(χ)|fn(χ)
〉〉〈〈

gn(χ)| (19)
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with µn being the nth eigenvalue and |f n(χ)〉〉 and 〈〈gn(χ)|
being the corresponding right and left eigenvectors, respec-
tively. In the χ→ 0 limit, one of these eigenvalues, say µ0(χ),
tends to zero and the corresponding eigenvectors give the
stationary states

〈〈
0̃| and |ρstat

s
〉〉

for the system. This sin-
gle eigenvalue is sufficient to determine the zero-frequency
FCS.11 By contrast, here we need all eigenvalues and eigen-
vectors for constructing finite time FCS. We can rewrite the
MGF as

Z(χ, t) =
∑

n

e−µn(χ)tFn(χ) (20)

with Fn(χ) =
〈〈

0̃|fn(χ)
〉〉〈〈

gn(χ)|ρstat
s

〉〉
. Consequently, the

CGF can be expressed as G(χ, t) = ln
∑

n e−µn(χ)tFn(χ).

2. Expressions of FDCN

Introducing the nth cumulant 〈Qn(t)〉c of Q(t) as

〈Qn(t)〉c =
∂n

∂(iχ)n G(χ, t)
�����χ=0

, (21)

and the coefficients

Cn
m(t) =

∂n+m

∂(iχ)n∂Am G(χ, t)
�����χ=0

, (22)

where A ≡ βR − βL denotes the affinity, we will have

S(ω) = ω
∫ ∞

0
dt sinωt

∂

∂t
C2

0 (t). (23)

This formal exact relation represents a nonlinear superposi-
tion of thermal (Johnson-Nyquist), shot, and quantum noises
and enables us to investigate the FDCN within the framework
of finite time FCS for open quantum systems, thus constitut-
ing one of main results in this work. If we introduce Jn

m as
the long time limit of ∂

∂t C
n
m(t), then S(0) = J2

0 according to
Eq. (8).

Equation (23) is particularly useful in obtaining analytical
results provided that the dimension of the Liouvillian operator
Lχ is relatively small. If the eigen-problem of the Liouvillian
operator becomes complicated, we should resort to a numerical
treatment. We note

C2
0 (t) = 〈Q2(t)〉 − 〈Q(t)〉2 = 〈Q2(t)〉 − (It)2 (24)

in steady states with 〈Q2(t)〉 being the second order moment of
heat Q(t) generated by the MGF: ∂2

∂(iχ)2 Z(χ, t)|χ=0. Inserting
this expression into Eq. (23) and evaluating the integral, we
have

S(ω) = ω
∂2

∂(iχ)2

∫ ∞
0

dt sinωt
∂

∂t
Z(χ, t)|χ=0. (25)

Utilizing the Laplace transform (t → λ), the above equation
can be cast into41

S(ω)=−
ω2

2
∂2

∂(iχ)2

[〈〈
Ω(χ, λ = iω) +Ω(χ, λ = − iω)

〉〉] ��χ=0,

(26)

where we denote Z(χ, λ) = 〈〈Ω(χ, λ)〉〉 with Ω(χ, λ)
= (λ + Lχ)−1. This expression is more suitable for numeri-
cal simulations as only the stationary state at t = 0 and the
Liouvillian operator are needed.

III. NONEQUILIBRIUM SPIN-BOSON MODEL
A. Model setup

To illustrate our general method, we analyze the statis-
tics of the prototypical example of quantum heat transfer
through a NESB model.26,33 The NESB consists of a two-
level spin in the central region and is described by the
Hamiltonian

Hs =
ε0

2
σz +

∆

2
σx, (27)

where ε0 is the bias, ∆ is the tunnelling constant between two
levels, and σx ,z are the Pauli matrices. Since the spectrum of
the system Hamiltonian is a symmetric function of bias, here
we only consider positive bias. The operators in the interaction
term H I read

Vv = σz, Bv =
∑

k

gk,v(b
†

k,v + bk,v) (28)

with gk,v being the system-reservoir coupling strength. The
influence of bosonic reservoirs is characterized by a spec-
tral density γv(ω) = 2π

∑
k g2

k,vδ(ω − ωk,v). For reservoirs
with infinite degrees of freedom, γv(ω) can be regarded
as a continuous function of its argument; then, we can let
γv(ω) = παvω

sω1−s
c,v e−ω/ωc,v with αv being the dimension-

less system-reservoir coupling strength of the order of g2
k,v

and ωc,v being the cut-off frequency of the vth bosonic reser-
voir. For simplicity and without loss of generality, we consider
the super-Ohmic spectrum s = 3 which is of experimental
relevance45 and choose αL = αR = α, ωc ,L = ωc ,R = ωc.

We limit our calculation to the so-called nonadiabatic limit
of ∆/ωc � 1. For fast reservoirs, it has been demonstrated that
the polaron transformation (PT) is suitable for the entire range
of system-bath coupling strength14,15,46,47 and enables us to
study the impact of system-reservoir interaction beyond the
weak coupling limit. Thus we perform the PT with the unitary
operator

U = exp[iσzΦ/2], Φ = 2i
∑
k,v

gk,v

ωk,v
(b†k,v − bk,v) (29)

such that

HT = U†HU = H̃0 + H̃I , (30)

where the free Hamiltonian is H̃0 = H̃s + H̃B with the reser-
voir Hamiltonian remains unaffected, H̃B = HB, and the
transformed system Hamiltonian reads

H̃s =
ε0

2
σz +

η∆

2
σx, (31)

where the renormalization factor due to the formation of
polarons reads14,20,48,49

η = exp*
,
−

∑
v

∫ ∞
0

dω
γv(ω)

2πω2
coth

βvω

2
+
-
. (32)
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For the super-Ohmic spectrum s = 3 we consider here, the
renormalization factor is specified as η = exp{−

∑
v α[−1

+ 2
(βvωc)2ψ1(1/βvωc)]/2}, with the trigamma function

ψ1(x) =
∑∞

n=0 1/(n + x)2. As can be seen, in the weak cou-
pling regime, η becomes 1, while in the strong coupling
regime, it vanishes. The transformed interaction term, orig-
inated from the tunneling term in Eq. (27), takes the following
form:

H̃I =
∆

2
[σx(cosΦ − η) + σy sinΦ]. (33)

It’s evident that H̃I contains arbitrary orders of the system-
reservoir coupling strength by noting the form ofΦ in Eq. (29);
however, its average vanishes. Hence we can treat H̃I pertur-
batively, regardless of the coupling strength. Therefore, in the
polaron picture, we can study finite time FCS from the weak
to strong system-reservoir coupling regime.

B. Nonequilibrium polaron-transformed
redfield equation

In order to study finite time FCS of heat in the polaron pic-
ture, we follow a recently developed NE-PTRE method which
leads to the following master equation for the reduced density
matrix ρs(t):14,20

ρ̇s(t) = −i[H̃s, ρs] +
∑
l=e,o

∑
ω,ω′=0,±ω0

Γl(ω)[Pl(ω)ρs, Pl(ω
′)]

+ H.c., (34)

where ω0 =

√
ε2

0 + η2∆2 is the energy gap in the eigen-

basis and Pe(o)(ω) is the transition projector in the
eigenbasis obtained from the evolution of Pauli matrices
σx(y)(−τ)=

∑
ω=0,±ω0

Pe(o)eiωτ . The subscript e(o) denotes
the even (odd) parity of the transfer dynamics. The tran-

sition rates are Γo(ω)=
(
η∆
2

)2
∫
∞
0 dτeiωτ sinh[Qc(τ)] and

Γe(ω) =
(
η∆
2

)2
∫
∞
0 dτeiωτ(cosh[Qc(τ)] − 1) with Qc(τ)

denoting the sum of bosonic correlation functions Qc(τ)
=

∑
v Qv(τ),

Qv(τ) =
∫ ∞

0
dω

γv(ω)

πω2

[
coth

βvω

2
cosωτ − i sinωτ

]
. (35)

As clearly demonstrated in Ref. 20, Γo(e)(ω) describe totally
different transfer processes.

Combining Eq. (34) with a counting field χ, we have the
following χ-dependent NE-PTRE for the χ-dependent density
matrix20

ρ̇s(χ, t) = −i[H̃s, ρs(χ, t)] + Dχ[ρs(χ, t)], (36)

where the dissipator reads Dχ[ρs]=
∑

l
∑
ω,ω′ {[Γ

χ
l,−(ω)

+ Γχl,+(ω′)]Pl(ω′)ρsPl(ω) − [Γl,+(ω)Pl(ω′)Pl(ω)ρs + H.c.]}
and χ-dependent transition rates are expressed as
(σ = ±),

Γ
χ
e,σ(ω) =

(
η∆

2

)2 ∫ ∞
0

dτeiωτ[cosh Qc(τχσ ) − 1],

Γ
χ
o,σ(ω) =

(
η∆

2

)2 ∫ ∞
0

dτeiωτ sinh Qc(τχσ ),

(37)

where τ
χ
σ ≡ στ − χ and the χ-dependent bosonic corre-

lation function becomes Qc(τ − χ) = QL(τ − χ) + QR(τ).
We note that the NE-PTRE14 provides an accurate account
of the nonequilibrium response of a quantum system con-
tacted by super-Ohmic bath models in the scaling and high-
temperature limits such that the Markovian approximation
holds.

Defining the vector form of the χ-dependent reduced
density matrix as |ρs(χ, t)

〉〉
= [Pχ11, Pχ00, Pχ10, Pχ01]T with Pχij

= 〈i|ρs(χ, t)|j〉, we can express the χ-dependent NE-PTRE in
the Liouville space, i.e., | ρ̇s(χ, t)

〉〉
= −Lχ |ρs(χ, t)

〉〉
. Insert-

ing the form of Lχ obtained from the χ-dependent NE-PTRE
Eq. (36) into the formal expression for S(ω) Eq. (26), we
can obtain explicit numerical results for the FDCN as a func-
tion of coupling strength, bias, and temperature differences. In
the following section (i.e. Sec. IV), we will provide detailed
results.

IV. RESULTS
A. Effect of coupling strength

We first investigate the behaviors of S(ω) with vary-
ing system-reservoir coupling strength under the condition of
fixed temperatures and zero bias. Typical numerical results
are shown in Fig. 2. We find that even at finite frequencies,
the noise spectrum still depicts a non-monotonic turnover
behavior in the intermediate coupling regime as that in the
zero-frequency case.20 Another interesting finding is that
S(ω) has distinct frequency dependences in the weak and
strong coupling regimes (details are listed in Fig. 3): In
the weak coupling regime, S(ω) is a monotonic increasing
function of ω and saturates at high frequency [Fig. 3(a)].
The inset further shows that all the data with varying cou-
pling strengths collapse on to one curve, implying the emer-
gence of a universal scaling whose analytical form will be
given below. In the strong coupling regime, S(ω) simply fol-
lows a white noise spectrum over the entire frequency range
[Fig. 3(b)]. In order to understand such distinct behaviors, we
note that the NE-PTRE reduces to the conventional quantum

FIG. 2. Behaviors of noise spectrum S(ω) with varying system-reservoir cou-
pling strengthα for different frequencies. Other parameters are ∆ = 5.22 meV,
ωc = 26.1 meV, ε0 = 0, TL = 180 K, and TR = 90 K.
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FIG. 3. Behaviors of noise spectrum
S(ω) as a function of ω with varying
coupling strength α for (a) weak cou-
plings and (b) strong couplings. The
inset in (a) shows universal behaviors of
a scaled noise power S̃(ω) [defined in
Eq. (43)] in the weak coupling regime;
the scale parameter D is the sum of
total relaxation and activation rates in
the Redfield picture. Other parameters
are ∆ = 5.22 meV, ωc = 26.1 meV,
ε0 = 0 meV, TL = 180 K, and TR = 90 K.

Redfield master equation (RME) and nonequilibrium non-
interacting blip approximation (NE-NIBA) in the weak and
strong coupling regimes, respectively.14,20,35 Thus we focus
on these two limits and present analytical analyses in the
following.

1. Weak coupling regime

We first concentrate on the weak coupling case and
consider the RME for the reduced dynamics48,50 (see the
schematic picture in Fig. 4). We denote the relaxation and
activation rates due to the vth reservoir as

kv1→0 = γv(∆)[1 + nv(∆)], kv0→1 ≡ kv1→0e−βv∆, (38)

respectively, where γv and nv are the spectral density
and Bose-Einstein distribution of vth bath, respectively.
Introducing pn(n = 0, 1) as the probability of the spin sys-
tem to occupy the state |n〉, satisfying p0(t) + p1(t) = 1, then
we have

| ρ̇s(t)
〉〉
= −

(
kd −ku

−kd ku

)
|ρs(t)

〉〉
= −LR |ρs(t)

〉〉
, (39)

where |ρs(t)
〉〉
= (p1, p0)T and the total activation and relax-

ation rates read

ku =
∑
v

kv0→1, kd =
∑
v

kv1→0, (40)

respectively. From the above rate equation, the stationary
state solution corresponds to |ρstat

s
〉〉
= 1

kd +ku
(ku, kd)T which

is just the right zero-eigenvector of LR, and the corre-
sponding left zero-eigenvector reads

〈〈
0̃| = (1, 1) such that〈〈

0̃|ρstat
s

〉〉
= 1.

FIG. 4. Schematic picture for the nonequilibrium spin-boson model in the
Redfield master equation framework.

To study the statistics of heat, we split p(Q, t) [Eq. (10)]
into two part, namely, p(Q, t) = p0(Q, t) + p1(Q, t), where
p0(Q, t) denotes the probability transferring heat Q from the
left reservoir into the right reservoir, within time interval [0,
t], with the spin on the |0〉 energy level at time t (the counting
begins at t = 0), and p1(Q, t) is defined similarly with the spin
on the |1〉 energy level instead. By applying the transformation
pn(χ, t) = ∫ dQpn(Q, t)eiχQ, we find

| ρ̇s(χ, t)
〉〉
= −

(
kd −k̃u

−k̃d ku

)
|ρs(χ, t)

〉〉
= −LR

χ |ρs(χ, t)
〉〉

(41)

with |ρs(χ, t)
〉〉
= (p1(χ, t), p0(χ, t))T , k̃d = kL

1→0eiχ∆ + kR
1→0,

and k̃u = kL
0→1e−iχ∆ + kR

0→1. A cumbersome evaluation
within the Redfield picture yields the following, nontriv-
ial explicit expression for S(ω) valid in the weak coupling
regime:

S(ω)

∆2
= R −

2k2
L

[D(ω2 + D2)]
[D2e−βL∆ + (ku − kde−βL∆)2], (42)

where D = kd + ku is the sum of total relaxation and acti-
vation rates and R = (kukL + kdkLe−βL∆)/D = pss

1 kL
1→0

+ pss
0 kL

0→1 is the dynamical activity,51,52 which is the aver-
age number of transitions per time induced by the left reser-
voir. From the above equation, we see that S(ω) increases
from S(0) as ω increases and finally saturates at the value
determined by the dynamical activity R, in accordance with
numerical results shown in Fig. 3(a). If we define a scaled
FDCN

S̃(ω) ≡ R∆2 − S(ω), (43)

a direct consequence of Eq. (42) is that S̃(ω) has a universal
scaling expression

S̃(ω)

S̃(0)
= P(ω/D) (44)

with the scaling function P endowing a Lorentzian shape and
approaching 1 as ω → 0. This universal behavior is mani-
fested in our numerical results as can be seen from the inset in
Fig. 3(a).
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It would be interesting to see whether a similar scaling
form in the weak coupling regime holds beyond the NESB
model. For multi-level systems, the rates are still proportional
to the coupling strength α in the weak coupling regime; we
then expect a scaling functionF(ω/α) still exists; however, the
existence of multiple time scales will result in a complicated
functional form of F. Only for systems with a single time
scale, as Eq. (42) shows, the function F endows a Lorentzian
shape.

2. Strong coupling regime

We next turn to the white noise spectrum in the strong cou-
pling regime, where the NE-PTRE is consistent with the NE-
NIBA framework.14,20 Using the NE-NIBA, the population
dynamics with zero bias satisfies18,19,49

| ρ̇s(t)
〉〉
= −

(
K −K
−K K

)
|ρs(t)

〉〉
= −LN |ρs(t)

〉〉
, (45)

where the transition rate K is given by14,20

K = (η∆/2)2
∫ ∞
−∞

dteQL(t)+QR(t). (46)

From the equation of motion, the stationary state can be
obtained as 〈〈

0̃| =
1
2

(1, 1), |ρstat
s

〉〉
= (1, 1)T . (47)

In contrast to Eq. (39) of RME, now the diagonal and
off-diagonal elements of LN are equal. As can be seen in
the following, this distinctive spin dynamics with a sin-
gle transition rate leads to the white noise we observed in
Fig. 3(b).

By incorporating the counting field, the equation of
motion, Eq. (45), becomes

| ρ̇s(χ, t)
〉〉
= −

(
K −Kχ

−Kχ K

)
|ρs(χ, t)

〉〉
= −LN

χ |ρs(χ, t)
〉〉

(48)

with the χ-dependent transition rate Kχ = (η∆/2)2

∫
∞
−∞ dteQL(t−χ)+QR(t).14,20 According to Eq. (26), after some

algebras, we find

S(ω) =
∂2

∂(iχ)2
Kχ

�����χ=0
, (49)

which is just S(0) by definition; thus, we demonstrate
that S(ω) is indeed a white noise spectrum and confirms
our finding in the strong coupling regime as Fig. 3(b)
shows.

To gain more insights, we look at the explicit expres-
sion for the MGF. By diagonalizing the matrix LN

χ , we find
eigenvalues µ0(χ) = K − Kχ and µ1(χ) = K + Kχ and the

corresponding eigenvectors read
〈〈

gn(χ)| =
(Kχ ,K−µn(χ))

K2
χ+(K−µn(χ))2 and

|fn(χ)
〉〉
= (Kχ, K − µn(χ))T with n = 0, 1. It is evident that〈〈

g1(χ)|ρstat
s

〉〉
=

〈〈
0̃|f1(χ)

〉〉
= 0, then we find from Eq. (20)

that

Z(χ, t) = e−µ0(χ)t , (50)

which is exactly the MGF obtained in the infinite time
limit,18,49 thus we should have S(ω) = S(0) in this parameter
regime.

We remark that a single transition rate in the population
dynamics means that the activation and relaxation rates are
equal, which is only possible in the high temperature regime as
those bath-specific rates satisfy the detailed balance relation.18

In this regime, the memory of the system is totally destroyed
by environments. Therefore, we find the white noise spectrum
for the FDCN in the NESB model. It is desirable to investi-
gate the FDCN in systems consisting of multi-states; for such
setups, interference effects play an important role in transition
rates at strong system-bath couplings53 which may change the
behaviors of the FDCN.

B. Effect of bias

In the presence of bias, we still focus on the two cou-
pling strength limits. The numerical results based on the χ-
dependent NE-PTRE [Eq. (36)] are shown in Fig. 5. In the
weak coupling regime with α = 0.05 [Fig. 5(a)], behaviors of
S(ω) as a function of ω with nonzero bias are similar to those
with zero bias in Fig. 3(a) and the FDCN increases as the bias
increases, implying that fluctuations are more prominent with
larger bias in this regime.

For weak couplings, we can use the energy basis of the two
level system. Nonzero bias will change the energy gap from ∆
to ω0 with the system Hamiltonian reading Hs = ω0σz/2. The
original interaction term becomes

HI =
∑
v

(σz cos θ − σx sin θ) ⊗ Bv (51)

with Bv given by Eq. (28) and θ = tan−1(∆/ω0). It is evident that
only the σx component in the interaction term contributes to
spin-flip processes and thus to heat transfer in the Redfield pic-
ture. This implies that the transition rate kv defined in Eq. (38)
should be replaced by sin2 θkv in the presence of nonzero
bias.13 Therefore, if we make the following replacements in
Eqs. (42) and (43),

∆→ ω0, R→ sin2 θR, D→ sin2 θD, (52)

then the universal relation Eq. (44) can still be applied to
nonzero bias situations, as confirmed by our numerical results
presented in the inset of Fig. 5(a).

However, for strong couplings, nonzero bias leads to
totally distinct behaviors compared with the zero bias case.
As can be seen from the inset of Fig. 5(b), now S(ω) is no
longer a white noise spectrum and is suppressed by the bias, in
direct contrast to its zero frequency counterpart which is insen-
sitive to the bias change.20 To understand the role of finite bias
in the strong coupling limit, we note that the χ-dependent
Liouvillian operator in the NE-NIBA framework now
becomes18,19,49

LN
χ =

(
K(ε0) −Kχ(−ε0)
−Kχ(ε0) K(−ε0)

)
, (53)

where Kχ(±ε0)= (η∆/2)2
∫
∞
−∞ dte±iε0t+QL(t−χ)+QR(t) and K(±ε0)

= Kχ(±ε0)|χ=0 are transfer rates.
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FIG. 5. Behaviors of noise spectrum
S(ω) as a function of ω with vary-
ing bias ε0 for (a) α = 0.05 and (b)
α = 5. The inset in (a) shows univer-
sal behaviors of a scaled noise power
S̃(ω) defined in Eq. (43) with scale
parameters given by Eq. (52) in the
weak coupling regime and the inset in
(b) presents the deviation of S(ω) from
S(0) as a function of ω. Other param-
eters are ∆= 5.22 meV, ωc = 26.1 meV,
TL = 180 K, and TR = 90 K.

By diagonalizingLN
χ , we find µ0(χ) = 1

2

[
Ξ(ε0) − Ξχ(ε0)

]

and µ1(χ) = 1
2

[
Ξ(ε0) + Ξχ(ε0)

]
, where we denote

Ξ(ε0) ≡ K(ε0) + K(−ε0) and Ξχ(ε0)

≡

√
(K(ε0) − K(−ε0))2 + 4Kχ(−ε0)Kχ(ε0); the correspond-

ing eigenvectors read

〈〈
gn(χ)| =

(Kχ(ε0), K(ε0) − µn(χ))

Kχ(−ε0)Kχ(ε0) + (K(ε0) − µn(χ))2
,

|fn(χ)
〉〉
= (Kχ(−ε0), K(ε0) − µn(χ))T .

(54)

Since
〈〈

g1(χ)|ρstat
s

〉〉
, 0 and

〈〈
0̃|f1(χ)

〉〉
, 0, the resulting

MGF obviously no longer equals e−µ0(χ)t as it contains a con-
tribution from the eigenvalue µ1(χ) according to Eq. (20); thus

we expect the frequency dependence of S(ω) in the presence
of bias, as Fig. 5(b) shows.

C. Effect of temperature difference

Now we extend our analysis of FDCN to the impact
of temperature difference ranging from the linear response
regime to the nonlinear situation.

1. ω = 0: Thermodynamic consistency

In the zero frequency limit, the NESB model we consider
satisfies the Gallavotti-Cohen (GC) symmetry,54 as shown
in previous studies;19,50 thus, the Saito-Utsumi (SU) rela-
tions can be applied to Jn

m = limt→∞
∂
∂t C

n
m(t) [see Eq. (22)],

yielding55

FIG. 6. Behaviors of noise spectrum
S(0) as a function of α with varying
bias for (a) temperature difference δT
= 0.05TR and (b) δT = TR. Symbols
are direct results of S(0), using our
theory, dashed lines are predictions of
Eq. (57), and solid lines are predic-
tions of Eq. (56). Other parameters are
∆ = 5.22 meV,ωc = 26.1 meV, TL = TR
+ δT, and TR = 90 K.
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Jn
m =

m∑
l=0

(
m
l

)
(−1)n+lJn+l

m−l, (55)

from which we find 2J1
1 = J2

0 and thus S(0) = 2 ∂IL
∂A by noting

S(0) = J2
0 . Associated with the coefficient J1

1 , we can introduce
a first-order energetic transport coefficient as32 κF ≡ βL βRJ1

1 ;
therefore,

S(0) = 2TLTRκF . (56)

For small temperature differences, Eq. (56) reduces to a linear
response relation24

S(0) = 2T2κ (57)

with κ being the heat conductance. For later purposes, first
we check that our theory indeed satisfies Eq. (56) and
thus preserves the GC symmetry in the zero frequency
limit. As shown in Fig. 6, we clearly see good agreements
between numerical results and theoretical relations. Equa-
tion (57) captures the behaviors of S(0) with small temperature
differences in the entire coupling strength range regard-
less of values of bias, while Eq. (56) holds generally in
our theory regardless of the magnitude of the temperature
difference.

2. Frequency dependence

Now we investigate S(ω). So far, there are no gen-
eral relations between S(ω) and first order quantities char-
acterizing the response to arbitrary temperature difference
for finite frequency cases.24 However, according to above
universal behaviors in the two coupling strength limits, we
can formulate general relations valid in the corresponding
coupling strength regimes. The white noise behavior in the
strong coupling regime for unbiased systems implies that the
SU relation Eq. (56) can be directly applied to the FDCN,
namely,

S(ω) = 2TLTRκF . (58)

FIG. 7. Behaviors of noise spectrum S(ω) as a function of α with varying
temperature differences and fixed ω = 0.5. Blue color denotes δT = 0.05TR
and red color denotes δT = TR. Symbols are direct numerical results of S(ω)
based on the χ-dependent NE-PTRE, Eq. (36), dashed lines are predictions
of a strong coupling relation, Eq. (58), and solid lines are predictions of a
weak coupling expression Eq. (59). Other parameters are ∆ = 5.22 meV, ωc
= 26.1 meV, ε0 = 0 meV. TL = TR + δT, and TR = 90 K.

While in the weak coupling regime, the universal scaling form
Eq. (44) guarantees the following relation:

S̃(ω) = 2TLTR κ̃F(ω) (59)

for the scaled FDCN S̃(ω) and a frequency-dependent first
order coefficient κ̃F(ω) = P(ω/D)

[
κF −

∆2R
2TLTR

]
. Their valid-

ity can be seen from comparisons in Fig. 7. We find that
the weak coupling expression Eq. (59) predicts a monoton-
ically increasing behavior of S(ω) as a function of α, thus
becomes invalid in the intermediate as well as strong coupling
regimes. The strong coupling expression Eq. (58) underesti-
mates the current fluctuations in the weak coupling regime.
Although our theory can provide a detailed description for
the FDCN with arbitrary temperature differences in the two
limits of coupling strength, a general yet simple relation
for S(ω) and temperature differences beyond these two cou-
pling limits is desirable and will be addressed in the future
studies.

V. SUMMARY

We formulate a general theory to study the frequency-
dependent current noise (FDCN) in open quantum systems at
steady states. To go beyond previous results, we extend Mac-
Donald’s formula from electron transport to heat current and
obtain a formally exact relation which relates the FDCN to the
time-dependent second order cumulant of heat evaluated at
steady states. In order to calculate the time-dependent cumu-
lant of heat involved in the FDCN, we follow the scheme of
a finite time full counting statistics (FCS) developed for elec-
tron transport and propose an analogous framework, which can
be applied to open quantum systems described by Markovian
quantum master equations.

To demonstrate the utility of the approach, we consider
the nonequilibrium spin-boson model which is a paradig-
matic example of quantum heat transfer. A recently developed
polaron-transformed Redfield equation for the reduced spin
dynamics enables us to study the FDCN from weak to strong
system-reservoir coupling regimes and consider arbitrary val-
ues of bias and temperature differences. Key findings are as
follows:

(1) By varying coupling strengths, we observe a turn-
over behavior for the FDCN in moderate coupling
regimes, similar to the zero frequency counterpart. Inter-
estingly, the FDCN with varying coupling strength
or bias exhibits a universal Lorentzian-shape scaling
form in the weak coupling regime as confirmed by
numerical results as well as analytical analysis, while
it becomes a white noise spectrum under the condition
of strong coupling strengths and zero bias. The white
noise spectrum is distorted in the presence of a finite
bias.

(2) We also find that the bias can suppress frequency-
dependent current fluctuations in the strong coupling
regime, in direct contrast to the zero frequency counter-
part which is insensitive to the bias changes.

(3) We further utilize the Saito-Utsumi (SU) relation as a
benchmark to evaluate the theory at the zero frequency
limit in the entire coupling range. Agreements between



234104-10 Liu et al. J. Chem. Phys. 148, 234104 (2018)

the SU relation and our zero frequency results show that
our theory preserves the Gallavotti-Cohen symmetry.
Noting the universal behaviors of the FDCN in the weak
as well as strong coupling regimes, we then study the
impact of temperature differences at finite frequencies
by carefully generalizing the SU relations. Our results
thus provide detasiled dissections and a unified frame-
work for studying the finite time fluctuation of heat in
open quantum systems.
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APPENDIX: MACDONALD-LIKE FORMULA
FOR HEAT TRANSFER

Here, we would like to present the derivation of MacDon-
ald’s formula for heat transfer. Noting that in the Heisenberg
picture Q(t) = HL

B (t) − HL
B (0), we have

∫ t

0
∆I(t ′)dt ′ = Q(t) − 〈Q(t)〉. (A1)

Using the expectation value of the square of the above expres-
sion, the inverse Fourier transform and setting t = t ′ − t ′′, we
find

2〈Q2(t)〉c ≡ 2〈[Q(t) − 〈Q(t)〉]2〉

=

〈∫ t

0

∫ t

0
[∆I(t ′)∆I(t ′′) + ∆I(t ′′)∆I(t ′)]dt ′dt ′′

〉
=

∫ t

0

∫ t

0
dt ′dt ′′

∫ ∞
−∞

1
π

S(ω)eiω(t′−t′′)dω, (A2)

where we have introduced the second order cumulant of Q(t)
as 〈Q2(t)〉c. Rearranging and performing the time integrals we
obtain

2〈Q2(t)〉c =
∫ ∞
−∞

1
π

S(ω)
1

ω2
(e−iωt − 1)(eiωt − 1)dω

=
2
π

∫ ∞
−∞

S(ω)
1

ω2
(1 − cosωt)dω. (A3)

Differentiating both sides with respect to t gives

∂

∂t
〈Q2(t)〉c =

1
π

∫ ∞
−∞

S(ω)
ω

sinωtdω (A4)

and performing the Fourier transform with ∫
∞
−∞ eiω′tdt,∫ ∞

−∞

eiω′tdt
∂

∂t
〈Q2(t)〉c =

1
π

∫ ∞
−∞

∫ ∞
−∞

S(ω)
ω

sinωteiω′tdtdω

=
2i
ω′

S(ω′). (A5)

We can match the odd and imaginary parts of the above
equation to give (and setting ω = ω′)

∫ ∞
−∞

sinωt
∂

∂t
〈Q2(t)〉cdt =

2
ω

S(ω). (A6)

Again using the fact that S(ω) = S(−ω) and that the original
correlator is symmetric in t implies that the integral over t can
be written as

S(ω) = ω
∫ ∞

0
dt sinωt

∂

∂t
〈Q2(t)〉c, (A7)

which is just Eq. (5) in the main text.
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