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We propose a quantum tomography scheme for pure qudit systems which adopts a certain version of random
basis measurements and a generative learning method, along with a built-in fidelity estimation approach to
assess the reliability of the tomographic states. We prove the validity of the scheme theoretically, and we perform
numerically simulated experiments on several target states that have compact matrix product state representation,
demonstrating its efficiency and robustness. We find the number of replicas required by a fixed fidelity criterion
grows only linearly as the system size scales up, which saturates a lower bound from information theory. Thus
the scheme achieves the highest possible scalability that is crucial for practical quantum state tomography.
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I. INTRODUCTION

With the fast developing techniques of fabricating quantum
devices, we can now manipulate a growing number of entan-
gled qudits. Medium sized quantum devices (10–100 qubits)
have been implemented in the platforms of superconducting
circuits, trapped ions, and ultracold atoms [1–7]. Quantum
state tomography (QST), which aims at reconstructing an un-
known quantum state from suitable measurements on replicas
of the state, is a gold standard for verifying and benchmarking
the merits of the implementations. In particular, QST is nec-
essary for proving the completeness of information that could
be provided by all practical operations and measurements on
a quantum processor.

Early studies of QST focused on mixed states and found
that it requires the information provided by projective mea-
surements on a minimal set of O(d ) mutually unbiased bases
[8–10] or by O(d2) expectations of positive-operator-valued
measures (POVMs) [11–14]. This soon becomes impractical
as Hilbert space dimension d grows exponentially with the
number of constituents (e.g., particles). For pure states, it
was recently proved that in terms of information the adequate
number of POVMs can be drastically reduced to O(d ) [15–17]
and that of measurement bases can be reduced to four [18–20].
However, it is still experimentally intractable to realize these
delicately designed nonlocal measurements and to acquire
corresponding converged probability distributions, since the
size of the sample space d is exponentially large [21].

After a long history of developing its mathematical ground,
we are now at a stage to consider the pragmatic aspects of
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QST. Specifically, the cost of preparing multiple copies of the
state and measurements is crucial for large-scale many-body
states tomography. There have been several efforts towards
scalable QST schemes [22–30], mostly by the mean of ex-
ploiting the property of short-range entanglement in a matrix
product state (MPS) [31]. Some colleagues [32–42] applied
compressed sensing [43,44] from the thriving field of machine
learning to this classical problem, introducing randomness
to the choice of measurements. We note that there are in-
deed similarities between QST and unsupervised machine
learning tasks such as density estimation [45]. In both tasks,
one aims at modeling high-dimensional probability functions
from observed data. While QST is more complicated because
probability distributions under different bases are inherently
related and modeled simultaneously.

Besides preparing replicas for reconstructing the measured
state, another practical concern that is drawing attention is
fidelity estimation [46–48]. It refers to the task of assessing the
proximity between two quantum states. When the two states
are the laboratory state and the modeled state, it helps quanti-
fying the quality and progress of the tomography scheme; as
for the case of the laboratory state and the ideal aimed state,
it decides the merit of experimental preparation for quantum
devices.

Our work tries to resolve both problems as concentrat-
ing on reconstructing pure states in qudit systems through
local projective measurements. Viewing quantum states as
integrated generative models and QST as an unsupervised
learning task, we adapts its key components: measurement
and reconstruction. We design a compressed-sensing-inspired
approach to acquire data via single-shot measurements on
locally random bases, which avoids full statistics on any
specific set of physical observables. We adopt MPS and
the associated optimization algorithm proposed by our pre-
vious work [49], which is a variation of density matrix
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FIG. 1. A flow chart of the QST scheme.

renormalization group (DMRG) [50], as the model and learn-
ing approach, respectively. We devise a cost function based
on the averaged negative log likelihood with an entanglement
entropy penalty, thus our method could also be viewed as
a standard maximal likelihood estimation (MLE) approach.
All these efforts help the scheme achieve highest possi-
ble scalability by saturating an information bound in our
computer-simulated experiments for target states that have
compact MPS description. Moreover, our scheme allows a
fidelity estimation approach that requires neither overhead in
measurements nor a priori knowledge in the target state.

In this paper we will first present the workflow of the
scheme and argue its validity in Sec. II, then demonstrate its
efficiency and robustness in Sec. III by computer-simulated
experiments.

II. PROCEDURE

The proposed QST scheme includes iterative projective
measurements on the target state and training of the model,
until the stop criterion concerning the fidelity estimation is
met, as shown in the flow chart in Fig. 1. The target and the
tomographic states are denoted by their density operators σ, ρ̃,
respectively. We emphasize that the theoretical arguments
in this section are not confined to pure states, although the
following experiments are; the general validity of the scheme
does not depend on the property of the target state, though the
efficiency may.

A. Measurement

The bases on which one performs projective measurements
are required to comprise an informationally complete set of
bases in order to avoid candidate states that are indistin-
guishable based on the measurement outcomes. In practice,
one should also consider the complexity of implementing
these measurements. Local measurements are often preferred
because of the simplicity of single qudit gates. We note
that arbitrary local spin measurements could be expediently
realized, e.g., in cold atoms experimental platforms [51]. Here
we use the spin-S picture to demonstrate our sets of bases on
a qudit system, where the qudits have dimension q = 2S + 1
and S is a half-integer. The basis denoted by B({n1, . . . , nN }),
sometimes B({n}) for short, refers to the eigenbasis corre-
sponding to the product of local spin operators n1 · s1 ⊗ n2 ·
s2 ⊗ · · · ⊗ nN · sN , where ni is the unit vector indicating the
spin measurement direction on site i, and si = (sx

i , sy
i , sz

i ) are
the single site spin operators.

We propose to perform measurements on random bases.
This is an analogy of compressed sensing, which recovers
a sparse signal by utilizing observations from random per-
spectives. Each time in demand of a measuring outcome
accumulation, one can randomly sample a measuring basis
B({n}) from a certain probability density f on S⊗N

2 .
In a single projective measurement on basis B({n}), one

obtains an outcome (m1, m2, . . . , mN ) and a corresponding
product state |{n, m}〉 ≡ ⊗N

j=1|n j, mj〉. Hence with a
certain basis sampling distribution, a generic state ρ

is naturally a generative model whose sample space
� ≡ {⊗N

j=1|n j, mj〉|n j ∈ S2, mj ∈ {−S,−S + 1, . . . , S}}
comprises all this kind of product states. Note that
| − n j,−mj〉 = |n j, mj〉, the probability density is

P [ρ](|{n, m}〉) =
∑

c j=±1

f
({c jn j}N

j=1

)〈{n, m}|ρ|{n, m}〉. (1)

From this perspective, our scheme is a generative model-
ing process based on only the outcome product states from
the target σ . It is proved in Appendix A that information
in the probability density is complete, for the Kullback-
Leibler (KL) divergence DKL(P [σ ]||P [ρ̃]) bounds the matrix
norm ||ρ̃ − σ || as long as f is not ill-shaped, which means
DKL(P [σ ]||P [ρ̃]) specifies the target as its unique minimum.

Though some schemes have mentioned random bases
measurements [52] for QST, ours is radically different in
terms of whether a statistical quantity under a certain basis
is necessary. Since our scheme does not deliberately repeat
measurements on any single basis, it is possible to avoid the
unbearable efforts introduced by complete statistics over an
exponentially large number of possible outcomes.

After accumulating a batch of measurement outcomes, we
append them into data set V , whose size |V| is also the number
of replicas of the target, and subsequently train the model with
the updated V .

B. Training

The model for pure states in our scheme is the wave
functions under B({z1, z2, . . . , zN }) represented with an MPS.
Under another basis B({n}) the wave function is straightfor-
wardly obtained by performing local unitary transformations,
schematically:

(2)

where each box denotes a tensor in the MPS, and the circle
Uk denotes the single qudit unitary transformation U (nk ) that
rotates the direction nk to ez. For introduction to the graphical
notations of tensor networks, we refer to [53,54]. For n in
(θ, φ) direction in a conventional spherical coordinate, U (n)
could be realized as exp(iθsy/h̄) exp(iφsz/h̄).

When the model ρ̃ minimizes the KL divergence
DKL(P [σ ]||P [ρ̃]), it is exactly the target state σ , yet σ itself
is what we are reconstructing and currently inaccessible. Ac-
cording to Eq. (1), with both σ, f being fixed, it is equivalent
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for the model to minimize

LN ≡ −
∫

�

dμP [σ ](|{n, m}〉) ln〈{n, m}|ρ̃|{n, m}〉, (3)

where μ is the natural measure on the sample space �. Thus
with a finite V , LN is estimated as

LN = −1

|V|
∑

|{n,m}〉∈V
ln |�̃({m}; {n})|2, (4)

whose minimum approaches the target σ as outcomes accu-
mulate in V , so we employ it as the cost function for training
the MPS.

LN is indeed highly similar with the negative log like-
lihood (NLL) especially when f is uniform, yet generally
|�̃({m}, {n})|2 is not the probability density. Moreover, one
can optionally add penalty terms in the cost function L =
LN + λP as long as he adiabatically tunes λ → 0. For in-
stance, when training the merged kth and (k + 1)th tensors,
take P as the second order Rényi entropy − ln Tr ρ2

R,k , where
ρR,k is the reduced density matrix. It renders the MPS pref-
erence in low entanglement description of the data in train-
ing, and thus make the algorithm converge faster. Encoding
information from different bases in the cost function, we may
not worry that the MPS overfits the probability distribution on
certain bases.

To minimize the cost function, we improve the unsuper-
vised learning approach proposed in our previous work [49].
The algorithm is similar with but not exactly 2-site DMRG
[50] method and adjusts the parameter allocation as well as
the parameters of the MPS to the best description of the
measured data. DMRG is known as one of the most successful
numerical methods in studying the ground state property
of one-dimensional quantum systems [50,55]. The relation
between our approach and DMRG has been elaborated in
Ref. [49].

The major difference from the previous work is the gra-
dient calculated for tuning, which results from the complex-
value form of quantum wave functions and the application of
unitary transformations. Details about calculating the gradi-
ents of L are in the Supplemental Material [56].

C. Fidelity estimation

Estimating the proximity between the tomographic state
and the target enables one to determine the current quality
of tomography process. Quantum fidelity F ≡ √

Tr[ρ̃σ ] and
the distance R ≡ ||ρ̃ − σ ||/2 are constantly used for this
quantification, but we cannot use these definitions for fidelity
estimation, since we only have access to the measurement
outcomes and the training history instead of the target σ itself.

We assume that similar states’ tomography have similar
converging behavior when all the scheme parameters are
fixed. Thus, when our tomographic state is trained to be a
sufficiently good approximation, we use it as a virtual target
state σvir = |�̃〉〈�̃| to simulate the tomography scheme in a
computer: generate measuring outcomes from σvir and train
a new model ρ̃vir in the same way. Since we have access to
σvir, this process could be completely monitored and be used
to approximate the real process at the same measurements
accumulation stage.

For two pure states, F = |〈ψ |φ〉| and R =
√

1
2 (1 − F2)

quantify their proximity. In our experimental tests, it is ob-
served that the distance between the tomographic MPS and
the target state Rreal is asymptotically proportional to |V|−1/2,
and the distance between two successive tomographic states
Rsucc is asymptotically proportional to |V|−1, at large |V|.
This is required by the asymptotic normality of unbiased

MLE (see Appendix B). This indicates that R2
real

Rsucc
gradually

approaches to a constant C as measurements accumulate. By
our assumption that similar states’ tomography have close
converging processes, we can extract a good approximation
of this unknown constant through R′

real and R′
succ monitored

in the virtual tomography process, so that we can use
√

CRsucc

to estimate the actual distance Rreal and therefore the fidelity
between ρ̃ and the target σ . Moreover, one can extrapolate |V|
that is adequate for the fidelity criterion from the asymptote so
that the batch size of measurement outcomes could be prop-
erly increased to save training efforts. We notice that similar
asymptotic behavior of Rreal has been generally observed in
previous QST methods [40,57,58], thus the procedure here
may also be adapted for them.

To meet the desired accuracy, we may have to iterate the
measurement (Sec. II A) and the training (Sec. II B) steps until
the convergence criterion of real fidelity is satisfied. When
successively trained MPS’ as virtual target states give con-
verging estimate of C, the confidence in the fidelity estimation
also increases.

When the scheme stops, one can combine the final estima-
tion of the distance ||σ − ρ̃|| and the distance from σ to the
aimed ideal state σaimed, to bound the distance ||σ − σaimed|| �
||σ − ρ̃|| + ||σaimed − ρ̃||. The bound can be directly calcu-
lated since both quantities are known.

III. EXPERIMENTAL TESTS

In this section we test our QST scheme on N-qudit systems
in computer-simulated experiments. We represent the target
states with compact MPS [59] and employ the direct sampling
approach [49] to generate independent samples as measure-
ment outcomes.

A. Efficiency

Four typical states with compact MPS expression are in-
voked: the W , dimer, cluster, and the AKLT ground [53,60]
states. W states are decorated with local phases |W 〉 =∑N

k=1 eikθ |0102 · · · 1k · · · 0N 〉, θ = 0.1 rad. The AKLT ground
states are qutrit systems while the others are qubit systems.

As shown in Fig. 2, the number of replicas |V| sufficing
the criterion of F = 0.995 linearly scales with N , and the test
on randomly initiated states show the same linear dependence
on N in Fig. 3. To better illustrate the scalability, we consider
fixed “per-site fidelity” Fps ≡ F1/N , which could be viewed
as a normalized criterion for systems with different sizes. In
this case, only a nearly constant number of replicas are nec-
essary, which is a general corollary of the linear dependence
combined with the asymptotic behavior of Rreal.

To understand this remarkable relation, we first notice that
we need O(NqD2

max) parameters to describe a MPS, while a
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FIG. 2. Efficiency of the scheme tested on the typical states. The
number of single-shot outcomes for a fidelity criterion is recorded
when the real fidelity get stably higher than that level. The error
bars corresponds to the standard deviation of 24 cases with different
random seeds.

single shot projective measurement could provide a sample
embodying information that is proportional to N . Hence a
constant demand of measurements is necessary to identify a
MPS within a normalized error. Then since MPS with finite
bond dimensions imposes sparse constrains in their Schmidt
space, the compressed-sensing-inspired approach could opti-
mize the utility of the information from the measurements on
random bases, like the original compressed sensing algorithm
in its various applications. To make more concrete interpre-
tation, we prove in Appendix B that the minimal required
number of repeated measurement in a tomography process
targeting a compact MPS at a fixed fidelity criterion would be
lower bounded by O(N ). The proof is valid for all maximum
likelihood QST schemes with MPS as a model. Our result
saturating this bound demonstrates the scheme’s ability to
optimally exploit the information from each measurement.

To further confirm our argument, we perform experiments
on a randomly generated target state with maximal bond
dimension Dmax. As it is shown in Fig. 3, for fixed F = 0.995,
we observe quadratic and linear scaling of |V| when respec-
tively varying Dmax and N , and when q is varied, the scaling
is linear, which are consistent with our expectations. We thus
confirm both the general validity and scalable complexity of
our scheme.

The remarkably high efficiency can be compared with
previous other schemes proposed for MPS such as the one in
Ref. [24], which applied the methods in Refs. [22,23]. For a
constant estimation fidelity, they report cubic scaling in N for
the total number of measurements, while our scheme scales
only linearly in N , thus achieves higher scalability.

B. Fidelity estimation

The asymptotic behavior of Rreal ∝ |V|−1/2 and Rsucc ∝
|V|−1 has been generally observed in previous tomography

FIG. 3. Efficiency of the scheme tested on randomly initiated
states. The standard deviation of the number of replicas |V| over
72 different random targets are covered in the shades. (Left) Linear
dependence of |V| on size N of q = 2 states. (Middle) Quadratic
dependence of |V| on the maximal bond dimension Dmax of N =
14, q = 2 states, and the solid line is the fitting |V| = γ Dβ

max with the
resulting parameters being β = 2.1(1), ln γ = 7.2(1). (Right) Linear
dependence of |V| on the local Hilbert space dimension q = 2S + 1
of N = 14, D = 2 states, and the solid line is the fitting |V| = λSμ

with the resulting parameters being μ = 1.05(7), ln λ = 9.54(4).

schemes [10] and our simulations, which can be explained
by the asymptotic normality of MLE methods (see Ap-
pendix B). Fitting the asymptotic history into R = C|V|α
for all cases in the experiments mentioned above, we obtain
αreal = −0.52(7), αsucc = −1.03(4), and no dependence on N
or Dmax has been observed. These results solidly support our
claim about the asymptotic behavior.

Our fidelity estimation approach is tested on those typical
states and random states mentioned above. We demonstrate
the result on a W state of size N = 30 in Fig. 4, and
more results are available in the Supplemental Material [56].
Aside from confirming the asymptotic behaviors and that
R2

real/Rsucc approaches to a constant, we note that when ρ̃

is in the vicinity of the target σ and plays the role of a virtual
target state, it provides a good estimate of the constant C that
the actual target state’s R2

real/Rsucc converges to. Therefore,
with C properly estimated through the virtual process, we are
able to assess the real fidelity of our tomographic state to the
physical target state.

C. Robustness

Concerning more pragmatic aspects, errors and noises
in the implementation of transformations and states are in-
evitable, and QST is sometimes applied to evaluate the quality
of implementation. As it has been shown in the experiments
on the typical states and random states, as long as the mea-
surement outcomes obey the probability density, our scheme
is acute in reconstruction of the pure target state. Noises in
the outcomes can be generated in two stages: in preparation
of the replicas and in local transformations for the measure-
ments, and they should be considered as well. Although with
the MPS model our experiments are confined to pure target
states, we can nevertheless apply the scheme to cases where
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FIG. 4. Fidelity estimation in the tomography for a N = 30 W
state. A MPS is trained up to |V| = 10 000 outcomes per our scheme,
and Rreal,Rsucc, and R2

real/Rsucc in this process are plotted in dotted
lines. Then we set it as the virtual target state and simulate our
scheme in 24 different random cases. We plot the averaged virtual
process in dashed lines.

measurement outcomes are noisy. We mix the target with a
portion of quantum noise through the depolarizing channel,
namely the measurement is equivalently simulated on

σε = (1 − ε)σ + ε

qN
I, (5)

where σ is the density operator of the pure target state and I
is the identity.

Since the model is a representation of pure state, we could
only expect it to approach the pure state with the highest
fidelity with respect to σε , which is clearly σ . In Fig. 5 we
demonstrate the robustness of our scheme over the noises. For
real fidelity F = 0.995 between ρ̃ and σ , we obtained the

FIG. 5. Robustness over noises in measurement outcomes. ε is
the noise level, which is simulated as the probability of generat-
ing a uniformly random strings instead of obeying the probability
distribution of the state in the measurement under a certain basis.
The number of replicas necessary for F = √

Tr[σ ρ̃] � 0.995 are
recorded, and their ratio to the ε = 0 case are displayed. The error
bars indicate the standard deviation over 24 random seeds.

FIG. 6. The robustness of scalability. The number of replicas
necessary for the certain criterion F = 0.995 scales linearly with
the system size even the outcomes have a certain form of noise.
The standard deviation of 72 different random targets are covered
in the shades. The inset shows how the slope varies with the noise
level.

number of replicas relative to the noiseless case. Within ε <

0.05, |V| sufficing the fidelity criterion does not significantly
rise, yet some states are more sensitive than the others. As
shown in Fig. 6, the linear scaling with system size is also
observed in the noisy cases, which implies that our scheme
is scalable even with noise in outcomes, although the slope
naturally increases with the noise. The asymptotic behaviors
are also noticed not to be significantly affected by noises.

The noises come in two ways as mentioned. Those in
preparation of the replicas make the laboratory state mixed,
while those in local transformations for measurements are not
related to the state itself. These experiments demonstrates the
robustness over noises from both ways. Although it leaves
out information about how pure the target is in the cases
where the laboratory state mixed, applying pure state quantum
tomography to physical potentially mixed states is widely
accepted in experiments [5,18,24].

IV. CONCLUSION AND OUTLOOK

As the size of implemented quantum devices have in-
creased to medium size, the conventional quantum state to-
mography approaches are on the verge of intractability. We
propose a scalable QST scheme for a qudit system from
a generative model perspective, which employs projective
measurements under random bases, a learning algorithm with
MPS model, and a built-in approach to estimate the fidelity of
the tomographic state through the process history. The scheme
is featured by: the bases setting in our scheme enjoys exper-
imental accessibility of local transformations and measure-
ments; the algorithm enables adaptive parameter allocation in
the model; and the fidelity estimation has no measurement
overhead. Most importantly, the scheme does not require
statistics on any set of observable quantities, thus it achieves
high scalability in simulated experiments on the states with
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compact MPS representations: the number of replicas for
prescribed fidelity increases linearly and quadratically with
the increase in system size and the maximal entanglement
spectra size of the target states, respectively. In terms of the
required number of replicas, our remarkable scaling result not
only stands out among existing schemes, but also saturates
the information bound that necessitates O(N ) measurements.
We justify the efficacy of the fidelity estimation method and
also demonstrate the robustness of the scheme in a numerical
simulation.

We note that our arguments validating the random mea-
suring bases and the optimization function are applicable to
any target quantum states, even for mixed states. We expect
that they could pave paths to more practical tomography
schemes, by reasonably exploiting other suitable models like
multiscale entanglement renormalization ansatz [61,62] and
neural networks [63,64], targeting other states with a certain
kind of sparse constraint. Moreover, in a sense that the success
of QST marks the full characterization of a quantum device,
our work suggests that the more operations we could feasibly
choose from, the higher efficiency of information contraction
from a quantum resource we would achieve.

The data of the simulated experiments mentioned above is
available here [65].
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APPENDIX A: PROOF OF THE VALIDITY
OF RANDOM BASES

We shall prove that the KL divergence

DKL(P [σ ]||P [ρ̃]) =
∫

�

dμP [σ ]({n, m}) ln
P [σ ]({n, m})

P [ρ̃]({n, m})
(A1)

bounds the Schatten norm ||σ − ρ̃||.
There are two physical implications. First, because it dis-

tinguishes arbitrary two different mixed states, the informa-
tion it is based on is complete for QST; Second, if we know
the target state distribution P [σ ], then the KL divergence is
valid for quantifying the proximity between ρ̃ and σ , and so
is the NLL because it only differs from the KL divergence by a

constant depending on σ and f . The distribution P [σ ] can be
attained by an infinite number of measurements, by the law of
large number, and the speed of convergence of the distribution
is governed by the central limit theorem.

Given two arbitrary density functions P ,Q, the total varia-
tion distance between their probability measures P, Q, defined
as δ(P, Q) = sup {|P(A) − Q(A)||A is a measurable event}, is
bounded by the KL divergence according to Pinsker’s inequal-
ity [66]

√
2δ(P, Q) � √

DKL(P ||Q). Taking the event A =
{x ∈ sample space|P (x) � Q(x)}, one further bounds the L1

distance
∫

dμ |P − Q| � 2δ(P, Q). In our case,

√
2DKL(P [σ ]||P [ρ̃]) �

∫
dμ |P [σ ] − P [ρ̃]|

=
∫

dμ F ({n})|〈{n, m}|σ |{n, m}〉
− 〈{n, m}|ρ̃|{n, m}〉|, (A2)

where we denote F ({n}) = ∑
c j=± f ({c jn j}N

j=1).
As 〈{n, m}|ρ|{n, m}〉 � 0,

∑
{m}〈{n, m}|ρ|{n, m}〉 = 1, we

have 〈{n, m}|ρ|{n, m}〉 ∈ [0, 1], thus the L1 distance bounds
something similar to the L2 distance∫

dμ |P [σ ] − P [ρ̃]| × 2 �
∫

dμ F ({n})(〈{n, m}|σ |{n, m}〉

− 〈{n, m}|ρ̃|{n, m}〉)2. (A3)

In order to prove that it further bounds the usual matrix
distances, we introduce an operation for the linear space of
qN by qN Hermitian matrices (q = 2S + 1):

(α, β ) ≡
∫

�

dμ F ({n})〈{n, m}|α|{n, m}〉〈{n, m}|β|{n, m}〉,
(A4)

with which
√

(α, α) directly relates to the right-hand side of
Eq. (A3). Its bi-linearity being obvious, in order to justify it as
an inner product we prove its positivity as follow:

As long as F ({n}) � 0 is not ill-shaped, 0 = (α, α) re-
quires the integrand to be 0 almost everywhere in � = (S2 ×
{S, S − 1, . . . ,−S})⊗N , i.e.,

〈{n, m}|α|{n, m}〉 = 0, ∀m ∈ {S, S − 1, . . . ,−S},
a.e.n j ∈ S2. (A5)

In order to show the conditions in Eq. (A5) restrict α to be 0,
let us look into N = 1 case first.

1. N = 1 case

Denoting |m〉 = |z, m〉 for short, with n in (θ, φ) direction
(θ ∈ [0, π ], φ ∈ [0, 2π )) we have |n, m〉 = e−iφsz

e−iθsy |m〉 =∑S
m′=−S e−im′φ|m′〉d (S)

m′m(θ ), and according to Wigner’s
formula

d (S)
m′m(θ ) ≡ 〈m′|e−iθsy |m〉 =

∑
k∈Z

(−1)k+m′−mW (S, m′, m, k)

×
(

cos
θ

2

)2S−(2k+m′−m)(
sin

θ

2

)2k+m′−m

, (A6)

W (S, m′, m, k)

≡
√

(S + m′)!(S − m′)!(S + m)!(S − m)!

(S + m − k)!k!(S − k − m′)!(k − m + m′)!
, (A7)
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where the summation over k takes whatever makes the arguments in the factorials in the denominator are non-negative. Thus
0 = 〈n, m|α|n, m〉 gives

0 =
∑

m1,m2

ei(m2−m1 )φdmm2 (−θ )αm2m1 dm1m(θ ), where αm′m ≡ 〈m′|α|m〉. (A8)

Since {eimφ |m ∈ Z} is a linear independent set of φ ∈ [0, 2π ) functions, in Eq. (A8) the coefficient of eiμφ is zero

0 =
∑
m1

dm,m1+μ(−θ )αm1+μ,m1 dm1,m(θ ), (A9)

where m1 runs in the range that m1, m1 + μ ∈ {2S, 2S − 1, . . . ,−2S} in the sum.
Plugging Eq. (A6) into Eq. (A9), ∀μ ∈ {2S, 2S − 1, . . . ,−2S},∀m ∈ {S, S − 1, . . . ,−S},

0 =
∑
m1

αm1+μ,m1

∑
k1,k2

(−1)k1+k2+m−m1W (S, m, m1 + μ, k1)W (S, m1, m, k2)

(
cos

θ

2

)4S−2(k1+k2 )+μ(
sin

θ

2

)2(k1+k2 )−μ

, (A10)

k1, k2 considered in the sum are confined so that in the denominators of

W (S, m, m1 + μ, k1) =
√

(S + m)!(S − m)!(S + m1 + μ)!(S − m1 − μ)!

(S + m1 + μ − k1)!k1!(S − k1 − m)!(k1 + m − m1 − μ)!
, (A11)

W (S, m1, m, k2) =
√

(S + m1)!(S − m1)!(S + m)!(S − m)!

(S + m − k2)!k2!(S − k2 − m1)!(k2 + m1 − m)!
(A12)

there are no negative arguments of the factorials. Thus 2(k1 + k2) − μ � 0 and 4S − 2(k1 + k2) + μ � 0. Meanwhile, note that
{cosN−n x sinn x|n = 0, 1, . . . , N} is a linear independent set of x ∈ [0, π/2] functions. Hence ∀μ ∈ {2S, 2S − 1, . . . ,−2S} and
∀k = k1 + k2 ∈ {0, 1, . . . , 2S} ∩ {μ,μ + 1, . . . , μ + 2S}, the coefficient of (cos θ

2 )
4S−2k+μ

(sin θ
2 )

2k−μ
in Eq. (A10) is zero

0 =
∑
m1

αm1+μ,m1

∑
k1

(−1)k+m−m1W (S, m, m1 + μ, k1)W (S, m1, m, k − k1). (A13)

Consider a subset of requirements where m = S, the factors k1!(−k1)! and (S − k2 − m1)!(k2 + m1 − S)! in the denominators
confines k1 = 0 and m1 = S − k in the summation in Eq. (A13), respectively. Thus we confirm

0 = αS−k+μ,S−k (2S)![(2S − k + μ)!(k − μ)!(2S − k)!k!]−1/2, (A14)

which suffices α = 0 as k, μ runs over whatever they are allowed.
Since all the q by q Hermitian matrix constitute a q2-dimension R space, denoted by H, it is implied that {|n, m〉〈n, m||n ∈

S2, m ∈ {S, S − 1, . . . ,−S}} includes a basis of H.

2. Back to general N case

The space of all qN by qN Hermitian matrices is q2N dimensional, and it is also H⊗N , thus {⊗N
j=1|n j, mj〉〈n j, mj ||n j ∈

S2, mj ∈ {S, S − 1, . . . ,−S}} includes a basis of H⊗N . Hence Eq. (A5) suffices α = 0.
Thus we confirm that (·, ·) is an inner product in the qN by qN Hermitian matrices space. Since all inner products in the same

space are equivalent to each other, (α, α) = C||α||2. In summary,

√
2DKL(P [σ ]||P [ρ]) � 2δ(P[ρ], P[σ ]) �

∫
dμ|P [ρ] − P [σ ]| � 1

2

∫
dμF ({n})(〈{n, m}|σ − ρ̃|{n, m}〉)2 = C

2
||σ − ρ̃||2.

APPENDIX B: THE INFORMATION BOUND AND
ASYMPTOTIC NORMALITY

1. Scaling of number of replicas with system size

Quantum tomography can in general be regarded as a kind
of parameter estimation, in the way that (1) the measurement
outcomes are independent identical distributed random vari-
ables and (2) the model wave function �̃ is an estimator of
the target wave function ψ . The target state wave function
under any basis is a qN -dimensional vector depending on
much fewer parameters θ0 in its modeled description, e.g.,
MPS representation, and in accordance �̃ is a qN -dimensional

estimator with adjustable parameters. To be exactly a param-
eter estimation problem, however, the model should be fixed,
which in our scheme is achieved after the dynamical alloca-
tion of parameters. For simplicity, we denote each outcome
as random variable X , the whole bunch of real and imaginary
parts of the tensor entries as parameters θ , and the parameters
corresponding to the laboratory state ψ as θ0. Applying the
Cramér-Rao bound to the covariance matrix of �̃,

Covθ0 (�̃i, �̃ j ) � 1

|V|
∑
α,β

(
∂ψi

∂θα

[I (θ )−1]αβ

∂ψ∗
j

∂θβ

)∣∣∣∣
θ0

, (B1)
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where I is the Fisher information matrix, whose entries are
defined as

I (θ )αβ = Eθ0

[
∂

∂θα

lnP (X |θ )
∂

∂θβ

lnP (X |θ )

]
. (B2)

In this expression, P is the probability density function for
possible outcomes X that is compounded by the choice of
measurement basis B and the corresponding measuring result;
the parameters are the ones in the MPS description of the
modeled state, while the expectation Eθ is taken with the
target state parameters; V is the set of measurement outcomes,
whose size is the number of samples for parameter estimation
or equivalently the number of measured replicas of the quan-
tum state. The inequality means as matrices, the difference
of the two sides is semipositive definite. It is also noteworthy
that as a result of asymptotic normality of MLE, in (B1) the
equality asymptotically take holds [67].

The distance between the model and the target state can be
characterized by the trace of the covariance matrix

∑
j Var�̃ j .

Since inequality (B1) is about positive definiteness, taking
trace keeps the inequality, thus we have

R2
real|V| � Tr (KI−1)|θ0 (B3)

in which

Kαβ =
∑

j

∂ψ j

∂θα

∂ψ∗
j

∂θβ

. (B4)

We can easily verify that both K and I are semipositive
definite. Inequality (B3) is a lower bound of the average
distance between the tomographic state and the target state
and become the exact asymptotic behavior as |V| → ∞.

To further see how the lower bound scales with N ,
Dmax, and q, we apply inequalities Tr AB � λmin(A) Tr B [68]
and Tr(A−1) � dim(A)2/ Tr(A) for positive-definite matrices
A, B, obtaining

Tr(KI−1) � λmin(K ) Tr(I−1) � λmin(K )
�2

Tr I
, (B5)

where � is the total number of parameters, � ≈ 2qD2
maxN

as N grows. We notice that when θα and θβ reside on far
separated sites in the MPS, the corresponding matrix element
of K would be exponentially small due to the multiplication of
transfer matrices. So the minimal eigenvalue of K should not
scale with the system size, but only depend on the intrinsic
property of the MPS representation of the target state.

On the other hand, Tr I is related to wave functions under
different bases by

Tr I =
∑

α

∫
dX

1

P (X |θ )
[∂θα

P (X |θ )]2 =
∫

dμ(B)Q(B),

(B6)

Q(B) ≡
∑

α

∑
|m〉∈B

(∂θα
|〈m|ψ〉|2)2/|〈m|ψ〉|2. (B7)

μ represents the probability measure of choosing basis,
dμ[B({n})] = dn1dn2 · · · nN f ({n}). Now let us look into the
wave function under basis B, ϕm ≡ 〈m|ψ〉, which is trans-
formed from ψm by local unitary transformations. Sepa-
rating the amplitude and phase of the wave function ϕ =√

p exp(iφ), we have∑
m,α

4|∂θα
ϕm|2 =

∑
m,α

4
∣∣eiφm∂θα

√
pm + ieiφm

√
pm∂θα

φm

∣∣2

�
∑
m,α

(∂θα
pm)2

pm
= Q(B). (B8)

For simplicity the notation specifying the basis is omitted for
ϕ, p, and φ, although they are basis dependent.

∑
m |∂θα

ϕm|2,
however, is independent of basis and is less than unity because
of the normalization and canonical conditions of the MPS.
Therefore,

Tr I �
∫

dμ(B)
∑

α

1 ∼ �, (B9)

and consequently R2
real|V| � λmin(K )�. When N grows, this

lower bound scales as λNqD2
max, where λ is a constant inde-

pendent of N . We note that our above analysis is basis inde-
pendent, so our result applies to any choice of measurement
bases.

The above scaling relation is the main result of this Ap-
pendix. As a special application, we see for a prescribed
distance criterion R, the lower bound of the required number
of replicas is O(N ).

2. Behaviors of distances over number of replicas

Revisiting inequality (B3) and recalling the asymptotic
equality, we see the asymptotic behavior of the distance for a
certain laboratory state Rreal ∝ |V|−1/2, because Tr(KI−1)|θ0

totally depends on the laboratory state.
To handle the successive distance, denote the estimate at

the stage |V| = V as θ̃ (V ), which optimizes the loss function
L(V )(θ ) = V −1 ∑V

i=1 lnP (Xi|θ ). Recall that Xi are indepen-
dent random variables obeying the identical distribution den-
sity P (X |θ0). As a new measurement is carried out, θ̃ (V ) might
no longer be the optimal estimate, but we can nevertheless
relate θ̃ (V +1) to θ̃ (V ) by

−1

V + 1
∂θα

lnP (XV +1|θ̃ (V ) ) = ∂θα
L(V +1)(θ̃ (V +1)) − ∂θα

L(V +1)(θ̃ (V ) ) = −
∑

β

G(V +1)
αβ (θ̂ )

(
θ̃

(V +1)
β − θ̃

(V )
β

)
, (B10)

G(V )
αβ (θ ) ≡ −∂θα

∂θβ
L(V )(θ ), (B11)
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where the fact ∂θL(V )(θ̃ (V ) ) = 0 and Lagrangian mean theorem are used, and thus

(V + 1)
(
θ̃ (V +1)
α − θ̃ (V )

α

) =
∑

β

[G(V +1)(θ̂ )]−1
αβ∂θβ

lnP (XV +1|θ̃ (V ) ). (B12)

As V grows, G(V )
αβ (θ ) → Eθ0 [−∂θα

∂θβ
lnP (X |θ )] = I (θ )αβ , and θ̂ is confined between θ̃ (V ), θ̃ (V +1) to approach θ0, therefore

(V + 1)2Eθ0

((
θ̃ (V +1)
α − θ̃ (V )

α

)(
θ̃

(V +1)
β − θ̃

(V )
β

)) →
∑
γ ,λ

I (θ̂ )−1
αγ I (θ̃ (V ) )γ λI (θ̂ )−1

λβ → I (θ0)−1
αβ . (B13)

The successive distance between the model states is thus

V 2R2
succ = V 2

∑
α,β, j

∂ψ j

∂θα

Eθ0

((
θ̃ (V +1)
α − θ̃ (V )

α

)(
θ̃

(V +1)
β − θ̃

(V )
β

))∂ψ j

∂θβ

→ Tr(KI−1)
∣∣∣
θ0

, (B14)

which also supports that the ratio R2
real/Rsucc goes to a constant

√
Tr(KI−1)|θ0 depending on the target state.
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