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We construct a family of translationally invariant lattice models with a large number (N) of orbitals at every site
coupled together via single-electron tunneling. By tuning the relative strength of the electronic bandwidth and on-
site interactions, which have a modified Sachdev-Ye-Kitaev form, we demonstrate a number of unusual features
at strong coupling and in the large-N limit. We find examples of (i) an intrinsic non-BCS superconducting
instability arising out of an incoherent non-Fermi-liquid metal, and (ii) an instability of an incipient heavy Fermi-
liquid metal to superconductivity with transition temperatures comparable to its renormalized bandwidth. At
strong coupling, these solvable models display pairing instabilities that are not driven by any special “nesting”
properties associated with an underlying Fermi surface.
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I. INTRODUCTION

The search for high-temperature superconductivity in com-
plex electronic materials continues to be at the heart of
modern condensed-matter physics. One of the most successful
and well-understood theories of a nontrivial collective many-
body effect is the Bardeen-Cooper-Schrieffer (BCS) theory
of phonon-mediated superconductivity in conventional metals
such as aluminum. However, most of the high-temperature
superconducting materials evolve out of a metallic state that is
highly unconventional and cannot be described within Fermi-
liquid (FL) theory with long-lived quasiparticles. Some of the
most notable examples of such materials are the copper-oxide
based (“cuprate”) [1], iron-pnictide (chalcogenide) based [2],
and certain rare-earth element based [3] compounds, where
the parent state of the superconductor is a non-Fermi-liquid
(NFL) metal. At the same time, it is also likely the case that
superconducting pairing in these materials occurs through a
purely electronic mechanism.

While not all of the different families of NFL metals
display an identical phenomenology, they share a number
of peculiar features. These include short single-particle life-
times [4,5], a broad regime of anomalous power-law transport
seemingly at odds with expectations in a Fermi liquid [6–9],
and an absence of any characteristic crossovers through the
“Mott-Ioffe-Regal” (MIR) limit where the electronic mean
free path becomes of the order of the lattice spacing [10].
These systems are often called “bad metals” [11] or “strange
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metals” and the nature of their pairing instabilities, driven
purely as a result of repulsive electronic interactions, remains
poorly understood. Finding concrete examples of models
where the emergence of NFL behavior and superconductivity
can be analyzed through reliable theoretical means is thus of
paramount importance.

Over the past few decades, a few different frameworks
have been studied to describe the properties of NFL metals.
Focusing specifically on translationally invariant models with
local electronic interactions, a recent approach that has been
successful in capturing some of the NFL phenomenology
over a broad range of temperature and energy scales relies
on using a “solvable” (but artificial) building block, the
Sachdev-Ye-Kitaev (SYK) model [12–17]. The SYK model
is a (0 + 1)-dimensional model that consists of a large num-
ber of orbitals interacting with random all-to-all interac-
tions on a single site. The transport properties of a higher-
dimensional lattice generalization of such SYK islands with
strong disorder have been studied in a number of different
settings [18–26].

In a previous paper [27], we constructed a family of mod-
els with exact translational symmetry and on-site SYK-like
interactions. This allowed us to study the fate of electronic
quasiparticles and sharply defined Fermi surfaces, in the
regime of strong interactions. The aim of the present paper
is to further extend these models to study the possible onset
of pairing, mediated by the same interactions that are also re-
sponsible for destroying the quasiparticles and the underlying
Fermi surface (i.e., we do not include any “bare” non-SYK
attractive/repulsive interactions). We will explicitly construct
models where attraction is effectively generated in the pairing
channel (and possibly other channels), and are unlike the
conventional weak-coupling BCS-type instabilities.

In this paper, we modify the one-band translationally in-
variant model considered by us in Ref. [27], to include an
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additional spin label and local SU(2) invariant interactions.
If the bandwidth is given by W and the typical interaction
strength is J , at the level of the large-N saddle-point equations,
we find that the system crosses over at a temperature Tcoh ∼
W 2/J from a low-temperature Landau Fermi-liquid ground
state to locally quantum critical non-Fermi-liquid state, where
the Fermi surface is completely destroyed. The dc resistivity
crosses over from ρ ∼ T 2 at T � Tcoh to ρ ∼ T at T � Tcoh;
the value of the resistivity at the crossover scale (T ∼ Tcoh) is
ρ ≈ h/Ne2. Depending on the fine details of the model related
to the nature of correlations between the on-site interaction
matrix elements, we can obtain two qualitatively distinct out-
comes. For one of the cases, we find that the high-temperature
NFL metal becomes unstable to superconductivity with an on-
site, spin-singlet order parameter. The transition temperature
is set by the large on-site interaction scale (Tc ∼ J); long-
range order sets in as a result of the Josephson coupling
(J ∼ NTcoh) between nearest-neighbor sites. For the other
case, we find that the high-temperature incoherent metal is
stable against pairing, but the incoherent excitations in this
regime give rise to a significant enhancement in the strength of
pairing correlations as a function of decreasing temperature.
Moreover, across the crossover scale Tcoh to the incipient
Fermi-liquid regime, there is a pairing instability with a transi-
tion temperature that is set by the same scale, Tc ∼ Tcoh (which
is also the renormalized bandwidth). At these scales, many
of the underlying assumptions of a Fermi-liquid regime are
not strictly applicable. However, the renormalized bandwidth
is the only relevant scale in this incipient regime and we
show that Tc ultimately has to be set by this scale (up to
numerical prefactors). In neither of the two cases does the
pairing instability arise as a result of the conventional “Cooper
logarithm.”

The remainder of this paper is organized as follows.
In Sec. II, we introduce the basic setup of the problem.
Section II A contains a discussion of our model of electrons
with N orbitals at every site, where each orbital has an
additional spin-1/2 label, and obtain the large-N saddle-point
equations; the results of this section are qualitatively similar
to Ref. [27]. In Sec. II B, we analyze the Bethe-Salpeter
equations in the pairing channel at the same leading order
in 1/N for the models introduced in Sec. II A. Sections III
and IV contain a detailed discussion of the pairing instabilities
for the two distinct families of models. We conclude with a
discussion and a future outlook in Sec. V. In the Appendix,
we study the same problem using SYKq as a building block
for q > 4 to highlight the interesting underlying structure of
the solutions.

II. PRELIMINARIES

A. Model

Our starting point will be a generalization of the model
introduced in Ref. [27], written in terms of complex fermions
with an orbital (i = 1, . . . , N) and spin (s = ↑,↓) labels. The
Hamiltonian with purely on-site interactions, which preserves
a global U(1) charge conservation and a global SU(2) spin
symmetry is given by (r is defined on a d-dimensional hyper-

cubic lattice)

H = Ht + HJ + HP, (1a)

Ht =
∑
r,r′

∑
i,{s1=↑,↓}

(−trr′ − μδrr′ )c†
ris1

cr′is1 , (1b)

HJ = 1

4N3/2

∑
r

∑
i, j,k,�

∑
{si=↑,↓}

Ji jkl c
†
ris1

c†
r js2

crks2 c�rs1 , (1c)

HP = 1

N

∑
r

∑
i, j,s=↑,↓

Uc†
risc

†
ri−scr j−scr js. (1d)

The hopping strengths trr′ in Ht are assumed to be identical
for each orbital and μ represents the chemical potential. We
have introduced an additional spin label in order to allow
us to distinguish between spin-singlet vs -triplet pairing in-
stabilities. We assume that the interaction strengths Ji jkl are
drawn from an independent Gaussian random distribution
with Ji jkl = 0 and J2

i jkl = J2, and require that Ji jkl be anti-
symmetric with respect to changing the following indices:
Ji jkl = −Jjikl = −Ji jlk . In addition, choosing these strengths
to be real leads to the condition Ji jkl = Jkli j . Note that just
as in Ref. [27], we are constructing a translationally invariant
model where the interaction matrix elements Ji jkl are identical
at every site (i.e., independent of the site label r) and the
momentum k is thus a good quantum number. This aspect of
our model requires care when carrying out disorder averaging,
as was emphasized in Ref. [27]. Finally, we have also included
an on-site “pair-hopping” term HP, with uniform U > 0,
which suppresses the tendency towards on-site pairing.1

Let us now introduce additional structure on the precise
form of the interaction matrix elements (Ji jk�) by considering
two distinct scenarios. Consider the permutation symmetries
under exchanging the second and third index for model A
(model B) to be of the form Ji jkl = Jik jl (Ji jkl = −Jik jl ). This
subtle distinction between the two models leads to significant
differences for the resulting instabilities. It is worth noting
that model A can only be defined for the version of the
SYK model written for complex, but not Majorana, fermions.2

Interestingly, including contributions from HP by making U
large for model A allows us to access the physics described
by model B, as we shall demonstrate below.

We are interested in the large-N saddle-point solution for
the model described in Eq. (1a). These equations turn out to be
identical for both model A and model B, and can be expressed
in terms of the usual self-consistent set of equations for the

1We have left out another natural SU(2) symmetric term of the
form Hs = 1

N3/2

∑
r

∑
i, j,k,� Ki jk�Si j · Sk�, where Si j ≡ c†

ris[σ]ss′ cr js′ .
By choosing appropriate properties of the Ki jk� under disorder aver-
aging, one can reproduce the results described below in the presence
of only HJ . We ignore the effects of Hs from now on for simplicity.

2See Ref. [28] for a generalization of the real-SYK models to
include additional tensor structure. This model has a tendency
to spontaneous symmetry breaking, analogous to pairing in our
model A.
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FIG. 1. The electronic self-energy for orbital i with spin label
s1. The solid black lines represent fully dressed Green’s functions
G(k, iω) and the dashed lines represent the J2 contraction.

electron Green’s function (i.e., “watermelon” diagrams; see
Fig. 1) [27],

G(k, iω) = 1

iω − εk − �(k, iω)
, (2)

�(k, iω) = −J2
∫

k1

∫
ω1

G(k1, iω1)�(k + k1, iω + iω1),

�(q, i	) =
∫

k

∫
ω

G(k, iω)G(k + q, iω + i	). (3)

Note that HP does not enter the above equations at this order
in large N . The solution for the Green’s function in the strong-
coupling limit (J � W ) is given by

G(k, iω) ∼
⎧⎨⎩

Z

iω−Zεk+iAν2
0 J|ω|2 ln

(
W ∗
|ω|

)
sgn(ω)

, ω � W ∗

isgn(ω)√
J|ω| − B(ω) εk

J|ω| , W ∗ � ω � J,
(4)

where W ∗ ∼ W 2/J is the renormalized bandwidth, Z ∼
1/(ν0J ) is the quasiparticle residue (ν0 ∼ 1/W is the single-
particle density of states, where we use units where the lattice
spacing a = 1), εk is the renormalized dispersion (εk/εk is
of the order of unity in the strong-coupling limit), and A
is a number of order unity (the log appears only in two
dimensions). The factor of B(ω), which descends from the
“spectral asymmetry,” depends only on the sign of ω. At
strong coupling, we thus observe a crossover from a high-
temperature (or energy) incoherent metal (IM) without any
momentum-space structure to a low-temperature Fermi liquid
(FL) at a characteristic scale of Tcoh ∼ W ∗. On the other hand,
at weak coupling (J � W ), the system remains a FL at all
temperatures with Z ∼ 1 − (ν0J )2. However, the existence
of the above self-consistent solution does not preclude the
possibility of a finite-temperature instability of the metallic
states. This will be the topic of our study in the next few
sections.

B. Bethe-Salpeter equations

Let us now investigate the possible instabilities in the
particle-particle (pp) channel for the metallic states obtained
within the large-N analysis in the previous section. We shall
study and contrast the properties of the model in Eq. (1a) in
the following limits:

(i) Model A (i.e., Ji jkl = Jik jl ),
(ii) Model B (i.e., Ji jkl = −Jik jl ).

FIG. 2. The Bethe-Salpeter equation for the pairing vertex in the
particle-particle channel. The solid lines denote the fully dressed
electron propagators, the dotted line denotes the U -interaction vertex,
and the dashed line denotes the disorder contraction Ji jkl Jik jl .

To begin the discussion, we note that the matrix elements
Ji jkl have both attractive and repulsive components and no net
attraction on average (i.e., Ji jkl = 0). We may thus be tempted
to conclude that the model as defined in Eqs. (1a)–(1d) has
no interaction-driven instability in any channel. However, this
naive expectation is incorrect. Instead, as we shall explicitly
demonstrate below, attraction can be generated at the same
leading order in N but at higher order in J2.

Consider the following vertex in the (spin-singlet) pp
channel:

�i j (r − r′) ≡ 〈εs1s2 cris1 cr′ js2〉, (5)

and let us study the linearized Bethe-Salpeter equations for the
above vertices by going to O(J2) (see Fig. 2). From a simple
counting argument, it is immediately clear that the intraorbital
component of �i j ∝ δi j is not suppressed in 1/N (while the
interorbital component will be suppressed). Focusing specif-
ically on model A in the presence of a finite U , we find that
at the same leading order in N , the bare pair-hopping term
suppresses on-site pairing.

The Bethe-Salpeter equations for model A and model B
at zero external center-of-mass momentum and in the spin-
singlet channel are then of the form

Model A : ��(k, ω)

= −T
∑
	

∫
q
�i(q,	)Gi(q, i	)Gi(−q,−i	)

× [U + J2�(k − q, iω − i	)], (6a)

Model B : ��(k, ω)

= −T
∑
	

∫
q
�i(q,	)Gi(q, i	)Gi(−q,−i	)

× [U − J2�(k − q, iω − i	)]. (6b)

Before analyzing the above equations in detail, we note
in passing that we could have also assumed the interaction
matrix elements to be uncorrelated in the following sense:
Ji jkl Jik jl = 0. The term proportional to J2 � would then be
absent3 from the above equations and the model in Eqs. (1a)–
(1d) would not have any on-site pairing instability at the

3The ladder insertion in the Bethe-Salpeter equation in the pairing
channel involves the contraction Ji jkl Jik jl . On the other hand, in the
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leading order in 1/N . It is still possible to study the onset
of pairing by introducing an explicit infinitesimal attractive
interaction [29–31].

III. MODEL A: SINGLE-SITE INSTABILITY

As discussed in Sec. II A, the incoherent metal for T �
Tcoh has SYK-like correlations with a completely local elec-
tron Green’s function and corrections that are perturbative
in the strength of hopping. Solutions to the Bethe-Salpeter
equations, if any, have to thus emerge at the level of the
single site and there is no “Fermi surface” driven instability.
Therefore, without any loss of generality, we ignore the mo-
mentum dependence of the Green’s functions. Moreover, in
this regime, let us set U = 0 and begin by asking if a finite J
can give rise to an instability. The equations for model A then
simplify to

��(ω) = −J2T
∑
	

�i(	)Gi(i	)Gi(−i	)�(iω − i	), (7)

where Gi(i	) = 1/[i	 − �(i	)], and �(i	) is given by the
solution of Eq. (2). Since the only energy scale in the problem
is set by J , it is useful to scale 	, T , and � by J , obtaining

��(ω̃) = −T̃
∑
	̃

�i(	̃)G̃i(i	̃)G̃i(−i	̃)�̃(iω̃ − i	̃). (8)

Here, tildes represent dimensionless quantities obtained by
rescaling by J , e.g., 	̃ = 	/J = π (2n + 1)T̃ , where T̃ =
T/J and n ∈ Z, G̃i(	) = 1/[i	̃ − �̃(	̃)], etc., and �̃(	̃) =
T̃

∑
ω̃ G̃i(iω̃)G̃i(i	̃ + iω̃). Equation (8) thus has a solution

when the linear operator M(�) defined by the right-hand side
of the equation has an eigenvalue of unity; this occurs at the
critical temperature Tc. Clearly, since Eq. (8) is dimensionless,
if there is a solution, it occurs at T̃ of the order of unity, i.e.,
Tc = JT̃c, where T̃c = O(1). The only remaining question is
then whether a solution exists at any T̃c > 0.

To show that such a solution indeed exists, we do not have
to solve the equations explicitly. It suffices to show that in the
limit T̃ → 0, the largest eigenvalue of M diverges; since the
eigenvalues of M all go to zero in the opposite limit T̃ → ∞,
this implies that the largest eigenvalue of M has to cross unity
at a finite value of T̃ .

In the regime ω̃, T̃ � 1, we can replace G̃i(ω̃) by
its form in the “scaling regime” of the SYK model:
G̃i(ω̃) ∼ isgn(ω̃)/

√|ω̃|. Similarly, in this regime, �̃(	̃) ∼
− log[1/ max(|	̃|, T̃ )]. Inserting these expressions in (8), we
obtain

�̃(ω̃) = T̃
∑
	̃

�̃ (	̃)√
|	̃ω̃|

ln

[
1

max(|	̃ − ω̃|, T̃ )

]
≡

∑
	̃

M̃(ω̃, 	̃)�̃(	̃), (9)

where we have defined �̃(ω̃) = �(ω)/
√

J|ω̃|, and the second
line defines the symmetric matrix M̃.

particle-hole channel (to be discussed later), the contraction would
be of the form Ji jkl Ji jkl .

FIG. 3. The maximum eigenvalue of M̃
1
2 as a function of

log10(T̃ ) [see Eqs. (9) and (10)].

We can now show that the largest eigenvalues of M̃ diverge
in the limit T̃ → 0; to see this, one may use a trial solution
�̃tr(	̃) = �(1 − |	̃|)/|	̃|1/2 and compute∑

ω̃,	̃ �̃tr(ω̃)M̃(ω̃, 	̃)�̃tr(	̃)∑
ω̃ |�̃tr(ω̃)|2 ∼ ln2

(
1

T̃

)
. (10)

Figure 3 shows the scaling of the largest eigenvalue of M̃ as a
function of T̃ , confirming Eq. (10). We conclude that Eq. (7)
indeed has a solution at a nonzero temperature, Tc ∼ J .

The resulting superconducting state has an on-site, spin-
singlet “s-wave” pairing symmetry. However, in order to
obtain a long-range ordered superconductor with a finite phase
stiffness, we need to include the effect of the intersite single-
electron hopping terms, which can be treated perturbatively
for T � Tcoh. Physically, it is clear that the system can be
treated as local islands of superconductivity that are coupled
to each other through an effective Josephson coupling, J ∼
Nt2/J � J . Thus, Tc is indeed set by J , while the Josephson
coupling4 (or superfluid stiffness) is set by a much larger scale
that is proportional to NTcoh. In this case, there is no FL regime
at low temperatures [see Fig. 4(a)]. We should emphasize that
the pairing instability in this case is unrelated to the usual
“BCS-log,” arising from the perfect nesting of states near the
Fermi surface at ±k; instead it arises from the completely
incoherent excitations in the locally critical non-Fermi-liquid
metal. Finally, we can address the fate of this instability for
U �= 0. Clearly, in Eq. (6a), the pair-hopping term suppresses
on-site pairing. When U � J , the superconducting instability
of this incoherent regime can be suppressed altogether.

4This can be obtained by computing the effective nearest-neighbor
hopping associated with an on-site Cooper pair, perturbatively in the
strength of the intersite electron hopping. Note that since Tc ∼ J is
much larger than the coherence scale W ∗ ∼ W 2/J , we can treat the
hopping perturbatively in this regime.
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FIG. 4. Phase diagrams for (a) model A (Ji jkl = Jik jl ) at small
U , and (b),(c) model B (Ji jkl = −Jik jl ) at weak (J � W ) and strong
(J � W ) coupling, respectively. The superconducting/density-wave
transition temperatures are denoted T SC,DW

c . The coherence scale Tcoh

denotes the crossover scale between the incoherent metal (IM) and
Fermi liquid (FL). At weak coupling, T SC

c is determined by the Kohn-
Luttinger (KL) scale.

A generalization of the model to the one-band SYK lattice
model with on-site q-fermion interactions (for q > 4) shows
similar physics, as discussed in the Appendix.

IV. MODEL B: GENERALIZED KOHN-LUTTINGER
MECHANISM

It is clear from the discussion in the previous section
that in model B, as a result of the sign of Ji jkl Jik jl = −J2,
the corresponding Bethe-Salpeter equation in the incoherent
regime [i.e., Eq. (6b)] does not have a nontrivial solution
at the level of a single site. It is then natural to ask if an
instability can arise once we include the perturbative effects
of the single-electron hopping t .

It is well known that in conventional Fermi-liquid met-
als with purely repulsive interactions (Uc > 0), an effective
attraction can be generated in a non-s-wave angular mo-
mentum channel at higher order in the interaction strength
[i.e., O(U 2

c ) and higher]. This traditionally goes under the
name of the “Kohn-Luttinger” (KL) effect [32] and typically
leads to a small Tc ∼ TKL ∼ W exp[−1/(ν0Uc)2]. At weak
coupling (Uc � W ), the crucial ingredient responsible for the
generation of an effective attraction relies on the momentum-
dependent structure of the particle-hole susceptibility, �(k),
for |k| � 2kF that is generated self-consistently. Recall the
peculiarity that in two dimensions and for electrons with a
parabolic dispersion εk = k2/2m − μ, the susceptibility �(k)
is a constant for |k| < 2kF ; this is no longer the case in
higher dimensions and leads to a sign-changing (p-wave) gap
function [32]. In two dimensions, electrons with a parabolic
dispersion exhibit a Kohn-Luttinger pairing instability at
O(U 3

c ) [33].
Within the incoherent metal regime of our model (T �

W ∗), the hopping leads to a nonsingular, perturbative

correction to the electron Green’s function [Eq. (4)], which
by itself cannot lead to a diverging susceptibility. However,
this does not preclude the possibility of an enhancement in
the pairing susceptibility as a function of decreasing tem-
peratures. In order to estimate the scale associated with this
enhancement, we can revisit Eq. (6b) and include the effects
of a finite (but small) t . The lowest-order contribution to the
pairing vertex is at O(t2). Inserting Eq. (4) for the Green’s
function at frequency ω � W ∗ into the Bethe-Salpeter equa-
tion (6b) and performing a simple power-counting argument
would suggest that the correction is given by

δχpair ∼ J2
∫ J

T
d2ω

t2

J3ω3
∼ t2

J

(
1

T
− 1

J

)
J→∞∼ Tcoh

T
, (11)

where we have taken J → ∞ while keeping Tcoh ∼ t2/J
finite. Clearly, when T � Tcoh, the correction is small. On
the other hand, the above correction becomes O(1) when T
approaches Tcoh from above, which is the scale at which t
can no longer be treated perturbatively. Therefore, the above
simple analysis already suggests that while the incoherent
excitations in the NFL regime of model B are unable to give
rise to a pairing instability, it is likely that upon approaching
the characteristic scale of Tcoh from above, the system has an
increased propensity towards developing superconductivity.
In order to investigate this matter further, we will now study
the instabilities of model B from the other asymptotic limit,
namely, low temperatures in the FL regime.

A. Strong-coupling analysis

Before proceeding further, let us revisit the saddle-point
Eq. (2) and the Bethe-Salpeter Eq. (6b) to cast them in a
more transparent fashion. For the FL regime, which is of
main interest in this section, the only relevant energy scale
is the renormalized bandwidth W ∗. We thus carry out the
following scaling transformations: ω̃ = ω/W ∗, ε̃k = εk/W ,
and �̃(k, iω) = �(k, iω)/W . The physics is best elucidated
in the strong-coupling limit with J → ∞ and Tcoh ∼ W ∗ =
W 2/J finite. We then obtain

�̃(k, iω̃) = −
∫

k1

∫
ω̃1

G̃(k1, iω̃1)�̃(k + k1, iω̃ + iω̃1),

�̃(q, i	̃) =
∫

k

∫
ω̃

G̃(k, iω̃)G̃(k + q, iω̃ + i	̃), (12)

where

G̃(k, iω̃) = 1

−̃εk − �̃(k, iω̃)
, (13)

and �̃(	̃) = T̃
∑

ω̃ G̃i(iω)G̃i(i	̃ + iω̃). Notice that we have
dropped the bare iω term in the Green’s function, which
is justified in the strong-coupling limit, where the entire
frequency-dependent renormalization arises from the singular
frequency dependence of �̃. We have thus been able to cast
the original saddle-point equations in a purely dimensionless
form. In this nondimensional form, the crossover between
the NFL and the FL regime occurs at ω̃ ∼ 1 (i.e., ω ∼ W ∗).
The Bethe-Salpeter Eq. (6b) in terms of these scaled variables
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takes the form (we have set U = 0)

�̃�(k, ω̃) = T̃
∑
	̃

∫
q
�̃i(q, 	̃)G̃i(q, i	̃)G̃i(−q,−i	̃)

× �̃(k − q, iω̃ − i	̃), (14)

where we have also rescaled T̃ = T/W ∗, �̃�(k, ω̃) =
��(k, ω̃)/W , and �̃(q, i	̃) is defined as before. Notice that
for the linearized Bethe-Salpeter equation, there is no reason
a priori to scale �� as above; for internal consistency, it is
appropriate to scale �� and � in the same fashion. Based
on these rescalings, it is clear that if there is a solution to
Eq. (14) in the strong-coupling regime as defined above (with
J taken to infinity while keeping W ∗ fixed), it occurs at T̃ ∼
O(1), i.e., Tc = W ∗T̃c ∼ W ∗. We are now left with the task of
investigating whether �̃ has the right momentum-dependent
structure to give any solution with T̃c > 0.

To investigate whether a solution exists, we repeat the
procedure introduced in Sec. III: viewing Eq. (14) as a matrix
equation, we ask whether the largest eigenvalue of the linear
operator defined by the right-hand side has an eigenvalue that
exceeds 1 at a nonzero T̃ . Since all the eigenvalues becomes
small when T̃ � 1, it is sufficient to show that the largest
eigenvalue diverges in the limit T̃ → 0. To show this, note
that in the low-temperature limit, the normal state becomes
a Fermi liquid [27], albeit with a strongly renormalized
quasiparticle weight, Z ∼ W/J [see Eq. (4)]. This translates
into G̃i ≈ 1

iω̃−̃εk
. Hence, in the limit of ω̃, 	̃ � 1, Eq. (14)

resembles the gap equation for a weakly interacting Fermi
liquid. Then, as long as the density of states corresponding
to the renormalized dispersion ε̃k is nonzero, we know that
the magnitude of the largest eigenvalue of the right-hand side
of (14) diverges logarithmically in the limit T̃ → 0, if the
effective interaction given by �̃(q, 	̃ → 0) has a positive
(attractive) sign in a certain symmetry channel; this is just
the usual Cooper logarithm. The only remaining question is
regarding the sign of the interaction. For model B, if � does
not depend on k (s-wave-like order parameter), then all the
eigenvalues are nonpositive. However, solutions can arise in a
non-s-wave, anisotropic channel.

In the low-frequency limit, Eq. (14) is identical to the
Bethe-Salpeter equation that arises in the weak-coupling treat-
ment of the Hubbard model [34,35]. Hence, we know, e.g.,
that on a square lattice and when the density of electrons is
close to half filling, there are nontrivial solutions, with the
leading one having d-wave (B1g) symmetry [35]. For our case,
this implies that there is a nontrivial solution to Eq. (14).
We stress, however, that the solution actually has Tc ∼ W ∗,
and therefore cannot be regarded as an instability of the
renormalized Fermi liquid; it appears at the same energy scale
as the renormalized Fermi energy (see Fig. 4). Superconduc-
tivity in this model appears in the crossover regime between
the incoherent metal and the Fermi liquid, and preempts the
development of coherent quasiparticles.

B. Explicit example: Partially polarized Fermi sea

Let us demonstrate the superconducting instability in
model B by considering an explicit tractable example. We
modify the noninteracting part of the Hamiltonian in Eq. (1a).

We consider in two dimensions the presence of an external
Zeeman field h that leads to a partial spin polarization. This
leads to a modification of the dispersion for every orbital in a
spin-dependent way (s = ↑,↓): εk,is → εk,is + sh. It is useful
to consider the limit where we are near the bottom of the bands
such that we can make a “parabolic” approximation (with the
bare mass, m ∼ 1/ta2) for the dispersion and treat the problem
as rotationally invariant,

εk,is = k2

2m
+ sh. (15)

For the noninteracting problem, the orbitals have a spin-
dependent Fermi momentum kF,s and Fermi velocity vF,s =
kF,s/m. The total density of states at the Fermi energy is
given by, ν0,s = ν0 = m/2π . The effect of a weak repulsive
interaction on pairing was studied for a similar partially spin-
polarized Fermi sea (with N = 1 orbital) in Ref. [36]. Our
focus in this paper is to study the effect of HJ in Eq. (1c) in
the presence of spin polarization and in the large-N limit, at
both weak and strong coupling.

It is worth pointing out that the strong-coupling limit for
this particular case is slightly different.5 We are interested in
the limit J/εF � 1 with J → ∞ and εF → ∞, while keeping
kF (i.e., the density) fixed; εF is the Fermi energy. For model
B, the Schwinger-Dyson equations (Fig. 1) in the presence
of spin polarization preserves the basic structure of the orig-
inal setup. In particular, at low temperatures (T � Tcoh), the
Green’s function is still of the form given in Eq. (13), where
the coherence scale now is Tcoh ∼ ε2

F /J , which we keep finite
in the strong-coupling limit. We will primarily be interested
in the physics at temperatures below Tcoh. The nature of
the incoherent metallic state above Tcoh in the present model
with an unbounded bandwidth is an interesting question that
we leave for the future. Below Tcoh, there is a crossover into
an incipient FL regime, where the self-energy is momentum
independent. Turning now to the possible instabilities, since
the Fermi surfaces are spin polarized in the FL regime, the
leading superconducting instability (if any) will be in the
spin-triplet channel. The spin-triplet, orbital-diagonal vertex
is defined as

�is(r − r′) ≡ 〈criscr′is〉. (16)

The Bethe-Salpeter equations for the two pairing vertices
are given by (we suppress the orbital indices below)

�↑(k, ω) = − J2
∑
	

∫
q
�↑(q,	)G↑(q, i	)G↑(−q,−i	)

×�↓(k − q, iω − i	), (17)

�↓(k, ω) = − J2
∑
	

∫
q
�↓(q,	)G↓(q, i	)G↓(−q,−i	)

×�↑(k − q, iω − i	), (18)

5Under the parabolic approximation, the kinetic energy is no longer
bounded, i.e., the bandwidth is not finite.
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where the polarization bubble is defined as earlier,

�s(k, iω) = T
∑
	

∫
q

Gs(q, i	)Gs(q + k, iω + i	). (19)

Let us first recall the results in the weak-coupling limit,
following the analysis of Ref. [36]. In this limit, we may
ignore the frequency dependence of the gap functions [35],
and it is enough to study the pairing generated by the static
part of the polarization function, which is given by

�s(k) = Zν0

2

(
1 − Re

√
k2 − (2kF,s)2

k

)
. (20)

Decomposing the triplet eigenfunctions as

�s(k̂) = �(kF,s) cos(mθk̂ ), m ∈ odd integers, (21)

leads to the following set of eigenvalue problems:

λm,↑ = −Zν0J2
∫

dθ

2π
�↓[2kF,↑| sin(θ/2)|] cos(mθ ), (22)

λm,↓ = −Zν0J2
∫

dθ

2π
�↑[2kF,↓| sin(θ/2)|] cos(mθ ), (23)

with θ the angle between k and q. Just as in Ref. [36], if we
assume without any loss of generality that kF↓ < kF↑, then
λm,↓ = 0 for all m. The absence of an instability arises from
the momentum-independent structure of �↑(k̂ − q̂) for the
appropriate momentum transfer on the smaller Fermi surface.
On the other hand, the momentum transfer on the larger Fermi
surface leads to an effective interaction, �↓(k̂ − q̂), that can
lead to a nontrivial solution. The corresponding eigenvalue is
given by

λm,↑ = Z2ν2
0 J2

π

∫ π

θc

dθ

√
sin2(θ/2) − α2

sin(θ/2)
cos(mθ ), (24)

where 0 � α(=kF,↓/kF,↑) � 1 and θc = 2 sin−1 α. In the p-
wave channel, the above leads to

λ1,↑(α) = −Z2ν2
0 J2α(1 − α), (25)

which is nonzero as long as α �= 0, 1 (i.e., either fully polar-
ized or fully unpolarized). The transition temperature for su-
perconductivity is then T SC

c ∼ Tcoh exp(−1/|λ1,↑|). At weak
coupling, this is the celebrated Kohn-Luttinger result (with
Tcoh → εF ), except now the bare interaction at O(J ) is neither
attractive nor repulsive and a net attraction is only generated
at O(J2).

We now turn to the regime of strong coupling, which is
still described by the same set of Schwinger-Dyson equations
for the self-energy and Bethe-Salpeter equation for the pairing
vertices at large N . In particular, the quasiparticle residue
in the FL regime is small, Zν0J ∼ 1, and, correspondingly,
the pairing eigenvalue in the spin-triplet channel becomes
λ1,↑ ∼ O(1). Thus, when we start from the low-temperature
description of the FL and focus on the states near the Fermi
surface, we are led to the surprising result that the scale of the
superconducting instability in the regime of strong coupling is
T SC

c ∼ Tcoh.
Based on the above explicit example, as well as the struc-

ture of the Bethe-Salpeter equations, we can now make a few
general observations. We have argued in the previous sections

that if we start with the description of a low-temperature
Fermi liquid and focus on the excitations near the Fermi
surface, then, purely as a result of the strong renormalization
of the coherent excitations by the factor of Z ∼ t/J , 6 the
predicted T SC

c ∼ W ∗ ∼ Tcoh. However, at these scales that
are comparable to the renormalized bandwidth, many of our
underlying assumptions are not strictly applicable. In partic-
ular, the scattering rate is large, �′′(0, T ) ∼ W ∗, and it is
not sufficient to focus only on the low-energy states near the
Fermi surface. The Fermi surface itself is no longer sharply
defined. Strictly speaking, the quasiparticle residue may no
longer be treated as frequency independent all the way to ω ∼
W ∗ and the contribution of the incoherent part of the spectral
function must be included to study the onset of pairing. This
is beyond the scope of this work. However, the appearance
of W ∗ as a special scale at which the pairing susceptibility
exhibits nontrivial behavior, extrapolating both from the low-
temperature Fermi liquid and the high-temperature incoherent
metal, is suggestive of the fact that T SC

c is indeed determined
by W ∗.

V. DISCUSSION AND OUTLOOK

In this work, we have studied a family of large-N lat-
tice models that display pairing instabilities beyond the con-
ventional BCS framework. In particular, we would like to
emphasize that the superconducting instabilities obtained for
models A and B in this work do not rely on the conventional
“Cooper-log” arising from the nesting between time-reversed
pairs of momenta on the Fermi surface.7 In both cases, the
superconducting state develops from a non-Fermi-liquid state
with no long-lived quasiparticles; in model A, the parent
normal state is a completely incoherent, locally quantum
critical metal, whereas in model B, the normal state is at the
crossover between the incoherent metal and the Fermi-liquid
phase, such that the coherent quasiparticles have not yet fully
developed. Interestingly, in the latter case, the only scale in
the Eliashberg equation (which is exact in the large-N limit)
is the renormalized bandwidth W ∗. We therefore find that Tc

is of the order of W ∗. This is somewhat reminiscent of the
situation near a quantum critical point, where the only scale
in the Eliashberg equation is the coupling constant [37,38].
However, we stress that in our model B, this situation arises
without the need to tune to a quantum critical point. Similar
physics occurs in model A if a strong on-site repulsive “pair-
hopping” interaction U is added [see Eq. (1d) above].

Intuitively, the pairing interactions in these models can
be understood as arising from the exchange of spin and
orbital fluctuations. This is similar to the mechanism of
superconductivity in the repulsive Hubbard model at weak
interactions [35], where attractive interactions are generated at
the order of O(U 2). Note, however, that our model is strongly
coupled and does not have a coherent Fermi surface.

6For the model with a parabolic dispersion in the presence of spin
polarization, t → εF .

7For model B, the conventional Cooper-log ensures, however, that
there exists a pairing instability.
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The fact that the superconducting instability in our model
does not rely on the existence of coherent quasiparticles near
the Fermi surface, and hence does not require a degeneracy
between opposite momenta, naturally leads to the question of
whether the same interactions can induce other competing in-
stabilities, for instance, in the particle-hole channel. A careful
consideration of the Bethe-Salpeter equations in the particle-
hole channel immediately leads to the following conclusions:
(i) The disorder contraction at O(J2) that appears in the
particle-hole vertex (the particle-hole analog of the pairing
vertex in Fig. 2) is of the form Ji jkl Ji jkl , and is thus insensitive
to the precise nature of the permutation symmetries, as was
the case for pairing. There is no difference between models A
and B, as far as the instabilities in the particle-hole channel
are concerned. (ii) The incoherent metal is stable against
any instability in the particle-hole channel (i.e., there is no
“on-site” instability). (iii) Finally, at weak coupling, there
is no instability in the particle-hole channel; there is only a
superconducting instability due to the usual Kohn-Luttinger
mechanism. However, in the strong-coupling limit, in princi-
ple there could be an instability to the density-wave order with
T DW

c ∼ T SC
c ∼ W ∗. All of our previous arguments for the pair-

ing instability are also applicable to the particle-hole vertex,
especially in the regime where the system can no longer be
described as a weakly interacting Fermi liquid with a sharp
Fermi surface as T → Tcoh. However, as discussed above,
while a pairing instability is guaranteed in this regime, whose
origin can ultimately be traced to the usual Cooper-log, this
is not the case for the instability in the particle-hole channel.
The precise nature of the density-wave instability, vis-à-vis its
wave vector (which, at strong coupling, is generally unrelated
to any nesting wave vector), intraunit-cell form factor (if a
bond density), and the numerical ratio of T SC

c /T DW
c (� 1)

is determined by the underlying microscopic details of the
starting Hamiltonian. We note that the above family of models
is thus an interesting playground for exploring various in-
tertwined orders at strong coupling [39,40], where different
orders all appear with the same basic energy scale W ∗. We
leave a detailed analysis of these questions, especially the
possible instabilities in the particle-hole channel, to the future.

A separate, but equally interesting question that has not
been addressed in the present paper is the fate of supercon-
ducting instabilities in the two-band generalizations of the
spinless version of the above model, where the bare bandwidth
of one of the bands is much narrower than the other [27].
These two-band models realize critical Fermi surfaces with
“marginal” (or “non”)-Fermi-liquid self-energies for the elec-
trons with the larger bandwidth. It is natural to ask if the same
interactions that destroy the long-lived quasiparticles near the
critical Fermi surface can simultaneously induce pairing. For
quantum critical metals, the precise answer to this question
can depend on underlying details [41]. We have recently
analyzed this question in a narrow regime of parameter space
for the above two-band model [42] and leave a detailed anal-
ysis of these and other related questions for the lattice-SYK
model for the future. Ultimately, it is remarkable to note the
surprising effectiveness of Eliashberg theory for describing
the pairing instabilities of non-Fermi liquids arising from the
SYK models [42], far beyond their original intended regime
of validity.

Note added. Recently, three manuscripts [43–45] appeared
on the arXiv that study pairing instabilities of a different
variant of the (0 + 1)-dimensional SYK model.
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APPENDIX : GENERALIZATION TO TRANSLATIONALLY
INVARIANT SYKq MODELS

In this Appendix, we consider a generalization of the
model originally introduced in Ref. [46] and extended to a
translationally invariant lattice in Ref. [27],

Hc =
∑
r,r′

∑
�,s1

(−tr,r′−μδrr′ )c†
r�s1

cr′�s1 + (q/2)!

N
q−1

2

×
∑
{i�}

∑
{si}

Ji1i2...iq

[
c†

r,i1s1
c†

r,i2s2
. . . c†

r,iq/2sq/2

× cr,iq/2+1sq/2 . . . cr,iq−1s2 cr,iqs1

]
. (A1)

As before, we take Ji1i2...iq and the hopping t to be trans-

lationally invariant, with Ji1i2...iq = 0, and (Ji1i2...iq )2 = J2. In
analogy with model A considered above, we impose addi-
tional correlations among the matrix elements of the form
Ji1i2...iq−1iq = Ji1iq−1...i2iq . Imposing this additional structure does
not change the saddle-point solution; for general q, the scaling
dimension of the fermion in the absence of the hopping term is
�(q) = 1/q. Following the earlier discussion, it is straightfor-
ward to see that the coherence scale Tcoh = t (t/J )

2
q−2 , above

which the metal exhibits a locally critical, incoherent regime.
The gap equations (ignoring the momentum dependence) take
the familiar form,

��(ω) = −J2T
∑
	

�i(	)Gi(i	)Gi(−i	)χ (iω − i	),

(A2)

where Gi(i	) ∼ isgn(	)/(J2�(q)|	|1−2�(q) ), and

χ (τ ) ∼ [G(τ )](q−2)/2[G(−τ )](q−2)/2. (A3)

Assembling all of these constraints leads to

��(ω) = T
∑
	

�i(	)
1

|	|2−4�(q)

1

|ω − 	|4�(q)−1
, (A4)

where it is interesting to note that the coupling J has dropped
out. It is then easy to see that just like in the q = 4 case, the
transition temperature Tc ∼ J is the only relevant scale in the
problem.
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