Explorations of the Practical issues of Learning Prediction-Control Tasks

Using Temporai Difference Learning Methods

Charles L. Isbell

submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science
in Computer Science

at the

Massachusetts Institute of Technology

December 1992
© Massachusetts Institute of Technology
all rights reserved

Author

Chariés Isbell -

Department of Electrical Engineering and Computer Science
Certified by

Tomaso Poggio,

Thesis Supervisor .
Accepted by — P

Campbsll L. 'rIeL

Chairma CS Committes on Graduste Students

MASSACHUSETTS INSYITUTE
OF TFOHNOLOGY

MAR 24 1933

[S IR

ARCHIVES

Explorations of the Practical issues of Learning Prediction-Control Tasks
Using Temporal Difference Leaming Methods
by
Charles L. isbell

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of Master of Science
in Computer Science

Abstract

There has been recent interest in using a class of incrementai leaming algorithms
called temporal difference learning methods to attack problems of prediction.
These algorithms have been brought to bear on various prediction problems in
the past, but have remained poorly understood. It is the purpose of this thesis to
further explore this class of algorithms, particularly the TD (A) algorithm. A
number of practical issues are raised and discussed from a general theoretical
perspective and then explored in the context of several case studies. The thesis
presents a framework for viewing these algorithms independent of the particular
task at hand and uses this framework to explore not only tasks of prediction, but
also prediction tasks that require control, whether complete and artial. This
includes applying the TD () algorithm to two tasks: 1) learning to play tic-tac-toe
from the outcome of seli-piay and the outcome of play against a perfectly-playing
opponent and 2) learning two simple one-dimensional image segmentation

tasks.

Thesis Supsrvisor: Professor Tomaso Poggio
Uncas and Helen Whitaker Professor,
Department of Brain and Cognitive Sciences

Acknowledgments

| would like to thank my advisor, Tomaso Poggio, for his advice and direction
while | worked on this thesis. His intensity and constructive comments helped

me to move this project forward.

i would aiso like to thank Federico Girosi, Scott Hofmeister, Jim Hutchinson, Mike

Joneg and Paul Viola for their thoughts during the course of this work.

Finally, | must thank Chariton J. Coles, Jacqueline D. Isbell and Patience R.
Singleton. Their support, while not being of a technical nature, proved to be

invaiuable.

This report describes research done at the Artificiai Intelligence Laboratory of the
Massachusetts institute of Technology. This research is sponsored by a grant
from the Artificial Intelligence Centar of Hughes Aircraft Cerporation (LJ90-074)
and by Office of Naval Research contract NOOG14--89--J--3139 under the
DARPA Artificial Neural Network Technology Program. Support for the Al
Laboratory's artificial intelligence research is provided by the Advanced Research
Projects Agency of the Depariment of Defense under Army contract DACA76--
85--C--0010, and in part by ONR contract NOCO14--91--J--4038.

This material is based upon work supported under a National Science
Foundation Graduate Research Fellowship. Any opinions, findings, conclusicns
or recornmendations expressed in this publication are those of the authoi(s) and
do not niecessarily reflect the views of the National Science Foundation.

1 Learning and Neural NetworksScccoveieiiereen et rie e 1

1.1 Why networks at all?cccvveiiiiiciic e, 3
1.2 Radial Basis Function Networksccceccivcrveriiniciiiiiicee e, 5
1.3 Supervised versus Unsupervised Leamingccccocccvvvevirieen e, 9
2 Temporal Difference Learningcccceeveeriiniccicreeieisesin e 12
2.1 Temporal Diftarence versus Traditional Approaches to
ProdiCtion et e e 13
2.2 Derivation of the TD (A) leaming algorithmcccccoiiviiinninnee. 15
2.2.1 The General Learning RUIEccccecevveceneneniieccseriene, 16
2.2.2 The TD (A) learning algorithmccoevvveniiiniensnnennn 18
2.3 Maximume-Likelihcod Estimationccccevviiveiiiccecneeen 19
2.4 Prediction versus Comtrol.........ccciiiiieiicviniiie e ceceiree e csennreer e 20
2.4.1 Searching through a Graphcccooeviiriiiiiie e 21
2.4.2 Non-controiling prediction tasks..........cccccvieciniiiniecniinnnnns 22
3 Practical 1Ssues in TD (L) ..ot aaaaaans 24
3.1 Aigorithmic Considerationscccccecomeerniicniinniinn e 25
3.1.1 Credit ASSIGNMENT.......cccccuviiiriiireierrece s 25
3.1.2Tweaking 0t and Aoevereiiiiiciiie s 27
3.1.3 Convergence of TD (A) ..cocevereeiiiieeiecee e 27
3.1.4 Completion of TD (A)..cccccvieeriieee et 28
3.1.5 Sequence Length and the Curse of Dimensionaiity............ 28
3.2 Task Dependent Considerationsccccveeeivereeniencmiinccccnncnnnne. 28
3.2.1 Prediction and Partial Controlccocvreeniiiicnnicnicinen, 29
3.2.2 Prediction and Control Revisited...........c.cccceeveiiiniiiininnnen. 31
3.2.3 Relative and Absolute ACCUTIaCYccceeevrceiiiniiiennienns 31
3.2.4 Random Tasks and NOIS...........cceeveeiriicniieinirciier i 32
3.2.5 Representation.........ccccoeiiiciriiieiecceee e 33
3.2.6 Lookup Tablescccveveeeveiieeece e 34
3.2.7 Maximum-Likelihood Estimates and Non-Markovian
TASKS ottt e e e 34
4 EXample: TiC-TAC-TOBuuiieeiiieeeeeeee ettt e 35
L B o £ To e (o 1= J RO 35

4.2 Practical Issues in Leaming Tic-tac-toe.............cccccernii, 37

4.3 Experiments with Tic-{ac-108cccevvevmiieiiiiiiiinii e, 38

4.4 Tic-tac-t08 ROSUIS.......ccooeiieeeeeccinctn e 40

4.4.% Self-playing Networks............ccooevieeniiiniiiniiiicin i 42

4.4.2 Opponent-playing NEWOrKScccoccevniieiniiniciininiieccnen, 45

5 Example: Recurrent NetWOrKScccceciiiiiiiiniiie 48
5.1 FUNCtion Berationccccovoiveereenniniiieicen i 48

5.2 S@gMENALION.......ccooiiiiiiiiiiiic e 50

5.3 Practical Issues in Learmning Recurrent Segmentation...................... 52

5.4 Experiments with Simple Recurrent Segmentationccc..c....... 53

5.4.1 Black-and-White Segmentationccccevrniniiinnnennnnn, 53

5.4.2 Hurlbert's Segmentationccccceviiiimniiiniinnenneeecnen, 54

5.5 Segmentation RESUIS.............coeiiiiiinii 54

5.6 Experiments with “Tagged” Recurrent Segmentation....................... 57

5.6.1 Black-and-White Segmentationcccoiniiiinniinnens 57

5.6.2 Hurlbert's Segmentationccociiiiiiiniiiiiciiinci 58

5.7 Segmentation REeSUILS.........ccccovniiiiiiinree 59

5.7.1 Black-and-White Segmentation Resultsc.ccecveeis 59

5.7.2 Hurlbert's Segmentation Resultscccoeeeerininnnne 60

(53 070) o3 (V11 (o] £ OO PPPP TP 65
A: TD (A) and GRBF NetwWOorkS..........ooiiiiiiinieie e 68

BIDHOGIAPNY ...eieeeieeee it s 72

Chapter 1

1 Learning and Neural Networks

Learming is a question ceniral to the study of Artificial Intelligence. The sub fields
that make up Al are varied and sometimes quite divergent in their immediate
goals and methods; however, the goal of “learning” in a way that mimics—and
nopefully illuminates—the process employed by human beings is an omnipresent

one.

There has been great interest in the study of neural networks as a method for
attacking this problem of learning. This interest has lad to the creation of many
different structures which have been dubbed “networks.” In this thesis, | will use
the General Radial Basis Function (GRBF) and HyparBF networks (Poggio and
Girosi, 1990), to discuss algorithms for training neural networks. in particuiar, |
will discuss and propose evaluation criteria for the TD (A) temporal difference
leaming algorithm (Sutton, 1988). As a training algorithm it is provably equivalent
to the more widely-used supervised learning algorithms; however, questions

remain about its usefulness and efficiency with more complex real-world

1

problems. In this thesis | will identify a number of practical issues that this
algorithm must address and use several case studies to provide an empirical

context to study its strengths and iimitations.

This thesis is divided into several parts. This first chapter introduces feedforward
networks in some detail and broadly defines two main classes of algorithms for
training them. The second chapter introduces and derives ancther class of
training algorithms, the TD (A} algorithms, and distinguishes them from the two
aforementioned classes as a temporal difference learning method. Theoretical
work is presented, relating TD (A) to currently studied problems and to the
prediction paradigm for which the algorithm should be ideal. In addition, this
chapter develops a theoretical and algorithmic formalism for studying TD (2),
allowing one to encompass not only tasks of simple prediction, but more
complicated prediction tasks that involve control—whether complete or partial—
as well. Chapter three presents related work, describing many of the practical
issues that the TD (L) method raises and attempts to show where this research
relates to the greater body of work. Chapters four and five describe the case
studies used in this research to evaluate the TD ()) algorithm, relating them to
the practical issues discussed in the previous chapter. In particular, the case
studies expiore two problems involving prediction and control: determining an
evaluation function for tic-tac-toe positions through both self-play and play
against a superior opponent and simulating a restricted class of recurrent
networks to learn to do two kinds of simple segmentation. Resuits are presented
and discussed. Finally, chapter six concludes with a brief discussion of TD (A)

and a review of the thesis.

1.1 Why networks at ail?

In practice, neural nets are difficult to train and often have trouble performing
. 'an what wou'd seem to be simple tasks. As number-crunching mechanisms,
networks are often unable to deal easily with the piocessing of symbels; are
extremely sensitive to the representation used for the data; and oftentimes
require an inordinate amount of time to train. &till, neural networks do enjoy

several advantages:

—

. They can leam to perform tasks for which computational aigorithms do not

exist or are poorly understood.

2. They leamn on the fiy, adapting their behavior to a changing environment.

2. As mathematical abstractions, they are not wedded to any specific

algorithmic engine for training.

4. They inherit a wealth of theory and empirical data from approximation

theory, particularly from the fieids of regression and statistical inference.

In practice, the first property is probably the most important. For many problems
of interest, the level of understanding of the problem is poor. For example, with a
cornputer vision problem, we might want to perform some sort of object
recognition but are unable to actually define what we mean by the “object.”
Despite this lack of a specification, we can usually describe how a currect
algorithm should perform on parlicular examples. In this case, we can define

leaming as a process of associating particular inputs to particular outputs, that is

as function approximation. This allows our analysis of neural networks to draw
upon approximation theory, inhariting information from the statistical and

regression communities.

if a self-training network is capable of discovering a function that performs
correctly on a set of examples, it might be able to generalize to solve the problem
for inputs that it has yet to see. If the network does well in generalizing the
protlem, this is an indication that it has discovered some important underlying.
structure. If this is the case, subsequent analysis of the network’s “answer” might
contripute to our understanding of the original problem. Unfortunately, this
generalization problem is ill-posed: any finite set of examples for a function is
consistent wich an infinite number of functions, many of which may have nothing

to do with the original problem.

The second property of networks—their built-in adaptability—is also iportant. If
a neural network’s behavior is learned in the first place, then re-learning based
on some change in the environment should be easy to implement. This is, of
coursse, a property found in all high-level biological organisms and one computer

scientists seek to emulate.

As mathemaztical abstractions, neural network structures should be independent
of changes in a particular training algorithm. The purpose of a training aigorithm
is to adjust the parameters of the network to move its outputs closer 1o the
desired outputs. Of course, some training algorithms perform better than others
and some algorithms might iearn more quickly with certain networks than with
others. Still, the choice of a training algorithm should not change the inherent

power of the network itself. This allows researchers to experiment with various

Output layer {

Hidden Layers

Input Layer {

Figure 1.1: A perceptron-like feedforward network. Input valuas are “clamped” at
the input layer. A unit at a higher level receives a weighted sum ot the valuas of units
below as input. It then passes this input through a function, usually non-linear, fo
produce its own value.

algorithmic engines without atfecting the universality of whatever neural network

they chocse to use for a base.

1.2 Radlial Basls Function Networks

Neural networks consist of a set of interconniected computational units. The

connsctions are directed and usually weighted. For most kinds of netwoiks, it is

these weights that training algorithms adjust.

One of the most common typas of networks is the feedforward network. A
feadforward network is any neiwork that can be divided into distinct layers, such
that thera are no connections from a unit in an upper layer to any unit in a lower
layer. The lowest layer consists of input units onto which input values are
clamned. These values are then passed through a set of weights to produce the
inputs to the next layer of so-called “hidden” units. These units take their input
and modify them using some function, passing their values to the next iayer.
This process is continued, with the output of the network being the outputs of the
final layer of units. A typical feediorward network is shown in figure 1.1. For

simplicity, we have assumed that the function at each unit is the same.

If x; denotes the output of unit j and w, denotes the weight on the connection

from unit i to j (where w, can be zero), we can express the output o. unit j

simply:
x,=f(2wux,). (1.1)

The functions at each unit do not have to be nonlinear but they usually are. In

sigmoidal networks, for example, each unit employs a sigmoidal function, such as

)-

the logistic function (f(x) = -
I+e

One pariicular kind of feedforward network is the radial basis function network
(Broomhead and Lowe, 1988; Poggio and Girosi, 1889). This type of network
always contains three layers: a layer of input units, a hidden layer of radial basis

function (RBF) units and a layer of output units. Each of the RBF units has a

vector of parameters, 7, called a center and is connected to the output units by a

Outputs {

Centers {
Inputs {

Figure 1.2: An RBF network. All RBF networks have three layers: inputs, centers
and outputs.

weighted coefficient vector, ¢,. We can express the value of an output unit, j,

as:

y, = Y.¢,Gqx-Tf). (1.2)
i=l

G()is a radial basis function, usually a gaussian (G(x) = ¢ ") or multiquadratic
(G(x) = \/y’ + x*), and }z| represents the L, norm.

in an RBF network, the numbsr of RBF units is equal to the number of training

examples with each center, 1, set equal to one of the training sxamples. Only
the coefficients, ¢, must be learned in this case. This reduces the process of
learning to a simple linear problem solvable by matrix inversion (Broomhead and

Lowe, 1988).

The RBF network can be generalized by allowing fewer centers than training
examples. The centers of this generalized radiai basis function network (GRBF)
are usually initialized to some subset of the training examples. The centers can
then remain fixed or be allowed to change. In general, if the centers remain
fixed, the system of linear equations is over constrained; however, the pseudo-
inverse can be used to find a mapping with the smallest possible error on the

training examples (Poggio and Gircsi, 1989).

Poggio and Girosi (1990) have proposed a further generalization: weighting the
connections between the input units and the RBF units, effectively replacing the

L, norm with a weighted norm:

y, = 2c,Gd=-if,) (1.3)
i=1
where
fe-ik, = G- WwE-i). (1.4)

If the weighting matrix, W, is diagonal (i.e. may only have ncn-zero values along
its diagonal), then for some simple tasks it is possible to interpret each diagona!

component of W as indicating the importance or contribution of the
corresponding component of the input vectors. A key component, x,, is

exaggerated by a large value for w, while an unimportant compenent, x;, I8

minimized by a smali w.

This kind of RBF network, referred to as a HvperBF network, is derived from
regularization theory. By imposing smoothness constraints, the ill-posed probiem
of generalizing a function from input-output example pairs is changed into a well-

posed one. Like both the RBF and GRBF networks, the HyperBF network can

approximate any continucus {uncticn arbitrarily well on a compact, finite set

(Poggio and Girosi, 1989).

For the case studies in this thesis, we have chosen to use a GRBF network using

the gaussian as the radial basis function:

y, =Y e b (1.5)

with a distinct, adjustable c; for each adjusteble center. Results should not be

limited to just this type of network.

1.3 Supervised versus Unsupervised Learning

Whataver the kind of network used, training aigorithms have been traditionaily
divided into two major categories: supervised and unsupervised (Mintcn, 1987,
Lippman, 1987). Generally speaking, a supervised learning algorithrn is any
aigerithm that involves a knowledgeable isacher who provides the correct answer
for every input example presentad to the network. With an unsupervised leaming
algorithm there is no teacher and the network is lsft to discover some useiul
structure on its cwn. Of course there is an implicit mapping that the network
must leam in any unsupervised algorithm and, therefore, an implicit teacher. In
facy, i is sometimes possible to simulate one type of algorithm with an algorithm

of tha other type.

As such, it may be rmost practical to describe the differences betwaen supsivised

and unsupervised algorithms as differences in goals, as opposed to technique:

the object of supervised learning is to approximate a particular ingut-output
mapping while the object of unsupervised learning is to find a mapping which
possesses some specific underlying properties that have been deemed

important. Both methods have their strengths and weaknesses.

Supervised learning algorithms have met with considerable success in solving
some difficult tasks, fairing somewhat better in this regard than unsupervised
learning algorithms. This makes some sense. While it is not too difficult to
imagine that there might exist a (complex) function that maps, say, bit-image
representations of hand-drawn digits to the numbers they represent, it seems a
bit harder to imagine an important “underlying principie” that wouid straight-

forwardly accomplish the same.

On the other hand, supervised learning algorithms have been limited by their
poor scaling behavior and tend to produce problem-specific representations that
de not carry over well to new tasks. Unsupervised learning algorithms seem tc
do better in this regard. Further, they appeal to the goal of emuiating the human

learning process, which at least seems to be unsupervised.

Of course, these two categories do not exhaust the possibilities. Clearly there is
a continuum of learning typss between these two extremes. For example, we
couid combine some sort of “underlying principle” that generalizes weu to many
problems with the power of an external teacher. In this way we can guide a
network 10 a final solution which not only performs complex tasks, but chooses

functions that capture important underlying structures.

10

g

2

f=

One class of algorithms that approaches the problem of learning in a way that is
different than both unsupervised and supervised learning aigorithms is the class
of temporal difference learning methods. Instead of changing network
parameters by means of the difference bstween predicted and actual outputs,
these methods update parameter values by means of the difference between
temporally successive predictions (Sutton, 1988). Feedback is usually provided
by a teacher at the end of a series of predictions. This combines the principle of
temporal (and spatial) conerence—tha notion that the envirorment is stabie and
smooth and any function that predicts behavior should reflect that notion-—with

the power of an external teacher.

In the following chapters, we will explore the TD (A) aigorithm, a member of this
class, evaluating its usefulness with a number of test cases and exploring
whether real-world problems can be better thought of as prediction problems and,

perhaps, better attacked by this class of leaming algorithms.

11

Chapter 2

2 Temperal Difference Learning

in this chapter we discuss a class of learning algorithms called temporal
difference learning (YD) methods. This is a class of incrementai learning
procedures specialized for prediction problems. As noted earlier, more traditional
learning procedures update parameters by means of the error betwsen the
neural net's predicted or proposed output and the actual or desired output. TD
learning methods are driven instead by the error between temporally successive
pradictions. In this way leaming actually occurs whenever there is a change in a

prediction over time.

The earliest use of a TD method was Samual's (1959) checker-piaying program.
For each pair of successive game posions, the program would uss the
difference petween the evaluations of the two positions to modify the eailiar
position's evaluation. Similar methods have been used in Holland's (1986)
bucket brigade, Sutton's (1984) Adaptive Heuristic Critic and Tesaurc's (1991)

Backgamion prograis. Unfortunately, TD algorithms have remained poorly

12

understood. Sutton (1988) has provided a theoretical foundation for thair use,
proving convergence and optimality for special cases; Dayan (1991) has
extended Sutton’s proofs and Tesauro (1991) has provided an empirical study of
the superiority of TD algorithms in at least one domain; however, it is still unclear
how well these algorithms can perform in general with compiex, real-world
doritains or with structures other than linear and sigmoidal networks. To explore
these issues, we will first discuss in some detail the different approaches used by
temporal difference and more traditional learning methods to svive prediction
problems. Then, we will explore the difference between problems of simple
prediction and problems of both prediction and control, proposing a general

framework for discussing toth.

2.1 Temporai Difference versus Traditional Approaches to Prediction

Suppose that we attempt to predict on each day of the wesk whether it will rain
the following Monday. A traditional, supervised, approach would compara the
prediction of each day to the actual outcome, while a TD approach would
compare each day’s prediction to the following day's prediction. Finally, the
network's last prediction would be compared to the actual outcome. This forces
two constraints upon the neural net: 1) it must learn a prediction function that is
consistent or smooth from day-to-day and 2) that function must eventually agree
with the actual outcoms. The first is accompiiched by ‘orcing each prediction to
be similar to the prediction following it, whils the second is accomplished by
forcing the last prediction to be consistent with the actual outcome. The correct

answer is propagated from the final prediction to the first.

13

This approach assumes that the state of the environment is somewhat
continuous and dog&s not radically change from one point in time to the next. in
other words, the environment is predictable and stable. |f we accept this

assumption, the TD approach has three immediate advantages:

1. It is incremental and, presumably, easier to compute.

2. ltis able to make better use of its experience.

3. ltis closer to the actual learning behavior of humans.

The first point is a practical as wal! as theorstical one. In the weather prediction
example, the TD algorithms can update each day's prediction on the following
day while traditional algorithms would wait until Monday and make all the
changes at once. These algorithms would have to do more computing at once
and require more storage during the week. This is an important consideration in

more complex and data-intensive tasks.

The second and third advantages are related to the notion of single-step versus
multi-step problems. Any prediction problem can be cast into the supervised-
learning paradigm by forming input-output pairs made up of the data upon which
the prediction is to be made and the final outcome. For thie weather example, we
coula form a pair with the data at each day of the week and the actual outcome
on Monday. This pairwise approach, though widely used, ignores the sequentiai
nature of the task. It makes the simplifying assumption that its tasks are singie-
step problems: all information about the correciness of each prediction is

available all at once. On the other hand, a multi-step problem is one where the

14

correctness of a prediction is not available for several steps after the prediction is
made, but partial information about a prediction’s corractriess is reveale at each
step. The weather prediction problem is a multi-step probiem; new information
becomes available on each day that is reisvant to the previous prediction. A
supervised-leaming approach cannot take advantage of this new information in

an incremental way.

This is a serious drawback. Not only are many, perhaps most, reai-world
problems actually muiti-step problems, but it is clear that humans use a muiti-
step approach to learn. In the course of moving to grasp an object, for example,
humans constantly update their prediction of where their hands will come to rest.
Even in simple pattern-recognition tasks, such as speech recognition—a
traditional domain of supervised learning methods—humans are not faced with
simple pattern-classification pairs, but a series of patterns that all contributs to

the same class/fication.

2.2 Derlvation of the TD (A) learning algorithm

n the following two subsections we derive the TD (A) learning algorithm (Sutton,
1988). First we introduce a temporal difference Iearning procedure that is directly
derived from the classical general delta learning rule and induces the same
weight changes. With this basic learning procedure defined, wa expand it to

encompass the much larger and more general TD (A} learning aigorithm whict

produces weigh! changes that are different than any supervised-learning

algorithm. In the next section, we explore exarctly what the TD (L) procedures

compute and how this differs from the more traditional approaches.

15

2.2.1 The General Learning Rule

We consider the multi-step prediction problem to consist of a series of

observation-outcome sequences of the form x,%,,...%,,z. Each %, is a vector

representing an obssrvation at tima r while z is the actual outcome of the

sequerice. Although z is often assumed to be a real-valued scalar, z is not

prevented tfrom being a vector. For each observation in the sequencse, %, :he

network produces a corresponding output or prediction, P,. These predictions

are estimates of z.

As noted in the first chapter, learning algorithms update adjustable parameters of
a network. We will refer to these parameters as the vector w. For each

observation, a change to the parameters, Aw,, is determined. At the end of each

observation-cutcome sequence, w is changed by the sum of the observation

increments:

w=w+iAW,. (2.1)

=1

This leaves us with the question of how to determine Aw,. One way to treat the

problem is as a series of observation-outcome pairs, (%,,2).(%,.2)...{%,,2), and

use the backpropagation learning ruie:
Aw, = a{z~P)V P, (2.2)

where « is a positive value affecting the rate of Isarning; V_P, is the vector of

partiai derivatives of P, with respect to w; and (z - P,) represents a measurs of

the error or diffearence between the predicted outcome and the actual outcome.

16

This learning rule is a generalization of the delta or Widrow-Hoff rule (Rumelhart
et al, 1986).

This is a clear supervised learning algorithm with each Aw, depending directly on

z. This falls prey o the disadvantages noted earlier. To convert this to a

temporal difference algorithm, we must represent the error (z—P,) in a different

way. We can use the “telescoping rule” to note that:

-P)=Y (P, - P) 2.3)

imp

if P,,, =z. Using this, we can combine equations (2.1) and (2.2) to produce a

temporal difference update rule:

W=+ Y AW, =w+ia(z-P,)V,,P,

tml 1=

= w+iai“(n+, -P)V, P,

1al A=t

= ﬁ-{-iai(ﬂ“ - Pk)vwljl

k=l =]

=w+y a(P,, - P,)EV"P, :

tnl kal

in other words:
Aw, =a(P, ~P)3 VP, (2.4)

dasd

Note the incremsntal nature of this rule: each Aw, depends only on a pair of

successively-determined predictions and the sum of past values of V_P,, which

can be accumulated with each observation.

17

2.2.2 The TD (1) learning algorithm

With equation (2.4), Aw, is updated in such a way that any difference between
P, and P, affects all of the previous predictions, P,P,,..., P, to the same extent.
For some problems, however, it may be preferable to provide some way to
weight the gradients, VP, so that more recent predictions are affected the most.
To this end, we will consider an exponential weighting with recency, in which the
predictions of observation vectors occurring k steps in the past are weighted

according to new parameter A* where 0 <A <t:

_P)Y AP 2.5)

k=)

Aw, = a(P,

i+l

Equations (2.4) and (2.5) are equivalent for 1 =1. We can therefore refer to (2.4)

as a TD (1) algorithm and as a member of the more general TD (1) family of

algorithms.

When A <1, TD (A) produces weight changes that are different than the more

traditional (2.4). This is particularly true with TD (0), when Aw, is determined

solely by the difference between the two most recent observations:

AW, =a(P,, - P)V P. (2.6)

2.3 Maximum-Likeltheod Estimation

it ie known that TD (A), for 0<S A <1, converges asymptoticaily to the idsal

predictions-—at least for absorbing Markov processes and linearly separable

18

data—after an infinite amount of experience (Sutton, 1988; Dayan 1991);
however, it is instructive to explore exactly what the TD (A) procedures compute
after a finite amount of experience and to contrast this with the more traditional
supervised learning procedures. Following Sutton (1988), we wili concentrate on
the differences bstween linear TD (1)—the Widrow-Hoff nrocedure—and iinear

TD (0) on linearly separable data, since this is where differences are most clear.

After a finite number of repeated presentations, it is weli-known that TD (1)
converges in such a way so as to minimize the root squared error between its
predictions and the actual outcomes in the training set (Widrow and Stearns,
1985). But what does TD (0) compute after a finite number of repeated
presentations? Suppose that one knows that the training data to be used is
generated by some Markov process. What might be the best predictions on such

a training sef?

Probability and statistical theory tell us that if the a priori distribution of possibie
Markov processes is known, the optima! predictions on a training set can be
calculated through Sayes’ rule; however, it is difficult to justity any a priori
assumptions about this distribution. ip this case, mathematicians use what is
known as the maximum-likelihood estimate. in general, the maximum-likelihood
estimate of the process that produced a set of data is that process whose
probability of preducing that data is largest. For example, assume we flip a coin
50 times and see a head 41 of those times. We can then ask for the best
estimate of the probability of getting a head on the next coin flip. The real answer
depends, of course, upon tha probability of having a fair coin; however, absant

this a priori knowledge, the best answer in a maxirmum-likelihood estimate sense
o 41
Is simply 82% (or —).

ply 82% (50)

19

in the sort of prediction problems addressed by TD (A), the maximum-likelihocd
estimate can be defined simply. If each terminal observation has associated with
it an outcome value, then the bast prediction for some state i in the maximurmn-
likelihood estimate sense, is the expected value of the outcoine assuming that
the cbserved fraction of transitions from observation state i to each of the
terminal observation states is the correct characterization of the underlying
process. In other words, if seeing a particular observation state, i, always leads
to us seeing a particular termination observation state, j, then the begst prediction
for i is the outcome value associated with j. The TD (0) procedure moves
toward this maximum-likelihood estimate with repeated presentations of the
training data (Sutton, 1988). For other values of A:0< A <1, it is harder to
characterize exactly what is happening; however, there is some interpolation
between the maximum-likelihood estimate and the minimial root squared error

calculated by the traditional supervised learning procedure (Dayan, 1991).

2.4 Pradiction versus Control

From Samuel's checkers-playing program to Tesauro's backgammon player,
temporai difference learning algorithms have been used with some success in
the domain of games. Leamning in this domain, however, is not just a matter of
prediction. If a network is lsarning to play a multi-step game by predicting the
“goodness” of a position, a neural net can actually exarcise control over ihe next
position that it will see when its own output is used to pick the next “good”
position. In other words, we use the evaluation function that the network is

leaming to choss its moves in the game.

20

We will avoid becoming bogged down in the details of any particular task or
game at this peint by describing problems of learning to predict and control as the
problem of finding a good heuristic function for searcrliJnQ on a graph. Wa shall
see that this formalism not only applies to domains such as game playing, but
also to domains that do not at first seem to fit well into this description, such as

the weather prediction problem.

2.4.1 Searching through & Graph

Any game can be described in the following way: a directed graph made up of
nodes or states, s,,s,,...s,, and rules for moving from one state to another (the
verticas). Some of the states are initial states and some are terminating states.
If we assume that a neural net has no buiit-in knowledge of the rules and is only
interested in learning to predict the “‘goodness” of a given position, we can use

the following algorithm to teach it:

S= Suinial

P = net_prediction(s)

while s is not a final state
naxt_list = generate_next_states(s)
s = best_state(nexi_list)
determine VP and accumulate the sum of the gradients.
accumulate the difference between the last prediction and the
prediction of the new state.
P = net_prediction(s)

accumuiate the difference between the final prediction and the actual
value for the final state.

In short, we move from observation to observation, usir-g the neurai net's current
idea of “good” to decide among the next possible obsarvation states. The

function generate_next_states() embodies the “rules” of the game while the

21

,"O final states
P 4 (> / —
start state g / .:rO

intermediate states

Figura 2.1: Using ordered depth-first search to choose a path in state space.

function best_state() simply uses the network’s current prediction function to
provide a value for each possible next state, returning the “best” one (i.e. the
state with the highest or lowest prediction value). This general algorithm has
been implemented and used for the purposes of studying the test cases in this

thesis.

Recasting prediction and control problems in this manner allows us to view these
problems as a variation on depth-first search, tising a heuristic function to order

the nodes. The goal of the neural net then is to learn thi> heuristic furcticn.

2.4.2 Non-controlling prediction tasks

This appreach is not restricted to prediction-cor:tiv. iasks. Our first example, the
daily prediction of the likelihood of rain sometir:. > in the future, aiso fits into this
model. In this case, the generate_next_stat: ., iunction simply returns the
observation for the next day, making the job f best_state() somewhat sasy.
Simitarly, if we wish for our system to passively ou.. '~ a game, as opposed (o

both observe and controi its direction, generate_next_states(; =~ iply réturi

22

the next position. In fact, as we will see !ater in this thesis, the approach even
works for restricted cases of racurerit networks where the next cbservation state

is actually the prediction from the netwerk itself.

Although the theoretical underpinning for TD (A) presentec! by authors such as
Sutton prove the equivalence of these methods to their supervised-learning
counterparts and provide a strong argument for their superiority in some specific
cases, there are several practical issues left unaddressed. In the nexi chapter,
we will use the approach above to identify and explore some of these practical

issues.

23

Chapter 3 -

3 Practical Issues in TD ()) y

in this chapter we forego our praviously theoratical treatment to concentrate on
the more practical questions that must be addressed in order for ternporal
difference procedures to be used effectively. Although some of the issues we)
discuss here have been explored in some detail by both Tesauro (1891) and
Sutton (1984, 1988), they have not been completely addressed. in some cases,

their explorations has raised even more questions that have ramained largely
unanswerad.

We categorize these issues into two broad groups: algorithmic and task-

dependent. We begin with aigorithmic considerations but concentrate mostiy on

TR T, e § oem)

the task-dependent issues as these issues better define the kinds of problems

that are likely to be encountered in the reai world.

[

24

3.1 Algorithmic Considerations

3.1.1 Credit Asslgnment
in multi-step problems, the sequences of states, s,,s,,...s,, are dependent. That

is, sach siate, s,, bears some relationship to the state, s,_,, that preceded it. ina
game like chess, for example, a particular position constrains the positions that
follow it. if no pawns are presant on the board in some position, for example, no
positions that foliow can hava pawns pressent. Because of this interdependsncs,
it may be difficult to determine which states have had the most affect on the
outcome. Nevertheless, after all the states have been seen by a net and an
outcome signal has been presented, the training algorithm must apportion credit
to each state, determining in some way which states are most responsible for the
final outcome. In our chess example, we might want to know whict move was
our worst one and actually contributed most to a loss. This is known as the

temporal credit assignment problem.

There is a similar structural credit assignment probfem. Each weight parameter
in w contributes in some way to the network’s prediction and there must be some
way to determine which parameters are most responsible for a correct or
incorrect prediction. There are various schemes for determining this fairly well,

the most commonly used being gradient descent.

By contrast, temporal cradit is often impossible to determine. TD (A) uses the A
parameter in Equation (2.4) to address this directly. As an exponential weighting
schemae, it assumes that tha later states contribute the most to the final outcome
or, conversaly, that the final outcome should affect ths prediction function’s view

of the last states the most. The efiect on catlier states will “bubble” back after

25

continued iterations. In a prediction-control task, this corresponds approximatsly
to a depth first search: the values of the states that are furthest from the root are
changed first. In other words, the same path in the search space is followed with
only the last state in the sequence changing. When -l the last states have been
tried, the next-to-last state is changed and all the paths from that state are
explored. This continues, “oubbling” up the saarch tree untii an optimal path, or
heuristic function, is found. Of course, this is only approximate. The states may
be related in arbitrary ways and may seem similar enough to the untrained
network that a change to the predicted value of the last state in a sequence
produces a similar change to the predicted value of one of the earlier states.
This analogy is more suited to the searching pattern of the network late in the

learning process.

In theory, this depth-first search could be changed to correspond more closely to
some sort of breadth-first search. In this way, states furthest from the final states
are changed first. One possible way to accomplish this is by inverting A in

Equation (2.5) and further restricting its range:

Aw, = (P, ~ P.)i(%) V.. (3.1)

i=1
Another possibility would involve reversing the order of the gradients:

AW‘ = a(Pul - Pr)z A"—ivar-hl . (32)

i=l

it appears that this breadth-first search possibility has not been fully explored.

For some non-Markovian problems, including the kinds of recurrent net learning

26

tasks presented in chapter five, this kind of search might ba more appropriate

than the depth-first approach.

3.1.2 Tweaking o and A

As with most training algorithms, TD (A) has a number of its own parameters that
can be changed from task to task, most notably A and a. in practice, it may be
best that a changas over time. Initially, large values might hielp bootstrap the
network, but as the net approaches a more stable function, this parameter can be
reduced to allow the net to fine-tune itsalf. Intuitively, the ressarch in this area

from the supervised leaming community would saem to apply.

On the other hand, it is more difficult to characterize the way in which we should
choose A. Watkins (1989) has pointed out that in choosing the vaiue of A, there

is a trade-off between the bias caused by the error in P at the current stage of

learning and the variance of the real terminal values, z. The higher the value we
choose for A, the more significant are the values of P, for higher values of ¢, and

the more effect the unbiased terminal values will have, leading to higher variance

and lower bias. On the other hand, P, for larger ¢ will have less significance and
the unbiased terminal vaiues will have less effect if we lower A. This leads to

smaller variance and greater bias.

3.1.3 Convergence of TD (A)

Sutton (1988) and Dayan (1991) havae proved that TD (A) convergses in the case
of a linear network trained with linearly independent data sets. Unfortunately,
linear networks are of limited use. More practical applications require the use of

non-linearities. In this case, the TD {A) algorithm rmay not converge to a locally-—

let alone globaliy—optimal solution.

27

3.1.4 Compietion of TL (1)

Even in cases where TD (M) will convergse, it is unclear how long this
convergence might take. The state space upcn which the algorithm searches
may be infinite or incredibly large (as is the case with chess). Further, in
prediction and control tasks, the paths explored by the algorithm may be circular.
For example, when controliing a simulated car, the network may end up at some
state where it has been before within the current sequence of states. Since the
prediction function is not updated until an entire sequence is gensrated and
concluded, this wili lead to infinite repetition. In cases where this is possible,
some outside agent must be employed to terminate an infinitely repeating

sequence.

3.1.5 Sequence Length and the Curss of Dimensionality

The fact that learning time on networks increases exponentially as the dimension
of the input increases is known as the curse of dimensionality. In the case of the
multi-step problems that temporal difference algorithms attack, this problem may
extend as well to the length of the observation or state sequences. It is still
unclear exactly how well the TD (A) algorithm scales with the length cf state
sequences. There is no reason to believe that the algorithm's performance will

not degrade exponontially.

3.2 Task Dependent Considerations

Many of the practical issues that we have described above are best undersiood

in the context of specific kinds of tasks. It is the type of task presented to the

28

neural network that drives many ol our algorithmic decisions. Good values of A
and o will differ radically from problem to problem, for example. in order to better
understand the algorithmic considerations, we present a few types of tasks and

discuss their effscts upon the particulars of the TD (A) algorithm.

3.2.1 Prediction and Partial Control

Throughout this chapter and in chapter two, we noted that many problems of
praediction are actually problems of both prediction and control. it is worth noting
that in some problem domains, such as game theory, we are interested in
problems of prediction and only partial control. In a game like chess for example,
a network might learn by playing opponents, some of which are considerably

more skilled, as opposed to just playing itseff.

In this case, the network has only partial controi of its environment. It makes a
prediction which is used to choose the next state, but then another agent,
perhaps an adversarial one, chooses the state that foillows. What should the

form of the sequence that it sees be?

One possibility is that it should only see the states for which it has predicted
values. This would not allow it to take advantage of the information of the states
chosen by the other agents. On the other hand, the network might also be

prosented these states aiong with the other agent's predictions.

In the first case, the sequence seen by the network is roughly halved, meaning
that the imporiance of each state in changing the parameters of the networlk is
roughly squared. How would this affect the learning rate and the ability to

converge? Can this be overcome by simply using a value for A that is the square

28

root of the value we would normally use? More importantly, does skipping every
other state affect the validity of the assumption that there is some temporal

continuity?

in the second case, it is unclear how the interaction of these other prediction
values with the net's predictions will aifact leamning. They could simply act as a
straight-forward supervised learning signal, as if the network were presented with

input-output pairs, or they might have much more complex effects.

In either case, the impact would seem to depend greatly upon both the absolute
accuracy of the external agent and its accuracy relative to the network's. In the
case of a game, the relative accuracy takes three forms: a vastly inferior
opponent, a vastly suparior opponent and an opponent of about the sams skill.
With a vastly inferior opponent and a constant stream of positive feedback, the
net might find a solution that only leamns to win against poor play while with a
vastly superior opponent and continual negative feedback, the net right simply

leam to lose, predicting all states to be equaily bad.

Further, a huge disparity in ability could lead to an unstable search. Sirice
successive states would probably differ widely from one to another, the series of
predictions would aiso. This would likely prolong iearning and increase the
possibility of poor behavior. With an opponent of about the same skill, it seems
more likely that the network would slowly improve its performance; however, this
requires that the opponent'’s skill level changes to keep pace with the network's
ability. Otherwisse, the network would end up in one of the situations described

above. For the purposes of our examples, this is achieved through seli-piay.

30

With the net playing both sides, the probability of each side remaining at equal

skill levels is increased.

An interesting question involves the ability of TD (L) to generalize well in & task
involving only partial control. For example, if the network only predicts values for,
say, odd-numbered states while an adversary predicts values for even-numbersd
states, the network may learn a prediction function that only applies to the odd-
numbered states to which it as been expesed. it is possible, for instance, that the
odd-numbered states have their own substructure and a different function
optimizes the predictions for the even-numbered states. [f the net then “switches

sides” with the adversary and atternpts to predict even-numbered states, it may

perform poorly.

3.2.2 Prediction and Contro! Revisited

As touched on above, evan the case of complete control by the network is
different from the problem of pura prediction. By controliing its own actions, the
net runs tha risk of finding a seif-consistent but sub-optimal predictor-controller.
This problem has not been addressed theoratically and may be beyond the
scope of TD ().

3.2.3 Relative and Absolute Accuracy

One potential problem with the TD (L) learning rule is that it is designed to teach
a network to accurately predict a final outcome, z. Many times in prediction-
control problems, howevar, we are really more interested in the network’s ability
to choose among several alternatives. For this, it does not need to provide an

accurate estimate of the actual “goodness” of a state so much as provide an

31

Figure 3.1: Network 1 predicts values that £re very close to the actual vaiues while network
2 has a sum of square error that iz more than twelve times as large; howsver, because
network 2 has done a better job of ordering the states, it choose the best stete.

estimation that accurately orders each state; however, the method by which
feedback is provided to the network is not always conducive to this goal. In fact,
this method may be counter-productive because smal!l arrors in absolute

accuracy can lead to very large errors in relative accuracy.

Similarly, since the error signal is measuring the absoiute accuracy of the
network’s prediction instead of its relative accuracy, it is difficult to analyze and
determine how well the algorithm is really doing. For an example of these

problems, see figure 3.1.

3.2.4 Random Tasks and Nolse

it is worth noting that Sutton (1988) and others have performed analysis with
noise-free, deterministic tasks. Although, Tesauro (1991) has explored teaching
a net to play backgammon—a game which involves randomness or noise in the
form of dice—it is not yet know how the introduction of other kinds of noise
affacts TD {(A).

32

3.2.5 Representation

As with all neural network training algorithms, temporal differerice procedures are
sensitive to the representations chosen for both the data and the output.
Representations can be designed so that they explicitly contain a wealth of
relevant information or can be designed plainly, so that a neural net attempting to
generalize must somehow learn to represent a great deal of some underlying
structure. Without ancugh information in the reprasentation it may be extremely

difficult to generalize.

A representation issue that is of particuiar importance te TD (M) is the linear
dependence of the observation vectors. Dayan (1991) shows that if the
observation vectors presented to the network are not lineariy independent, then
TD (A) for A =1 converges to a solution that is different than the least means

squares algorithm, at least for linear networks. In this case, using the inaccurate
estimates from the next state, P(x,,,). to provide an error signal for the estimate

of the current state, P(x), may not be harmless. With linearly dependent
observaiion vectors, these successive estimates become biased on account of
what Dayan has desmed their “sharad” representation. The amount of the extra
bias between the estimates is related to the amount of their sharing and the
frequency with which the transitions occur from ona state to the next. So, while
TD (A) for A #1 will still converge, it will be away from the “pbest” value to a

degree determined by the matrix:

(1-(1-2)Qi-2Q"),

where @ is the square matrix of transition probabilities. It remains unclear

exactly how this affects the usefulness of TD (A) for typical problems.

33

3.2.6 Lockup Tables

If there are enough parameters available for a task, a network can act as a
lookup table by explicitly storing the values of the training data. In the casse of
RBF networks, this raquires one center or RBF node for every member of the

training data.

Sutten’s proof for convergence relies on a lookup-table approach and therefore
requires that every possible state be visited an infinite number of times. This is

impractical with real world problems.

2.2.7 Maximum-Likelihcod Estimates and Non-Markovian Tasks

As seen in section 2.3, Sutton’s convergence and optimality proofs rely on the
assumption that the tasks are absorbing Markov processes. For these kinds of
Markovian processes, TD (A) computes a naximum-likelihcod estimate, arguably
a desirable featurs. On the other hand, it is unclear how ussful these procedures
can be with non-Markoviar processes. For example, we may have a task where

the observation state c in the sequence (...,a,c,...) should be viewed differently

than when the same observation ¢ is proceeded by a different state, (....b,c,...).

If there no straightforward and computaticnally tractable way of encoding this in
the data or some way for TD (A) to discover it—and the latter is probably not the
case——then TD (A) may produce very inaccurate predictions and have no way of

correcting thermn.

Chapter 4

4 Example: Tic-Tac-Toe

In this chapter and the next, we explore saveral case studies that ground some of
the issues that have been raised in the previous chapters in particular contexts.
Each experiment in this chapter used the approach that was outlined in section

24.1.

4.1 Tic-tac-toe

OCur first case study involves the game tic-tac-toe. Tic-tac-toe is a two-player
game playad on a three-by-three grid. Each player is represented by a token,
usually X and O. For our purposes, we will assume that X always goes first.
Players take turns placing a token in an empty spot on the grid. A player has
won the game when she has placed three of her tokens in a row, sither verticelly,

harizontally or diagonally. The game is a draw if ail nine spots : ie filled and

35

ol ©

L);(lo X 0| o|x
)(0 x| X
)(' X X ol x |x

a b c

Figure 4.1: a) shows a win for X, b) shows a “fork” for X, meaning that
X has two ways to win on the next move and figure c) shows a draw.

neither player has placed three of her tokens in a row. Some game positions are

shown in figures 4.1 and 4.2.

Tic-tac-toe is a compietely deterministic game with a finite number of states. In
fact, the size of the state space can be reduced to only a few hundred by taking
advantage of the game's symmetrical nature. Best play by both sides will always
result in a draw. The following simple set of rules describes best play in any

position:

if you can place a token immediately and win, do so.

if your opponent can win on her next move, block her.

if you can “fork” (i.e. place a token such that you have two ways to win on
your next move), do so.

if you can place a token on a square sG as to force a block on the nest
move by your opponent and that by making that block, she will not
“fork” you, place your token on that square. Prefer corner squares
to non-corner squares.

if your opponent can fork, block her.

if the canter position is free, take it.

if a corner is free, take it.

if none of the other rules apply, place your token randomly.

For each of these rules, it is possible that more than one state will satisfy the

condition. In this case, a player can simply pick one randomly.

36

X X

Figure 4.2: Each of these positiona is equivalent as they can all be rotated
ur flipped into tr.e same prototypica! positions. The rightmost position, for
exampie, can be rotated clockwise 90" and becorma the leftmost position.

4.2 Practical Issues in Learning Tic-tac-toe

As a two-player adversarial game, tic-tac-toe provicies an opportunity to explore
many of the issues that have bsen describad in eariier chapters. In particular, it
allows us not only 1o test the ability of TD (A) to soive prediction-control problems
but to compare its ability to soive prediction tasks that allow complete control with
prediction tasks ailowing only parstial control. To this end, we shali see how well a
network can learn by self-play as well as by playing against an opponent who, in
our experiments, always follows an optimai strategy. We will aiso explore the
ability of a these latter neis to generalize, by testing their ability to “switch sides”

and provide accurate pradictions for states that they have not seen.

As a game with a relatively small number of states, the network should bs able to
visit almost every stats in the course of learning. Further, since this game has a
relatively short number of states in any sequence—at most ning with seii-play
and five against an opponent-—we should not have to concam ourselves with this

particular version of the curse of dimensionality.

Although tic-tac-tos is & relatively simple game to isarn to play well, there are

some key positions that ara very bad. For example, on the first two moves, a

37

o] o X

Figure 4.3: it X places her token in the center square on the first move, O cannot
placa hers in a non-comer squara. X is abla to force a “York® no matter which non-
corner square O chooses because of the symmetrical nature of the game.

player facing an expert opponent is guaranteed a loss by placing an O in a non-
corner square in response to an X being piaced in the center square (see figure
4.3). Because the “good” and “bad” moves are somewhat clear-cut and always
deterministic, it is easier to determine the quality of the ordering capability of an

evaluation function, independent of its absolute “error.”

Finally, it is worth noting that tic-tac-toe positions contain a great deal of
structure. Thousands of positions are collapsible into several hundred by
symmsatry alone. A network learning the most compact function for this problem
would find some way to represent this information.

4.3 Experiments with Tic-tac-tos

Four experiments were conducted. One expsriment involved a network learning

to play tic-tac-toe through seli-play while the other networks learnad by playing

38

LR |

»

sl S R B

against an opponent employing the strategy described in section 4.1, randomly
:hoosing among all the available bast moves in any given position. Against this
“perfact” opponent, one network always played X; another always played O and

the last aitemated between X and O.

Each experiment used a GRBF network with 200 centers. Each of the
experiments began with the same initial parameter values. The first 425
iterations were treated as a bootstrapping phase. In this phase all but one of the
initial board positions had eight of their slots filled. The exception was the blank
board. The next 575 iterations added ail the board positions with ssven slots
filed. For the final 1000 iterations, we chose one fifth of all the possible board

configurations for starting positions.

For all of these experiments, the value of A was set to 0.6. The value of & was
decreased after each phase, with the assumption that accuracy would suffer for
large values of a during the last phases of learning. This assumption was verified

by some initial results.

Each board position was represented by a ten-dimensional vector. The first nine
components represented the tokens placed in each of the nine squares on the
tic-tac-toe board, numbered from left to right and top to botiom while the last
component deturmined which player's turn it was to move. X was always

represented by -1, O by 1 and an ~mpty square by the value 0.

The output was a vector in three dimensions, representing the probability of X

winning, the probability of @ winning and the probability of a draw, respsctively.

s ——— — -

o

The bast_state() function computed a scalar value from these three probabilities

to determine the ordering of possible states:

Pr(draw)

E =Pr(i) - Pr(j)+ >

(4.1)

where i represents the player with the current turn and j her opponent. In the
case of a certain win for i, E=1; when i is certain to lose, E=-1; and whan a
draw is certain, E = y2 This tends to make drawing much more like winning than
losing. in the case of tic-tac-toe, where best play by both sides always leads to a

draw, this seams like a desirable trait.

4.4 Tlc-tac-too Resuits

There are several general resuits: the neural network trained through seif-play
performs the best against the optimal opponent; each network iearned to
accurately predict most drawing positions; all networks perform best when
playing X; none of the networks learned the underlying symmetrical structure of
the tic-tac-toe positions; and while the networks may piay well against a rational

opponent, an irrational opponent can defeat them.

It is not too surprising that the networks learned to play better when playing X.
The design of the first bootstrap phase only allowed for one move, and that move
was always by player X. Therefore, there was a graat deal of experience-—even

for the network that played Q—uwith the positions for the first player.

40

- ——— =

—

The design of the bootstrap phase also provided early experience for positions
leading to draws since many of those bcotstrap positions necessarily lead to a
draw. The next phase-—which only allowed for a maximum of two moves—often
forced draws as well. Given this initial bias and the fact that most lines of play in
tic-tac-toe lead to draws, it is also unsurprising that all the nets learned to predict

draws fairly well.

The choice of input representation was a deliberate one, designed to provide the
minimum of information. As such it may not be surprising that the networks did
not learn some way to transform the data and recognize symmetries. It is
possible that allowing a network to change its W matrix (thus moving from a

GRBF to a HyperBF network) might facilitate this somewhat.

Even when a network played well against a good opponent, it would fail against a
bad opponent. When playing against these TD (1) networks, an oppenent had
only to ignore the network when it had a pending win. Instead of blocking that
win, an opponent would be better served to set up her own win. In some
positions, the network would rather block her thrust than actually win while in
others it would simply make some other move. One way to explain this is to
assert that the networks learned to play defensively, preferring “not losing” to

“winning.”

It may seem that some of this is due to the form of equation (4.1); howevar, a
choice function that makes the network a more “aggressive” player by placing

the value of drawing exactly between the values for winning and losing:

Pr(draw)

E=2Pe(i)~Pr(j)+ 5

(4.2)

41

80%
70%
60%
50%] X-playing net
40%
30%
20%
10%

0%

O Self-playing net

O-playing net

Alternating net

Playing Playing Woeighted
X O Average

Figure 4.4: The percentage of timas each net drew against the optimal player. Since the
networks wera deterministic there are only a smali number of possible gamas each net can
play against the optimal strategy. For example, the self-playing net as O always responded
to an X in the center of the toard by placing an O in the bottom left-hand comer. From here,
given the network’s level of play and the strategy used by our optimal player, there : re only
three possible linas of play that could follow.

seemed to have no effect on the lines of play chosen by any of the natworks, at

least after many training epochs.

4.4.1 Self-playing networks

As a matter of strategy, the seli-playing network learned to place its token in the
center position when playing X. The four possible next “best” moves are all
symmetric (see figurs 4.2); however, the network only learned to draw against
three of them. In fact, the network learned non-symmetricai strategies for each of

the positions it learned to draw against.
As 0, the network played its token in the bottom left-hand corner, one of the four

best moves against an X in the center; howsver, it could only manage to draw

one third of the time. it is worth noting that one of the losses is due to its inability

42

« O] Selt-piaying net ; X-playingnet | O-playing net | Akermnating nst
Self-playing net draw (0] o) (o)
X-playing net draw draw draw draw
O-playing net draw draw draw draw
Alternating net draw draw draw draw

Figure 4.5: Results of each of the networks piaying against each other and themselves. Akholugh
the self-playing net seems to be the beast player against an optimal opponent, it manages to lose
against the sub-optimal networks.

to prevent a fork. It seems that it has not iearned to prefer corner squares to

non-corner squares when forcing a block.

In short, it appears that the network has leamed the importance of the canter and
the corner squares fairly well in the most common lines of play, mastering some
of the opening. While it seems to have learned much iess about miadle game
strategies such as forking, its choices for second moves tend to leacl to a series

of forced moves. When it follows the forced movas, it tends to draw.

The network taught by seif-piay leamed to play against the optimal player better
than any of the other natworks. it is possible that the network performs best
because it has had the most “stabie” opponent and the most stable set of inputs.
Each state was similar {0 the ones surrounding it. On the other hand, the
networks facing an opponent saw vastly different states from time point to time
point and almost always had large temporai errors. There is evidence that
suggests that it is difficult to learn well under these cii.umstances (Poggio,

perscnal correspondencs).

43

=——¥X--— Playing X
~—=O-=~=— Playing O

ennmmn \//aighted
Average

»
P < g
o
Y,
o
< 2
)

Figure 4.6: The porcentage of times the self-playing network drew againet the optimal playsr as a
function of the number of epochs the network has experianced. Atthough the percentage of games
drawn seemed to laval off, the prediction function usad by the network continuad to svolva.

As noted before, these networks often had difficulty playing against an opponent
who was irrational. In fact, even though the self-playing network played best
against the optimal opponent (see figure 4.4), it wouid sometimes lose against

the networks which played “worse” (see figure 4.5).

it is worth noting that the self-playing network seemed to be tha only one to
choose moves from among the most positive possibilities instead of from the
least negative possibilities. For example, when choosing among the best first
move for X, this type of network was the only one whose prediction function
generated numbers with positive values for equation (4.1). Each of the others
generated oniy negative values. This is due in part because the self-playing
natwork laarned to predict valuas near zero for the probabilities of either X or O
winning and values nearer to one for the probability of a draw. it is also due to

this network coming closest to representing its output as probabilities. The other

44

networks produced outputs with components as high as 2.9 and vaiues for

equation (4.1) as low as -3.1.

4.4.2 Opponent-playing notworks

None of the networks trained against the perfect opponent “leamed to lose” in the
sense that they never drew or iearned a function that drove all states to “bad”
values. Analysis suggests that the depth-first analogy fits well in this case. A
game sequence was repeated several times with the last states in the sequence
given lower and lower scores. Eventually, the last state received a score so low
that the sequence changed at that point. if none of these changss led to good
play, the states earlier in the sequence had accumulated enough changes that
the sequence changed at those points instead. Eventually, the network could not

help but to stumble upon a goed—or rather & non-disastrous—line of play.

Evan though each of these networks leamed differant prediction functions, aach
network learned to order states in more or less the same way. Thus, each net
played the same games against each other and the optimal opponent. This is
somewhat counter-intuitive since the X-playing network and the O-playing

network were exposed to different lines of piay.

Like the self-playing network, each of these nets leamed to play X in the center
as a first move. Their prediction functions and the optimal strategy allowed ior
six possible iines of play. The opponent-playing networks couid only draw in one
of these lines. Of the five losing lines of play, the netwinrks lost tc a fork only
once. In general, the networks failed to biock immediate wins. This was as true

for the X-playing network as it was {ur the athier networks.

45

This same probiem surfaced with these networks when they played 0. Even
though the networks played a corner square as a first move against an X in the
center, they simply never blocked immediate wins. Therefore, each network lost

every game playing O, including the O-playing network.

Many of these problems seem to be traceable to a simple phenomerion. The
probability predictions for the final positions are much more accurate than the
early predictions. It appears that the sequence length of the states for these
networks was short enough that the negative feedback for the last states had a
strong effect on the middle states. Useful signals about the final states in a
sequence leading to an evaluation function that would choose appropriate final
moves was confounded by these signals being associated with middle siates too
strongly. !nstead of minute changes in the evaluation functiocn and incremental
improvement, the network experienced large changes and played sometimes
vastly different games from training epoch to training epoch. As noted before
learning is often difficult in these circumstances. This is especially noticeable
with the network that alternated play between X and O. This network saw very
different lines of play over a short time and developed correspondingly different

evaluation functions, sometimes oscillating between evaluations.

In theory, these opponent-playing networks could evantually play as well as the
self-playing network against expart play. The depth-tirst search nature cf the
training still keeps the network away from leaming to loss. Unfortunately, even if
the networks can improve their play against the optimai opponent, it appsars that
they will take much longer than the self-playing network and follow tooc many

fruitless paths in the interim.

46

For at least the first several series of training phases, self-play seams superior.
Training a network by having it play against an optimal or near-optimal opponent
might not be useful until a self-trained net has aiready isarned a fairly good
evaluation function on its own. At this point, with a sufficiently small learning rate,
occasional negative feedback might help to jostle it from a self-consistent but

suboptimal evaluation function.

47

Chapter 5

5 Example: Recurrent Networks

In this chapter, we use the problem of simple segmentation to explore the use of

TD (A) with neural nets that are not structured es feedforward networks—namely
a restricted subclass of so-calied recurrent networks-—in order to learn complex
functions that can be described as the iteration of simpler functions. Each

experiment in this chapter uses the approach outlined in section 241,

5.1 Funciion ltaration

it is sometimes possible to describe a compiex function as the iteration of a

simpler function:

F(%) = lim f*(X). (5.1)

A=per

48

Outputs

Centers

inputs

Flgure 5.1: A HyperBF network with recurrent connections.

Phrased in the language of a neural network, the outputs of the network are fed
back into the inputs. Instead of each unit in a network calculating a value once, a
unit updates its value each time its input changes. There is a class of networks

that uses this principle called recurrent networks (see figure 5.1).

These networks are equivalent to feedforward networks in that they can
approximate any function arbitrarily well. Beyond this, they have been used for
various tasks, including dimensionality reduction, with some success (Jones,

1992).

This formulation of a function can be useful for other reasons as weil. For some

problems, f(¥) may be an easier function to lsarn than F(¥) and this ease of

learniny is worth the trade-off in computation time. In cther words, while F(%) is

48

learnable, it may be extremely difficult for backpropogation or other methods to
tune the parameters of the network in order to duplicate the function. On the

other hand, f(%) may be a simpler function to emulate.

These recurrent networks raise serious questions of their own. For example, it is
not guaranteed that the outputs of a particular recurrent network will become
stable and cease changing. However, these problems are beyond the scope of
this thesis and so we will only concern ourselves with the case where the output

of the network achieves a fix point.

5.2 Segmeantation

Segmentation is the problem of taking a vector or matrix of values and returning
a vector or matrix of equal size that groups similar values. In segmenting an
image, for example, an algorithm would take as input a matrix of pixe! values and
output a transformed image whara each pixel in an objact has the same value. it
is assumed that adjacent objects in the original image are colored differently
enough that we can distinguish between them. If this is not the case, the
algorithm may blend adjacent objects and produce an output image that looks

like a single large object.

In this chapter, wa will explore two methads of segmentation. One very simple
approach is to decids the range of pixels vaiues that are possible and to drive all
values below some threshold to the minimum vaiue while driving all values above
that threshold to the maximum value (see figure 5.2). This technique turns a

‘color” image into a black and white image. Determining the periphery or edges

50

1
0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

0 + ' form—t + ' }

1 2 3 4 5 6 7 8

Figure 6.2: Each value belcw C.5 along the solid line is driven to zero white
each value above 0.3 ig driven to one, yielding the segmented dashed line
with one-dimansional “objects” betwaen pointa 1 and 3, points 3 and 7 and
peints 7 and 8.

of objects is then rather straightforward: simply find the points where “black”

borders “white.”

A more complicated approach to this problem is to continually average the values
of pixels that are spatially close whenever their valuss are sufficiently “near” one
another. The averaging continues until it produces no new changes (Hurlbert,
1989). The idea is to bring the values of the pixels within each object closer
together while widening the gap between pixel values across objects (see figure

5.3).

Both of these segmeritation algorithms can be formulated as recurrent problems.
Hurlbert's algorithm s perfectly suited to this. In fact, it is described as a
recurrent problem. In practice, the network only has to leam to perform an
approximation towards local averaging at each time step. if this approximation is
miore or less accurate, the recurrent nature of the network will drive it to the

correct final answer.

51

'\ A A L L L}
L] L}

V']
L LA Ad

1 2 3 4 5 6 7 8

Figure 5.3: Uging Hurlbert's algorithm, the segmentation of the solid line
from figure 5.2 yields the same three “objects.” Hcwaver the pixei values
found for aach object are different and more representative of the original
“image.”

Similarly, the biack-and-white algorithm can be successfully implemented so long
as pixel values less than the threshold aiways move towards the minimum and
pixel values above the thrashold always move towards the maximum on each
time step. Given enough recurrent iterations, the network should arrive at the

corract answer.

5.3 Practical issues in Laarning Recurrent Segmentation

The recurrent network poses an interesting problem of prediction and controi.
The get_next_states() function simply ruiums the prediction of the nstwork on the
current state. So while in some sense & network is producing a control signal,
it is more accurate to say that it is creating its own states as it goas along.

Becauss of this, the state space is infinite. In addition, the sequence of states

52

generated by the network can be infinitely long. As we have noted before, both
of these possibilities can present difficulties for the TD (A) algorithm.

The iterative approach of recurrent networks, particularly in the case of
segmentation, would suggest that each successive state should be very similar.
This would indicate that a small value for A, perhaps even zero, would be most
appropriate. On the other hand, this assumption may be invalid. The task is not
described well by an absorbing Markov process and so may provs difficult icr

values of A close to zero, as seen in section 3.2.7.

5.4 Experiments with Simpie Recurrent Segmentation

The performance of the TD (A) algorithm was tested with the one-dimensional
versions of both segmentation algorithms. For both problems, experiments were
conducted for values of A beginning with zero and incremented by 0.1 until A

reached a value of one.

5.4.1 Black-and-White Segmentation

The networks trained on the black-and-white segmentation problem were GRBF
networks containing sixteen centers. Since the function for learning this task
need only work on one pixel at a time, the input to this network was simply a
scalar. The output was rediracted into the network four times. All input valuss
ranged between zero and one with a threshold value of 0.5. All values less than
the threshold were associated with zere and all values greater than or equal to

the threshold were associated with onsa.

53

5.4.2 Huribert’'s Segmentation
The networks trained on the Hurlbert segmentation problem were GRBF
networks containing twenty eight centers. The input to this network was an eight-

dimensional vector. The output was redirected into the network eight times.

The correct output was determined by repeatedly averaging a pixel with its

neighbor using a simple function:

,

X X+ X, lx'
3]

-x,|$oand|x, - x|SO

Xiog + X

X, =4 2

Xig T X;

i - x| s oandfx, - x,|> 0

(5.1)
.lxi - x,._,| > o and |x,. —-x,.+,|s o

X, = x> oand|x, - x>0

with 1<i<8. For these experiments, ¢ was set to 0.2. Pixsel values just off the
sdges of the input vector (i =0and i =9) were assumed to be equal to « in order
to deal correctly with the boundary conditions. Equation (5.1) was applied in a
recurrent manner eight times, after which most outputs ceased changing in any

significant way.

5.5 Segmentation Resuilts

Graphs of the root squared error for each experiment can be seen in figure 5.4.
For.both kinds of problems, the networks with lower valuas for A exhibited the
worst performance. In fact, once A feli below a certain value, the root squarad
error romained more or less constant. This is because each of these networks

learned appro.dmately the same function. For all input valuss, the network

54

Root squared error for Black-and- Root squared eiror for Hubert
White Segmentation Segmentation

0.6
0.5+

(=]

0.75
9.57 4+
0.55 %

«
(=]

- o] o o™
o (=] o

A A

(@) (b)

Figure 5.4: in a) aach network was trainad on ten values between one and one such that nalf of the
corract outputs were aqual to zero and the other hall equal one. Networks trained with values for A

< 0.6 lnamed a constant function, driving ali inputs to the value 0.5. In b) each network trained with

values for A < 0.9 a!so learned a constant function, driving all inputs te the same output vactor.

produced the same constant value at eacn stage of the iteration. The vaiue of

this constant denended only on the distribution of outputs in the training set.

in the case of the black-and-white segmentation problem, the coiistant function
learned by thase networks was simply the percentage of times that the value 1.0
occuired in the output of the training set (i.e. the average of the cutputs). For a
training set with haif the outputs equal {0 zero and the other half squal to one, the
function leamed was: f(x)=0.50< x<1; for a training set with zero appearing

only 30% of the time, the function leamed was: f(x)=0.7,0<x<1 and so on.

Similarly, the networks training on the Hurlbert segmentation task leamed a

constant function that depended on the distribution of the outputs of the training

55

sel. In general, tha constant function learned was simply the average of the

outputs presented to the network.

To understand this result, assume that our training data for the black-and-white
segmentation problem consists of two values, 0.4 and ¢.8. Let us posit these two
sequences seen by the network early in the leaming procedure:

04 02 05 08 07 09
08: 063 089 06 04 02

Naturally, we want our training values, 0.4 and 0.8 to be associated with zero and
one, respectively. Note, however, that 0.8 also appears in the first sequence and
0.4 appears in the second. This means that zero will be asscciated with both 0.4

and0.8. Similarly, one will be associated with 0.4 as well as 0.8.

Since the network sees that one and zero are@ associated with 0.4 and 0.8
equaily, a maximum-liketihood estimator naturally associates these values with
their average, 0.5. Similarly, other values in the segquences above will be
associated with 0.5 as well. In other words, for values of A approaching zero, the
network does exactly what we would expect it to do. A similar preblem occurs
with the Huribert segmentation algorithm. Sco the question becomes: how can

we overcome this so that the network will learn the function that we want?

The answer lies in the non-Markovian nature of the recurrent task. There is no
way to distinguish between the 0.4 in the beginning of the first sequence and the
0.4 that occurs in the middle of the second sequence; however, in this task they
are distincily different entities. The pichiem is that our “stete” information is too

impoverished.

56

This preblem occurs even in the weather pradiction problem discussed in chapter
two. There we were using weather data to predict whether it would rain on a
particular Monday. Let us suppose that in one sequence we have a rainy day on
the previous Tuesday and in another sequence we have a rainy day on the
previous Sunday. lf the Monday in ti@ first sequencea is sunny and the Monday in
the second is rainy, we will associated a 50% probability of sunny Mondays with
rainy days. In actuality, a rainy day six days before the day we wish to predict |
isn't as useful a predictor as a rainy day one day before the day we wish to

predict. Unfortunataly, we have not distinguished Tuesdays from Sundays.

One way to address this issue is to find some way to “tag” the states so as to
distinguish initial values from values that occur later in a sequence. This

possibility is explored in the next sections.

5.6 Experiments with “Tagged” Recurrent Segmentation

As before, the performance of the TD (A) algorithm was tested with the one-

dimensional versions of both segmentation algorithms. Again, experiments were

conducted for values of A beginning with zero and incrementad by C.1 until A

reached a value of one.

5.6.1 Black-and-White Segmantation
in this experiment, the scalar input to the network was supplemented by an
additional component. The two components of the initial vector werse both set to

the same scalar value. No matter what the two-dimensional output from the

57

0.16

0.14
0.12 = =B < 100 epochs
0.10 ‘ - =& = 500 epochs
0.08
H__

0.06 1000 epochs
0.04 ——&—— 2000 epochs
0.02 +
0.00 e fp—oeop

- ®O ©® N © W0 T O N - O

o O o O o e o o o
A

Figure 5.5: The root squared error for aleven valuee of A averaged over eeveral training
trails on the biack-and-white segmentation task. As training continued, the improvement
rate of the supervised network slowsd.

network on a given input, the second component was always transformed into
the initial scalar value before being redirected into the network as input. in this

way, initial states were distinguished from intermediate states.

As before, the output of the network was redirected into the network four times.
All component input values ranged between zero and one with a threshold value
of 0.5. For the first compeonent, ali values less than the threshold were
associated eventually with zero and all values greater than or equal to the
threshold were associated with one. The second component of the final output

vector presented {o the network was always the initial value given to network.
5.0.2 Hurlbert’'s Segmentation

The input to this network was doubled from an eight-dimensiona! vector into a

sixteen-dimensional vector and the cutput from the network transformed in a way

58

Figure 5.6: A typical series of sequences generated by the network. This is
from one of tha networks trained with A=0.2 aftar 1000 epochs.

similar to that done with the black-and-white segmentation problem. As befora,

the output was redirected into the network eight *imes.

5.7 Segmentation Results

5.7.1 Black-and-White Segmentation Resuits
Graphs of the root squared error can be seen in figure 5.5. Unlike bafore, the

networks with values of A near zero did not learn a constant function. In fact, the
natworks trained with values of A =1 became increasingly betier with practice.

outperforming the traditional “supervised” learning procedure.

Figure 5.6 shows the sequences generated by one of the networks. Typically,
values were moved towards the correct final value in fairly uniform increments.

Once at the desired vaiue, subsequent outputs rernained at or near this value.

59

——&— 100 epochs
——8~—- 500 epochs

—-8-—— 1000 epochs

- O O ~ W v T ¢ «
0o o O O o o O o

(=]

0.1+

Figure 5.7: The root squared error for sleven velues of A averaged over several tralning
traile on the Hurlbert segmentation tasic The supervised network performed best Initially;
howaver, the other nstworks improved with repeated practics.

Finding a way to “tag” the states seemed to return the necessary Markovian to
the task. At the very least it allowed the network to distir uish betwasn initial
states and intermediate ones. Presumably, other methods of tagging could ba

used and produce the same effect, at least for these simple sorts of tasks.

It is worth noting that the errors discussed in this section only take into account
the error generated on the one component of interest; howaver, the networks
tended io learn an identity function for the second component and so the errors

including this component did not add significantly to the overall error.
5.7.2 Huribert's Segmentation Results

Graphs of the root squared error can be seen in figure 5.7. All of the networks

avoided the trap >f finding a constant function. As with the black-and-white

60

1 2 3 4 5 6 7 8

Figure 5.8: Tho dashad line raprasents the application of the Hurtbert
algorithm on the solid line.

0.9
0.8
0.7 <
0.6
0.5
04
0.3
0.2 4
6.1

Figure 5.9: The application of one of the naural networks trained with A=0.5
to the same line as in figure 5.8.

segmentation task, values were movad towards the correct final value with each

step.

This segmentation task is much more difficult than the pravious task. Even
though the networks performed well on the training data, all of the networks
generalized poorly and often were unable *~ discovar a useful function when

trained on very large datassts, inr'.cating that perhaps an sight-dimensional

61

Figure 5.10 The application of the Hurlbsrt algorithm on ancther line.

0.9
0.8
0.7 4
0.6
05
0.4
0.3

0.2 4
0.1

Figure 5.11: The application of the network from figure 5.9 to the sams lins
as in figure 5.10. Although the network does not gsnerais the same velues
as the Huribent algorithm, it does segment the line into the same two piecss.

version of this task is too difficult for a network. A more reasonable version of the
task might use only three dimensions, the actual size of the Hurlt vt “window,”
and combine copies of the network to perform segmentation on larger imagss.

An approach similar to this has besn explored in Jongs (1962).

Still, despite the problems encountered by the networks with this particular task,

the results from this and the simpler biack-and-white segm~tation problem are

still useful. At first glance, TD (A) networks would seem ill-equipped to deal with
recurrent problems of the type described in this chapter. After all, there is usually
no Markovian process underlying these tasks and the “control” signal generated
by the networks is not really constrained to generate states that are meaningful in
the context of the problem. Indeed, these very difficulties arise in the originai

formulation of the segmentation problems.

However, with an appropriate mechanism for “tagging” the states appreopriately,
the networks trained with 4 #1 may not only perform well, but they may
sometimes perform better on training sets and generalize better than networks
trained with the traditional supervised learning algorithm. If this is indeed the
case, the increase in accuracy and ability to generalize may well be worth the
trade-off in the increased nui. .ber of dimensions and the corresponding possible
increase in learning time (and in this case, there was no large increase in

learning time).

in particular, the training time for the tagged black-and-white task did not
increase significantly and the networks trained with 4 =1 performed bettar than
the network trained in a supervised fashion on both the training set and a broader
test set. On the Hurlbert segmentation task, the TD networks took longer to
perform as well as the supervised network; however after some time some of the
TD networks appeared to be slowly outperforming it. This proves nothing, but
does provide some hope that these networks can often outperform their

supervised counterpaits.

Before lgaving this probiem, it is worth noting that both of these problams,

particularly the black-and-white segmentation task, are defined so as 10 create

63

it e e e e e e te e e em tten e me e e e e e a e i e - e T RN s £ v a

e —

thie most important distinctions betwseen initial and intermediate states. Where an
intermediate state appears relative to other intermediate states is not very
important. By contrast, in the weather prediction problem, the distance between

a state and the tinal prediction is much rore relevant.

For tasks where the first state is most important, it may be useful to attempt some

way tc change the depth-first nature of the TD (L) procedure into a breadth-first
search as :iescribed in section 3.1.1. For tasks like the weather prediction

problem, thi:; wouid not seem as useful.

64

Chapter 6

6 Conclusion

There has bran some theoretical study of using temporal differance algorithms to
address issues of prediction, outlining some distinct advantages of these
methods over more traditional supervisec learning paradigms. Nevertheiess,
there has been little evidence, either thaoretical or empirical, to outline the limits

of these methods in more complex real-world domains using multilayer networks.

fzven as researchers such as Suiton (1288) have shown that many problems that
have been attacked by fraditional supervised learning algorithms are better
understood as predictions tasks, we have sought to show that many of these
problems are even more complicated, involving not only making accurate
predictions about the environment, but alsa about using those intermediate

predictions to actually contro! the environiment.

We have attempied to develop a general formaiism for iooking at these problems

that is robust enough to describe tasks involving prediction and control—whether

65

complet: or partial—as well as tasks that require only prediction. We have used
this formalism with several case studies to explore several practical issues that

arise when using the TD (A) algorithm.

in the realm of games, training through self-play seems to be a powerful tool for
learning robust evaluation functions. This tool seems to provide the best
opportunity for a network to develop the skilis necessary to play well. By
contrast, networks that play against opponents are much 18ss reliabie and seem
unable to move towards a stable evaiuation function, either discovering local

minima or oscillating between suboptimal solutions.

Further, the formalism described in this thesis highlights how well suited the
training structure of the TD (A) procedure is to these kinds of game-playing tasks.
Indeed, one of this procedure's strerigths is the way in which it deals with these

sorts of naturally sequential problems.

Beyond this kind of domain, TD (A) algorithms seem capable of dsaling with
tasks that appear ill-defined in a Markovian sense. Most of the TD networks
performed as well as or better than their supervised counterparts. Furthermore,
repoated presentations continue to improve the performance of thase nstwork
even when the increased performance of the supervised networks would slow

down.

Although there are still unanswered questions, these resulls suggest various
ways to best taks advantage of TD (o) networks on various kinds of tasks. I
nothing else, thessa results suggest that TD (A) can be used in complex domains

without complstely obscuring our ability to analyze the algorithm and its

66

limitations. We propose to use the formalism developed in this paper to continue
developing these case studies in order to better understand the practica!

questions that still remain unanswered about the power and usability of TD {A).

67

Appendix A

A: TD ()\) and GRB

- networks

In saction 2.2, we introduced the temporal difference update rule proposed by
Sutton (1988):

AW, =a(P,, ~P)Y AV P, (2.5)

kel

where w represents a vector of the updatable parameters cf the network. This
update rule is generally applicable; however, it uses a notation that is usually
associated with perceptron-iike feedforward networks {see section 1.1). With
these kinds of networks, not only is the same function usually asscciated with
each computational unit, but each component of w serves the same purpose.
Each of paramster is used as a transforming agent between two computational

units or “neurons”, weighting the output of cne of these units before passing it to
the other. In particular, if x, denotes tha output of the j* unit of the network and

w; denotes the weight on the connection from unit i to j (where w;, is aliowed to

be zero), the output of unit j can be expressed as:

x,=f(Zwux,). (1.1)

For the case studies explored in this thesis, however, we use a Guassian GRBF

network as described by Poggio and Girosi (1990):

y/ = Zcije-allf—i‘r . (1.5)

i=]l

With this kind of network, the purpose of each kind of adjustable parameter is
different. It is useful to keep these differences in mind and explore the way in
which equation (2.5) must be applied to update these parameters. For equation
(1.5), we divide the update rule into three rules, where each rule reflects the
details of each type of parameter: the coefficients, ¢; the centers, ; and the O
parameters, which are particular to the gaussian radial basis function and define
the extent of each gaussian. Since the important difference bstween each
update rule is the form of its gradiant, we will focus on how it changes for each

type of parameter.
For the i coefficient, ¢, the gradient is:

Y p=e il (A.1)

€

69

Notice that each cosfiicient can be a vecter, allowing the output of the network to
be a vector of the same dimensions. Since V, P is a scalar, substituting the

gradient inte egquation (2.5) yields a vector of the appropriate size, the dimension

of the output of the network:

Al = a(P,,, - P)Y A-te b (A.2)

kel

For the i* center, 7, the gradient is:

Vv, P=20ze P (z-). (A.3)

This gradient is a matrix (with rank the dimension of the output of the network
and order the dimension of the input to the network). Substituting in equation
(2.5) yields a vector of the appropriate size, the dimension cf the input to the

network:

A = (P, - B)Y 20 g 1 (3 -1). (A.4)

kal

For the i o, the gradient is:

Vo P=—ge Wiz if (A.5)

70

This gradient is a vector in the dimension of the output. Substituting in equation

(2.5) yields a scalar:

A0t = a(P,, - PYY 45 F W fa i (e)

k=]

The intuitive discussion in chapter two, and a similar discussion from Sutton
(1988) and Dayan (1991), applies for sach of these update rules. Formally,
these update rules differ from Sutton’s vxamples in that these networks are non-
linear and the proofs that show convergence for TD (A) do not apply directly;
howaver, this is also true of the non-linear multi-layer perceptrons used by

Tesauro (1992).

71

Bibilography

D. H. Ackley, G. E. Hinton and T. 4. Sejnowski. A Learning Algorithm for
Boitzman Machines. Cognitive Systems, (9):147-169, 1985.

A. G. Barto. Learing by Statistical Cooperation of Seif-interested Neuron-Like
Computing Elements. Muman Neurobiology, (4):229-256. 1985,

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike Elements That Can
Solve Difficuit Learning Control Problems, IEEE Transactions on Systems, Man,
and Cybernetics, (1 3):834-846, 1983.

D. S. Broomhead and David Lowe. Multivariate Functional Interpolation and
Adaptive Networks. Complex Systems, (2):321 -355, 1988.

J. Christensen. Learning Static Evsaluation Functions by Linear Regressicn. InT.
M. Mitchell, J. G. Carbonell and R. S, Michalski (Eds.), Machine Learning: A
Guide to Current Research, Boston: Kluwer Academic, 1986.

J. Christensen and R. E. Korf. A Unified Theory of Heuristic Evaluation
Functions and its Application to Learning. Proceedings of the Fifih National
Conference on Artificial Intelligence, 148-152. Philadelphia: Morgan Kaufmann,
1986.

P. Dayan. Temporal Differences: TD () for General A. Machine Learning, in
press, 1991.

E. V. Denardo. Dynamic Programming: Mc. ..s and Applications. Englewood
Cliffs, NJ: Prent'ce Hall, 1982.

T. G. Dietterich and R. S. Michalski. Learning to Predict Sequences. In R. S.

Michalski, J. G. Carboneil and T. M. Mitchell (Eds.), Machine Learning: An
Artificial Intelligenice Approach Vol Il. Los Altos, CA: Morgan Kaufmann, 1988.

72

G. E. Hinton. Connsctionist Leaming Procedurss. ~ :chnical Report CS-87-115,
CMU, 1987.

J. H. Holland. Escaping Brittleness: The Possibilities of General-Purpose
Leaming Algorithms Applied to Paraliel Rule-Based Systems. In R. S. Michalski,
J. G. Carbonell and T. M. Mitchell (Eds.), Machine Learning: An Artificial
Inteliigence Approach Vol Il. Los Alins, CA: Morgan Kaufmann, 1986.

Anya C. Hurlbert. The Computaticn of Color. A. I. Technical report 1154, MIT,
1989.

M. Jones. Using Recurrent Networks for Dimensionality Reduction. Master's
Thesis. Department of Electrical Engineering and Computer Science, MIT, 1992.

J. G. Kemeny and J. L. Snell. Finite Markov Chains. New York: Springer-
Verlag, 1976.

R. P. Lippmann. An Introduction to Computing with Neural Nets. /EEE ASSP
Magazirs, 4-22, 1987.

Tomaso Poggio and Federico Girosi. A Theory of Networks for Approximation
and Leaming. A. 1. Memo 1140, MIT, 13989.

Tomaso Poggio and Federico wirosi. Extensicns of a Theory of Networks for
Approximation and Learning: Dimensionality Raduction and Clustering. A. |.
Memo 1167, MIT, 1990.

Tomaso Poggio and Federico Girosi. Regularization Algorithms for Learning that
Are Equivalent to Multilaver Networks: Dimensionality Reduction and Clustering.
A. . Memo 1167, MIT, 1¢90.

D. E. Rumelliart, G. E. Hinton and R. J. Williams. Learning Internal

Representations by Error Propagation. In D. Rumelhart and J. McCleiland (Eds.),
Paralle! Distributad Processing, Vol . MIT Press, 1986

73

A. L. Samual. Soms Studiss in Machine Leaming Using the Game of Checkers.
IBM Jfoumal on research and Development , (3):210-229, 1959. Reprinted in E.
A. Feigenbaum and J. Feldman (Eds.), Computers and Thought. New York:
McGraw-Hill.

R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. Doctoral
Dissertation. Department of Computer and Information Science, University of
Massachusetts, Amherst, 1984,

R. S. Sutton. Learning to Predict by Methods of Temporal Difference. Machine
Learning, (3):9-44, 1988.

R. S. Sutton and A. G. Barto. Toward a Mcdern Theory of Adaptive Networks:
Expectation and Prediction. Psychological Review, (88):135-171, 1981(a).

R. S. Sutton and A. G. Barto. An Adaptive Network that Constructs and Uses an
internal Model of its Environment. Ccgnitive and Brain Theory, (4):217-246,
1981(b).

R. S. Sutton and A. G. Barto. A Temporal Difference Mode!l of Classical
Conditioning. Proceedings of the Ninth Anriual Conference of the Cognitive

Science Society, 355-378. Seattle, WA: Lawrence Erlbaum, 1987.

Gerald Tesauro. Practicai Issues in Temporal Difference Leaming. To appear in
Machine Learning, 1992.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD Thesis. University of
Cambridge, England, 1989.

B. Widrow and M. E. Hoff. Adaptive Switching Circuits. 7960 WESCON
Convention Record, Part IV, 96-104, 1960.

B. Widrow and S. D. Stearns. Adaptive Signal Processing. Englewood Ciiffs,
NJ: Prentice Hall, 1985.

74

R. J. Williams. Reinforcement Learning in Connectionist Networks: A
Mathematical analysis . Technical Report 8605, University of California, San
Diego, Institute for Cognitive Science, 1986.

I. H. Witten. An Adaptive Optimal Controller for Discrete-Time Markov
Environments. Information ad Control, (34).286-295, 1977.

75

