
MIT Open Access Articles

A Framework for Biomarkers of COVID-19 Based 
on Coordination of Speech-Production Subsystems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Quatieri, Thomas et al. "A Framework for Biomarkers of COVID-19 Based on 
Coordination of Speech-Production Subsystems." IEEE Open Journal of Engineering in Medicine 
and Biology (May 2020)

As Published: http://dx.doi.org/10.1109/ojemb.2020.2998051

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/126111

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/126111
https://creativecommons.org/licenses/by/4.0/


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2020.2998051, IEEE Open
Journal of Engineering in Medicine and Biology

IEEE OJEMB TECHNOLOGY LETTER 
 

 

Abstract—  
Goal: We propose a speech modeling and signal-processing 
framework to detect and track COVID-19 through asymptomatic 
and symptomatic stages.   
Methods: The approach is based on complexity of neuromotor 
coordination across speech subsystems involved in respiration, 
phonation and articulation, motivated by the distinct nature of 
COVID-19 involving lower (i.e., bronchial tubes, diaphragm, 
lower trachea) versus upper (i.e., laryngeal, pharyngeal, oral and 
nasal) respiratory tract inflammation [1], as well as by the growing 
evidence of the virus’ neurological manifestations [2]–[5].   
Preliminary results: An exploratory study with audio interviews of 
five subjects provides Cohen’s d effect sizes between pre-COVID-
19 (pre-exposure) from post-COVID-19 (after positive diagnosis 
but asymptomatic) using: coordination of respiration (as 
measured through acoustic waveform amplitude) and laryngeal 
motion (fundamental frequency and cepstral peak prominence), 
and coordination of laryngeal and articulatory (formant center 
frequencies) motion.   
Conclusions: While there is a strong subject-dependence, the 
group-level morphology of effect sizes indicates a reduced 
complexity of subsystem coordination. Validation is needed with 
larger more controlled datasets and to address confounding 
influences such as different recording conditions, unbalanced data 
quantities, and changes in underlying vocal status from pre-to-
post time recordings. 
 

Index Terms—asymptomatic, COVID-19, respiration, vocal 
subsystems, motor coordination 
   

Impact Statement— The proposed sensing lends itself to 
nonintrusive widespread use through mobile devices. Thus, the 
approach provides a key capability for scalable, longitudinal studies 
that seek to capture human behavior dynamics in naturalistic 
environments for early warning and tracking of COVID-19. 

  
INTRODUCTION 

OVID-19 is often characterized by specific dysfunction in 
respiratory physiology including the diaphragm and other 

parts of the lower respiratory tract, thereby affecting patterns of 
breathing during inhalation and exhalation of air from the lungs 
[1]. In speech production, during the exhalation stage, air from 
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the lungs moves through the other essential vocal subsystems, 
i.e., through the trachea and larynx and into the vocal tract 
pharyngeal, oral and nasal cavities (Fig. 1). The manner in 
which we breathe in speaking, including the rate and length of 
an exhalation (coupled to the number of words in a phrase or 
sentence), and its intensity and variability, highly influences the 
quality of our voice. For example, the loudness, aspiration 
(“breathiness”), steadiness of fundamental frequency or “pitch” 
during phonation, and the mechanism by which we alter 
speaking rate all effect vocal quality. Furthermore, the 
respiratory system is highly coordinated with these primarily 
laryngeal-based subsystems [6][7] . Likewise, in turn, laryngeal 
activity is finely coupled to articulation in the oral and nasal 
cavities [8]. Although impact on speech subsystems and their 
coordination are often perceptually obvious with a condition 
involving inflammation, these changes can be subtle in the 
asymptomatic stages of an illness, either at onset or in recovery. 
 

       
     
Fig. 1: Speech subsystems and their coordination hypothesized to be 
affected by COVID-19. 
 
In addition to the physiological manifestations of COVID-19, 
recently there have been reported symptoms that relate to 
temporary neuromuscular impairments [2][3] and loss of taste 
and smell [4][5] which can have implications for muscular 
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control and proprioceptive feedback, respectively, in speech 
production. Given the physiologically-based insult to breathing 
functions, as well as this growing evidence of neurological 
deficits present in COVID-19, we hypothesize that biomarkers 
derived from measures of vocal subsystem coordination may 
provide a sensitive indicator of COVID-19, most importantly in 
its asymptomatic stages. 

I. MATERIALS AND METHODS  

A. Dataset  
Audio data for five subjects was obtained from YouTube, 
Instagram, and Twitter sources: pre-COVID-19 (before 
exposure) and post-COVID-19 (after positive but 
asymptomatic). Subject-only regions were segmented manually 
from the videos to exclude secondary speakers such as 
interviewers or interviewees and other interferences. The 
recordings are taken from press conferences and TV interviews 
all with celebrities or broadcast hosts, typically using high-
quality recording facilities. Though consistent environment and 
high signal quality were sought across pre- and post-states, the 
data can have varying environmental and recording conditions. 
Post-recording times were in the range of days with pre-
recording times in the range of days-to-years. Signal-to-noise 
ratios were fairly high and consistent across pre- and post-
conditions, ranging per-subject from about 18 to 10 dB. The 
Supplementary Material Section provides subject-specific and 
group statistics on segment durations and counts, pre- and post-
recording times and environmental noise conditions. 

B. Subsystem model  
Our speech feature selection is based on the physiologically-
motivated speech production model in Fig. 2 where the airflow 
from the lungs during the exhalation phase of speech production 
passes through the bronchial tubes through the trachea and into 
the larynx. The ‘intensity’ of the airflow (velocity), that we refer 
to in this note as the respiratory intensity, governs time-varying 
loudness, and is coupled (coordinated) with phonation, i.e., the 
vibration of the vocal folds (fundamental frequency or ‘pitch’), 
stability of phonation, and aspiration at the folds [7] all which 
are a function of  laryngeal muscles and tissue, modulated by 
the respiratory intensity. Finally, in our model, the vocal fold 
source signal is modulated by, and coordinated with, the vocal 
tract movement during articulation.  
C. Feature extraction  
Standard low-level features associated with the various 
subsystems of Fig. 1 and Fig. 2 form the basis of our high-level 
features representing the coordination within and across these 
various subsystems and have been shown in previous research 
to be predictive of numerous neurocognitive conditions 
[9][10][11].  
 
Low-level univariate features characterize basic properties of 
the three vocal subsystem components. The speech envelope is 
used as a proxy for respiratory intensity and is estimated using 
an iterative time-domain signal envelope estimation algorithm, 
providing a smooth contour derived from amplitude peaks 

[12][13]. At the laryngeal level, we estimate the fundamental 
frequency (pitch) using an autocorrelation approach [14][15] 
and cepstral peak prominence (CPP), which provides stability 
of vocal fold vibration [16]. CPP is based on the ratio of the 
pitch-related cepstral peak relative to aspiration noise level and 
is a widely used and robust measure for assessing pathological 
speech [17][18]. 
 

 
Fig. 2: Fundamental speech-production subsystem model illustrating 
two of the potential points of coordination (dashed blue). 
 
As a measure of vocal fold stability, CPP has the potential to 
reflect change in coupling of subglottal respiratory and 
laryngeal subsystems with COVID-19. Finally, formant center 
frequency tracks (vocal tract resonance frequencies), used as a 
proxy for articulation, relies on a robust Kalman-filter-based 
tracking algorithm [19]. Features are computed only during 
speaking using a speech activity detector [19].  
 
High-level features involve multivariate auto- and cross-
correlations of low-level features to produce measures of 
coordination within and across the underlying mechanisms of 
speech subsystems. Correlation functions for each (subject-
only) segment are sampled at a time-delay scale of 10 ms. 
Within a segment, masking is applied to exclude speech pauses 
in computing correlations. The eigenspectra of each correlation 
matrix, formed from various sets of samples from correlation 
functions, quantifies and summarizes the frequency properties 
of the set of feature trajectories (see Supplemental Material).  
 
Higher complexity across multiple channels is reflected in a 
more uniform distribution of eigenvalues, and more 
independent “modes” of the underlying system components, 
while lower complexity is reflected in a larger proportion of the 
overall signal variability being concentrated in a small number 
of eigenvalues. In the latter case, the eigenspectral 
concentration typically manifests with high-rank eigenvalues 
being lower in amplitude and thus reflecting more dependent or 
‘coupled’ system components. For the five subjects, 
independently and combined, the Cohen’s d effect sizes pre- 
versus post-COVID-19 were computed (for all segments in 
each category) based on the eigenspectra for low-level 
respiration intensity, fundamental frequency, cepstral peak 
prominence, and formant center frequencies. More details about 
computing low- and high-level coordination features, effect 
sizes, and their interpretation are provided in the Supplementary 
Materials section. 
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II.  RESULTS  
The example given in Fig. 3, with pre-COVID-19 and post-
COVID-19 (asymptomatic) conditions, shows Cohen’s d effect 
sizes with three measures of coordination: respiration and pitch 
(fundamental frequency), respiration and stability of pitch 
periodicity (CPP), and pitch (fundamental frequency) and 
articulation (formant center frequencies).  Effect size patterns 
for the two cases involving respiration show similar high-to-
low trends across many of the subjects, with high-rank 
eigenvalues tending toward relatively lower energy for the post-
COVID-19 cases.  

 

 
 
Fig. 3: COVID-19 influence on coordination of respiration (as 
measured through the speech envelope) and laryngeal characteristics 
as well as coordination of respiration with articulation (as measured 
through vocal tract formant center frequencies). Group and subject-
dependent effect sizes are shown in left and right columns, 
respectively. (A): respiration intensity and pitch (fundamental 
frequency) (30 eigenvalues obtained from 2 features x 15 correlation 
samples); (B): respiration intensity and stability of periodicity (CPP) 
(30 eigenvalues obtained from 2 features x 15 correlation samples); 
(C): articulation (3 formant center frequencies) and pitch (fundamental 
frequency) (60 eigenvalues obtained from 4 features x 15 correlation 
samples). Effect sizes greater in magnitude than 0.37 in the comparison 
across all subjects have corresponding p < 0.05. 
 
Effect sizes for the combined subjects indicate a similar but 
more distinct group-level morphology in these cases. On the 
other hand, effect sizes for coordination of pitch (fundamental 
frequency) and articulation (formant center frequencies) is 
more variable across subjects, but the combined counterpart 
shows a high-to-low trend, albeit weaker than those involving 
coordination involving respiration. Although a strict 

interpretation is not possible due to the small cohort, at a group 
level, the morphology of effect sizes in Fig. 3 indicates a 
reduction in the complexity of coordinated subsystem 
movement, in the sense of less independence of coordinated 
respiratory and laryngeal motion and likewise, but to a lesser 
extent,  for laryngeal and articulatory motion. 

III. DISCUSSION   
Although the group-level eigenspectra-based effect size trends 
indicate a reduced complexity in coordination, clearly a larger 
cohort is warranted as well as addressing a number of 
confounders, including subject- and recording-dependences, in 
any validation procedure. For example, across all variables, 
inter-subject analysis shows for some subjects a distinctly 
different trend of larger high-ranking eigenvalues that indicates 
a more complex but more erratic (or variable) coordination. 
Regarding signal quality, due to the nature of the online video 
sources, there is a variety of inter- and intra- subject recording 
variability, the most perceptually notable effect being 
reverberation, possibly modifying the true effect sizes, over- or 
underestimating their importance. An example given in the 
Supplementary Material, isolating two of the subjects with 
more consistent, least reveberant environments, enhances the 
combined effect sizes relative to the N=5 case.  

IV. CONCLUSION 
We have established a framework for discovery of vocal 
biomarkers of COVID-19 based on the coordination of 
subsystems of speech production involving respiration, 
phonation, and articulation.  Our preliminary results, using a 
very limited data set, hint at support of the hypothesis that 
biomarkers derived from measures of vocal subsystem 
coordination provide an indicator of COVID-19 impact on 
respiratory function, particularly in its asymptomatic stage. 
Given a sample size of five subjects, however, validation of our 
hypothesis will clearly require additional data and analysis to 
address potential confounders such as different recording 
environments and channels, unbalanced data quantities, and 
changes in underlying vocal status from pre-to-post time 
recordings. It will also be important to expand the suite of vocal 
features, introducing neurophysiological modeling of 
subsystem interactions, to address the increasing evidence of 
neurological insult arising from COVID-19 and feature 
specificity relative to typical flu and flu-like symptoms. 

V. SUPPLEMENTAL MATERIAL 
The Supplementary Material section provides the following 
expansions of the main body topics: (1) more detailed 
description of the physiological motivation for the coordination 
model of Fig. 1 and Fig. 2; (2) more details of our standard low-
level feature extraction, as well as introducing other vocal 
source features such as harmonic-to-noise ratio, vocal creak,  
and glottal open quotient; (3) effect sizes of summary statistics 
of the low-level features across the pre- and post-COVID-19 
conditions as a comparative reference to the high-level feature 
effect sizes; (4) further description of the subject- and session-
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dependent environmental conditions; (5) more detailed 
description of the correlation methodology; and (6) expanded 
algorithm descriptions and software references to expedite use 
by others in the field. 
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