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An Equivalence Approach to Balance and Placebo Tests

Abstract: Recent emphasis on credible causal designs has led to the expectation that

scholars justify their research designs by testing the plausibility of their causal identifica-

tion assumptions, often through balance and placebo tests. Yet current practice is to use

statistical tests with an inappropriate null hypothesis of no difference, which can result in

the equating of non-significant differences with significant homogeneity. Instead, we ar-

gue that researchers should begin with the initial hypothesis that the data is inconsistent

with a valid research design, and provide sufficient statistical evidence in favor of a valid

design. When tests are correctly specified so that difference is the null and equivalence

is the alternative, the problems afflicting traditional tests are alleviated. We argue that

equivalence tests are better able to incorporate substantive considerations about what

constitutes good balance on covariates and placebo outcomes than traditional tests. We

demonstrate these advantages with applications to natural experiments.
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1 Introduction

Recent debates over the difficulties of causal inference, and the rise of causal empiri-

cism, in the social sciences have spurred a growing literature on how to judge the qual-

ity of causal research designs (Austin 2008, Hansen 2008, Dunning 2010, Samii 2016)

and a growing expectation that scholars defend the merits of their research designs with

tests of empirically refutable implications of the assumptions justifying their inferences

(Sekhon 2009, p. 503). For example, as evidence in favor of their designs, observational

researchers are expected to provide evidence of covariate balance and experimental re-

searchers run randomization checks for balance on pre-treatment covariates. The proce-

dures used to check the assumptions justifying a design are just as important as those

used to estimate causal effects (Rubin 2008).

In this paper, we argue that “tests of design”, such as balance and placebo tests,

discussed in Section 2, should be structured so that the responsibility lies with researchers

to positively demonstrate that the data is consistent with their identification assumptions

or theory1. This means that researchers should begin with the initial hypothesis that the

data is inconsistent with a valid research design, and only reject this hypothesis if they

provide sufficient statistical evidence in favor of data consistent with a valid design. The

conceptual distinction between beginning with a null hypothesis of no difference, as is

standard in current practice, versus beginning with a null hypothesis of a difference, as

we advocate, may seem small, but the practical implications are substantial.

To implement our tests of design, we rely on the large body of literature in biostatis-

tics on equivalence testing (Wellek 2010, Westlake 1976). We show how to apply these

procedures to tests of design, discussed in Section 3. We pay particular attention to the

selection of an equivalence range, the range within which differences are deemed incon-

sequential, as it is a key distinction between equivalence and conventional hypothesis
1Identification assumptions are assumptions about the data generating process which allow for identification of

causal effects, and which are usually inherently untestable, but often have testable observable implications.
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testing. We expand on the equivalence testing literature by considering randomization

inference versions of common equivalence tests. We also introduce the “equivalence

confidence interval”, akin to a confidence interval, which is the minimum range that is

supported by the data at the α-level. This range addresses many concerns in the liter-

ature about selecting an equivalence range by providing a transparent metric on which

researchers should defend their claims. We suggest that researchers focus on defending

this range rather than on the p-value associated with the test. We also discuss how equiv-

alence tests can be used in conjunction with multiple testing corrections in the literature.

We provide applications of equivalence tests in Section 4. First, we discuss a natural

experiment conducted by Brady and McNulty (2011) on the cost of voting associated with

distance to a polling place. Following that, we look at a battery of tests by applying our

approach to the Dunning and Nilekani (2013) study of ethnic quotas. Further examples

are included in Appendix SI-6.

Throughout this work, we focus on tests of design, however equivalence tests are

related to the literature on “negligible effects” (Rainey 2014, Gross 2014). This important

work, building on many others, shows why a lack of statistically significant difference is

not sufficient evidence for showing substantive insignificance. We discuss the relationship

to this literature, and the increased statistical power of the equivalence t-test focused on

in this article, further in Section 2. We are also developing an R package implementing

equivalence based tests of design.

2 Tests of Design

2.1 Balance and Placebo Tests

Before discussing how to conduct a balance test, arguably the most common test of de-

sign, we first explore why researchers are ultimately interested in balance on observable
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covariates. The goal of researchers is to provide evidence that their data is consistent

with the identifying assumptions in their causal research design.

Most causal identification strategies require an assumption that the treatment assign-

ment is unconfounded. In experimental settings, this assumption is met by the randomiza-

tion conducted by the researcher, but in observational settings, this necessary assumption

is inherently untestable in any direct manner. Researchers relying on observational data

can never prove their design is unconfounded. As discussed in Imbens and Rubin (2015,

Chapter 21), tests of design can be used to test the plausibility of the unconfoundedness

assumption, even though we cannot directly test the assumption. If these analyses fail

to provide evidence in favor of an unconfounded design, “... then the unconfoundedness

assumption will be viewed as less plausible than in cases [...] supported by the data. How

much the results of these analyses change our assessment of the unconfoundedness as-

sumption depends on specific aspects of the substantive application at hand, in particular

on the richness of the set of pre-treatment variables, their number and type.” So, while

researchers must assume unconfoundedness, our aim is to formulate a statistical test that

provides further evidence for the plausibility of the unconfoundedness assumption.

We thus frame this as a hypothesis testing problem of the following form:

H0 : The data are inconsistent with the observable implications

of an unconfounded research design

H1 : The data are consistent with the observable implications

of an unconfounded research design (1)

To formulate a statistical test based on the observable data, we rely on the fact that the

identifying assumptions of many causal research designs often have testable implications

that can provide credibility to the research design. For example, unconfoundedness, when

used in the natural experiment or matching framework, implies that the distributions of the
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potential outcomes for both treatment and control are identical. While we cannot directly

test the distribution of the potential outcomes, we can test how similar the groups look

on pre-treatment covariates, which we call a “balance test”. Similarity across a large

number of pre-treatment covariates provides strength to the credibility of the design. The

literature argues that by testing these observable implications, we are providing evidence

consistent with the hypothesis defined in Equation 1.

Similarly, while the key identifying assumption for experiments, unconfoundedness via

randomization, is true by design, randomization does not guarantee that any given treat-

ment assignment will result in a treatment effect estimate sufficiently close to the “truth”.

Ensuring balance on key prognostic variables, by blocking or stratifying, can increase the

precision of an estimator. Researchers conduct randomization checks to help defend

against the dreaded “bad draw”, in which there is severe imbalance on key prognostic

covariates and the estimate is likely far from the truth.2 These tests can also be used

in re-randomization procedures to help improve covariate balance (Morgan and Rubin

2012).3

Balance tests4 check if the means, or distributions, of pre-treatment variables are ap-

proximately the same among treatment and control units. There also exist omnibus tests

for overall balance (Hansen and Bowers 2008, Caughey, Dafoe, and Seawright 2017).

A related test is a placebo test, which examines the effect of the intervention on a post-

treatment variable known to be unaffected by the cause of interest (Rosenbaum 2002,

p. 214).5 If the intervention were to show a statistically significant correlation with the
2“Balance” is, of course, a sample property. In the case of experiments, the null hypothesis of equivalence is true

by design. However, as Student (1938) put it, “it would be pedantic to continue with [a treatment assignment] known

beforehand to be likely to lead to a misleading conclusion” (Morgan and Rubin 2012)
3In the case of re-randomization, researchers may wish to maximize balance on non-blocked variables, which

could be achieved by requiring that randomization schemes do not exceed a set p-value as a metric for balance.
4Balance tests are also referred to as randomization checks in the experimental design literature.
5The definition of a placebo test is less well settled in the literature than the definition of a balance test. Some

scholars appear to use balance and placebo tests interchangeably. In almost all cases, the known effect in a placebo

test is 0. Another type of placebo test, which we do not consider, is the use of an alternate treatment, related to the
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placebo outcome, then the validity of the research design is called into question. A com-

mon feature of these two standard tests is that it is incumbent upon the researcher to

demonstrate that the difference between treated and control units on the pre-treatment

covariate or the placebo outcome are substantively small and thus not indicative of a

severely flawed design. For the purpose of exposition, we will primarily focus on balance

tests in the text of this article.

2.2 Current Practice: Lack of Difference versus Equivalence

To conduct a test of design, we argue that researchers should begin with the initial hypoth-

esis that the data is inconsistent with the observable implications of an unconfounded de-

sign, for example that there is substantial imbalance in the pre-treatment covariates. Only

with sufficient data should they reject the null hypothesis of imbalance in pre-treatment

covariates and post-treatment placebo outcomes. That is, they should provide statisti-

cally significant evidence to reject their data is inconsistent with a valid design, which

they encode as a lack of substantively significant differences. However, common cur-

rent practice is for researchers to use a statistical test that employs null of no difference6

between the two groups as an indirect way of testing if the data are consistent with an

unconfounded design.7 A design is deemed consistent with a valid research design if the

statistical test fails to provide evidence in favor of a difference, i.e. a large p-value.8 This

approach could be loosely described as incorrectly equating “non-significant difference

treatment of interest, but whose effect on the outcome is known. A classic example of such a placebo test is Di Nardo

and Pischke (1997).
6Some authors, such as Hansen (2008), do note that the actual null hypothesis researchers wish to test is not one

about difference in the means of some super-population, but rather a statement about confounding.
7These are typically t-tests or KS-tests.
8There is no concrete rule for sufficient balance. While this is a clear misinterpretation of the results of a null

hypothesis test of difference, this interpretation is pervasive in the literature. Authors do, implicitly, acknowledge that

these tests are controlling for the incorrect error, and look for p-values to be higher than typical statistical significance,

with a p-value of 0.15 or 0.2 considered evidence of good balance.
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with significant homogeneity” (Wellek 2010, p. 3). A high p-value from such a test fails to

reject the null that the two groups are different which is only indirectly related to providing

evidence that they are the same. This is not a flaw of the statistical test itself, but rather

the common (mis)interpretation of the test when used as a test of design. While most

researchers understand failure to reject a null hypothesis does not imply acceptance or

preference for the alternative, current practice implies this nonetheless.

We propose that researchers use a statistical test consistent with the null in Equation

1, called an “equivalence test”. These tests are designed to provide statistical evidence

under a null of difference, against an alternative of equivalence, which is consistent with

the null and alternative hypotheses of Equation 1. The practice of equivalence testing

remains largely absent from hypothesis testing in the social sciences, and for tests of

design in particular.9 There does exist, however, a large statistical literature investigating

the properties of precisely these types of tests. Wellek (2010) and Berger and Hsu (1996)

provide a review of the theory and main uses of equivalence testing. Fortunately for

applied researchers, focusing on equivalence tests allows them to quantify and encode

the strength of their design. Applied researchers will not have to significantly change their

workflow while benefiting from transparent, statistical evidence supporting the strength of

their design.

The ambiguity of using lack of statistical significance as evidence in favor of substan-

tive equivalence is a well-documented problem (Gill 1999). The main issue is that people

tend to incorrectly conflate low power with inconsequential difference or statistical sig-

nificance with substantive difference. For example, consider Brady and McNulty (2011),

who exploit a natural experiment in which the polling places of millions of voters in Los

Angeles were moved to study the impact the physical cost of distance to polling place on

turnout. The authors employ a matching algorithm to match voters on a few important
9There is a healthy literature on the drawbacks of the null hypothesis test across the social and natural sciences

(see reviews in Gross 2014, Imai, King, and Stuart 2008, Gill 1999), but that literature did not traditionally provide

many practical solutions for applied researchers.
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covariates to control for small imbalances noticed within the natural experiment, and the

authors report balance statistics on variables not used in the matching algorithm as well

as the mean differences at the precinct level.

The authors then note that the magnitude of the differences are very small and unlikely

to be indicative of hidden confounders, yet the size of their sample makes the traditional

tests overly sensitive to these minute differences.10 However, their argument would be

strengthened with statistical evidence supporting the strength of their design. We will

return to this example in Section 4.1 using an equivalence test to evaluate if their data

provides statistical evidence in favor of their design. We argue this reflects a conflict

between the purpose for which the conventional null hypothesis t-test was designed and

the goal of tests of design, namely showing that differences on pre-treatment covariates

are substantively unimportant.

2.3 Equivalence Testing

[Figure 1 about here.]

Operationally, the most important difference between equivalence testing and tests

of difference is whether or not one needs to make an ex-ante decision over what range

of values to define as “similar” versus “different”. When using equivalence tests, the

researcher must specify what is called an “equivalence range”, the set of values within

which the difference between the two variables are substantively inconsequential. One

example of a test for equivalence, which provides the easiest intuition, is the “Two-One-

Sided-Test” (TOST), which is set up as follows:

H0 : µT−µC
σ
≥ εU or µT−µC

σ
≤ εL versus H1 : εL <

µT−µC
σ

< εU

10“For the rest of the results, it does not make a great deal of sense to present t-statistics because the large sample

ensures that most of these differences are statistically significant. Rather, we focus on their size” (Brady and McNulty

2011, p. 123)
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where µT and µC refer to the mean of the treated and control groups, respectively, for

a given variable, and σ is the common standard deviation. εU and εL refer to the upper

and lower bounds for which two groups are considered equivalent. Choosing appropriate

values for εU and εL is the most important aspect of equivalence testing, and is discussed

in detail in Section 3.1. The test is conducted using two one-sided t-tests, and the null

of difference is rejected in favor of equivalence if the p-value for both one-sided tests is

less than α. This test controls the type I error of classifying the two sample means as

equivalent (as defined by the equivalence range) when, in fact, they are not. This is one

illustrative example of an equivalence test.

Figure 1 depicts, graphically, how the traditional balance tests and equivalence tests

differ. In traditional balance tests, depicted in the left panel, we fail to reject the null

hypothesis that means of two groups are different if the observed t-statistic falls between

the critical values. The shaded region corresponds to the region in which the two groups

are classified as different when they are, in fact, the same, and the area corresponds to

the level of the test. However, it is easy to see that this procedure is not controlling the

proper type I error implied by the null of a test of a design. In the panel on the right,

the equivalence test will reject the null of a difference of at least a pre-specified size in

favor of the alternative of a difference less than that size when the critical value lies in

the shaded region. We discuss the mechanics and interpretation of equivalence testing

in detail in Section 3, including an equivalence version of the t-test. Alternative versions,

which are designed for different types of data or sensitive to different departures of the

null are presented in Appendix SI-1.

Some recent literature in political science has suggested the practice of reversing the

standard setup to make difference the null hypothesis and sameness the alternative hy-

pothesis (Rainey 2014, Gross 2014, Esarey and Danneman 2015) for the study of negli-

gible, or substantively insignificant, effects.11 The negligible, or substantive significance,
11The difference between determining null, or negligible effects, and the notion of “substantive significance”, is
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approach evaluates the confidence range of the parameter, and determines if it lies en-

tirely within (“negligible”) or outside (“substantively significant”) the null effect range. Both

Rainey (2014) and Gross (2014) recommend the use of the 100(1 - 2α)% confidence inter-

val, and determining if this interval lies entirely within a substantively defined equivalence

range. This interval inclusion method is effectively the same as the TOST (Berger and

Hsu 1996). Asymptotically, our suggested test and the interval inclusion method are the

same, and are effectively indistinguishable with reasonable sample sizes, however the

equivalence t-test described in this paper is more powerful in smaller samples (Wellek

2010).12 We show, in Appendix SI-5, why the interval inclusion approach can allow re-

searchers to construct a statistical test with zero power in some scenarios. We build on

the equivalence tests presented by Rainey (2014) and Gross (2014) by presenting addi-

tional equivalence tests appropriate for different distributions, departures from the null, as

well as randomization inference versions.

2.3.1 Sample Size and Traditional Balance Tests

The most common argument against traditional balance tests revolves around the com-

mon conflation of low power with an incorrect acceptance of the null hypothesis. The

problem arises from the fact that the standard tests are designed to control for a type I

error of classifying the two group means as different when they are, in fact, the same.

A desirable property for a statistical test is that the power to detect the alternative

nuanced. “Substantive significance” addresses the notion that the effect must lie outside a range of theoretically

unmeaningful values (Gross 2014), and “negligible effects” involve providing evidence that an effect lies within a

range of theoretically unmeaningful values (Rainey 2014). In the parlance of equivalence tests, “negligible effects”

are a straight forward application of an equivalence test, typically centered on zero, whereas “substantive significance”

is often operationalized as showing that a 100(1 - 2α)% confidence interval lies entirely outside of an equivalence

range. Both of these types of effects are conceptually similar to “placebo tests”, a type of equivalence test conducted

on a post-treatment variable that is hypothesized to lie within a specified range.
12The additional power in the equivalence t-test describe here comes from accounting for the non-central t distri-

bution in the testing procedure.
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increases in sample size, yet by conducting balance tests using tests of difference, the

probability of rejecting the null of difference is inversely related to sample size. In equiv-

alence tests, however, if the sample size is small, holding all else constant, the t-statistic

will move towards zero, which will increase the p-value of at least one of the one-sided

tests, depending on if the observed difference is above or below zero, thus making it less

likely that we will reject a null of difference. Therefore, the power of the test behaves as we

would expect with respect to sample size. If a researcher wants to put a higher burden on

the tests of design, and thus signal increased strength in the validity of the design, then

the equivalence range should be decreased. Importantly, regardless of the researcher’s

chosen equivalence range, the equivalence confidence interval gives the smallest equiv-

alence range supported by the data at the α-level, which the author should defend as

substantively inconsequential to support their design. In Appendix SI-4, we provide simu-

lations showing that equivalence tests are less likely to tempt researchers to conflate low

power with evidence in favor of equivalence.

The main argument in defense of traditional hypothesis testing for validity tests is that

although small sample sizes tend to make passing balance tests easier, small sample

sizes also make finding significant treatment effects less likely. Hansen (2008) discusses

how the dependence on sample size, i.e. the n1/2 factor in the standard error calculations,

appears in both the balance and outcome tests. Therefore, if one artificially inflates the p-

values of the balance tests with small sample sizes, then the p-values associated with the

outcomes will also be large, leading to non-significant findings. This logic, while correct

for outcomes in which there is a theorized non zero effect of an intervention, would not

hold if a researcher theorized a negligible effect unless an equivalence test is used on the

outcome. While it is incorrect to accept a null of no difference in a low power situation,

and advantage of equivalence tests that are consistent with the implied hypotheses in

Equation 1 is they give researchers a means by which to convey the strength of the

design while skirting the issue of the ambiguity of lack of statistical power.
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3 Mechanics of an Equivalence Test

Implementing an equivalence test requires that a researcher define a few parameters,

most importantly the equivalence range.13 This section discusses a common test of equiv-

alence to explicate the intuition behind this type of statistical test. We start with practical

guidance for researchers about how to select an equivalence range, followed by the me-

chanics of the most common equivalence test, how to interpret the findings, and finally

and how these tests can be used with false discovery rate correction methods.

3.1 Selecting an Equivalence Range

Conducting an equivalence test requires the definition of an equivalence range – [εL, εU ]

– in which we can consider the parameter of interest in the two groups to be substantively

inconsequential.14 How should one select this interval? This is arguably the most impor-

tant decision a researcher must make when conducting an equivalence test, and it should

be informed by the researcher’s substantive knowledge.

3.1.1 Substantively Chosen Equivalence Range

Researchers are best suited to define equivalence ranges based on their substantive

knowledge and considerations of the data at hand. This ensures that the researcher

has considered what level of difference is most acceptable for the given application given

concerns about bounding bias.15

13We consider analyses conducted from a frequentist perspective. Researchers may, instead, wish to use Bayesian

analysis, in which case they would not have to consider the appropriate null hypothesis. These researchers could

consider the posterior distribution, and its relationship to an equivalence range. Wellek (2010), particularly Sections

2.4 and 3.2, discusses Bayesian methods for equivalence.
14Our discussion typically assumes a symmetric equivalence range for tests of difference, and the analog for ratio

tests, however tests of equivalence do not require equivalence ranges to be symmetric.
15Imai et al. (2008) argue there is no theoretical level of imbalance that is acceptable if a researcher is concerned

about bias–which can be of arbitrary size and direction given even small imbalances. This concern is valid, and is a
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Researchers that have advocated for equivalence type approaches often tout the value

of requiring researchers to transparently define and defend their equivalence range on

theoretical grounds. As Rainey (2014, p. 1085) points out, “scholars who are cautious

about the seeming arbitrariness of m [the equivalence range] should also note that as the

researchers’ choice for m changes, so too does the substantive claim they are making.

Researchers who hypothesize that an effect lies between -1 and +1 make a weaker claim

than researchers who argue that the same effect lies between -0.1 and +0.1. By explic-

itly defining m, researchers alert readers to the strength of their claims.” Gross (2014, p.

786) argues that “to convincingly argue about what results should be deemed significant

in practical terms provides incentive for creative intertwining of qualitative with quantitative

knowledge of subject matter.” Consistent with previous authors, we consider the ability of

the authors to encode the strength of their design in their equivalence range as an ad-

vantage. More powerfully, the equivalence confidence interval, described below, provides

a more transparent way for authors to encode the same information that mitigates the

impact of this choice.

It should be noted that the trade-off to smaller intervals, however, is power to detect

equivalence. If the intervals are very narrow, then a large amount of data will be required

to obtain sufficient power to detect differences that small. As a result, researchers spec-

ifying substantively defined equivalence ranges should ensure that they have sufficient

power, under the assumption that the true difference is 0 and given their sample size, to

detect equivalence.16 In judging the results of a test of design, the power of the test can

inform our expectations over the likelihood of rejecting the null of difference at a given

equivalence range.

primary reason that researchers should conduct sensitivity analyses to check for the robustness of their results.
16Maximal power for equivalence tests are achieved at a true difference of zero. While this assumption is justified

for tests of design, maximal power may not be appropriate for tests of negligible effects.
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3.1.2 Sensitivity and Default Equivalence Ranges

Although we believe that equivalence ranges are best chosen out of substantive consid-

erations, it is useful to specify default values for when researchers do not have strong

substantive priors for an appropriate range. While this is an area in need of validation

studies, we provide a set of recommendations depending on the aim of the researcher

and the available data.

Inherently, researchers are interested in balance as an observable implication of their

design that guards against potential bias (Hansen 2008). Therefore, we propose re-

searchers, where feasible, consider a sensitivity approach for defining the equivalence

range. When a researcher is interested in a specific outcome we recommend the equiv-

alence range be ± one standardized effect size, using Glass’ ∆, which is standardized

by the standard deviation in the control group17, on the outcome of interest. Assuming

a perfect, linear correlation between the variable of interest and the outcome, imbalance

outside of this equivalence range could fully explain the effect size. While this is conser-

vative, pre-treatment covariates are rarely so highly correlated with the outcome18; it is an

assumption similar to the one made in other sensitivity analyses (Rosenbaum and Silber

2009). If researchers are concerned about non-linearities between the variable and the

outcome, they may wish to scale the standardized effect size by some non-linear factor.

When the researcher cannot benchmark against a standardized effect size, we recom-

mend using ε = ±0.36σ, where σ is the pooled standard deviation of the covariate being

tested.19 The inspiration for this default value comes from Wellek (2010), and is confirmed

by the simulation studies reported in Cochran and Rubin (1973), which showed that bias

of this magnitude or less tended to produce only minor levels of bias when the relation-
17We choose Glass’ ∆ in case the treatment has an impact on the variance. If there is no impact on variance, then

this will be more conservative than a pooled standard deviation (McGaw and Glass 1980).
18If researchers intend on using a linear regression to estimate the effect, they may wish to use equivalence ranges

based on the sensitivity analyses discussed in Hosman, Hansen, and Holland (2010).
19Table SI-1 discusses how to map from substantive to standardized ranges for each test.
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ship between imbalance and bias was linear, and outcome and covariates were normally

distributed.20 Further recommended default equivalence ranges for different tests, appro-

priate for different data types, are discussed further in (Wellek 2010, pg. 16).

We stress, however, that these default recommendations, as well as the sensitivity

approach, do not guarantee any sort of bias bounding properties. Equivalence ranges

should still be given careful, substantive, consideration for any particular application, and

researchers should defend their choices. Regardless of the chosen range, the researcher

should defend the equivalence confidence interval as inconsequentially small.

3.1.3 The Equivalence Confidence Interval

Since there naturally will be disagreement over an appropriate equivalence range, we

recommend inverting the equivalence test to produce a “equivalence confidence interval”

(ECI), which is akin to a confidence interval. The equivalence confidence interval is a

symmetric interval defined by the largest difference at which the null hypothesis of differ-

ence is rejected at a pre-specified α. The equivalence confidence interval specifies the

smallest equivalence range supported by the observed data.21 In other words, the differ-

ence between 0 and the maximum of the equivalence confidence interval quantifies the

degree of uncertainty we have over the true degree of imbalance, and the researcher can

be assured that at least 100(1-α)% of the time the truth will lie within that range.

Researchers should focus on defending differences in the equivalence confidence

interval as inconsequential rather than on the p-value associated with the equivalence

test. As long as the equivalence confidence interval is reported, readers can judge for
20Cochran and Rubin (1973) show that a caliper of 0.2σ when matching reduces 99% of bias, under certain condi-

tions, and a caliper of 0.4σ reduces 96% of bias. Ho, Imai, King, and Stuart (2006, p. 221) recommend the strictest

range of 0.2 for judging “adequate” balance. Our simulation studies found 0.2σ to be a very conservative range.
21In the case of a very small observed difference, it can be the case that the inverted range can support an equiv-

alence range of near zero. In this case, we define with equivalence confidence interval as the observed standardized

mean difference, which is a conservative range.
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themselves whether this range constitutes equivalence on the pre-treatment covariate or

placebo outcome. Unlike the p-value for the equivalence test, an advantage of the equiv-

alence confidence interval is that it is invariant to the researcher’s chosen equivalence

range, and therefore provides an objective value that researchers and the community can

consider. The advantage of this is that it removes the researcher degree of freedom in

defining the equivalence range, and forces the researcher to defend the range as sub-

stantively inconsequential for bias.

3.2 Conducting the t-test for Equivalence

Just as there are a variety of tests for evaluating difference, there are many equivalence

tests. We discussed the TOST test, which can be conducted using the interval inclu-

sion method (i.e., determining if a 100(1 - 2α)% confidence interval lies entirely within the

equivalence range), as one conceptually straightforward method for conducting an equiv-

alence test. Romano (2005) shows that the TOST is the asymptotically uniformly most

powerful test. However, as shown in Appendix SI-5, the test can be structure to be grossly

under powered in finite samples. For this reason, we focus on an alternative test that is

more powerful in finite samples.

The most appropriate test statistic depends on the type of variable and the desired

sensitivity to different types of departures of H0. Because most difference-in-means tests

are conducted using t-tests, we discuss in detail the analogous t-test for equivalence in

this section. However, other common tests for equivalence that are designed for differ-

ent distributions, non-normal data, and parameters of interest, and which may be more

appropriate for small samples, do exist. A summary of, and suggested use cases for,

these alternative tests can be found in Appendix SI-1 and formal notation can be found in

Appendix SI-2.

The equivalence range for the t-test for equivalence is typically defined in standard-

ized differences rather than the raw difference in means between the two groups, but
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researchers can easily map their substantive ranges to standardized differences by scal-

ing by the standard deviation in the covariate. The standardized difference is a useful

metric when testing for equivalence because, given some difference between the means

of the two distributions, the two groups are increasingly indistinguishable as the variance

of the distributions grows towards infinity, and increasingly disjoint as the variance of the

distributions shrinks towards zero (Wellek 2010). We also recommend the t-test for equiv-

alence because it is the uniformly most powerful invariant (UMPI) test for two normally

distributed variables (Wellek 2010, pg. 120). For simplicity, assume that XT i ∼ N(µT , σ),

with sample size m, and XCi ∼ N(µC , σ), with sample size n, then the equivalence t-test

uses the following hypothesis test.

H0 : µT−µC
σ
≥ εU or µT−µC

σ
≤ εL

versus

H1 : εL <
µT−µC

σ
< εU

We choose εL and εU appropriately, preferably based on substantive knowledge. Typ-

ically the range of equivalence is symmetric around zero. After defining an equivalence

range, the realized test statistic is calculated. The test statistic is

T =

√
mn(N − 2)/N(X̄T − X̄C)

{∑m
i=1(XT i − X̄T )2 +

∑n
j=1(XCj − X̄C)2

}1/2

. This test statistic is distributed non-central t with N − 2 degrees of freedom (Wellek

2010, pg. 120). If we choose a symmetric equivalence range, it can be shown that we

can conduct a one-sided test using the test statistic |T |, which is distributed as the square

root of a non-central F , with the rejection rule:

|T | < Cα;m,n(ε)

with

Cα;m,n(ε) = F (α; df1 = 1, df2 = N − 2, λ2nc = mnε2/N)
1
2
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where F (α, df1, df2, λ
2
nc) denotes the quantile function of the non-central F distribution

with level α, degrees of freedom 1, N − 2, and non-centrality parameter λ2nc = mnε2/N . If

the εs were not symmetric, then we would have the rejection rule:

Cα;m,n(εL, εU) < T < Cα;m,n(εL, εU)

where the critical values must be determined appropriately. If |T | is less than our criti-

cal value (or T lies within the critical values, in the case of asymmetric εs), then we reject

the null hypothesis of a difference between the means of the two groups in favor of the

alternative of an inconsequential difference. Otherwise we fail to reject the null of non-

equivalence. In addition to the rejection decision, researchers should also analyze the

equivalence confidence interval, which gives the minimum equivalence range supported

by the data. In the case that the equivalence confidence interval is small, then the re-

searcher can be confident that the data provides strong against a substantial difference.

If the range is large, then the researcher may call in to question the equivalence of the

means of the two groups. Researchers should also be aware of the power of their test.

Further discussion of the power of equivalence tests is discussed in Appendix SI-5.

3.3 Interpretation

Equivalence tests are not direct tests of the underlying identifying assumptions necessary

in most causal designs, so how should researchers interpret the results of these tests?

Unconfoundedness is never directly testable, so researchers have taken two approaches

to the interpretation of balance test results.

First, we could interpret the results from a frequentist perspective, in which the results

indicate how much information the data conveys against the null hypothesis, in this case

the null of a consequential difference. A research design that truly is unconfounded does

not require that the treatment and control groups look identical across all covariates in

any given sample, but a lack of balance in a given sample on important variables should

17



lead observational researchers to question their identifying assumption. By making our

null hypothesis that the “data is inconsistent with the observable implications of an uncon-

founded design”, a test of equivalence will provide evidence to reject this null in favor of

an alternative that the “data is consistent with the observable implications of an uncon-

founded design”. Of course, we should note this is distinct from the alternative that the

“design is unconfounded”, which is untestable. While we do not accept that our design is

unconfounded, our p-values will now encode a metric for how much information the data

has against the implications of a flawed design.

Alternatively, we could refrain from interpreting the statistical implications of the test,

and rather ask “How similar is similar enough?” Some researchers take this more extreme

view, and merely consider balance tests as a non-statistical metric for balance assess-

ment (e.g. Sekhon (2007), Imai et al. (2008)), in which the resulting p-values are used to

maximize observable balance rather than conduct tests of design, such as in matching

studies.

Additionally, experimentalists may appeal to p-values as a metric for balance when

conducting pre-treatment balance tests, in which they wish to ensure balance on key

prognostic covariates on which they cannot block. These researchers are not trying to

determine if their experiment is consistent with an unconfounded design–this is true by

design. However, balance on key prognostic variables can increase the likelihood the

resulting estimate will be close to the truth. The equivalence tests discussed here are

consistent with this aim, and should have desireable properties that low p-values encode

evidence against a null of substantial difference, and researchers will not be tempted to

conflate low power with similarity. Additionally, researchers conducting re-randomization

can encode their notion of “similar enough” in to their balance metric via the equivalence

range.

Observational researchers conducting balance checks are ultimately concerned about

bias, particularly as caused by unobserved confounders. Consequently, what really mat-
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ters for tests of design is the unobservable mapping between covariate imbalance and

bias, and covariate balance itself is only a proxy for this potential bias.22 Because this

mapping is fundamentally unobservable, our judgments about an adequate equivalence

range must ultimately depend on substantive considerations. Thus, when possible, one

should specify an equivalence range small enough to satisfy readers that differences be-

tween two groups contained within the interval are substantively inconsequential, and

thus unlikely to lead to significant bias.

There is a healthy literature on sensitivity analyses, e.g. Rosenbaum and Silber (2009)

and Imbens and Rubin (2015), for assessing possible remaining unmeasureable con-

founding in causal effect estimates, and tests of designs do not negate the need for these

additional analyses. Tests of design will provide information on observable imbalance,

and under certain assumptions, how that imbalance could impact our estimates. They do

not, however, provide any information about unobservable imbalance, and for that reason

we strongly encourage practitioners to combine tests of designs with sensitivity analyses

on the final estimates when providing evidence to strengthen the claims of their designs.

3.4 Randomization Inference Equivalence Tests

A concern of many researchers is that balance is a characteristic of the sample, and

therefore that tests of design, conducted on pre-treatment covariates, which reference

a hypothetical super-population, are inappropriate because they are contradictory to the

non-random nature of the observed sample (Imai et al. 2008, Austin 2008). One solution

to this issue is to conduct tests that are conditional on the realized sample using permuta-

tion based inference, which allows for inferences about how “differences between groups

can be explained by chance, rather than what differences between sample and popula-

tion can be explained by chance” (Hansen and Bowers 2008, p. 224). In addition to being
22Without additional assumptions about the mapping between the covariate and the outcome, any level of imbalance

could lead to bias of arbitrary magnitude and size.
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conditional on the observed sample, the permutation tests are exact and do not rely on

large sample approximations. These exact tests can be conducted to asses the likelihood

of observed imbalances in the sample without addressing the separate goal of assessing

generalizability.

Using the Intersection-Union Principle, each equivalence test can be tested using the

union of two one-sided exact tests. Permutation tests require an arguably stronger as-

sumption of a strict null of a constant treatment effect, and they test for distributional de-

partures from the strict null. These types of tests are designed to test for exchangeability

of the two groups, a property that should be guaranteed by the random or quasi-random

design of the study. Therefore, they are well suited for tests of design, such as balance

and placebo tests, where we explicitly desire a test of exchangeability. They are also

robust to outliers and sensitive to departures of the null above and beyond mean differ-

ences, such as differences in variability within the two groups. To conduct the permutation

version of the parametric tests, we conduct one-sided tests of the strict null hypothesis

equal to the bounds of the equivalence range, and the overall null hypothesis of non-

equivalence can be rejected if both corresponding permutation p-values are less than the

level of the test, α.23 Formal properties of permutation equivalence tests are explored in

Arboretti, Carrozzo, Pesarin, and Salmaso (2018).

3.5 Multiple Testing Corrections and Equivalence Tests

One final concern for researchers conducting tests of design is that they often conduct

tests across a battery of covariates. In the balance testing framework, the more vari-

ables, particularly highly prognostic variables, that a researcher can provide balance on,

the more evidence they can provide about the plausibility of the validity of their design.

Sometimes researchers will conduct an omnibus test for overall balance, since the ob-

servable implication of unconfoundedness is balance across the joint distribution of the
23Simulations showing properties of this test are provided in Section SI-3.
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pre-treatment covariates. Wellek (2010) provides the equivalence version of Hotelling’s

T 2, and Fisherian tests, such as those in in Hansen and Bowers (2008) and Caughey

et al. (2017), can be used, however these tests should also be structured with an alter-

native hypothesis of equivalence. While the omnibus test is not subject to the multiple

testing problem, researchers are often interested in univariate balance statistics. How-

ever, conducting multiple tests can lead to false positives. With traditional balance tests, if

a researcher conducts balance tests across twenty variables, and observes a significant

difference for one, should they discredit that result as chance? Typically, when conducting

multiple tests, researchers can adjust for the multiple testing problem by correcting for the

false discovery rate–the expected proportion of falsely reject hypotheses– or the family

wise error rate–the probability of committing any type 1 errors (Benjamini and Hochberg

1995). Perhaps more importantly, if researchers are conducting placebo tests on out-

comes where they expect negligible effects, an omnibus test may not be appropriate,

and researchers should adjust for the multiple outcomes, placebo and not, that they are

testing.

Multiple testing procedures control the type I error rate by appropriately inflating the

resulting p-values to account for the number of tests being performed to control for either

the false discovery rate or the family wise error rate. However, these procedures would be

inappropriate in conjunction with the common way in which tests of design are conducted–

inflating the p-value for a test-of-difference test would be making the burden of proof lower

for the researcher. The researcher wishes to control the probability of incorrectly rejecting

the null of difference when a difference is, in fact, present. By using equivalence tests the

hypothesis test is consistent with the researchers aims, and multiple testing corrections

can be applied directly to the resulting p-values. The ability to correct for the multiple

testing problem is a strength of the equivalence approach.
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4 Examples

4.1 Example: Brady and McNulty (2011)

To illustrate the merits of equivalence tests, we return to the example of Brady and Mc-

Nulty (2011), discussed in Section 2. Recall that Brady and McNulty (2011) argue that

some polling stations in Los Angeles were consolidated “as-if” random by the county reg-

istrar. Central to their argument about the quality of their design is that, prior to the con-

solidation, voters in treatment and control precincts had roughly equal “costs of voting”,

with distance between voters’ residence and their polling station being their chief mea-

sure of cost. Balance on this variable is critical, yet the authors find that the pre-treatment

difference is “highly significant”, although “substantively rather small” (p. 123). If the con-

ventional decision rule over adequate balance is followed, then one would question the

“as-if” random identification assumption.

We replicate Brady and McNulty’s balance check using the two sample t-test for equiv-

alence. The observed average difference in distance between voters in treatment and

control precincts is 0.034 miles, or 60 yards. We use an equivalence interval, based on

the strict interval suggested in Ho et al. (2006) discussed in Section 3.1.2, of 0.2 stan-

dard deviations (amounting to about 0.055 miles or 98 yards). Note that is a case where

the equivalence interval used to formulate the null hypothesis could also be chosen on

substantive grounds based on knowledge of factors affecting the decision to turnout that

limit an acceptable distance. We also compute the equivalence confidence interval which

is the smallest equivalence interval supported by the data (α = 0.05) given the observed

difference between treatment and control polling stations.

Can we reject the null hypothesis that the mean difference in the distance to polling

stations in 2002 is greater than ε = 0.055 miles? This null is rejected with a p-value

that is essentially zero. Given our pre-specified equivalence interval, we consider the two

samples to be well balanced on this variable. When we invert our test, we find that the
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equivalence confidence interval, supported at the 0.05 level, is 0.124 standard deviations

or 0.035 miles (61 yards). Whether or not 0.035 miles is of concern, worthy of further

adjustment, such as through regression, should be debated by subject area experts.

4.2 Example: Dunning and Nilekani (2013)

To illustrate the merits of equivalence tests over traditional tests, we reconsider the bal-

ance tests conducted in Dunning and Nilekani (2013). In this article, the authors consider

a natural experiment to evaluate the effect of ethnic quotas on redistribution. Leveraging

an ordered list used to determine villages in which council presidencies were reserved

for scheduled castes, the authors note that villages at the bottom of the list in an ear-

lier election period, which are assigned quotas, are indistinguishable from villages at the

top of the next list who are not assigned quotas until the next election. Using purposive

sampling among these villages, the authors evaluate how similar these villages are on a

number of characteristics, presented as Table 2 in the original text.

The authors present balance statistics for univariate tests, and the p-values are gen-

erally high, but somewhat inconclusive for two variables in particular , “Number of house-

holds” (p = 0.09) and “Mean female nonworkers” (p = 0.12). The authors don’t address

these individual tests, but instead argue that an F -test of treatment assignment on all the

covariates is insignificant. While the authors convincingly present a battery of evidence

that the design is consistent with “as-if” randomization, the presented balance tests do

not necessarily provide statistical evidence consistent with their claim. In Figure 2 we

conduct the same balance tests, this time using equivalence tests and applying an FDR

correction.

[Figure 2 about here.]

As can be seen in Figure 2, the equivalence tests indicate we can reject the null of

consequential difference, making the “as-if” random assumption more plausible. In this
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example, we conduct the test using a fairly conservative range of 0.36σ. The smallest

standardized effect size in the original manuscript is 0.43σ, which, if used as the equiv-

alence range, yields even smaller p-values. An important contribution of the equivalence

method is that rather than debating whether 0.36σ or 0.43σ is the appropriate range, we

can ask is±210 households, or±433 female nonworkers in a village, the respective ECIs,

a substantively inconsequential difference in this data. We also see that the p-values can

now be adjusted to account for the large number of tests, which we see as an alternative

or supplementary approach to omnibus tests depending on the evidence the researcher

wishes to provide.

5 Conclusion

Researchers’ need to provide evidence for equivalence between two groups, an observ-

able implication of an unconfounded design, has always been present, but with the in-

creased skepticism about traditional research designs in economics, political science,

and sociology, we have seen more encouragement for researchers to expend great ef-

forts in defending their effect estimates from the critique that they suffer from remaining

confounding. In many areas of observational work in the social sciences, readers begin

with the presumption that the observational design is flawed and must be convinced by

empirical tests that this is not the case. Experimentalists are asked to defend against a

“bad draw” that could lead their realized estimate to be far from the truth. Beyond the case

of design, researchers are also interested in providing statistical evidence in favor of the-

oretical negligible effects on outcomes. The argument of this essay is that this skepticism

should be directly embedded in the hypothesis tests that are used to persuade readers

over the validity of the design. By using equivalence tests, researchers begin with the as-

sumption that the design is flawed, or that an effect is not negligible, and this hypothesis

is only rejected if the data allows it. Furthermore, we believe that equivalence tests en-
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courage researchers to directly address a substantive question about their design: what

is good balance? By requiring the researcher to specify an equivalence range ex-ante,

equivalence tests encourage a substantive discussion about imbalances that are small

enough to be tolerated versus those that are not.

Using equivalence tests for tests of designs opens up an avenue of research for

methodologists. Each causal research design implies a certain test of design. Regres-

sion discontinuity designs (RDD) imply continuity of observable variables, matching and

natural experiments imply balance and difference-in-differences or synthetic matching im-

plies a similar time trend on pre-treatment outcomes. Particularly with RDD and synthetic

matching, further work must be done on the most appropriate equivalence test. Re-

lated, researchers often are concerned about the “curse of dimensionality”, or the fact

that testing across multiple dimensions will increase the likelihood of finding an imbal-

anced variable (Ho et al. 2006). Further work on multivariate tests for balance that test for

equivalence across a multidimensional space is necessary. The authors are also working

on the development of an R package that will allow researchers to conduct equivalence

based tests of design.

For sample sizes typically used in natural experiments, lab experiments, and related

designs in the social sciences, an equivalence approach may increase the difficulty of

passing balance and placebo tests. As evidenced by our review of natural experiments in

Appendix SI-6, some studies that currently “pass” tests of design when the null is same-

ness will not reject a null of difference. Failing to reject a null of difference does not by

itself, of course, invalidate a design or indicate hopelessly biased estimates. Many other

elements of a design should go into an evaluation of its quality, such as the degree to

which the assignment to treatment is exogenous or “as-if” random. For studies where

the treatment assignment mechanism is well understood and the identifying assumptions

seem quite plausible, our burden of proof should be lower. In designs exploiting a disconti-

nuity or those relying on a conditional independence assumption, more definitive evidence
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may be required to overcome doubt. For these cases, equivalence tests can improve on

existing practice by ensuring that we encode our skepticism in the null hypothesis and

require the researcher to marshall evidence against it.
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Figure 1: Tests of equivalence versus tests of difference. The left panel depicts the logic of tests of
difference under the null hypothesis of no difference. The right panel depicts the logic of one type
of equivalence test–the Two One Sided t-test (TOST)–under the null hypothesis of difference.

30



Percentage ST

Percentage SC

Female Illiterates

Population (0-6)

Female Workers, Other Industry

Population

# Workers

Marginal Agriculture Workers

HH Industry Workers

Female Cultivators

Male Nonworkers

ST Population

SC Population

Female Nonworkers

Cultivators

Agricultural Laborers

# Households

# Marginal Workers

# Illiterates

0.950 0.975 1.000 1.025 1.050
 

 
 

Variable

0

0

-142.2

-107

-15.5

-544.8

-179.8

-9

2.2

-32.9

-146.3

35.9

-15.6

-198.1

-57.9

-14.1

-99

-12.5

-257.6

0.9500.9751.0001.0251.050
 

Observed
Mean
Difference
(Scale of Var)

Percentage ST

Percentage SC

Female Illiterates

Population (0-6)

Female Workers, Other Industry

Population

# Workers

Marginal Agriculture Workers

HH Industry Workers

Female Cultivators

Male Nonworkers

ST Population

SC Population

Female Nonworkers

Cultivators

Agricultural Laborers

# Households

# Marginal Workers

# Illiterates

-0.2 0.0 0.2

Equivalence Range (in standard deviations σ)

Equivalence Tests  
 
Equivalence Range: +/- 0.36σ 

0

0

347.6

231.8

46.8

1090.1

369.1

38.2

19.4

76.8

309.6

105.5

109.6

433

150.8

93.8

209.2

83.4

633.9

0.9500.9751.0001.0251.050
 

Equivalence
Confidence
Interval (+/-)
(Scale of Var)

0.004

0.001

0.004

0.009

0.002

0.016

0.012

0.001

0

0.007

0.012

0.001

0

0.009

0.004

0

0.041

0

0.004

0.9500.9751.0001.0251.050
 

FDR
Corrected
P-value

Figure 2: The figure above presents the results of equivalence tests. The “Observed Mean Difference” is
the mean of the treated group minus the mean of the control group. The vertical dashed lines represents the
hypothesized equivalence range, defined as the standardized effect size on the outcome of interest. Gray
bars represent the inverted equivalence range supported by the data, presented in standardized differences.
The black diamonds represent the observed standardized difference for the variable of interest. The
“equivalence confidence interval” is the inverted range, transformed to the scale of the variable. The
“P-value” corresponds to the false discovery rate corrected p-value of the test of the null equivalence range
of one standardized effect size.
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Abstract

Recent emphasis on credible causal designs has led to the expectation that schol-
ars justify their research designs by testing the plausibility of their causal identification
assumptions, often through balance and placebo tests. Yet current practice is to use
statistical tests with an inappropriate null hypothesis of no difference, which can result
in the equating of non-significant differences with significant homogeneity. Instead,
we argue that researchers should begin with the initial hypothesis that the data is in-
consistent with a valid research design, and provide sufficient statistical evidence in
favor of a valid design. When tests are correctly specified so that difference is the
null and equivalence is the alternative, the problems afflicting traditional tests are al-
leviated. We argue that equivalence tests are better able to incorporate substantive
considerations about what constitutes good balance on covariates and placebo out-
comes than traditional tests. We demonstrate these advantages with applications to
natural experiments.
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SI-1 Additional Statistical Tests for Equivalence

In many cases, researchers may be interested in testing for non-equivalence of differ-

ent parameters of interest. This section outlines alternative tests for equivalence, some

culled from the extant literature and others created for the problem at hand. Table SI-1

summarizes the tests. The “Type of Data” column describes the type of data each test

is appropriate for and the “Randomization Inference” column describes whether the test

a randomization version of a common test. The test statistic and rejection rule are also

described for each test. Finally, the “Epsilon Range” column describes the recommended

epsilon, or the standard in the literature where appropriate, denoted εdef , and where avail-

able, the equation for translating substantively motivated εs, which are on the scale of

the variable and denoted εsub, into the scale of the test. ∆ refers to one standardized

mean difference on the outcome of interest using the standard deviation in the control

group, and ∆pooled refers to one standardized mean difference on the outcome using the

pooled standard deviation. If data is not available on the outcome of interest, researchers

should use the defaults discussed in Section 3.1. The mathematical notation and steps

for implementation for each test are described in detail in Appendix SI-2.

This table is intended to serve as a simple reference for practitioners, and it is not ex-

haustive of the types of equivalence tests available. Users should consult Wellek (2010)

for a detailed discussion of the equivalence testing literature. A general method for equiv-

alence testing is described in (Wellek 2010, Chapter 3). For example, if researchers have

paired designs, they should use the McNemar equivalence test described in (Wellek 2010,

Sec. 5.2). If they have blocking, they may wish to use the general approach to conduct an

equivalence version of the Cochran-Mantel-Haenszel test. Blocking and clustering can be

easily incorporated in to the non-parametric versions of the tests. Standard adjustments

can also be made to the standard errors for the t-statistics in the equivalence t-test and

the TOST.
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SI-2 Formalization of Additional Statistical Tests for Equiva-

lence

SI-2.1 Two-One-Sided Test and Intersection Union Tests

Rather than studying the standardized difference, as is used in the equivalence t-test

discussed the main body of the text, researchers may wish to conduct a test for equiva-

lence of the raw mean difference. This can be accomplished using a Two-One-Sided-Test

(TOST) (Berger and Hsu 1996). The TOST test is conducted using two one sided t-tests

centered around the bounds of the equivalence range. One advantage of the TOST is that

it allows for the researcher to define the equivalence range on the scale of the variable

of interest as opposed to standardizing substantive ranges. The TOST test can also be

adapted to test for equivalence of the ratio of the means of the two groups, instead of the

raw difference between the means. The TOST ratio test has the advantage of having an

absolute scale that is independent of the scale of the variable of interest. This test is used

by the FDA for declaring generic drugs as equivalent to brand-name drugs. In that case,

the two drugs are declared equivalent if the ratio of the mean effect of the two drugs falls

within the range [0.8, 1.25].

The TOST is a type of intersection union test, wh ich are a way of testing multiple

hypotheses at once. They are set up in the following manner:

H0 : θ ∈ ∪ki=1Θi versus H1 : θ ∈ ∩ki=1Θ
c
i (1)

where θ is the parameter if interest and Θ is the parameter space. The overall null

hypothesis, H0 is rejected at the α level if all of the individual null hypotheses, H0i, are

rejected and the α level. Note that this can be a conservative test, depending on how the

rejection region for the combined test is determined (Berger and Hsu 1996). The typical

TOST t-test is a type of intersection union test in which the hypotheses are set up as:

3



H0 : µT − µC ≥ εU ∪ µT − µC ≤ εL versus H1 : εL < µT − µC < εU (2)

A t-test is conducted for both of the null hypotheses, i.e. a test one sided test for

µT −µC ≥ εU and a one sided test for µT −µC ≤ εL. The overall null hypothesis is rejected

at level α if the associated p-value for each of the individual hypotheses is less than α.

Commonly, the null hypothesis is defined in terms of the ratio of µT and µC , thus making

the hypotheses of the form:

H0 :
µT
µC
≥ εU ∪

µT
µC
≤ εL versus H1 : εL <

µT
µC

< εU (3)

This test, using the ratios, is used frequently to test the bioequivalence of generic

drugs versus non-generic drugs in medicine. In that case, the εs are chosen as εU = 1.25

and εL = 0.8, the current standard of the FDA. Setting up the hypotheses as a ratio has

advantages such as putting the metric of difference on an absolute scale instead of on

the scale of the variable. Berger and Hsu (1996) show that the ratio test is also conducted

using a t-test, however the test statistic is adjusted as such:

TL =
X̄T − εLX̄C

S
√

1/m+ ε2L/n
TU =

X̄T − εUX̄C

S
√

1/m+ ε2U/n
(4)

The overall null hypothesis is rejected TL ≥ tα,m+n−2 and TL ≤ −tα,m+n−2.

SI-2.2 Exact Fisher Binomial Test for Equivalence

The Fisher type exact test is well adapted to equivalence between two groups with binary

outcomes. This test is based on the odds ratio as opposed to the mean difference be-

tween the two groups. Wellek (2010) discusses the advantages of choosing the odds ratio

over the difference of pT and pC , however the basic point can be illustrated as follows. If

the test statistic is defined as the difference in the probability of success between the two
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groups, i.e. pT − pC , then as pT approaches 0 or 1, the range of values for which pC could

be called equivalent is diminished. If equivalence is defined as the two groups having a

difference in probability of success of no more than 0.1, then if pT = 0, pC must be be-

tween 0 and 0.1. However, if pT = 0.5, then pC can be between 0.4 and 0.6. If the odds

ratio is used as the test statistic, this shrinking of possibilities for pC as pT approaches

0 or 1, or vice versa, is not an issue. The Fisher type test for binary data tests whether

the odds ratio is within a specified range, typically centered around 1. There are many

other equivalence tests for binary data that focus on the raw difference in probabilities of

success discussed in Barker, Rolka, Rolka, and Brown (2001).

We will call the rate of units with a response value of 1 in the treatment condition pT

and the rate of units with a response value of 1 in the control condition pC . The test

statistic is the odds ratio of the two groups, ρ = pT (1 − pT )/pC(1 − pC), the advantages

of which are discussed above. The hypothesis using the odds ratio as the test statistic is

then set up as:

H0 : 0 < ρ ≤ εL or εU ≤ ρ <∞ versus H1 : εL < ρ < εU (5)

with εL < 1 < εU . The optimal solution to this test is based on R.A. Fisher’s exact test

for the homogeneity of two binomial distributions, based on the conditional distribution of

the odds ratio sum of the number of successes in the treated and control groups. The

distribution of this test statistic follows an extended hypergeometric distribution (Wellek

2010). For simplicity, assume that the sample sizes are the same and that the εs are

chosen symmetric around 1. The test rejects the null hypothesis of non-equivalence if the

associated p-value of the test statistic is less than the α level of the test, where the p-value

is calculated as:

pn,ρ(x|s) =

max(x,s−x)∑

j=s−max(x,s−x)
hn,ns (j; ρ) (6)
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with

hn,ns (x; ρ) =

(
m
x

)(
n
s−x
)
ρx

∑min(s,m)
j=max(0,s−n)

(
m
j

)(
n
s−j
)
ρj

,max(0, s− n) ≤ x ≤ min(s,m) (7)

where m is the number of treated units, n is the number of control units, and s is the

(conditional) number of successes.

Wellek (2010, Section 6.6.4) outlines the rejection rule in the case of unequal sample

size and/or a non-symmetric equivalence range. We have implemented these scenarios

in our accompanied R package, but the intuition behind the test is the same. In the case

of binary data, multiple tests for testing the equivalence of the probabilities of success

of the two groups instead of the odds ratio are also discussed in Barker et al. (2001).

Most of these tests are based on the 100(1− 2α)% confidence interval of the t-test, which

corresponds to a TOST t-test.

SI-2.3 Mann-Whitney Test for Equivalence

Researchers may prefer to use a test sensitive to differences in distribution rather than

differences in means, akin to the Kolmogorov-Smirnov test (Sekhon 2007). The Mann-

Whitney test for equivalence is an asymptotically distribution free test that is sensitive to

divergences between two continuous distributions (Wellek 2010). If two distributions are

equivalent then the probability that any treated observation is greater than any control

observation should be approximately 1/2, thus equivalence is defined as a range around

this point. Therefore, the Mann-Whitney tests uses a rank-sum statistic to test whether

or this probability is within a small range around 1/2. If the two distributions are non-

equivalent, then the bulk of the treated units should lie to one side of the median of the

ranked treated and control observations. This test is especially advantageous because

it does not depend on the underlying distributions of the treated and control groups so

long as they are both continuous. This test is asymptotically distribution free and robust

to outliers in the data (Wellek 2010). Failure to reject the null of nonequivalence in this
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test implies not simply that the two groups differ in their means, but is designed to test for

departures in other parts of the distribution as well. Lehmann (1975) originally outlined

the properties of the U -statistic, and Wellek (2010, Section 6.2) further discusses the

implementation for equivalence testing, a brief outline is provided below. Extensions are

studied in Arboretti, Carrozzo, and Caughey (2015).

The basic outline of the test is as follows. Let XT i ∼ F ∀i = 1, . . . ,m and XCj ∼ G

∀j = 1, . . . , n, then they equivalence hypothesis for the non-parametric test can be set up

as:

H0 : π+ ≤ 1/2− ε′L or π+ ≥ 1/2 + ε′U versus H1 : 1/2− ε′L < π+ < 1/2 + ε′U (8)

where π+ = P [XT i > XCj] and ε′∗ = Φ(ε∗/
√

2) − 1/2. Here, π+ is estimated using the

Mann-Whitney statistic, W+ defined as:

W+ =
1

mn

m∑

i=1

n∑

j=1

I(XT i −XCj) (9)

Intuitively, if the two samples are equivalent, then the chance that any given treated

unit’s value of XT i lies above any given control unit’s value XCj is about one half. The

epsilons, then define the tolerance around one half for which the two groups would still

be equivalent. The hypothesis test is thus set up with a null hypothesis that P [XT i >

XCj] is either smaller or larger than the range of equivalence, and the alternative is that

P [XT i > XCj] lies within the range of equivalence. The statistical test is carried out with

the following rejection rule:

Reject nonequivalence iff

∣∣W+ − 1/2− ε1−ε2
2

∣∣
σ̂[W+]

< CMW (α; ε1, ε2) (10)

where
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CMW (α; ε′L, ε
′
U) = χ2−1(α; df = 1, λ2nc =

(ε′L+ε
′
U )2

4σ̂2[W+]
)

The Mann-Whitney statistic is asymptotically distributed, thus allowing for the approxi-

mation of the critical value1. The properties of the Mann-Whitney test for equivalence are

studied further in Wellek (1996).

SI-3 Sample specific versions of parametric tests

If the data is drawn from an experiment, or quasi-experiment, where the assignment

mechanism is known and random, we can conduct our tests using the permutation dis-

tribution of the data, also known as randomization inference. Here we discuss generally

how to conduct the permutation tests and specifically how to conduct non-parametric ver-

sions of the tests described above. Permutation tests are tests designed to test for the

exchangeability of two groups and are well suited to the problem at hand of validating

quasi-experimental designs. In theory, these observational designs should guarantee ex-

changeability between the two groups. The non-parametric versions of the above tests

all use an IUT approach where the the bounds of the equivalence range are used as the

strict nulls, and TOST tests are conducted based on the permutation distribution of the

test statistics. If the p-value for both associated tests is less than α, then the test rejects

the null of non-equivalence.

The non-parametric TOST t-test (npTOST) is set up using the same hypotheses as in

(2). To test the null that µT − µC ≥ εU the permutation distribution given the assignment

mechanism and the strict null hypothesis that µT −µC = εU is calculated, or approximated

if the number of permutations is large, using a one-sided test with the strict null of a treat-

ment effect of εU (Rosenbaum 2002). It is important to note that if the design includes
1The variance of W+, regardless of the underlying distributions F and G is always defined as Var[W+] =

1
mn

(
π+− (m+n− 1)π2

+ + (m− 1)ΠXTXTXC + (n− 1)ΠXTXCXC

)
where ΠXTXTXC = P [XTi1 > XCj , XTi2 >

XCj ] and ΠXTXCXC = P [XTi > XCj1 , XTi > XCj2 ] (Wellek 2010, pg. 127)
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block or cluster randomization, the permutations should be of this assignment mecha-

nism. Then, an exact p-value corresponding to the null µT − µC = εU is calculated. The

p-value for the analogous test given the assignment mechanism and the strict null hypoth-

esis that µT −µC = εL is also calculated. If both p-values are less than the level of the test,

α, then the two groups are statistically equivalent, with the overall p-value corresponding

to the maximum of the two individual one sided test p-values. The test is inverted to con-

struct the equivalence confidence interval by finding the minimum (symmetric) ε for which

p < α. The non-parametric Mann-Whitney test is constructed analogously. However, the

test statistic there is the W+, as defined in Table SI-1, and it is tested around the strict null

of W+ = 1/2− εL and W+ = 1/2 + εU . As before, the two one-sided permutation p-values

are calculated, and the test rejects the null of non-equivalence if both p-values lie below

α. For further discussion of the permutation based one sided test, see Lehmann (1975).

Figure SI-1 shows a simulation study of the npTOST. Units are drawn from a standard

normal, and the constant, additive effect is set to τ . A total sample size n is selected,

with complete randomization conducted of nt = nc = n/2. For power calculations, the

equivalence range is set at εl = −0.2 and εu = 0.2. Results are shown in the solid

lines. The test is underpowered when there are only 100 units in each group, but power

increases as n grows.

Coverage rates are shown in dashed lines, with the the nominal coverage rate of 95%

noted by a thin, solid line. As can be seen, coverage rates are close to the nominal rate,

with coverage growing conservative as the truth approches zero. Because the range is

defined as a symmetric range, that always includes zero, power should be conservative

at, and near, zero.

Recent literature has explored the formal properties of permutation based equivalence

tests, which can be found in Arboretti, Carrozzo, Pesarin, and Salmaso (2018).
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Figure SI-1: Simulations of Randomization Inference versions of the TOST. 10,000 simulations
are conducted for each sample size, with 500 permutations in each simulation.

10



SI-4 Traditional vs. Equivalence Tests – A simulation

The right panel of Figure 1 illustrates why the two-one-sided t-test (TOST) for equivalence

is not subject to Imai, King, and Stuart’s critique of balance tests2 In this example, the

equivalence test is conducted by looking at the distribution of two null hypotheses. The

lower curve is the distribution of the t-statistic around the hypothesized difference of εL

and the upper curve is the distribution of the t-statistic around the hypothesized difference

of εU . The two groups are considered equivalent if the observed t-statistic lies in the

shaded region, i.e. the equivalence range, meaning the p-value for both tests is less than

α/2 if the εs are symmetric around zero. The area of the shaded region is equal to the

level of the test, α. Therefore, this test controls the type I error consistent with our null

hypothesis, which is declaring the two groups equivalent if, in fact, they are not.

Why are equivalence tests not subject to the same problems of sensitivity to sample

size as the tests of difference? Recall there are three factors that can result in the t-

statistic lying in either the tails or the center of the t-distribution under a null, depicted in

the left panel of Figure 1. If the mean difference between the two populations is small, then

the t-statistic will also be small, which is desirable for declaring the two groups equivalent.

As the standard deviation grows, the t-statistic will also move towards the center, which

is also desirable behavior with respect to determining equivalence. More importantly,

though, is the concern raised by Imai et al. (2008): holding the observed mean difference

and standard deviation constant, reducing the sample size can shift the t-statistic from the

center to the tail. This is an undesirable property for balance and placebo tests because

for any given mean difference, having fewer observations will be beneficial in terms of

“passing” the test, which could erroneously lead researchers to believe their data is con-

sistent with an unconfounded design. The converse problem is that when one has very
2In Section 3 we discuss the t-test for equivalence, which is related to the TOST, but is more powerful in small

samples. The intuition that follows is the same, however.
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large sample sizes, minute differences may be statistically significant even if substantively

meaningless. In equivalence tests, however, if the sample size is small, holding all else

constant, the t-statistic will move away from zero, which will increase the p-value of at

least one of the tests, depending on if the observed difference is above or below zero,

thus making it less likely that we will call the two groups equivalent. Therefore, the power

of the test behaves as we would expect with respect to sample size.

To show that equivalence tests are subject to the power aspect of the “balance test

fallacy”, we turn to an example inspired by a simulation in Imai et al. (2008, p. 495) il-

lustrates the effects of making the null a hypothesis about difference. Imai et al. show

how sample size affects the t-statistic by taking a covariate from an imbalanced obser-

vational study and conducting a t-test after randomly dropping an increasingly large per-

centage of the controls. They are decreasing the sample size, but in expectation they are

not affecting the overall balance between the treated and control units. They then show

that the t-statistic decreases, or moves towards insignificance, as more control observa-

tions are dropped, leading to the conclusion that “[t]he t-test can indicate that balance is

becoming better whereas the actual balance is growing worse, staying the same, or im-

proving”. This simulation depicts the undesirable behavior of using a difference-in-means

test. Austin (2008) also raises this point in justifying his claim that significance testing is

inappropriate as a metric for post-matching balance because the post-matching p-values

are confounded with sample size. It should be noted that this same issue arises, although

has not been addressed, when selecting the appropriate window size for regression dis-

continuity designs under the randomization framework (Cattaneo, Frandsen, and Titiunik

2015).

In Figure SI-2 we recreate this simulation, using data from Blattman and Annan’s

(2010) study on child soldiering. They examine the socioeconomic consequences of ab-

duction by the Lord’s Resistance Army, one of the main combatant groups in Uganda’s

civil war. In this simulation, we examine a balance test on age, which they point to as
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one of the most important covariates determining selection into treatment. Age is imbal-

anced, they argue, because the rebel army tended to target somewhat older children.

The simulation study mimics Imai et al.’s in that we randomly drop an increasingly large

percentage of the controls (non-abductees). For each of the 5000 iterations, we conduct

both a traditional and an equivalence based t-test. The figure shows the percentage of

simulations that are declared non-equivalent. It is important to note that the two groups

are imbalanced, and randomly dropping controls does not, on average, affect the level of

imbalance. In the case of the difference of means t-test, the groups are declared non-

equivalent if they are found to be statistically different at the 5% level. For the t-test for

equivalence, the two groups are declared non-equivalent if they fail to reject the null hy-

pothesis of non-equivalence at the 5% level. Our equivalence range is 0.2 of a standard

deviation in age. As was shown in the Imai et al. (2008) simulations, as the number of

controls randomly dropped increases, the t-test for difference in means (gray, dashed

line) is increasingly likely to declare the two groups equivalent. However, the t-test for

equivalence (black, solid line) is not subject to this problem. As the number of controls

dropped increases, the t-test for equivalence still overwhelmingly declares the two groups

non-equivalent. As the percentage of the controls drops approaches 85 to 90%, the t-test

for equivalence does declare a few of the simulations equivalent. This may be due to the

fact that a few of the random draws lead to control samples that were similar to the treated

group, given the very small number of controls in these draws.

SI-5 Negligible Effects and the 90% Confidence Interval

Equivalence and negligible effects are related concepts, the later of which has been ad-

dressed recently in the political science literature. Both Rainey (2014) and Gross (2014)

argue that, rather than conducting the equivalence t-test, researchers should analyze

the location of the the 90% confidence interval and its relation to the equivalence range.

14



Rainey (2014) argues researchers should evaluate if the 90% confidence interval of the

estimate lies entirely within the equivalence range, whereas Gross (2014) provides nu-

merous interpretations of different relationships between the confidence interval and the

equivalence range. Both argue that the best way to define the equivalence range is based

on substantive knowledge.

We assert that the equivalence t-test, or a binomial analog, are superior to the 90%

confidence interval range. By arguing for researchers to first define a substantive equiva-

lence range, and conduct the 90% confidence interval test, researchers can create a test

for themselves with zero power. Figure SI-3 shows simulations exemplifying this facet of

the test. The 90% confidence interval has a minimum size, conditional on α-level, the

standard deviation, and the sample size. If the practitioner defines a substantive range

that is smaller than this minimum possible size, then the 90% confidence interval will have

zero power to declare the two groups equivalent. Note that the equivalence t-test always

maintains at least α-level power. What this means, in effect, is conditional on the ob-

served sample size, sample estimate of the standard deviation, and desired α, there is

a minimum size the practitioner can define. Figure SI-4 shows the minimum sample size

necessary in each group in order for a given symmetric equivalence range, assuming two

∼N(0,1) variables. Wellek (2010) also discusses this on page 35, when discussing interval

inclusion approaches. Of course, it is also worth noting, that for sufficiently large sample

size, the interval inclusion and the equivalence t-test discussed here will be practically

indistinguisable and asymptotically equivalent.

Even with the use of the equivalence tests for negligible effects, power remains an is-

sue if the true effect lies close to the edge of the equivalence range. While the assumption

of a true difference of zero, where the maximum power is achieved, is justified for tests of

design, the point of a negligible effect test is to test if the true effect lies anywhere within

the equivalence range. Figure SI-5 shows how the power of the equivalence t-test drops

off as the true difference approaches the edge of the equivalence range, even for large
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SI-6 Applying Equivalence Tests to Natural Experiments in the

Social Sciences

Does the use of equivalence tests make a difference in practice? To show that it does, we

apply the two sample t-test for equivalence to ten studies culled3 from Dunning’s (2010a)

literature review of natural experiments in the social sciences. From each study, we se-

lected one covariate that was tested for balance. Each study typically examined several

covariates, so when possible we selected the pre-treatment outcome (the outcome vari-

able as measured prior to the intervention) and, failing that, a variable that in our judgment,

was closely related to the outcome of interest. The papers, which are on a diverse set of

treatments in a variety of contexts, are listed in Table SI-2. For the equivalence range, we

chose 0.2, following Cochran and Rubin (1973, p. 422)’s discussion.

The results of the equivalence test on a pre-treatment covariate in the ten natural ex-

periments are shown in Table SI-2, along with the conventional difference-in-means t-test

p-value. Nine out of the ten natural experiments reported difference-in-means t-test p-

values greater than 0.05, thus failing to reject the null hypothesis of no mean difference

and consequently “passing” their balance test. If the equivalence test is used, however,

only for five4 of the ten studies can we reject the null hypothesis of a mean difference

|ε| > 0.2σ with a 0.05 level of significance, where σ is the pooled standard deviation of

the covariate. Four of the studies failed to reject the null hypothesis of a difference, but

also failed to reject the null hypothesis of no mean difference. Consequently, in these four

cases, the conventional decision rule would declare the natural experiments to be bal-
3In order to carry out the test, we required the mean difference, the standard error of the mean difference, and

the sample size in each treatment condition. All natural experiments in Dunning’s (2010a) list that reported this

information were used.
4One study, Chattopadhyay and Duflo (2004) was borderline with a p-value of 0.1, but given the low power of the

test for a study of that sample size, we would consider this covariate to be balanced.
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anced, while our proposed test would not. Of course, failing to reject the null hypothesis

of a difference by no means invalidates these studies’ conclusions, but merely suggests

that insufficient information exists to affirmatively declare that the treatment and control

groups on these particular covariates are well balanced. At a minimum, our results sug-

gest that these scholars could take special care to show that the design is valid using

other design tests or robustness checks.

In Table SI-3, we present the maximum value of ε for which which we can reject the

null hypothesis of non-equivalence, given the observed difference. We present both the

standardized and unstandardized values of this equivalence confidence interval. The

equivalence confidence interval is useful here because it can give the reader a sense

of the smallest equivalence range supported by the data at a given significance level.

Because researchers’ opinions may differ over how small an equivalence range chosen

ex-ante should be, reporting the inverted interval can allow readers to draw their own

conclusion over the degree of balance evidenced in the data.
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