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Dual Faceted Linearization
of Nonlinear Dynamical
Systems Based on Physical
Modeling Theory
A new approach to modeling and linearization of nonlinear lumped-parameter systems
based on physical modeling theory and a data-driven statistical method is presented. A
nonlinear dynamical system is represented with two sets of differential equations in an
augmented space consisting of independent state variables and auxiliary variables that
are nonlinearly related to the state variables. It is shown that the state equation of a non-
linear dynamical system having a bond graph model of integral causality is linear, if the
space is augmented by using the output variables of all the nonlinear elements as auxil-
iary variables. The dynamic transition of the auxiliary variables is investigated as the
second set of differential equations, which is linearized by using statistical linearization.
It is shown that the linear differential equations of the auxiliary variables inform behav-
iors of the original nonlinear system that the first set of state equations alone cannot rep-
resent. The linearization based on the two sets of linear state equations, termed dual
faceted linearization (DFL), can capture diverse facets of the nonlinear dynamics and,
thereby, provide a richer representation of the nonlinear system. The two state equations
are also integrated into a single latent model consisting of all significant modes with no
collinearity. Finally, numerical examples verify and demonstrate the effectiveness of the
new methodology. [DOI: 10.1115/1.4041448]

Keywords: linearization, physical system modeling, bond graph, statistical linearization,
augmented state space, dual faceted linearization, nonlinear dynamical systems

1 Introduction

A nonlinear system behaves more linearly when it is recast in a
larger space. While the system exhibits pronounced nonlinearities,
it appears nearly or completely linear when represented with
additional variables or in an augmented space. This intriguing
statement motivates us to explore a new methodology for lineariz-
ing nonlinear systems.

In the literature, similar statements can be found in several iso-
lated fields, including machine learning, system dynamics, and
mathematics. In his seminal paper on pattern recognition, Thomas
Cover revealed that complex patterns can be made linearly separa-
ble by augmenting variables with new ones replacing nonlinear
terms [1]. In subspace methods, it has been known that some non-
linear effects can be modeled effectively by increasing the number
of state variables [2,3]. Various types of kernel functions and
locally tunable functions have been used for representing a nonlin-
ear dynamical system as a linear combination of nonlinear basis-
functionals. Ranging from the classical Volterra series expansion
[4,5] to locally weighted kernel functions [6], radial basis func-
tions [7], and wavelets [8], nonlinear behaviors are recast in a
larger space, which allows us to apply effective tools for system
analysis and synthesis as well as for learning and identification.
Furthermore, the Carleman embedding technique reduces a non-
linear dynamic equation to a linear differential equation in an infi-
nite dimensional space [9,10]. This linearization is exact, although
the dimension is infinite.

These methods differ in functionality, theoretical basis and
principle, depending on the individual field of use. However, in
all of these methods, recasting a nonlinear system in a larger

space, one can find a linear or approximately linear representation
of the original nonlinear system in a global sense. This is strik-
ingly different from the standard linearization method based on
Taylor expansion and small perturbations, which are valid only in
the vicinity of an operating point. The objective of the current
work is to establish a new type of linearization of complex nonlin-
ear systems that are valid in a global sense. Furthermore, addi-
tional variables for augmenting the state space should have a clear
physical sense and should not be too large in dimension. The use
of kernels and locally tunable functions tends to increase the
dimension dramatically, leading to the curse of dimensionality for
higher order systems. Increased state variables in subspace meth-
ods neither provide a clear physical sense nor manifest the mecha-
nism by which the nonlinearity is handled. In this paper, we aim
to establish a systematic method for properly augmenting the state
space. In finding physically meaningful variables to augment the
space and linearizing the nonlinear system in the augmented
space, we explore the following two fundamental principles and
concepts.

First, we explore “natural” linearity in physical system model-
ing. Considering nonlinear lumped-parameter systems, elements
of the system (mass, spring, and damper, or capacitor, inductor,
and resister) are linearly connected in formulating governing
equations. Kirchhoff’s laws, for example, state that these compo-
nents are linearly connected, although constitutive laws of indi-
vidual elements may be nonlinear. Newton’s law combined with
d’Alembert’s principle dictates that all the forces acting on a mass
sum to zero, which is a linear relationship. In these systems, nonli-
nearity comes from constitutive laws of individual elements.
Replacing these nonlinear terms by new variables, called auxiliary
variables,2 and augmenting the state space with these auxiliary
variables, we can expect to obtain a linear expression,
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highlighting the linear connectivity of the system. Compared to
the existing methods described earlier, this method, which is
based on fundamental principles and philosophy of physical sys-
tem modeling, provides us with a clear physical sense; each auxil-
iary variable is associated with a nonlinear element’s constitutive
law, rather than merely a mathematical expression.

Second, we exploit multiple representations of a dynamical sys-
tem. Consider two equations of motion representing the same
dynamical system with two different variables. If the transforma-
tion of one variable to the other is linear and invertible, the two
equations are identical and, thereby, no benefit is expected in rep-
resenting it with two variables. However, it may not be the case if
the two variables are nonlinearly related. Although the two repre-
sent the same nonlinear system, they delineate the nonlinear
behaviors from two different coordinate systems. When each of
the equations is linearized individually, they represent two facets
of the system behaviors, each making distinct contributions to
capturing the nonlinear dynamics. Combining the two facets of
system descriptions, we can expect to attain a more accurate and
richer representation of the nonlinear system.

In this paper, the above two concepts are integrated into a new lin-
earization method with two sets of linear dynamic equations: one by
exploiting the natural linearity of elements’ connectivity and the
other by formulating a linear differential equation predicting the
dynamic transition of auxiliary variables that are nonlinearly related
to the original state variables. While the two sets of variables are
related to each other as nonlinear algebraic equations, they do not
show up explicitly in the dynamic equations. Instead both contribute
to the dynamic transition with two sets of linear dynamic equations,
which facilitate the application of linear system analysis and synthe-
sis. They can provide a more powerful representation of the nonlin-
ear behaviors than a single set of linear state equations. The method
is referred to as dual faceted linearization (DFL).

In the following, the physical system modeling based on bond
graph [12,13] will be used for addressing the natural linearity of
lumped-parameter systems, followed by the principle and algo-
rithm of dual faceted linearization. Numerical examples demon-
strate that the new method can deal with highly nonlinear systems
and predict nonlinear behaviors significantly more accurately than
traditional counterparts.

2 Dual-Faceted Linearization: The Method in a

Nutshell

Consider a simple nonlinear system consisting of two elements:
a mass and a spring. The governing equations are Newton’s
equation of motion, F ¼ m€x, and a constitutive law of spring,
F ¼ �UðxÞ. First, if the spring’s constitutive law is linear,
F ¼ �kx, we can write the equation of motion in terms of x as
m€x þ kx ¼ 0, or in terms of F as ðm=kÞ €F þ F ¼ 0. These two
expressions are identical, so we gain nothing by writing the equa-
tion of motion in two ways. However, that is not the case when the
system is nonlinear. Suppose that the spring’s constitutive law is

F ¼ �ax� bx3; a > 0; b > 0 (1)

We can write the equation of motion in two ways: one in terms
of x

m€x þ axþ bx3 ¼ 0 (2)

and the other in terms of F. Using the inverse of the spring’s
constitutive law: x ¼ �gðFÞ and its derivatives, g0 ¼ dg=dF;
g00 ¼ d2g=dF2, we can write

mg0 €F þ mg00 _F
2 þ F ¼ 0 (3)

Both Eqs. (2) and (3) represent the same nonlinear system, but
their expressions are different. Linearizing these two equations

may lead to two state equations representing two facets of the
nonlinear system (see Fig. 1).

There are a few significant observations and arguments on the
dual faceted representation illustrated earlier.

2.1 Intrinsic Linearity in Elements Connectivity. Using
both the x and F variables, we can augment the state space where
the two facets of the nonlinear dynamics can be represented.
Although F is a function of x, we treat F as an additional state
variable with a state transition equation. If we use both the x and
F variables, the first equation of motion (2) appears to be linear:
m€x � F ¼ 0. As shown in Sec. 3, the state transition equation of
independent state variables x 2 <n can be written as a linear dif-
ferential equation in an augmented state space for an arbitrary
nonlinear, lumped parameter system under mild conditions.

These linear state equations are not an approximation, but are
exact equations. Let g 2 <na be a vector of auxiliary variables,
and u 2 <r be a vector of inputs. The first state equation is given
by

dx

dt
¼ Axxþ Aggþ Bxu (4)

where Ax;Ag; and Bx are constant, parameter matrices of consist-
ent dimensions. We will prove this linearity based on physical
modeling theory, in particular, using bond graph. In bond graph, a
nonlinear system is graphically represented as a network of ele-
ments, such as mass, spring, and damper or inductor, capacitor,
and resistor. The connectivity of elements is governed by funda-
mental physical laws, such as Kirchhoff’s laws and Newton’s
equations of motion. It should be noted that Kirchhoff’s voltage
law, for example, dictates that the voltages of all the elements
directly involved in a loop sum to zero, which is in fact a linear
relationship. Kirchhoff’s current law and Newton’s equation, too,
are linear expressions, where relevant variables sum to zero.
Therefore, by treating those voltages, currents, and forces as addi-
tional state variables, called auxiliary variables g, we can obtain a
linear state equation as given earlier.

2.2 Algebraic Versus Dynamic Linearization. The tradi-
tional approach to linearizing a nonlinear system is to algebrai-
cally linearize the auxiliary variables g using the first-order Taylor
expansion or other similar methods

g ffi �g þ Jð�xÞ ðx� �xÞ (5)

where Jð�xÞ 2 <na�n is the Jacobian matrix evaluated at a refer-
ence point �x. The validity of such linearization is limited to a local

Fig. 1 Conceptual diagram of DFL. A nonlinear dynamical sys-
tem is viewed from an augmented space consisting of inde-
pendent state variables and auxiliary variables, which are
nonlinearly related to each other.
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region near the point �x. Here, we take a different approach. We
treat g as an auxiliary state variable that possesses a state transi-
tion equation. Furthermore, we aim to obtain a linear regression
for predicting the time rate of change to g in the augmented space.
This leads to another linear differential equation

dg
dt
¼ HxxþHggþHgu (6)

where Hx;Hg; and Hg are regression parameter matrices of con-
sistent dimensions.

It is important to note that the time derivative of g based on the
Taylor expansion does not provide any new information

_g ffi �J � _x (7)

This implies that _g and _x are collinear; the state equation of _g is
basically the same as the first state equation of _x. This argument
applies to any traditional linearization using a fixed matrix �J . No

matter how the matrix �J is determined, the differential equations
of _g and _x are collinear and thus redundant. In contrast, the time
derivative _g in the linear regression (6) is not collinear with _x in

general ( _g 6¼ �J � _x ), but provides a different facet of the original
system that supplements the dynamics represented by the first
state equation (see Fig. 1).

2.3 Latent Modeling. One drawback of dual faceted lineari-
zation is the increase of state variables. This is a serious problem
when dealing with a complex, high-dimensional system, such as a
biological system. For example, collective cells interacting
through extra-cellular matrix have over 2000 independent state
variables. Adding auxiliary variables, the total number of varia-
bles becomes several thousands. The state transition equations of
those variables may contain similar dynamic modes and almost
collinear relationships. Those modes can be eliminated by using
latent analysis [11].

Combining state variables x and auxiliary variables g, we define

an Augmented State Space with variables: f ¼ ð xT gT ÞT 2 <k�1;
k ¼ nþ na. Without loss of generality, let us assume that the aug-
mented state variables are mean-centered. The covariance of the
augmented state variables can be decomposed to

C ¼ E½ffT� ¼ TRTT; where R ¼
k1 � � � 0

� . .
.

�

0 � � � km

0
BB@

1
CCA

and T ¼
V

W

 !
2 <k�m (8)

where m � k is the rank of the covariance matrix, k1 � � � � �
km > 0 are eigenvalues, and V 2 <n�m and W 2 <na�m are blocks
of the orthonormal matrix T associated with state variables x and
auxiliary variables g, respectively. With these matrices, the aug-
mented state space can be converted to latent space with latent
variables given by

z ¼ VTxþWTg (9)

where z 2 <m�1 can be truncated to a lower-dimensional vector,
m	 < m, if the principal components beyond m	 have negligibly
small eigenvalues, 1
 km	þ1 � � � � � km. It is expected that the
combination of the state variables and the auxiliary variables in
the latent space may better capture significant dynamics of the
original system even in linearized state equation form. The fol-
lowing is to derive state transition equations in the latent space,
which subsumes dynamic equations of both state and auxiliary
variables.

By taking the time derivative of Eq. (9) and substituting
Eqs. (4) and (6) into it, we can obtain a state equation in the latent
space

_z ¼ VT _x þWT _g ¼ Azþ Bu (10)

where

A ¼ ½VTAx þWTHx�Vþ ½VTAg þWTHg�W
B ¼ VTBx þWTHu

(11)

Note that, from Eq. (8), we have x ¼ Vz and g ¼Wz, which are
used in the above derivation.

Dual faceted linearization briefly presented earlier raises a
number of important questions. What is the rigorous definition of
Auxiliary variables? Why does the state Eq. (4) become linear?
To which class of nonlinear systems does this apply? Why does
the second differential Eq. (6) provide a different facet of the orig-
inal nonlinear system? How can we determine the parameters of
the linear regression? Are they unique? And what is the limitation
to the original formulation of DFL? Sections 3, 4, and 5 address
these questions based on physical modeling theory and estimation
methods. First, we will show that the linearity of the first state
equation (4) stems from the connectivity of elements that is
intrinsically linear.

3 Natural Linearity in Element Connectivity

Consider a nonlinear, lumped-parameter system that can be
modeled with bond graph. As illustrated in Fig. 2, the system con-
sists of elements connected by power bonds. Attached to each
bond are an effort variable (force, voltage, pressure, etc.) and a
flow variable (velocity, current, flow rate, etc.), the product of
which represents power flowing through the bond. Connections
among elements are governed by physical laws in individual
energy domains. In generic term, “1” junction represents
Kirchhoff’s voltage law, Newton’s equation of motion, etc., where
all the effort variables associated with the bonds connected to the
1 junction sum to zero with a proper sign convention. Similarly,
“0” junction is a generic representation of Kirchhoff’s current law
and others, where all the flow variables associated with all the
bonds connected to the 0 junction sum to zero. Both junction con-
ditions are intrinsically linear. On the other hand, constitutive
laws of individual elements may be nonlinear. The constitutive
law of a resistive element is expressed as a functional relationship
between effort e and flow f: e ¼ URðf Þ or its inverse function, the
constitutive law for a capacitive element is expressed as a func-
tional relationship between effort e and displacement q ¼

Ð
fdt :

e ¼ UCðqÞ and that of an inertial element is by f ¼ UIðqÞ, where
the variable p is momentum p ¼

Ð
edt. As illustrated in Fig. 3,

these constitutive laws may be nonlinear.

Fig. 2 Example of bond graph
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A complete bond graph may include transformers and gyrators,
which convert energy from one form to other with characteristic
conversion rates. We make the following assumptions in the bond
graph modeling:

� All the conversions of effort and flow variables associated
with transformers and gyrators have been completed, so that
the resultant bond graph does not include any transformer
and gyrator;

� any causal conflict among the elements has been removed, so
that the system is of integral causality [12,13]; and

� the system is time-invariant.

Through causality analysis, bond graph allows us to find causal
relationships among all the elements and obtain a computable
procedure for determining state transitions. The small vertical or
horizontal bars attached to one end of each power bond indicate
causal relations between the two elements or subsystems con-
nected by the power bond.3 Following the causal strokes, state
transition can be determined, given initial conditions and inputs.
In the bond graph modeling theory, displacement q and momen-
tum p are often used as state variables associated with capacitive
and inertial elements, respectively. State equations can be derived
from a Bond Graph starting with each of these energy storage ele-
ments and following a sequence of causal relationship guided by
causal strokes.

In following the causal input–output sequence across a bond
graph, we encounter nonlinear elements for which we define Aux-
iliary variables.

DEFINITION. A set of variables is called auxiliary variables if
they are outputs of all the nonlinear elements connected to a
lumped parameter model with integral causality.

Using these auxiliary variables, we can show that a nonlinear,
lumped-parameter system can be decomposed to a linear dynamic
model and a nonlinear algebraic model.

THEOREM 1. State equations of a nonlinear lumped-parameter
system that possesses a bond graph of integral causality and that
contains n independent energy storage elements, na nonlinear ele-
ments, and r sources or exogenous inputs can be expressed as a
linear equation in terms of n state variables, x 2 <n, na auxiliary
variables, g 2 <na , and inputs, u 2 <r , as

dx

dt
¼ Axxþ Aggþ Bxu (4)

where Ax 2 <n�n;Ag 2 <n�na ; and Bx 2 <n�r are constant matri-
ces with consistent dimensions.

This theorem can be proven by construction. Examining the
causal relationship among all the elements, we can construct state
equations in the form of Eq. (4). Appendix A shows the proof.

The following examples demonstrate this process and important
properties:

Example 1. Consider a third-order system represented with a
bond graph in Fig. 2. Momenta p1 and p2 associated with inertial
elements I1 and I2, respectively, and displacement q associated
with the capacitive element C can be used as state variables. Fol-
lowing the causal strokes, we can obtain the following differential
equations of state variables (see Appendix B for more details)

dp1

dt
¼ e1 ¼ UC qð Þ (12)

dq

dt
¼ fC ¼ uf � fI1 � f

¼ uf � fI1 � fI2 � fR2

¼ uf � UI1 p1ð Þ � UI2 p2ð Þ � UR2 e2ð Þ (13)

dp2

dt
¼ e2 ¼ e1 � eR1 ¼ UC qð Þ � UR1 UI2 p2ð Þ þ UR2 e2ð Þ

� �
(14)

where e1 ¼ UCðqÞ is a nonlinear constitutive law of the capacitive
element, fI1 ¼ UI1ðp1Þ and fI2 ¼ UI2ðp2Þ are, respectively, nonlin-
ear constitutive laws of the two inertial elements, and eR1 ¼
UR1ðf Þ and fR2 ¼ UR2ðe2Þ are the ones of the resistive elements R1

and R2, respectively. There are five nonlinear elements involved
in this system. Therefore, the auxiliary variables are the outputs of
these five nonlinear elements

g ¼

e1

fI1
fI2
eR1

fR2

0
BBBB@

1
CCCCA
� � �C
� � � I1

� � � I2

� � �R1

� � �R2

(15)

The above state Eqs. (12)–(14) are nonlinear due to the nonlin-
ear constitutive laws of the elements. However, these equations
are linear in terms of the output variables of the individual nonlin-
ear elements and input variables from the sources. Namely, if we
leave the equations to the ones containing auxiliary variables, i.e.,
the outputs of nonlinear elements, the resultant equations are
linear.

In case some linear elements are involved in the system, the
outputs of the linear elements are excluded from the auxiliary
variables. If I1 and R1, for example, are linear, UI1ðp1Þ ¼ p1=m
and UR1ðfR1Þ ¼ R fR1, the output variables of these linear ele-
ments, fI1 and eR1, are excluded so that the auxiliary variables

reduce to g ¼ ðe1 fI2 fR2ÞT and the state equations can be written
as

_q

_p1

_p2

0
B@

1
CA ¼

0 �1=m 0

0 0 0

0 0 0

2
64

3
75

q

p1

p2

0
B@

1
CA

þ
0 �1 �1

1 0 0

1 R R

2
64

3
75

e1

fI2

fR2

0
B@

1
CAþ

1

0

0

2
64
3
75uf (16)

which is in the form of Eq. (4).
The combination of independent state variables and auxiliary

variables are sufficiently informing the underlying nonlinear
dynamical system [14]. In other words, no more variables are
needed.

As demonstrated in Example 1, state equations can be derived
from a bond graph in a systematic manner by following causal
propagation paths [12,13]. A critical issue, however, is the case
where a propagation path forms a “loop.” This incurs an algebraic
loop problem. The following example illustrates this issue and a

Fig. 3 Examples of constitutive laws of elements: (a) resistor
R1, (b) capacitor C, and (c) inertia I1

3For example, the power bond connecting the inertial element I in Fig. 2 has a
causal stroke on the element side, that is, the opposite side of the 0-junction. This
means that the effort variable e is the input to the inertial element, while the flow
variable fI is the output. The capacitive element C has a causal stroke on the 0-
junction side, meaning that the flow is input and the effort is output.
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way of getting rid of the algebraic loop. The bottom line is that
the algebraic problem does not occur in the DFL formulation:

Example 2. Equations (13) and (14) are not complete state
equations due to an algebraic loop involved. The same bond graph
as Example 1 is redrawn in Fig. 4 with a loop that goes through
the two resistive elements R1; R2, the right 0-junction, and the 1-
junction. Backtracking the causal path finds the existence of a
loop: e2 7! eR1 7! f 7! fR2 7! e2. Accordingly, the state equation
(14) for dp2=dt ¼ e2 contains a nonlinear term that depends on e2

in the last expression: UR1½UI2ðp2Þ þ UR2ðe2Þ�. If resistive element
R1 is nonlinear, this whole term is replaced by the output variable
eR1 in the DFL formulation, and thereby the causal path back-
tracking is terminated there. If R1 is linear, the causal path contin-
ues until it reaches another nonlinear element R2, but its output
variable fR2 replaces UR2ðe2Þ, and thereby the causal path back-
tracking terminates there.

An algebraic loop is formed only when both resistive elements
are linear in the state equation formulation using auxiliary
variables. Consider the following linear resistive constitutive
laws: Resistor R1 : eR1 ¼ R1f and Resistor R2 : fR2 ¼ ð1=R2Þe2.
Substituting these into the algebraic condition in Eq. (14):
e2 ¼ e1 � UR1½fI2 þ UR2ðe2Þ�, and solving it for e2, we can find
the state equation given by

dp2

dt
¼ R2

R1 þ R2

e1 �
R1R2

R1 þ R2

fI2 (17)

Elimination of algebraic loops is an important property and a
consequence of the use of auxiliary variables. This holds in gen-
eral and stated in the following Corollary.

COROLLARY. For a lumped-parameter, nonlinear system pos-
sessing a bond graph of integral causality, elements along any
algebraic loop involved in the system are linear resistive ele-
ments. Therefore, algebraic conditions are linear and thereby
solved explicitly.

This can be proven based on the definition of auxiliary varia-
bles and properties of causal bond graph. In any algebraic loop, if
it exists, no energy storage element can be on the loop, because
the constitutive law of the energy storage element is a function of
a state variable, and the causal path backtracking terminates at the
energy storage element. Along the same line, if a nonlinear resis-
tive element is involved, the backtracking terminates at the output
of the nonlinear element, because an auxiliary variable is defined
for the output of the nonlinear resistive element. Therefore, only
linear resistive elements are on the loop. The causal path back-
tracking continues through the linear resistive element by convert-
ing it between effort and flow variables. Therefore, if a complete
algebraic loop exists, only linear resistive elements are involved
in the loop. The algebraic relation can be solved easily for linear
resistive elements.

This property stated in the above Corollary is important. Alge-
braic loops often result in differential-algebraic equations [13].
The use of auxiliary variables can solve this problem. The linear
differential equation (4) is obtained without an algebraic loop.

4 Linear Regression Based on Statistical Linearization

From Theorem 1, an arbitrary nonlinear, lumped-parameter sys-
tem represented with a causal bond graph can be separated into a
linear dynamical system and a nonlinear algebraic relation. The
simplest method for linearizing such a nonlinear algebraic equa-
tion is to take the first-order Taylor expansion. The validity of
such a local, point-wise linearization may be limited to a specific
region in the state space and may fail to represent significant prop-
erties. For example, linearizing the capacitive element shown in
Fig. 3(b) at the origin yields only zero voltage ðec � 0Þ, since the
slope at the origin is zero. In the case of a mechanical system, this
implies zero stiffness, although the spring is a hard spring. A bet-
ter alternative is based on a global, statistical linearization. In the
literature, stochastic/statistic linearization was originally devel-
oped for solving nonlinear random vibration problems [15,16].
Instead of linearizing at a particular point in space, a set of sam-
ples, i.e., a data set, is used for linearization, so that the linearized
model may have the least mean prediction error. The result, how-
ever, is still an algebraic linearization in which auxiliary variables
are related to independent state variables through an algebraic
map with a constant matrix. Therefore, the structure is same as the
Taylor expansion. The nonlinear properties of g are all averaged
out and confined in the linearized expression (5), while the auxil-
iary variables exhibit more profound dynamics. We can capture
these dynamics to better predict the state transition. Here, we treat
the auxiliary variables as a type of state variables and form
another set of dynamic state equations representing the transition
of auxiliary variables.

In general, auxiliary variables depend on state variables x and
inputs u: g ¼ gðx;uÞ. Therefore, we cannot simply take time
derivatives of the auxiliary variables. The differential equation
includes the time derivative of input u, which makes the state
transition non-causal. Here, we first consider the case where auxil-
iary variables do not depend on input u, @g=@u ¼ 0. Under this
condition, the time derivatives of auxiliary variables do not con-
tain the derivative of input _u and can be written as

_g ¼ gðg; x; uÞ (18)

Here, we consider a linear regression for predicting the transi-
tion of auxiliary variables and apply statistical linearization to the
dynamical equation

dĝ
dt
¼ Hxx1HngþHuu (19)

where ĝ is the prediction of g, and Hx 2 <na�n; Hn 2 <na�na ;
and Hu 2 <na�r are parameter matrices to be tuned based on sta-
tistical linearization. For brevity, we combine these parameter

matrices into H¢ðHx;Hn;HuÞ 2 <na�l and variables into

n¢ðxT gT uTÞ 2 <l�1, where ‘ ¼ nþ na þ r. The parameter
matrix H can be optimized so that the mean squared error of pre-
dicting _g may be minimized

H0 ¼ arg min
H

E½j _̂g � _gj2� (20)

where _g is the true derivative from the original nonlinear system

and _̂g is the approximated one based on the linearized model (19).
If the standard least squares estimate is used, the solution is given
by

H0 ¼ E½ _gnT�ðE½nnT�Þ�1
(21)

Fig. 4 Algebraic loop involved in the bond graph in Fig. 2
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assuming that the system is persistently excited and that there is
no state feedback, i.e., u is not collinear with x. Note that matrix
E½nnT� is nonsingular, since all the elements associated with the
auxiliary variables are nonlinear. If some elements would have
linear constitutive laws, the auxiliary variables would be collinear
with the state variables, making E½nnT� singular. It is essential that
auxiliary variables are defined for all the nonlinear elements and
only for the nonlinear elements, and that samples used for com-
puting Eq. (21) are taken broadly from the true nonlinear system.

Remark. If the auxiliary variables are nonlinear functions of
state variables alone: g ¼ gðxÞ, and its time derivative is approxi-

mated to _g ¼ JðxÞ � _x ffi �J � _x with some fixed matrix �J, then the
time derivatives _x and _g are completely collinear and, thereby, the
second set of state equations does not provide any new informa-
tion. This is true no matter which method is used for approximat-

ing the state-dependent matrix JðxÞ to a fixed one �J. Both Taylor
expansion and statistic linearization methods fail to create a new
state equation that is not collinear with the first equation (4).

The linear regression (19) can provide us with a different facet
of the system dynamics, which is not collinear with Eq. (4). The
tuning of the parameter matrix H is performed in a broader param-
eter space than that of the fixed parameter matrix �J, and, in fact,
the prediction accuracy is better. The theorem below guarantees
this.

THEOREM 2. The linear regression for predicting the dynamic
transition of auxiliary variables g 2 <na�1 given by Eq. (19) does
not underperform the one with a fixed matrix �J in mean squared
error

min
H2<na�l

E½j _g �Hnj2� � min
H2<na�n

E½j _g � �J _xj2� (22)

The proof is simple. From Eq. (4), the prediction based on the
fixed matrix, _̂g ¼ �J _x ¼ ½�JAx

�JAg
�JBx�n is a special case of gen-

eral H

f �Hj �H ¼ ½�JAx
�JAg

�JBx� 2 <na�l; �J 2 <na�ng  fHjH 2 <na�lg

Equation (22) directly follows from this.
The real data of n and _g exhibit more profound properties than

the one connected with a fixed �J, thus making the auxiliary state
equation a meaningful contributor and surrogate of the nonlinear
dynamics.

With this auxiliary state equation, the total state equation can
be expressed as

d

dt
¼ x

g

� �
¼ Ax Ag

Hx Hg

� �
x

g

� �
þ Bx

Hu

� �
u (23)

5 Causal Auxiliary Variables

There is a fundamental impediment in formulating state equa-
tions for auxiliary variables. The time derivative of the auxiliary
variables may be anti-causal, if the auxiliary variables depend on
input u. Namely, the time derivative of gðx; uÞ includes the deriv-
ative of input

_g x;uð Þ ¼
@g
@x

_x þ @g
@u

_u (24)

Note, however, that this anti-causal situation occurs only for a
specific type of nonlinear elements. The constitutive laws of inde-
pendent energy storage elements, i.e., capacitors and inertias, are
nonlinear functions of state variables, i.e., displacement and
momentum, as shown in Figs. 3(b) and 3(c). If auxiliary variables
are associated only with energy storage elements, they are func-
tions of state variables alone and do not contain input u. The fol-
lowing Lemma can be proven:

LEMMA. Auxiliary variables associated with nonlinear energy
storage elements do not contain input u 2 <r�1 . Let gC be auxil-
iary variables associated with capacity elements and gI be the
ones associated with inertia elements. Then

@gC

@u
¼ 0;

@gI

@u
¼ 0 (25)

Any component involved in the vectors, gC and gI , is a constitu-
tive law, either e ¼ UCðqÞ or f ¼ UIðpÞ, where q and p are
independent state variables that do not depend on input u.
While the input variables drive the state variables through differ-
ential relations, the inputs cannot algebraically enter the constitu-
tive laws of energy storage elements: ð@UC=@uÞ ¼ 0 and
ð@UI=@uÞ ¼ 0 .

Example 3. Consider a second-order system represented by the
Bond Graph in Fig. 5. The constitutive laws of the inductance,
capacitance, and the two resistances are all nonlinear functions.
Therefore, the auxiliary variables are the output variables of these

nonlinear elements: g ¼ ð f e eR1 fR2 ÞT. In these auxiliary
variables, f and e are associated with energy storage elements
(inductance and capacitance, respectively) and, therefore, func-
tions of independent state variables alone, and do not include
input u. The above Lemma implies that resistive auxiliary varia-
bles may or may not include input u. The auxiliary variable eR1

associated with resistance R1 is a nonlinear function of flow f:
eR1 ¼ UR1ðf Þ, and flow f is a nonlinear function of state variable
p. Input u(t) is not involved in these relationships. This can easily
be found in the causal path shown in red in the figure. Backtrack-
ing the causal path from eR1, the path goes through the resistance
R1 and the 1-junction, reaches flow f that is the input to the induct-
ance I, and is terminated at the state variable p. Similarly, the
causal path starting at the auxiliary variable fR2 goes through
resistance R2 and the 0-junction, reaches e that is the input of the
Capacitor C, and is terminated at the state variable q. No input is
involved in these causal paths, and the auxiliary variable is a
nonlinear function of the state variable alone. The differential
equations associated with these auxiliary variables are causal.

Example 4. Now consider another second-order system shown
in Fig. 6, where a single resistance is connected to the 1-junction
and the inductance is now connected to the 0-junction. If all

three elements are nonlinear, the auxiliary variables are g ¼
ð e fI f ÞT in which fI and e are directly determined by the state
variables through the element constitutive laws, fI ¼ UIðpÞ
and e ¼ UCðqÞ. However, the auxiliary variable f associated with
the resistor R is connected to the input u(t). As shown in the causal
path in the figure, the path from f branches out to both input u(t)
and effort e at the 1-junction, which is governed by the junction
condition, u ¼ eþ eR. From this, we obtain

f ¼ UR½uðtÞ � UCðqÞ� (26)

Fig. 5 Example of causal auxiliary variables where input u(t) is
not involved in each causal path
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Therefore, this auxiliary variable is not causal. Its differential
equation contains the time derivative of input u(t) and, thereby, it
is anti-causal.

5.1 An Algorithm for Reducing the Influence of Input on
Auxiliary Variables. Suppose that there are nRu nonlinear resis-
tive elements where input u is involved. All the auxiliary variables
associated with these input-dependent resistive elements are

placed in a vector gRuðx; uÞ 2 <nRu�1. To solve the anti-causality
problem, a two-step method is considered. First, we apply alge-
braic statistical linearization to the input-dependent resistive aux-
iliary variables, and then redefine the auxiliary variables so that
their time derivatives do not depend on input’s derivative.

First, we decompose the input-dependent auxiliary variables
into a linear input term and the rest of the part

gRuðx;uÞ ¼ ~gRuðx; uÞ þ DRuu (27)

where DRu 2 <nRu�r is a coefficient matrix to be tuned
statistically, so that the second term DRuu can absorb most of the
input-dependent component from gRuðx;uÞ. This implies that

E½jDRuu� gRuj2� be minimized, or the residuals E½j~gRuj2� be
minimized

Do
Ru ¼ arg min

DRu

E½jDRuu� gRuj2� (28)

Next, we define causal auxiliary variables from the residuals:
~gRuðx; uÞ ¼ gRuðx; uÞ � DRuu. Namely, we extract only the state-
dependent portion of the residuals by taking partial derivatives

_g	Ru x; uð Þ¢
@gRu x; uð Þ

@x
_x (29)

where it is assumed that the input-dependent resistive elements
have differentiable constitutive laws. Note that the new auxiliary
variables g	RuðxÞ 2 <nRu�1 do not include the derivative of inputs
and, thereby, is causal. The auxiliary state equation (18) can be
obtained in the same manner as Eq. (21), where nRu components
in _g must be replaced by _g	Ruðx;uÞ in Eq. (29). Namely

_g  _g	 ¼

_gC

_gI

_gR

_g	Ru

0
BBBB@

1
CCCCA (30)

where gR is a vector of auxiliary variables associated with nonlin-
ear resistive elements that do not depend on input u, like the ones
in Example 3.

The auxiliary state equation is then modified to

_̂g
	 ¼ H	xxþH	ggþH	uu (31)

where the coefficient matrices are obtained by minimizing the
mean squared error for predicting _g	 given by Eq. (29). Using
Eq. (30), the auxiliary variables are

g ffi g	 þ Du (32)

where

D ¼
0ðna�nRuÞ�r

Do
Ru

" #
2 <na�r (33)

Substituting Eq. (32) into Eq. (23) yields

d

dt

x

g	

� �
¼ Ax Ag

H	x H	g

� �
x

g	

� �
þ

Bx þ AgD

H	u þH	gD

" #
u (34)

This provides causal augmented state equations.
The conversion and truncation in the latent space can be per-

formed in the same way as before

dz	

dt
¼ T	

Ax Ag

H	x H	g

� �
T	Tz	 þ T	

Bx þ AgD

H	u þH	gD

" #
u (35)

where T	 2 <k�m is the orthonormal matrix associated with the
transformation to the new latent variables

z	 ¼ T	T x

g	

� �
(36)

6 Numerical Examples

6.1 Systems With All Causal Auxiliary Variables

6.1.1 System. The above theory and method can be applied to
various systems, where data are obtained from experiments, simu-
lations, or a mixture of the two. Figure 7 is a simplified bond
graph model inspired by an earthmoving robotic system consisting
of a hydraulic actuator, an arm, and an end-effector. The dynamic
interaction between the end-effector and the environment, e.g.,
soil and rock, is complex and nonlinear, but its behavior can be
modeled as a combination of nonlinear spring (C2), mass (I2), and
damper (R). Furthermore, the high-pressure hydraulic line exhibits
a hard-spring nonlinear compliance (C1) due to cavitation and oil
compressibility as well as pipe and structural compliance. Their
constitutive laws manifest pronounced nonlinearities, as shown in
Fig. 8. The mass reflected to the actuator (I1), on the other hand, is
deemed linear. Various sensors, including pressure, position,
velocity, and acceleration sensors, can be attached to the system
to monitor not only state variables, but also auxiliary variables.
Detailed finite-element simulation software is also available for
simulating the system under realistic conditions. All variables are
normalized and mean-centered.

The system contains four independent energy storage elements,
I1, I2, C1, and C2, and therefore, it is a fourth-order system with

Fig. 7 Bond graph of a dynamical system inspired by an exca-
vator powered by a hydraulic system

Fig. 6 Example of an anti-causal auxiliary variable where input
u(t) is involved in the causal path. Backtracking the causal path
terminated at auxiliary variable f leads to input u(t).
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four state variables, p1; p2; q1; and q2. The system also contains
four nonlinear elements, C1, C2, I2, and R, and therefore, requires
four auxiliary variables

g ¼ ð e eC2 f2 eR ÞT (37)

These are outputs of the four nonlinear elements

e ¼ UC1ðq1Þ; eC2 ¼ UC2ðq2Þ; f2 ¼ UI2ðp2Þ; eR ¼ URðf2Þ
(38)

These auxiliary variables do not contain input ue, and therefore,
they are causal auxiliary variables for which time derivatives
exist.

6.1.2 Linearization Comparison. Figure 9 shows comparison
of the three linear approximation methods, (a) Taylor expansion,
(b) statistical linearization, and (c) dual faceted linearization, in
terms of root mean square error in predicting the transition of aux-
iliary variables, _g. Note that the state equation of x is exact; the
error comes from the transition of the auxiliary variables. The bar
chart in the figure indicates that the dual faceted linearization
is approximately three times more accurate than the Statistical
Linearization and over ten times more accurate than the Taylor
expansion.

Actual trajectories of the linearized models inevitably deviate
from the original nonlinear system, as illustrated in Fig. 10. How-
ever, the deviation speed is different depending on the lineariza-
tion method. In other words, the time horizon in which the
linearized model stays within an acceptable error limit is different.
Here, we evaluate accuracy of each linearization method in terms
of the error for a given time horizon.

Figure 11 shows the deviation envelope, that is, the maximum
deviation of each linearized model for a time horizon of 0.3 s after
departing from each point on the trajectory of the original nonlin-
ear model. The envelope was computed by simulating each linear-
ized model with initial conditions taken from every point on the
true trajectory. The maximum deviation for the following 0.3 s
was plotted at each time slice along the true trajectory. The tradi-
tional Taylor expansion method significantly deviates from the
correct trajectory in 0.3 s, as indicated by the large envelope. The
Statistical Linearization method can keep track of the correct

trajectory with a decent accuracy. The dual faceted linearization,
on the other hand, is significantly better, tracking the true trajecto-
ries of both independent state and auxiliary variables with high
accuracy.

While Fig. 11 shows the deviation envelopes of only one state
variable and one auxiliary variable, similar results were obtained
for other variables. Figure 12 shows the total mean squared error
of all the four state variables over diverse time horizons. Again,
the dual faceted linearization shows a significantly better result
than the other two methods.

6.2 Systems Containing Noncausal Auxiliary Variables.
Consider the system shown in Fig. 13, consisting of two resistive
elements R1 and R2, one capacitive element with state variable q
and one inertial element with state variable p. Elements I and R2

are assumed linear, while C and R1 are nonlinear with which
auxiliary variables f1 and e1 are associated. As shown in the figure,
input ueðtÞ sneaks in the auxiliary variable f1 through the left 1-
junction

e1 ¼ UCðqÞ
f1 ¼ UR1

ðue � UCðqÞÞ
(39)

Fig. 8 Constitutive laws of the system in Fig. 7

Fig. 9 Comparison of three linearization methods, Taylor
expansion, statistical linearization, and DFL, in terms of the
root mean square of predicting _g . The bar chart is normalized
by the root-mean-square (RMS) of DFL: rDFL .

Fig. 10 Schematic of deviated trajectories of linearized models
from the exact nonlinear model
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The state equations can be expressed as

dq

dt
¼ f1 �

1

m
p

dp

dt
¼ e1 �

R2

m
p

(40)

Using the method presented in Sec. 5, the influence of input is
maximally absorbed by a linear term DRuue. The optimal value of

DRu is obtained by minimizing the expectation of jDRuue � f1j2.

This is given by calculating E½f1ue�ðE½u2
e �Þ
�1

. For the sample data
used for simulations, the optimal value was found to be
DRu ¼ 0:348.

Using the optimal DRu, the modified state equation (34) was
formed, and the linearization accuracy was compared to other
algebraic linearization methods (Taylor series expansion and Sta-
tistical Linearization) in the same way as before. Figure 14 shows
typical responses to a sinusoidal input. Again, the DFL outper-
forms the Taylor series expansion and the Statistical Lineariza-
tion. In terms of the overall root mean square error in predicting
the transition of the auxiliary variables, the DFL method is
approximately six times better than the Taylor series expansion
and twice better than the Statistical Linearization.

Fig. 12 Sum of mean squared errors of all the state variables.
Comparison of the three linearization models against time
horizon.

Fig. 13 Bond graph of a system with anti-causal auxiliary
variable

Fig. 14 Deviation envelopes of simulations using the causal
auxiliary variables g	

Fig. 11 Deviation envelopes of different linearization models.
The maximum deviation from the exact nonlinear model over
the time horizon of 0.3 s is shown by the envelope.
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6.3 Discussion. The salient feature of the dual faceted lineari-
zation is to formulate two state equations for each of nonlinear
energy storage elements. In the first numerical example, the nonlin-
ear inertial element I2 having the nonlinear constitutive law f2 ¼
UI2ðp2Þ created two state equations: one with respect to p2 and the
other with f2. The former is in the form of dp2=dt ¼ eI2, where vari-
able eI2 is expanded by following the causal path across the bond
graph in Fig. 7, leading to the matrices Ax;Ag; and Bx. The latter
state equation is in terms of the output of the nonlinear inertial ele-
ment: df2=dt ¼ � � �. The linearized state equation with coefficient
matrices Hx;Hg;Hu delineates a different characteristic of the sys-
tem dynamics viewed from the auxiliary variable f2. Similarly,
associated with the nonlinear capacitive element C1 with constitu-
tive law e ¼ UC1ðq1Þ, two state equations, dq1=dt ¼¼ fC1 ¼ � � �
and de=dt ¼ � � �, were used. On the other hand, the linear inertial
element I1 had only one state equation, since its constitutive law is
linear, f1 ¼ p1=m, yielding the same state equation for both p1 and
f1. The use of dual state variables for nonlinear elements is more
informative and can predict the system’s behaviors more accu-
rately, as demonstrated in the numerical examples.

Care must be taken, however, since the two state equations
may be collinear. If the traditional algebraic linearization meth-
ods, e.g., Taylor expansion and statistical linearization, are used,
the second set of state equations does not add any new informa-
tion, as long as the nonlinear constitutive laws are approximated
to linear algebraic relations with a fixed coefficient matrix �J. No
matter which method is used for optimal selection of �J, the
resultant two sets of state equations are completely collinear and
redundant.

It is an important challenge to make all the auxiliary variables
causal, so that the governing equations of dynamic transition may
not contain the time derivative of input. The method presented in
Sec. 5 is in a sense a hybrid method combining the traditional
algebraic statistical linearization and DFL. The former is used for
extracting the influence of input from the input-dependent auxil-
iary variables with the linear term DRuue and the latter is used for
all the other input-free auxiliary variables. As such, the approxi-
mation accuracy relative to the traditional algebraic linearization
reduces, as demonstrated by the numerical example.

The dual faceted linearization has the potential to make a highly
complex nonlinear control problem to an order-of-magnitude sim-
pler problem. DFL can predict accurate dynamic responses for
limited yet long-enough intervals. Model predictive control
(MPC) of nonlinear stochastic systems, for example, can be
solved effectively with DFL. Although the original system is
highly complex and real-time computation of MPC is infeasible,
DFL provides a linear model that is valid within a certain time
horizon and, thereby, reduces the nonlinear MPC to linear MPC.
Although care must be taken with the valid time horizon, control
decisions to be made will be valid within the time horizon of tol-
erance error. Added benefits include the simplification of nonlin-
ear stochastic dynamics. Although nonlinear stochasticity is often
too complex to deal with, the DFL formulation can reduce the
nonlinear stochasticity to linear stochasticity in the augmented
state space [17].

Both statistical linearization and dual faceted linearization
require data sets for parameter tuning. In the numerical example
presented earlier, a simple grid method was used for generating
data sets. As the order of a system increases, such an exhaustive
grid point method becomes impractical. Effective sampling tech-
niques will be required for representing a high-order system with
fewer data points.

7 Conclusion

A new approach to modeling and linearization of nonlinear
lumped-parameter systems has been presented. Nonlinear state
equations are recast in an augmented state space by adding a set
of auxiliary variables that sufficiently informs the nonlinear
dynamics. Two major results have been obtained:

� Without causing any nonlinear algebraic loop problem, a lin-
ear state equation can be derived from a bond graph of inte-
gral causality by using auxiliary variables, i.e., the outputs of
all the nonlinear elements involved in the system.

� A set of linear differential equations predicting the dynamic
transition of auxiliary variables has been obtained. For this sec-
ond set of dynamic equations, it has been shown: (i) the second
dynamic equations do not add any new information if an alge-
braic linearization with a fixed coefficient matrix �J relating the
auxiliary variables to the independent state variables is used for
linear approximation and (ii) the proposed linear regressor can
predict the transition of the auxiliary variables more accurately
than the one with a fixed algebraic linearization. The two sets
of linear dynamic equations can capture diverse facets of the
nonlinear system and, thereby, represent the true behaviors
more precisely. The two sets of state equations have also been
combined using a latent modeling method.

Furthermore, it has been shown that a class of auxiliary varia-
bles associated with nonlinear resistive elements may depend on
inputs. This makes the state equations of the auxiliary variables
anti-causal. To alleviate the problem, causal auxiliary variables
with minimum influence of inputs have been introduced. Finally,
numerical examples have verified the theoretical results and dem-
onstrated the effectiveness of the proposed methods compared to
Taylor expansion and stochastic linearization methods. Future
research issues will include the application of DFL to more com-
plex systems, such as biological systems, where thousands of state
variables and nonlinear elements are involved. Combined with the
latent modeling method, DFL can provide a compact, linear
dynamical model that is amenable for analysis and control design.
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Appendix A: Proof of Theorem 1

The theorem can be proven by showing that backtracking any
causal propagation of variables from any of energy storage ele-
ments, dp=dt ¼ e or dq=dt ¼ f , leads to either state variables, or
auxiliary variables, or inputs only through linear relations. In each
backtracking step of causal propagation, a bond is connected to
either:

(1) A source (or a Sink) with input ue for an effort source, or uf

for a flow source;
(2) an energy storage element with a constitutive law

f ¼ UIðpÞ or e ¼ UCðqÞ (A1)

(3) another junction, 1 or 0 junction; or
(4) a resistive element with a constitutive law

eout ¼ URðfinÞ or fout ¼ U ~RðeinÞ (A2)
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In case 1, the causal propagation originates at input ue or uf . In
case 2, if the energy storage element is nonlinear, the backtracking
of the causal path also terminates with the output of the element,
either f ¼ UIðpÞ or e ¼ UCðqÞ, both of which are auxiliary varia-
bles. If the energy storage element is linear, then the causal path
reaches one of the state variables, either e ¼ q=C or f ¼ p=m
where C and m are constant parameters. In case 3, the backtrack-
ing of the causal path continues to a single bond connected to the
junction or spreads out to all the bonds connected. Whichever the
case, the propagated variable coming to the junction is a linear
function of the outgoing variables. In case 4, if the resistive
element is nonlinear, then the backtracking terminates at the ele-
ment with auxiliary variable eout ¼ URðfinÞ or fout ¼ U ~RðeinÞ. If
the resistive element is linear, the variable is converted between
effort and flow, and continues to propagate with eout ¼ R fin or
fout ¼ ein=R. In case linear resistive elements form a loop, the
algebraic equation can be solved explicitly.

Therefore, all the possible continuing propagations are
expressed as linear relations, and the variable associated with any
terminated propagation is an input, state variable, or auxiliary
variable. Any algebraic loop of this propagation is a series of
all linear resistive elements from which a linear relation
among inputs, state variables, and auxiliary variables can be
obtained. �

Appendix B: Derivation of the Equations of Motion

From the Bond Graph in Fig. 2

By definition, the time-derivative of momentum p1 associated
with inertial element I1 is effort variable e1 : ðdp1=dtÞ ¼ e1. Note
that the inertial element I1 is connected to the left 0-junction in
Fig. 2, where the four power bonds are connected, sharing the
common effort e1. Among the four power bonds, the capacitive
element has the causal stroke on the junction side, indicating that
this element determines effort e1 with its own constitutive law
e1 ¼ UCðqÞ. Substitution of this constitutive law to the above defi-
nition equation gives Eq. (12).

By definition, the state transition of displacement q associated
with the capacitive element C is given by ðdq=dtÞ ¼ fC. Note that
the capacitive element C is connected to the left 0-junction
where the four flow variables sum to zero. This gives the junction
condition: uf ðtÞ � fC � f � fI1 ¼ 0. Thereby, fC is replaced by
uf ðtÞ � f � fI1. The flow variable f is coming from the right
0-junction, where the three flow variables sum to zero:
f � fI2 � fR2 ¼ 0, which allows us to extend f to fI2 þ fR2. The
inertial element I1 determines the flow fI1 as a function of its
state fI1 ¼ UI1ðp1Þ, and so does fI2 ¼ UI2ðp2Þ for I2. Note that

fR2 ¼ UR2ðeÞ is a function of effort e, which is determined by the
capacitive element connected to the left 0-junction, e ¼ UCðqÞ.
Substitution of these yields Eq. (13).

Equation (14) can be derived in the same manner by backtrack-
ing the causal propagation path from the inertial element I2

through the right 0-junction and the 1-junction, as directed by the
causal strokes.
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