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THERMAL CONDUCTION IN MICROELECTRONIC CIRCUITS

by
Kenneth E. Goodson
Submitted to the Department of Mechanical Engineering

on January 28, 1993 in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Mechanical Engineering

ABSTRACT

Dimensions smaller than 100 A are the hallmark of highly-integrated electronic
circuits containing devices such as field- and quantum-effect transistors. The performance
and reliability of these circuits are influenced by thermal conduction processes with such
small lengthscales. But many of these processes are not understood because (a) the thermal
conductivities of thin layers in circuits are unknown, and (b) analytical and experimental
tools which investigate chip-level thermal conduction processes are often not suitable for
device-level processes.

This work addresses (a) for amorphous silicon-dioxide layers, showing that the
thermal conductivity depends on the processing technique. Measurements yield the thermal
conductivities of layers fabricated using low-pressure chemical-vapor deposition (LPCVD)
and oxygen-ion implantation (SIMOX). A model accounting for porosity predicts the
increase in the conductivity of the LPCVD layers due to annealing. An analysis of phonon-
boundary scattering predicts the strongly-reduced conductivities of silicon-dioxide layers in
cryogenic circuits.

A local temperature measurement technique and a closed-form solution to the heat-
conduction equation address (b) for promising silicon-on-insulator (SOI) circuits. The
predictions agree well with the data, and indicate that the reliability of transistor-

interconnect contacts can be improved by optimizing the transistor dimensions. The model



predicts that phonon-boundary scateering in the source and drain of the transistor will
reduce the packing limit of these devices if they are used at low temperatures, e.g., in
hybrid superconductor-semiconductor circuits.

This work makes progress towards enabling device-level thermal design to become
an integral part of the design of reliable high-performance circuits. An example of device-
level thermal design is the choice of transistor dimensions which increase the median time

to failure (MTF) of transistor-interconnect contacts.

Thesis Supervisor:  Markus L. Flik
Title: Assistant Professor of Mechanical Engineering
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NOMENCLATURE

A = area, m?2

a = dimension of scattering site, m

B = boundary-scattering parameter, Egs. (5-3) and (5-4)

b = characteristic length of test structure, m

c = specific heat at constant volume per unit volume, J m-3 K-!

Cs(x,T) =Debye specific heat function, defined by Eq. (4-18), J m3 K1

Cp = specific heat at constant pressure per unit mass, J kg1 K-

D = packing limit, transistors cm-2

d = layer thickness, m

d, = total thickness of thermally-grown and CVD silicon dioxide, m
dgo = thickness of silicon-dioxide layer between gate and channel, m
dio = thickness of silicon dioxide between fin and substrate, m

d, = thickness of implanted silicon-dioxide layer, m

dsup = substrate thickness, m

dr = thickness of thermocouple bridge, m

E = energy deposited by laser, J

E" = energy deposited per unit area, J m2

E, = electromigration activation energy, J

Ey = fitting parameter for Agg, J

Fg(Y) =shape function for temperature distribution in gate

G = thermal conductance, W K-!

8 = acceleration due to gravity, m s

h = heat transfer coefficient, W m2 K'!

hp = Planck's constant divided by 2t = 1.05 x 1034 J s
I = current, A
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= drain current, A

= current along gate in Y direction in test structure, A

= integer in summations, Egs. (3-11), (5-16), and (5-17)

= electrical current density, A m2

= net energy flux vector, W m-2

= electromigration constant, s A2 m*

= modified Bessel function of the first kind of order zero

= thermal conductivity, W m-! K-1

= effective thermal conductivity along layer, defined by Eq. (3-1), W m1 K-

= apparent thermal conductivity measured by thermal coraparator, W m™! K-1

= Boltzmann constant = 1.38 x 10 23 J K1

= thermal conductivity measured in bulk samples, W m'1 K-1

= channel thermal conductivity, W m-1 K-1

= effective thermal conductivity for conduction normal to layer,
defined by Eq. (3-2), W m'1 K-1

= thermal conductivity of silicon dioxide, W m-1 K-1

= substrate thermal conductivity, W m-! K-

= thermal conductivity of thermocouple bridge, W m-1 K-1

=length, m

= channel length in X direction, m

= separation between gate and metal interconnect, m

= half-length of interconnect between devices in X direction, m

= Lorenz number = 2.45 x 108 W Q K2

= half-width of laser line, m

= median time to failure, s

= (h/ k d)!” = inverse thermal healing length of fin, m'!

= phonon distribution function

11



= atomic number density, m-3

= number density of scattering sites, m3

= departure of phonon distribution function from equilibrium = N - Noy

= pore number density, m-3

= equilibrium phonon distribution function

= phonon distribution function approached due to momentum-conserving
scattering

= unit vector in direction of g

= transistor power, W

= time-averaged transistor power, W

= heat flow, W

= argument of relative uncertainty function, U(q)

= phonon wavevector, m!

= heat-flow amplitude per unit length, W m-1

= heat flux, W m-2

= amplitude of periodic heat flux, W m-2

= heat flux in x direction, along layer, W m2

= heat flux in y direction, normal to layer, W m-2

= apparent thermal resistance, m? K W-!

= channel-to-substrate thermal resistance, K W-!

= electrical resistance of gate in Y direction, Q

= gate electrical-resistance calibration function, Q

= substrate thermal resistance, m2 K W-!

= thermal resistance, m? K W-1

= distance from heating source, m

= position vector, m

= heat-flow radius, m

12



U@q)

= parameter, Eqgs. (6-14) and (6-15)

= fitting parameter for Ap, m rad* s

= fitting parameter for Agg

= temperature, K

= temperature difference, K

= kg T / Ep = dimensionless temperature

= amplitude of periodic temperature, K

= average substrate temperature below bridge A, K
= average channel temperature, K

= gate temperature distribution, K

= average temperature rise in gate, K

= initial film temperature due to pulse heating, K
= reference temperature, K

= substrate or chuck temperature, K

= time, s

= characteristic timescale of transport process, s
= clock period, s

= duration of laser pulse, s

= relative uncertainty in parameter q

= ratio of temperature changes

= energy per unit volume, J m-3

= rate of energy generation per unit volume, W m3
= voltage difference along bridge, V

= drain-source voltage difference, V

= voltage difference along gate, V

= gate-source voltage difference, V

= volume used to calculate the available phonon wavevectors, m3

13



v = carrier velocity, m s -1

v = phonon velocity vector, m s}
Va = air velocity, m s -1
Vd = phonon drift velocity, m s’!
Vs = average speed of sound, m s-1
w = half width of substrate, m
Wo = separation between transistors in Y direction, m
w = width, m
w4 = channel width in Y direction, m
We = separation between channel and gate contact in Y direction, m
Wm = width of metal interconnect in Y direction, m
X = coordinate in plane of substrate, m
x = coordinate in plane of substrate, m
Ax = characteristic lengthscale of transport process, m
Xs = separation between bridges, m
Xg = dimensionless phonon frequency = hpw / (kgT)
Y = coordinate in plane of substrate, m
y = coordinate normal to substrate, m
Z = coordinate normal to plane of substrate, m

Zy,2Z,,73,Z4 = constants, Egs. (6-10) - (6-13), K

Az = uncertainty in phonon position, m

o = therrual diffusivity, m2 s-1

0 = thermal diffusivity of implanted silicon-dioxide layer, m? s-1
0y = thermal diffusivity of source and drain of SOI FET, m? s-!
0,1 = phonon transmission coefficients from layer

B = coefficient of thermal expansion, K-1

r = gamma function

14



Y = Sommerfeld parameter, J m-3 K-2

o = parameter, Eqs. (6-14) and (6-15)

£ = emissivity

(7] = Debye temperature, K

A = mean free path, m

A, = electron mean free path, m

A = electron mean free path limited by scattering on imperfections, m
Aes = electron mean free path limited by scattering on phonons, m

Ag = phonon mean free path limited by geometrical scattering, m

A = phoncn mean free path, m

Asp = B d = phonon mean free path limited by boundary scattering, m
Ag i = phonon mean free path limited by scattering on imperfections, m
Age = phonon mean free path limited by scattering on electrons, m
Ags = phonon mean free path limited by scattering on phonons, m

Ay = frequency-dependent phonon mean free path, m

Awpur = bulk frequency-dependent phonon mean free path, m
Awp  =frequency-dependent phonon mean free path limited by

Rayleigh scattering, m

Agsp  =frequency-dependent phonon mean free path limited by scattering on

structural relaxation, m

Ao = frequency-independent phonon mean free path of Kittel (1949), m
A; = parameter, Egs. (5-16) and (5-17), m’!
As =27 vs/ @ = phonon wavelength, m

Asdom =dominant phonon wavelength, m
At = inverse thermal diffusion length = (@/)!/2, m-!
= viscosity, kg m-1 s-1

p = mass density, kg m3

15



dp = deviation in mass density, kg m-3

Pe = electrical resistivity, Q m

c = Stefan-Boltzmann constant = 5.67 x 10-8 W m2 K+

T =relaxation time, s

(7 = relaxation time for scattering on defects, s

N =relaxation time for momentum-conserving scattering, s
TR =relaxation time for resistive scattering, s

Ts =relaxation time for scattering on phonons, S

T = fitting parameter for Agg, s

= parameter accounting for two-dimensional conduction

(0] = phonon angular frequency, rad s-!

o' = o T = dimensionless phonon frequency

Aw = uncertainty in phonon frequency, rad s-1

ap = Debye angular frequenC);, rad s-1

dQ = differential solid angle, sr

Subscripts

A = property or parameter of bridge A

C = property or parameter of bridge C

D = property or parameter of bridge D

d = property or parameter of the source and drain
e = electron property

g = property or parameter of the gate

m = property or parameter of the metal interconnects
0y = phonon property
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1. INTRODUCTION

Modern fabrication techniques make electronic structures with features smaller than
100 A. These structures are the basis of field- and quantum-effect transistors and make
possible microprocessors in computers. The performance and reliability of these devices
depend on the temperature fields within the electronic microstructures, and are influenced
by thermal conduction processes with small lengthscales, e.g., less than a micrometer. But
in many cases the thermal conductivities of the layers in these structures are not known.
The available analytical and experimental tools which determine temperature fields are often
inappropriate due to the small dimensions of the structures. These problems are becoming

more important as the dimensions in electronic circuits decrease.

1.1 Trend of Dimensions in Electronic Circuits

The basic element of most digital electronic circuits is the field-effect transistor
(FET), shown in Fig. 1-1. An important lateral dimension of this device is the channel
length L, which at present is near 0.7 pum. The lateral dimensions of FET's have decreased
steadily since 1960, by about an order of magnitude every 15 years (e.g., Sze, 1988).
Reducing the lateral dimensions of FETs, in particular the channel length, helps to decrease
their switching time. This facilitates higher clock frequencies and faster computing.
Reducing the lateral dimensions of FETs also decreases the substrate area occupied by each

transistor, yielding chips which have more transistors and more functions. Guidelines for

22



GATE, HEAVILY DOPED N-TYPE

[}
ALUMINUM '
!
' POLYCRYSTALLINE SILICON

INTERCONNECT

SILICON *:
- DIOXIDE

SOURCE

UBSTRATE, LIGHTLY DOPED
P-TYPE SINGLE-CRYSTAL SILICON

Fig. 1-1 Schematic of an n-type insulated-gate field-effect transistor (FET). These
devices are also called metal-oxide-semiconductor (MOS) field-effect
transistors, because the gate can be made from metal. For a discussion of
the operation of this device see, e.g., Tsividis (1987).
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reducing FET dimensions and the problems this can yield in electrical behavior were
discussed by Antoniadis (1987), Tsividis (1987), and Yang (1988).

The trend of FET packing densities has increased the power dissipated in electronic
chips, providing strong motivation for the research community to address heat transfer
problems in electronic systems (e.g., Aung, 1991; Bar-Cohen and Kraus, 1988, 1990).
Much of this work aimed to improve the reliability of these systems, both by designing
them to withstand the stresses caused by thermal expansion, and by helping to prevent high
operating temperatures as the power dissipated per unit substrate area increased. High
operating temperatures increase the rate of atemic diffusion within the circuit, which can
result in its failure or non-optimal performance. An important example of this is
electromigration, the flow of atoms along a metal interconnect due to a bias current, which
causes interconnects and FET-interconnect contacts to fail (e.g., Murarka, 1988). The
atomic flux due to electromigration is proportional to the electric field. The electrical
performance of circuits can also benefit from lower operating temperatures, €.g., for
transistors with moderately small channel lengths the time required to switch increases with
increasing temperature (e.g., Tsividis, 1987). This results from the higher energy density
of the lattice in the channel region, which more strongly scatters the electrons and reduces

their electrical mobility, the ratio of the electron drift velocity to the electric field.

1.2 Small-Lengthscale Thermal Conduction Processes

In addition to motivating the research discussed in Section 1.1, the trend of FET
dimensions is having an impact on the lengthscales of heat-transfer processes which are
important in electronic systems. As the dimensions of transistors decrease, a greater
fraction of the transistor-to-coolant temperature drop can take place within a few
micrometers of the transistor hotspots. The resulting small-lengthscale thermal-conduction
problems do not necessarily yield to techniques that are successful in the rest of the

electronic system, e.g., infrared thermography and the use of bulk values of the thermal
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conductivity in the Fourier equation. But small-lengthscale thermal conduction processes
can influence the temperatures of the FET channel and the FET-interconnect contacts,
which affect the circuit performance and reliability, and should be considered during circuit
design. These processes also govern the temperature gradients at the substrate surface,
which are important because they facilitate interconnect failure due to electromigration
(e.g., Schwarzenberger, 1988).

Small-lengthscale thermal conduction processes are especially important in novel
silicon-on-insulator (SOI) circuits. Transistors in conventional "bulk" circuits are
fabricated at the surface of a bulk wafer, and are in direct electrical and thermal contact with
the substrate, as shown in Fig. 1-1. In contrast, SOI transistors are electrically insulated
from the substrate by a silicon-dioxide layer. Figure 1-2 is a cross section of a SOI FET,
whose common dimensions are given in Table 1-1. The silicon-dioxide layer between the
device and the substrate is fabricated by implanting oxygen ions into single-crystal silicon.
The implanted layer electrically isolates neighboring devices, preventing latchup and current
leakage to the substrate, and reduces the contribution of the substrate to the device electrical
capacitance, facilitating faster circuits (Colinge, 1991). But the implanted layer possesses a
low thermal conductivity and inhibits conduction cooling of the devices. The implanted
layer dominates the small-lengthscale thermal conduction processes in SOI circuits.

Small-lengthscale thermal conduction processes are often not understood due to two
problems: (a) The thermal conductivities of layers in circuits, such as the implanted
silicon-dioxide layer in Fig. 1-2, are not known. The use of values of the thermal
conductivity measured in bulk samples can yield significant error because the
microstructure and purity of a layer, which influence thermal conduction, often depend on
its thickness and fabrication technique. The small dimensions of the layer can also make
interfacial effects important, such as thermal boundary resistances. An important interfacial

effect is the boundary scattering of the carriers of thermal energy, electrons in metals and
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Fig. 1-2 Cross section of a silicon-on-insulator (SOI) FET. The source and drain are
heavily-doped n-type single-crystal silicon, the gate is heavily-doped n-type
polycrystalline silicon, and the channel is lightly-doped p-type single-crystal
silicon.
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Table 1-1 Common dimensions of SOI FETs. The device width wy is in the direction
normal to the X-Z plane in Fig. 1-2.

Dimension Symbol Value (pum)
Implanted-SiO, Thickness d, 0.4
Additional-SiO; Thickness d, 0.6

Interconnect Thickness dm 0.5
Device Thickness d; 0.08
Gate Thickness d, 0.3
Gate-Channel Separation doo 0.0055
Channel-Interconnect Separation Ly 0.5
Channel Length L. 0.5
Device Width in Y direction Wd 0.8

phonons, the quanta of lattice waves, in dielecirics and semiconductors. Boundary
scattering becomes more important as the ratio of the layer thickness to the carrier mean free
path decreases, and can cause the effective thermal conductivity of the layer to be
significantly lower than the conductivity of a bulk material with the same microstructure.
Chapter 6 predicts that boundary scattering will have a strong effect on thermal conduction
in the source and drain of SOI FETs when they are operated at or below 77 K.

(b) The available analytical tools and temperature-measurement techniques are often
not appropriate for determining device-level temperature fields. Finite-element conduction
analysis cannot at present account for heat-carrier boundary scattering, and this may yield
large errors, particularly at low temperatures where the heat-carrier mean free path can be
much larger than the dimensions of electronic microstructures. Most temperature-
measurement techniques have insufficient spatial resolution to probe device-level

temperature fields, e.g., infrared thermography works above the diffraction limit,

27



which is of the order of 10 pum at 300 K. But a much finer resolution is needed to

investigate the temperature of the channel hotspot of the SOI FET in Fig. 1-2.

1.3 Objectives

A major difficulty with working on small-lengthscale thermal-conduction problems
is that there is uncertainty about which experimental and analytical tools are applicable to a
given process. The next three chapters address this difficulty, without providing new
physics information. Chapter 2 defines the microscale thermal-conduction regime, in
which the use of the Fourier equation for the heat flux yieids significant error, and plots
regime maps for electronic materials. Chapter 3 reviews the existing techniques for
measuring the thermal conductivity in the directions along and normal to thin layers, and
points out the need for standard techniques with well-known uncertainties. Chapter 4
reviews techniques which analyze microscale thermal conduction processes in dielectrics
and semiconductors.

Chapters 5 and 6 directly address the problems (a) and (b) discussed in Section 1.2.
Chapier 5 provides a technique for measuring the thermal conductivity in the direction
normal to amorphous dielectric layers, and investigates the influence of the fabrication
nrocess on this property. This yields the first data for the conductivity of the implanted
silicon-dioxide layers in SOI circuits, and for the annealing-temperature -Jependence of the
conductivity of low-pressure chemical-vapor deposited (LPCVD) layers. The data are
compared with predictions of analyses accounting for phonon-boundary scattering and
porosity. Chapter 6 uses the thermal-conductivity data for the implanted layers to predict
the temperature fields in SOI circuits, and develops a technique to measure the channel
temperature. An approximate analysis of boundary scattering in the source and drain of
SOI FETs estimates the impact of microscale conduction on the FET thermal packing limit.

Chapter 7 proposes a research program which is motivated by this work.
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2. THERMAL-CONDUCTION REGIMES IN
MICROELECTRONIC STRUCTURES

2.1 Introduction

Due to the small dimensions of microelectronic structures, it is often not known if
the thermal conduction processes in these structures can be analyzed with macroscale
theories, i.e., methods which do not consider the influence of the boundaries of the
structure on the thermal conductivity within the structure. If macroscale theory is applied to
a microstructure in a situation for which it is inappropriate, then a significant error in the
calculated heat transfer rate or temperature distribution can result. Such an error can cause
the device to be designed to perform in a sub-optimal manner or prevent it from being able
to function. In electronic devices, microscale effects in a thin layer can inhibit the flow of
heat from hotspots within the layer, resulting in peaks of temperature of a magnitude
greater than those predicted by macroscale analysis. These temperature peaks can affect the
performance and reliability of the devices and interconnects in the circuit. Circuit designers
can benefit from a criterion which shows whether macroscale theory can be applied to a
given device or whether microscale theory must be used. Microscale theory determines the
effect of the structure dimensions on a transport property by considering the physical
mechanism of transport, i.e., thermal conduction by electrons in metals and phonons, the

quanta of lattice waves, in dielectrics and semiconductors.
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Fundamentals and applications were presented for microscale thermal conduction
by Ziman (1960) and Tien et al. (1969). Recently, microscale heat transfer phenomena
have received intensive interest due to the emergence of thermal microsensors (Udell,
1990) and high-T, superconducting layers (Flik and Tien, 1990; Goodson and Flik,
1992). None of these studies presented the boundary of the macroscale heat-transfer
regime for a given transport mechanism in terms of the parameters available to the circuit
designer, i.e., the dimensions of the microelectronic structure and the operating
temperaturc. Hence, based on these works it is not immediately possible to decide if
macroscale theory is applicable to a given conduction process.

This chapter develops heat transfer regime maps for microstructures which relate a
geometric lengthscale to temperature. The boundary between the microscale and
macroscale regimes is determined as a function of temperature by the requirement that the
application of macroscale theory yields an error not exceeding 5 percent. Through the
mechanistic lengthscale governing the transport process, this functional relation depends on
the material properties, i.e., the scattering mechanisms for electron and phonon thermal
conduction in solids. The geometric lengthscale is the smallest structure dimension.
Previous regime maps delineating boundaries between applicable theories of transport
phenomena were published for rarefied gas dynamics by Tsien (1946) and for thermal
radiation in packed beds by Tien (1988). Majumdar (1991) illustrated the analogy between
microscale conduction in dielectrics and radiative transfer, and presented a regime map for
diamond layers similar to the one developed in this chapter. Recently, Tien and Chen
(1992) observed that there are two microscale thermal-conduction regimes. The first
includes conduction processes for which the mean free path of heat carriers is comparable
to or larger than the geometric lengthscale. The second microscale regime is a subset of the
first, and includes processes where the wavelength of the heat carriers is comparable to or
larger than the geometric lengthscale. This chapter investigates the boundary between the

first microscale regime and the macroscale regime.
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The impact of the regime maps is twofold. First, specific devices can be
represented with a region in a regime map, showing immediately whether or not a certain
transport process in a given device can be analyzed with macroscale theory. Second,
demands for future research in microscale heat transfer can be anticipated by marking
regions in the regime maps which correspond to the expected development of a given
microtechnology. This work does not present new physics information. It relies on
known physical foundations of transport phenomena. But this knowledge has not been
applied to date in thermal analysis and design. By providing regime maps, this work
attempts to aid in the development of tools for microscale thermal analysis and

experimentation.

2.2  Mechanistic Lengthscales

In solids, heat is carried by electrons and lattice waves, whose quanta are phonons.
In pure metals, the electron contribution dominates. In dielectrics and semiconductors, the
phonon contribution dominates. Kinetic theory yields the thermal conductivity of metals,

dielectrics, and semiconductors (Ziman, 1960),

CvA 2-1)

For metals, C = C, is the electron specific heat, v = v, is the electron Fermi velocity (Kittel,

1986), and A = A, is the electron mean free path. For conduction in dielectrics and
semiconductors, C = C; is the phonon specific heat, v = v; is the speed of sound, and

A = A is the phonon mean free path. The specific heat C in Eq. (2-1) is only that portion
of the total specific heat of the material which is brought about by the carrier being
analyzed.

Figure 2-1 illustrates that for a thin layer, the importance of boundary scattering

relative to internal scattering increases with the ratio A / d, where A is the bulk value of the
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Thermal conduction in a

Fig. 2-1
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mean free path of the dominant carriers of heat, and d is the layer thickness. Scattering on
the boundaries of the layer reduces the carrier mean free path from its bulk value, reducing
the thermal conductivity according to Eq. (2-1). For A << d, this reduction may be
neglected. But for A ~d and A > d, the influence of boundary scattering must be
considered, and the effective thermal conductivity even in an isotropic layer depends on the
direction of energy flow. In what follows, the effective thermal conductivity along the
layer is the absolute value of the ratio of the heat flux to the temperature gradient along the
layer. The effective thermal conductivity normal to the layer is the product of the heat flux
normal to the layer and the layer thickness divided by the temperature difference between
the top and bottom surfaces of the layer.

Fuchs (1938) and Sondheimer (1952) determined the influence of electron-
boundary scattering on the effective electrical conductivity along thin metal layers by
solving the Boltzmann equation. Tien et al. (1969) and Kumar and Vradis (1991) showed
that this result may be used with little error up to room temperature to determine the
effective thermal conductivity along thin metal layers. Majumdar (1991) developed the
equation of phonon radiative transfer from the Boltzmann equation to analyze microscale
phonon conduction in dielectrics. This equation considers the variation of the phonon free
paths about the mean free path and the dependence of the phonon mean free path on the
phonon frequency. Chen and Tien (1992) solved the equation of phonon radiative transfer
considering the transmission of carriers through the layer boundaries to determine the
effective thermal conductivity normal to and along GaAs layers in a GaAs-AlGaAs
multilayered structure.

Flik and Tien (1990), by assuming that all carrier free paths are equal to the mean
free path in the absence of boundary scattering, obtained approximate closed-form
solutions for the effective electron or phonon conductivity along or normal to a layer. The

result for conduction along a layer agrees within 20 percent with that of Fuchs (1938) and

Sondheimer (1952). For d > A, the analysis of Flik and Tien (1990) yielded
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kneg ! kpuk = 1 - A/(3d) for the effective conductivity normal to the layer, and

Kaef ! kpur= 1 - 2A/(3nd) for the effective conductivity along the layer, where kpu i« and
A are the isotropic bulk values of the conductivity and the mean free path. The use of the
bulk value of kp, rather than the effective conductivity in an error greater than 5 percent
for d <7 A for conduction normal to the layer, and for d < 4.5 A for conduction along the
layer. These inequalities determine the microscale regimes in the present analysis.

These criteria determine whether microscale effects increase the volume resistance
of the layer. They do not consider the thermal boundary resistance, which can cause the
effective conductivity normal to multilayered structures to vary with the layer thicknesses.
If the temperature difference across the interface is small and the temperature is below about
30 K, the thermal boundary resistance at a dielectric-dielectric or metal-dielectric interface is
governed by the acoustic mismatch between the materials and is inversely proportional to
the third power of the lower temperature (Swartz and Pohl, 1989). At temperatures above
100 K, the boundary resistance is between 10-7 and 10-8 m2 K W-1. The partial
transmission of carriers through the boundaries, which is limited by the boundary
resistance, is not considered in the present analysis. Partial transmission increases the free
path of some carriers, and can reduce the dimension separating the microscale and
macroscale regimes for conduction normal to a layer. Chen and Tien (1992) predicted that
if carrier transmission through the boundaries is diffuse, the effective phonon conductivity
along a dielectric layer does not depend on the phonon transmission coefficients at the
boundaries.

The hyberbolic thermal-conduction equation considers the finite propagation speed
of energy and was proposed for use when the duration of a thermal disturbance is very
small (Joseph and Preziosi, 1989; 1990), i.e., in a temporal microscale situation. For

conduction in the absence of a heat source, the hyperbolic conduction equation is

34



29T 19T _y2p (2-2)
a2 oot

where o is the thermal diffusivity and ~is the relaxation time. The relaxation time T=A/v
is the average time a carrier travels between collisions. Majumdar (1991) showed that Eq.
(2-2) can be derived from the Boltzmann equation for dielectric layers only if the layer
thickness is much larger than the phonon mean free path. Equation (2-2) reduces to the
macroscale thermal-conduction equation if the second term on the left is much larger than
the first term. Order-of-magnitude analysis yields the criterion

('t/a)(AT/AtZ) << (1/a)(AT/Ar) for the macroscale -egime, where At is the characteristic
time scale of the heat transfer process and AT is the characteristic temperature difference.
If for a thin layer of thickness d the characteristic time scale At is given by diffusion across
the layer, then it satisfies d ~ (aAf)!/2, and the macroscale criterion is d?>> o 1. Using
Eq. (2-1), the thermal diffusivity is &= k/C ~ vA. Since 7= A/v, the final criterion for
macroscale conduction is d% >> A2. If no timescales shorter than /o are present, then the
Fourier equation is valid for conduction across a thin layer as long as boundary scattering is
not important. For shorter timescales, or if d is of the order f or smaller than A, the
Fourier equation is not valid. Vedavarz et al. (1991) prepared a regime map for hyperbolic
heat conduction, but their use of Eq. (2-2) in the limit of

d? ~ A2 needs to be reexamined.
2.3 Material Properties

2.3.1 Metals

The theory of thermal conduction in metals was summarized by Wilson (1953) and
Ziman (1960). The electron mean free path may be obtained from experimental values of
the thermal conductivity using Eq. (2-1), the electron specific heat, C,, and the Fermi

velocity, v,. The thermal conductivity of metals was given by Touloukian et al. (1970a).
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The Fermi velocities of electrons in metals are of the order of 10 m s-! and were tabulated
by Kittel (1986). The volumetric specific heat of electrons, C, is proportional to

temperature,
Ce =Y T (2-3)

The Sommerfeld parameter, ¥, was tabulated for metals by Kittel (1986) and is of the order
of 100 J m3 K-2,

The mean free path of electrons in metals is limited by scattering on imperfections
and phonons. Imperfections include impurity atoms and lattice defects. Matthiessen's rule
separates the inverse electron mean free path, 1/A,, into components due to imperfection

scattering, 1/A,.;, and phonon scattering, 1/A,,

+ (2-4)

B P
Ae  Api Ay
The imperfection-limited mean free path A,; is independent of temperature, while the
phonon-limited mean free path A, ; decreases with increasing temperature. At very low
temperatures, T << 6, the absence of phonon scattering allows A, ; to be determined. The
Debye temperatures 6 of monatomic solids were given by Kittel (1986).

The scattering of electrons on phonons dominates over the scattering of electrons on
imperfections above a temperature near 50 K. When phonon scattering dominates, A,
can be calculated from thermal conductivity data using Eq. (2-1). The value of A, may be
extrapolated to lower temperatures using the formula of Wilson (1953) for electron thermal
conduction limited by scattering on phonons. At temperatures below a low reference
temperature, T < T, < 6/ 10, this formula may be simplified with less than 10 percent
error in metals to k, (T)/k. «(T,) = (T,/T)2. Using this result and Egs. (2-1) and (2-3)

yields the mean free path for T < T,
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2.3.2 Dielectrics and Semiconductors

Phonon conduction in dielectrics was reviewed by Ziman (1960). The phonon
mean free path in dielectrics is calculated from experimental conductivity data using Eq.
(2-1), the phonon specific heat, C;, and the average speed of sound in the material, vs.
The specific heats of dielectrics and semiconductors were given by Touloukian and Buyco
(1970a; 1970b). Phonon conduction in dielectrics is limited by scattering on other phonons
and or imperfections, which include lattice defects and isotopes. In doped

semiconductors, the free carriers also scatter phonons. Matthiessen's rule yields

-1, 1,1 (2-6)
As As,i As,s As,e

where A, is the phonon mean free path, A;; is the phonon mean free path limited by
scattering on imperfections, A is the phonon mean free path limited by scattering on
phonons, and Ay, is the phonon mean free path limited by scattering on free carriers in
semiconductors. The third term on the right of Eq. (2-6) is zero for dielectrics.

Below a reference temperature, T < T, << 6, the phonon mean free path limited by

scattering on phonons is approximately

At low temperatures, the phonon mean free path in undoped crystals is limited by scattering

on isotopes and point imperfections. When this mechanism is dominant and T < T, << 6,

the phonon mean free path is well approximated by (Berman et al., 1956)
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24 Regime Maps

Figure 2-2 shows the regimes for thermal conduction in annealed, polycrystalline
copper. The mean free path below 30 K is given by Eq. (2-5). Above 30K, A.is
obtained using Egs. (2-1) and (2-3) and values of the thermal conductivity recommended
by Touloukian et al. (1970a). Below 30 K, A, is obtained using Eq. (2-5) with
T, =30 K. Based on Egs. (2-1) and (2-2) and low-temperature therma: conductivity data
from the following sources, the imperfection-limited mean free path for copper at least
99.999 percent pure by weight is A.; = 57 pm (White and Tainsh, 1960), for copper
containing 0.0013 percent oxygen is A.; = 3.2 pm (Powell et al., 1957), and for copper
containing 0.056 percent iron is A,; = 0.096 pm (White and Woods, 1954). Below 30K,
the layer thickness denoting the microscale regime boundary varies by three orders of
magnitude depending on the purity. In cryogenic electronics applications, the effective
thermal conductivity of layers thinner than 1 pm is size-dependent, while at room
temperature layers of thickness greater than about 0.1 pm belong to the macroscale regime.

Figure 2-3 is a regime map for thermal conduction normal to silicon layers. The
average speed of sound is vy = 6500 m s-1 (McSkimin, 1953) and the values of the pure
crystalline thermal conductivity are those recommended by Touloukian et al. (1970a). The
mean free path is extrapolated to low temperatures for an infinite crystal using
Eq. (2-8) with T, = 25 K. The data of Rosenberg (1954) are employed for the thermal
conductivity of polycrystalline silicon below 100 K. The dashed curve in the left of
Fig. 2-3 indicates that the mean free paths for the crystal and polycrystal must approach one
another with increasing temperature and is not supported by experimental data. Slack
(1964) gave the thermal conductivity of a boron-doped silicon crystal from which the

dashed curve on the right of Fig. 2-3 is extrapolated. The dimension bounding the
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Fig. 2-2 Regime map for thermal conduction normal to copper layers.
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microscale regime is highly dependent on the carrie. concentration. At low temperatures, it
ic reduced by the grain-boundary scattering in a polycrystalline specimen. Silicon
microstructures used in the majority of room-temperature sensors and actuators do not
exhibit a size-dependent thermal conductivity, in contrast to layers in low-temperature
electronic circuits. The doping level determines whether a silicon layer is in the microscale
conduction regime at room temperature.

Regimes for conduction normal to type Ia diamond layers are shown in Fig. 2-4.
The thermal conductivity was given by Berman et al. (1956) and the average speed of
sound, vg = 13500 m s-1, by McSkimin and Andreatch (1972). Equation (2-8) determines
the imperfection-limited mean free path at temperatures where boundary scattering was
important. The reference temperature is T, = 100 K, which satisfies T, <<6 because the
Debye temperature of diamond is 6 = 1880 K. Although the primary constituent of
diamond is the 12C atom, naturally occurring diamond contains 1.1 percent of the isotope
13C. Atlow temperatures, scattering on this isotope limits the thermal conductivity of
natural diamond. Majumdar (1991) presented an algorithm to determine the regime
boundary for diamond as a function of the fraction of 13C. In Fig. 2-4, the regime
boundary for diamond with a 13C content of 1.1 percent calculated using his algorithm
agrees well with the regime boundary of the present analysis.

Anthony et al. (1990) achieved a !3C content of 0.07 percent in a synthetic
diamond crystal and showed that its thermal conductivity at room temperature was 50
percent greater than that measured previously for diamond. Based on this result, the mean
free path of a hypothetical crystal containing no isotopes or lattice defects is estimated using
Eq. (2-7) with T, = 300 K. The microscale regime for this case is shown in Fig. 2-4 and
indicates the largest value of d for a given temperature at which microscale conduction may
ever occur in diamond. It is not possible to achieve in thin diamond layers in electronic
circuits the same high thermal conductivities measured in bulk crystals. Because of the low

coefficient of friction between diamond surfaces, diamond layers possess great
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potential for application as bearing materials (Guyer and Koshland, 1990). Figure 2-4
shows that for room-temperature applications, the thermal conductivity of bearing layers
thinner than 3 pm is size dependent. This fact can strongly affect the temperature fields
existing in such bearings due to dissipation.

Figure 2-5 is a regime map for thermal conduction along epitaxial layers of the
high-temperature superconductor YBa>Cu30O7. The orthorhombic, nearly tetragonal crystal
structure of this material results in similar thermal conductivities in the a and b crystal axis
directions, but a different thermal conductivity in the ¢ direction. The layers with the best
superconducting properties are deposited epitaxially with the ¢ axis normal to the layer
surface, such that conduction along the layers occurs in the a-b plane. Goodson and Flik
(1992) determined as functions of temperature the mean free path of each carrier and its
contribution 15 che thermal conductivity. The thinnest high-T, superconductor layers
exhibit microscale conduction in detectors and electronic circuits. Superconducting
transmission lines and Josephson junctions made of thin sup_rconducting layers are
elements of hybrid superconductor-semiconductor circuits operating near 50 K (e.g., Ono,
1992). The thermal conductivities of many of these structures depend on their thicknesses.
For thicknesses less than 0.01 um, YBa;Cu3O7 layers lose their superconducting

properties.

2.5 Concluding Remarks

For thermal conduction in solids, the dimension which separates the microscale and
macroscale regimes is related to the carrier mean free path and depends strongly on the
purity, microstructure, and temperature of the solid. The regime maps developed in this
chapter are only useful if the microstructure and the purity of the microelectronic structures
are similar to those in bulk materials. If this is not the case, the influences of boundary

scattering on the conduction process may be overwhelmed by the effects of the different
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microstructure and purity. This is discussed in greater detail in Chaptier 5, which examines
the influence of porosity on the thermal conductivity of amorphous silicon dioxide layers.
The present state of research in microscale heat transfer displays an imbalance
between theoretical and experimental achievements. Several analytical studies were
presented recently, such as those of Majumdar (1991), Kumar and Vradis (1991), and
Chen and Tien (1992). But much more experimental work is needed to verify the
predictions of these analyses. Chapter 4 assists this experimental work by reviewing
measurement techniques which can investigate microscale thermal conduction processes in

layers.
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3. SOLID-LAYER THERMAL-CONDUCTIVITY
MEASUREMENT TECHNIQUES

3.1 Introduction

The thermal conductivities of solid layers are needed for the design of field-effect
transistors, optical coatings for laser systems (Guenther and Mclver, 1988), and
amorphous membranes in superconducting radiation detectors (Verghese et al., 1992). The
thermal conductivity of a layer can differ from that of a bulk sample of the same material for
two reasons. Layer fabrication techniques, such as chemical vapor deposition, can result in
a different microstructure which changes the thermal conductivity. In addition, the small
thickness of the layer can increase the importance of interfacial effects, such as thermal
boundary resistances and the boundary scattering discussed in Chapter 2, which can reduce
the effective conductivity of the layer. Techniques such as transmission electron
microscopy provide information about the microstructure of layers (Marcus and Sheng,
1983), but the precise microstructural information, e.g., the grain-size distribution, point
defect density, and characteristic dimension of interfacial roughness, needed for thermal-
conductivity and boundary-resistance predictions is often not available. Performing
experiments is usually the only way to accurately determine the thermal conductivities of
layers.

Cahill et al. (1989) reviewed several techniques for measuring the thermal
conductivity in the direction normal to layers, and made helpful observations about the

effects of phonon-boundary scattering and interfacial layers on the measurements. Some of
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these insights are presented in greater detail in the review of thermal boundary resistance by
Swartz and Pohl (1989). The article of Cahill et al. (1989) is not a complete review of
thermal conductivity measurement techniques, and there remains a need for a comparative
survey which includes other techniques, especially those available for room-temperature
measurements and those measuring the conductivity along layers. Guenther and Mclver
(1988) and Lambropoulos et al. (1991) surveyed the existing data for the thermai
conductivity in the direction normal to amorphous dielectric layers, but in most cases
provided little information about the measurement techniques used to obtain these data. As
a result, it is often difficult to assess the accuracy of the techniques or their applicability to
layers which have different thicknesses or are made of different materials.

This chapter helps to remedy this situation by reviewing solid-layer thermal-
conductivity measurement techniques. The layer geometry is depicted in Fig. 3-1, which
defines the coordinates x and y to be along and normal to the layer, respectively. The
thermal conductivity measured in layers is not necessarily a property of the layer material.
Due to phenomena such as heat-carrier boundary scattering and thermal-boundary
resistances, the apparent thermal conductivities of layers often depend on the direction of
heat propagation, even for isotropic materials, the layer thickness, and on the properties of
the layer boundaries. For this reason, most measurements yield an effective thermal
conductivity, which is valid only for a given layer thickness and direction of heat transport.

The effective thermal conductivity along a layer is

ka.eﬁ' = - (I: [%] ! (3-1)

where T is the local layer temperature, which is assumed not to vary in the y direction, and

q,',' is the heat flux in the x direction. The thermal conductivity normal to a layer is defined
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so that it accounts for the volume resistance of the layer and the thermal resistances between

the layer and the bounding media,

kner = 4y 74 (3-2)

where the temperatures Tg and Tj are those of thc buunding media just outside of the
interfaces with the layer, d is the layer thickness, and q;' is the heat flux in the y direction.
For highly-conductive layers, the in-plane conductivity &, ¢ is important because these
layers govern lateral heat conduction in multilayer structures, €.g., the silicon and
aluminum thin-layer bridges in silicon-on-insulator circuits, which are investigated in
Chapter 6. For layers made of materials which are poor thermal conductors, e.g.,
amorphous materials, k,, ¢ is of greatest importance because these layers dominate the
thermal resistance in the y direction. Recently, amorphous thin-layer membranes were
used to thermally isolate radiation detecting elements (Verghese et al., 1992), providing an
important exception to these general rules. For these membranes, the in-plane conductivity
ka,¢r governs the thermal conductance and therefore the sensitivity and time constant of the
detector.

Layer thermal conductivity measurement techniques are distinguished by the time-
dependence and the source of the heating they employ, as well as their method of
temperature measurement. Steady-state techniques induce a time-independent heat flux,
measure a resulting temperature difference or distribution, and calculate the thermal
conductivity. Transient techniques induce a time-dependent heat-flux function, e.g., an
impulse or a periodic function, and in most cases determine the thermal diffusivity i 7
comparing analytical solutions to the transient heat equation with a measured transient
temperature. The thermal conductivity is then obtained using k = & C, where C is the bulk

specific heat per unit volume. Nonporous layers of thickness large compared to the
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wavelength of energy carriers, like those in most practical applications, possess the same
energy-carrier densities of states and therefore the same specific heat per unit volume as
bulk materials. Heating mechanisms include Joule heating, €.g., due to electrical
conduction in a bridge deposited on the sample, and the absorption of laser radiation.
Temperature-measurement tools include thermocouples, infrared (IR) pyrometers, and
electrical-resistance thermometers.

This review separates the techniques into two basic groups: Section 3.2 discusses
techniques which measure K, o, and Section 3.3 discusses techniques which measure
kn,eg- The techniques are further divided into groups according to the time dependence of
the heating source which is used, i.e., either a steady-state or transient time dependence.
Sections 3.2.1 and 3.3.1 review steady-state techniques, and Sections 3.2.2 and 3.3.2
review transient techniques. While this work aims to be a complete review, several
techniques have been omitted because of their close similarity to one of the techniques

presented here.

3.2 Conductivity along Layers

3.2.1 Steady-State Techniques

Several of the techniques discussed here were applied both to free-standing layers
and to layers on substrates with low thermal conductivities, e.g., lead layers on amorphous
dielectric substrates. This is appropriate when the ratio d Ka,ef/ (dsub Ksub) is of the order
of or larger than unity, where d, is the substrate thickness and kg, is the substrate
thermal conductivity. The temperatures in the layer and substrate are assumed not vary in
the plane normal to the heat-flow direction. The total heat flow rate is the sum of the heat
flow rates due to the layer and the substrate. For the case of steady-state conduction of the
power Q in the direction x along a layer-substrate composite bridge of width w, the layer

conductivity is
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koo = - 2 [AD] - By, (33)
In what follows, the term "free standing" denotes layers without substrates and layer-
substrate composites for which Eq. (3-3) is used. The term "bridge" denotes a patterned
portion of a layer or a layer-substrate composite which possesses a finite cross-sectional
area and is long in the direction normal to the cross section.

The most common technique has been applied to free-standing thin-layer bridges
from 5 K t0 450 K. The bridge was atiached to an isothermal heat sink at the temperature
To in a vacuum chamber, as shown in Fig. 3-2. Attached to the opposite end of the bridge,
which was mechanically unsupported, was an electrical-resistance heater. The two
junctions of a thermocouple were attached to the bridge, one near the free end, and the
other near the heat sink. The thermocouple measured the temperature difference AT which
occurred over the length L along the bridge. The thermal conductivity kg o was
determined using Eq. (3-1) with ¢" = Q/(wd) and - dT / dx = AT/L, where Q is the
heating power and w is the bridge width. This technique was used for lead bridges by
Pompe and Schmidt (1975) from 5 K to 20 K. More recently, Morelli et al. (1988) and
Graebner et al. (1992a) used this technique to measure the thermal conductivity of diamond
bridges from 10 K to room temperature. The primary causes of experimental error in this
technique are conduction through the thermocouple and heater wires, which can be
minimized by using thin wires, and radiation from the heater. Pompe and Schmidt (1975)
and Graebner et al. (1992a) used a heater near the heat sink, shown in Fig. 3-2, to
investigate the magnitude of this error. When the heater near the heat sink is on and the
heater at the tip is off, the temperature drop along the bridge can be used to estimate the
energy flow out of the bridge due to radiation and conduction from the wires. Graebner et
al. (1992a) used several thermocouples along the length of the sample to more accurately
estimate the heat leak, yielding an uncertainty of a few percent, among the smallest below

room temperature.
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Fig. 3-2 Test structure used to measure thermal conductivity along a bridge by
Pompe and Schmidt (1975).
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The technique of Nath and Chopra (1973) is similar, but these authors attached the
cold end of the layer to an isolated block with a known heat capacity. The other end of the
bridge was secured to an isothermal heater. A thermocouple measured the temperature
drop from the heater to the block. The rate of heat flow through the bridge Q was radiated
by the block at temperature T to the nearly black surroundings at the temperature T,

Q =A e 0 (T4 - Ty?), where A is area and € the emissivity of the block surface, and &is the
Stefan-Boltzmann constant. This expression was approximated by Q = G (T - To) for
(T-Ty) Ty<< 1, where G =4 A € gy Tg? is the conductance from the block. The
conductance G was obtained from the heat capacity of the block and the measured time
dependence of the block temperature when it was allowed to cool to Ty. The accuracy of
this technique is reduced by radiative losses from the bridge and conduction losses through
the cold thermocouple junction, but is not influenced by radiation from the heater or
conduction through the warm thermocouple junction. Nath and Chopra (1973) did not give
the experimental uncertainty. They used this technique for copper layers on amorphous
dielectric substrates above room temperature. Due to the requirement (T - Tp)/ To << 1,
this technique is most useful above room temperature.

Nath and Chopra (1973) developed a complementary low-temperature technique
which uses a bare-substrate bridge and a layer-substrate composite bridge, each attached to
blocks of identical heat capacity. The differences between the temperatures of the blocks
and the cooling bath temperature were small and radiation was neglected. Both substrates
were assumed to possess the same thermal conductivity and cross-sectional area. At time
t =0, the free ends of both bridges were attached to a warmer block, which was assumed
to remain isothermal while cooling through the two samples. Neglecting the heat capacity
of the free-standing layers, one-dimensional conduction analysis determined kg ¢ in the
layer from the substrate dimensions, the identical heat capacities of the cooler blocks, and
the transient temperatures of the three blocks. This technique yields the conductivity

independently from the substrate conductivity, so that Eq. (3-3) is not required. Although
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this technique involves a transient response, it is discussed in this section because the heat
capacity in the layer is neglected.

Boiko et al. (1973) and Vélklein and Kessler (1984) developed similar techniques
which measured both the thermal conductivity and the emissivity of free-standing
electrically-conducting bridges. The technique of Boiko et al. (1973) was applied to metal
bridges from 300-900 K, and the technique of Volklein and Kessler (1984) was applied to
semimetai bridges from 80-400 K. In both cases, the sample bridge was suspended
between two heat sinks at the temperature T, as shown in Fig. 3-3. Both techniques
employed Joule heating in the sample bridge to induce heat flow, and solved the one-
dimensional heat-conduction equation in the bridge considering Joule heating and radiation
from the bridge.

Boiko et al. (1973) measured the bridge temperature at seven locations along its
length using the temperature dependence of the lattice parameter of the bridge material,
which was measured using electron diffraction. The change in the lattice parameter was
assumed to be proportional to the product of the temperature change and the coefficient of
thermal expansion. The reported uncertainty in temperature changes measured this way
was +/- 5 K. As a result, large temperature changes were employed, varying between
50 K and 720 K for one set of measurements. The authors determined the values of the
temperature-independent thermal conductivity k, ¢y and the emissivity which were
consistent with the heat equation and the measured temperature distribution. The large
temperature changes required by this technique render it inappropriate for materials whose
thermal conductivities depend on temperature, e.g., semiconductors and semimetals above
room temperature.

Vélklein and Kessler (1984) used much smaller temperature changes, and
calculated the average thermal conductance from the bridge, i.e., the ratio of the Joule
heating power dissipated in the bridge to its average temperature change, from current-

voltage data. The change in the average bridge temperature from the reference temperature
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To is approximately proportional to the change of the bridge electrical resistance from its
resistance v'hen isothermal at T. Using the heat equation, the authors predicted the
average thermal conductance from the bridge as a function of its thermal conductivity and
emissivity, which were both assumed to be temperature independent. By measuring the
thermal conductance from two bridges of different lengths but identical thermal properties,
the thermal conductivity and emissivity were obtained independently. The error due to the
use of a temperature-independent emissivity was not determined. This approximation
needs to be examined for metals, whose normal total emissivity is nearly linearly
proportional to temperature above room temperature (Siegel and Howell, 1981). This
technique requires two layers of identical thermal properties. But if the emissivity of a
layer is known, the thermal conductivity can be calculated from measurements performed
only on that layer. This technique should only be used when radiation 10sses are large
compared to the energy conducted along the layer, which can occur in very thin free-
standing layers, and can render the basic technique depicted in Fig. 3-2 inappropriate.

Recently, Graebner et al. (1992c) and Tai et al. (1988) microfabricated novel test
structures. Graebner et al. (1992c) etched the substrate from underneath rectangular
2 x 4 mm? sections of 2.8 - 13.1 um thick diamond layers. They deposited a thin-layer
heater bridge and thin-layer thermocouple bridges on the top of each diamond rectangular
layer section, as shown in Fig. 3-4. The boundaries of the suspended layer were assumed
to be isothermal at the heat-sink temperature, Ty. The validity of this assumption for the
case of the highly-conductive diamond layers must be investigated. Comparison of the
measured temperature profile with that predicted by a numerical solution to the two-
dimensional heat-conduction equation yielded k, o in the diamond layers.

Tai et al. (1988) suspended 1.5 um thick heavily-doped polysilicon bridges of
lengths from 100 to 200 pm between phosphosilicate glass (PSG) supports. These test

structures resembled microfabricated flow sensors whose thermal design requires the
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conductivity of the doped silicon bridges. Each bridge had a short, lightly-doped center
segment whose electrical resistance dominated that of the entire bridge. A bias current
induced heat flow from the lightly-doped segment, and a solution to the one-dimensional
heat-conduction equation yielded the conductivity of the bridge from its measured electrical
resistance. The works of Graebner et al. (1992c) and Tai et al. (1988) indicated the
potential of microfabrication technology to assist in the measurement of layer thermal
conductivities.

Dua and Agarwala (1972) used the Wiedemann-Franz law (Kittel, 1986),

kaer = 22T (3-4)
Pe

where Ly is the Lorenz number, to estimate the thermal conductivity of metal layers from
the measured electrical resistivity p.. Equation (3-4) is valid at temperatures above the
Debye temperature, which is of the near 100 K for most metals, or when defect- or
boundary-scattering dominates. The second condition is satisfied below about a fifth of the
Debye temperature for most metals, but is satisfied at higher temperatures by impure
metals. Equation (3-4) is accurate within 14 percent for common metals at room

temperature (Kittel, 1986).

3.2.2 Transient Techniques

Mastrangelo and Muller (1988) used test structures similar to those of Tai et a'.
(1988), i.e., a heavily-doped polycrystalline-silicon bridge suspended between PSG
supports. In this case the bridges were 180 - 280 pm in length and 1.3 pm in thickness
and were uniformly doped. A bias current in the layer induced Joule self-heating. The
authors solved the transient one-dimensional heat-conduction equation in the bridge
accounting for its temperature-dependent electrical resistivity and neglecting radiation. The

thermal diffusivity was obtained by comparing the predicted time-dependent electrical
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resistance response with the measured response. Using the bulk specific heat, the
measured thermal diffusivity values agreed well with the thermal conductivity measured in
similar structures by Tai et al. (1988). These techniques are promising for the
measurement of thermal conductivity values needed for flow-sensor design.

Hatta (1985) developed a technique which is illustrated in Fig. 3-5. A portion of a
free-standing rectangular layer was masked from a sheet of laser light with periodic heat
flux in the y direction, g, = g, (1 + sin @ 1), where ¢, is the amplitude of the absorbed
heat flux and @is its angular frequency. Lying under the mask was a thermocouple
junction separated from the mask edge by the distance x. A solution to the transient one-
dimensional heat-conduction equation neglecting heat transfer from the layer yields the

approximate amplitude T, of the periodic component of the temperature at location x,

n

Ta(x) = —9—— exp |-

2C 4 (3-5)

The inverse thermal-diffusion length is A1 = (a¥@)!/2, where « is the thermal diffusivity in
the x direction. The distance between the thermocouple and the mask edge can be chianged
by moving the mask. Equation (3-5) and the measured function T,(x) yield . The
frequency must be small enough so that the thermal diffusion length is much larger than the
layer thickness. Subsequent research investigated the influence of the thermocouple on the
temperature in the layer (Hatta et al., 1986) and optimized the sample dimensions for the
measurement (Hatta et al., 1987). The authors did not investigate the potential of a
microfabricated thermocouple, such as those employed by Graebner et al. (1992c), for
measuring temperature without disturbing the layer conduction.

Similar techniques developed by Visser et al. (1992) and Shibata et al. (1991)
avoided the influence of the thermocouple on conduction in the layer by using an infrared

(IR) pyrometer to measure the layer temperature. Visser et al. (1992) used a highly-
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Fig. 3-5 Side view of the experimental set-up of Hatta (1985) for measuring the
thermal diffusivity along layers heated by a sheet of laser light. The mask
was moved to change the distance x while the thermiocouple junction
remained fixed.
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focussed, periodic laser beam to heat a spot with diameter near 10 um on a layer of large
dimensions. A solution to the transient one-dimensional heat equation with cylindrical
coordinates accounts for heat transfer from the layer and yields the phase and amplitude of
the periodic temperature as a function of o, C, the distance from the focus, and the heat
transfer coefficient A from the layer surface to the ambient temperature. Fitting the
measured amplitude and phase of the temperature fluctuations to the predictions yields «
and A. In the techniques of Hatta (1985) and Visser et al. (1992), the phase of the
temperature fluctuations yields the thermal diffusivity without requiring the heat transfer
coefficient 4. The primary advantage of these techniques is that they are non-contact.

Shibata et al. (1991) employed a brief line pulse of 0.694 um ruby laser light of
duration #7, and width 2/ to irradiate a rectangular free-standing layer section. The line cut
across the entire width w of the layer section at its center, inducing one-dimensional heat
conduction along its length. The half-width / and the time duration 7, of the laser-pulse line
satisfied 12 > > o, 17, and the transient temperature in the layer was calculated by assuming
an initial temperature change T; - To = E / (2 d w C) in the irradiated portion of the layer,
where E is the total energy deposited. Finite-length effects and heat transfer from the layer
were neglected. The temperature was detected from the bottom of the layer at a distance
from the heat source which was large compared to the layer thickness, and the solution to
the heat equation yielded the thermal diffusivity from the time required for the measured
temperature to achieve half of its maximum value. The authors stated that the short
duration of the experiment rendered heat transfer from the layer insignificant, but the impact
of neglecting this heat transfer needs to be assessed.

For the case of layers with low absorptances, the optical techniques discussed
above required the deposition of a thin absorbing coating to the layer. For coatings of low
thermal diffusivity, the thermal energy cannot diffuse quickly enough through the coating
during the relevant time interval, e.g., one period of the laser flux. If the diffusivity of the

coating is too high, however, it contributes to transport in the plane of the layer. Visser et
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al. (1992) investigated the influence of the coating material by comparing measured values
of the thermal diffusivity of 100 um copper sheets with the thermal diffusivity of bulk
copper for different coating materials. They found that the use of the wrong coating
material could severely affect the measured diffusivity, but they achieved reasonable results
using a graphite spray. The influence of the coating material on the diffusivity
measurement increases with decreasing layer thickness. Further investigation are needed to
determine the usefulness of optical techniques for measuring the thermal diffusivity of thin
layers with low absorptances. At present, the need for an optical coating renders these

techniques inappropriate for layers of thicknesses relevant to electronic devices.

3.3 Conductivity normal to Layers

3.3.1 Steady-State Techniques

All of the techniques described in Section 3.3.1 apply only to layers on substrates
satisfying kg << ks,p. Goldsmid et al. (1983) developed a technique to measure the
thermal conductivity of an amorphous silicon layer, which was deposited on half of a
substrate as shown in Fig. 3-6. Two bismuth bridges were deposited, one each on the
layer and on the bare substrate. An antimony bridge was deposited over the two bismuth
bridges as shown, yielding two thermocouples. The portion of the sample in the dashed
rectangle in Fig. 3-6 was coated to enhance radiation absorption. The thermocouple
junctions were heated sequentially using a disc of laser light with radius 7. = 55 pm. For
each case, all of the laser light was incident on the junction. The temperature rise due to the
laser light was measured for each case. The ratio of the temperature rise of the
thermocouple above the sample layer and the temperature rise of the thermocouple above
the bare substrate is Ur. The substrate was modelled as a semi-infinite medium with
thermal resistance Ry, = (/4)(rc/ksus), corresponding to heat flow in a semi-infinite

medium originating from an isothermal disc of radius r.. The thermal resistance of the
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sample layer is d/ky ¢, and the thermal resistance between the thermocouple junction and
the sample surface is dy/kr, where dr and kr are the thickness and thermal conductivity of
the bismuth layer, respectively. The effective layer thermal conductivity &y ¢ can be
determined by equating the ratio of the temperature changes to the ratio of the summed

resistances,

Ur = kr_kn (3-6)

This technique is attractive because it does not require knowledge of the absorbed
power. However, the calculation of Ry, requires accurate knowledge of the laser beam
diameter, which results in a +/- 9 percent error in the measurements. The uncerainty due
to modelling the substrate as a semi-infinite medium and due to lateral conduction in the
thermocouple bridges needs to be assessed. If these uncertainties are satisfactorily low,
this could be a useful technique for many applications.

The technique of Cahill et al. (1989) was originally developed for the measurement
of the thermal boundary resistance between metal layers and dielectric substrates at low
temperatures (Swartz and Pohl, 1987), but can also measure k, ¢ of a layer deposited
between the metal and the substrate. Figure 3-7 shows a cross section of the test structure.
Two long, parallel metal resistance-thermometer bridges were deposited on the sample
layer, each of width about w = 1 pm, separated by about x; = 1 um. Bridge A carried a
large current density, serving as a heater, while bridge C carried a low current density and
experienced negligible Joule heating. The energy dissipated in bridge A traveled through
the sample layer, resulting in a heater-substrate temperature difference. The temperature
T of the heater bridge was determined from its electrical resistance. Bridge C measured

Tc, from which Ty was calculated by modelling the substrate as a semi-infinite medium.
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Fig. 3-7 Cross section of test structure of Cahill et al. (1989) for measuring k.
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The total power dissipated in bridge A is Q, and the width and length of bridge A are w and

L. The effective thermal conductivity for conduction normal to the layer is

- Qd (3-7)

This is a very effective technique. The approximations employed in the thermal
analysis are only important when the temperature difference in the substrate beneath the two
bridges is comparable to the temperature difference normal to the sample layer. This occurs
in very thin layers near room temperature, where the substrate thermal conductivity is lower
than at low temperatures. Section 5.4 presents a more detailed analysis of conduction in
the substrate for this technique and an estimate of the experimental uncertainty as a function
of the thermal resistance to conduction normal to the sample layer. The uncertainty analysis
given in Section 5.4 employs measurements by a second non-heating bridge. The
separation between bridges A and C is optimized by balancing the competing goals of
minimizing the effects of conduction along the sample layer on the temperature T¢, and
minimizing the temperature difference Ty - Tc. The technique is then used to measure
kn,ef for amorphous silicon dioxide layers of thicknesses as low as 300 A near room
temperature.

Schafft et al. (1989) and Brotzen et al. (1992) also used metal bridges as Joule
heaters when they measured &, o for amorphous silicon dioxide layers. Both techniques
employ only a single bridge. The temperature at the interface between the silicon dioxide
layer and the silicon substrate was obtained by an analysis of heat conduction in the
substrate, which assumes that the bottom surface of the substrate was isothermal. For the
case of Schafft et al. (1989), who measured 1.7 and 3 pm layers using a 3.4 pm wide
heater bridge, this resulted in little error because the measured thermal resistance of the

silicon dioxide was more than twenty times that of the substrate. As in the technique of
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Cahill et al. (1989), the heater bridge was a resistance thermometer. Since the ratio w/d
was of the order of unity, the two-dimensional heat-conduction equation was solved in the
sample layer to determine its thermal conductivity. The assumptions used to solve the heat-
conduction equation in the substrate would need further investigation if this technique were
applied to thinner layers.

Brotzen et al. (1992) measured K, o of layers of thickness down to 1000 A using a
0.19 mm wide heater bridge. The temperature drop in their substrate was significant
because the sample layer was thinner and the ratio w/dy,s, where w is the heater bridge
width, was much larger than in the measurements of Schafft et al. (1989). Increasing this
ratio causes the two-dimensional conduction in the substrate to approach one-dimensional
conduction normal to the substrate, which increases the substrate thermal resistance. The
influence of two important assumptions on the analysis of Brot a et al. (1992) was not
investigated: (a) The aluminum heat sink was assumed to be isothermal and (b) the
boundary resistance between the heat sink and the substrate was neglected. Both
assumptions are questionable because of the large value of w/d,, which was of the order
of unity, and may have resulted in an overprediction of the temperature at the bottom
interface of the sample layer and therefore an underprediction of k, .4 The investigation of
these issues is especially important because Brotzen et al. (1992) reported values of kneff
which are much smaller than those measured in bulk samples. It is not yet possible to
determine whether this difference was due to a different layer property or to the
approximations in the heat-conduction analysis.

The technique of Cahill et al. (1989), which is employed in Section 5, is more
accurate than those of Schafft et al. (1989) and Brotzen et al. (1992) because the
temperature under the sample layer is calculated using the substrate temperature measured
nearby. As a result, ky ¢ is less sensitive to approximations in the thermal analysis,

yielding a much higher experimental certainty.
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Lambropoulos et al. (1989) modified the thermal comparator technique, which was
developed by Powell (1957) to measure the thermal conductivity of bulk materials, to
measure K, o for layers on substrates. A sensing finger and thermocouple apparatus were
mounted in a copper heating block as shown in Fig. 3-8. One junction of the thermocouple
was at the tip of the finger while the other was inside the block. The temperatures of the
copper block and the sample were maintained at 329 K and 309 K, respectively. During
the measurements, the finger was pressed against the sample with a controlled force and the
steady-state thermocouple voltage was recorded. The samples were assumed to be well
modelled as semi-infinite media. The temperature of the sensing tip decreased and the
thermocouple voltage increased with the increasing thermal conductivities of the sample
materials. Measurements performed on bulk samples with known thermal conductivities
yielded a calibration curve from which the apparent thermal conductivity of a sample, kgp,
could be obtained from the thermocouple voltage. For a layer on a substrate, k, 5 can be
calculated by assuming the thermal resistance of the substrate is Rg,p = (0/4)(r /ksup), the
same relation used by Goldsmid (1983). The difference between R, and the apparent

resistance Rgpp = (/4)(ro/kqpp) 1s due to the layer resistance d/kp of, yielding

4d( 1 __1\1 3.8)
Tre\kapp  Ksub (

n=

This expression is valid when r, >> d is satisfied.

The main uncertainty in this technique is due to the determination of the contact-spot
radius r.. Powell (1957) showed that the thermocouple voltage varied rapidly with the
applied force, which was attributed to a change in the contact area. The contact area also
varied with the hardness and elastic properties of the material. While this resulted in less
than 6 percent error for many materials, including aluminum, steel, and silicon dioxide,
data for lead fell far from the calibration curve established using these materials. Powell

(1957) required that r. was the same during calibration and measurement, but did not need
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Fig. 3-8 Schematic of the thermal comparator used by Lambropoulos et al. (1989).
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to determine its magnitude. In contrast, the accuracy of the measurements of
Lambropoulos et al. {(1989) required both a constant value of r. and the knowledge of its
magnitude, which appears in Eq. (3-8). Thus, the uncertainty due to the differences in the
hardnesses of materials is augmented by the uncertainty in the contact radius magnitude.
Lambropouios 2t al. (1989) reported a +/- #0) percent uncertainty in r¢, which was estimated
using elastic contact thecry and optical inspection. After performing measurements on a
variety of dielectric layers, they concluded that in almzst all cases the layer thermal
conductivity was significantly lower than the bulk conductivity. In many cases, however,
the bulk vzlues of the conduciivity fell within the experimental uncertainty of the measured
values. This method is attractive because it is nondestructive, and can be rapidly applied to
surface layers. But the technique will be quantitatively useful only when the uncertainty in

the contact radius can be dramatically reduced.

3.3.2 Transient Techniques

There are two types of transient techniques which measure the thermal conductivity
normal to layers. Techniques cf the first type use periodic heating on the surface of the
layer, and deiermine the thermal conductivity from the periodic tenuperature at the layer
surface. The most common version of this approach is the 3-w technique of Cahill et al.
{1989), who applied the technique developed by Cahill and Pohl (1987; for bulk
amorphous solids to thin layers. A thin, narrow bridge was deposited on the layer-
substrate composite. The bridge served both as a heater and as an electrical-resistance
thermometer. The bridge. carried a sinusoidal current of angular frequency @. Because
positive and negative currents both heated the bridge, the frequency of the rate of heating
was 2. The inverse thermal diffusion length for this case is A7= 2aya)'/2. The
amplitude of the temperature oscillations in the layer is approximately (Carslaw and Jaeger,

1959)
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Ta(r)= 73—",( Ko(Ar7) (3-9)

where K| is the modified Bessel function of order zero, r is the distance from the heating
source, and q‘; is the amplitude of the energy deposited in the bridge per unit time and
length. This assumes that the bridge is a line source and neglects any variation in the
properties of the semi-infinite medium with depth. The frequency of the temperature

oscillations is equal to that of the driving source, 2. For Arr << 1, the Bessel function

may be approximated, yielding the derivative

’

aTa(I") _ da
olin(w)] 2wk (3-10)

The electrical resistance of the bridge varies linearly with temperature. The voltage
along the bridge is the product of the applied bias current, periodic with frequency @, and
the bridge electrical resistance, periodic with frequency 2. This yields a small component
of the voltage signal with frequency 3w whose amplitude is related to the amplitude of the
periodic bridge temperature. The thermal conductivity can be obtained using Eq. (3-10)
and the bridge-temperature amplitude at two frequencies.

This technique has the advantage of allowing the thermal conductivity to be probed
within a desired thickness of the layer-substrate composite. For d A7<< 1, where d is the
layer thickness, it measures the properties of the substrate. For d Ar>> 1, it yields the
properties of the layer. The resolution of the technique is limited by the requiremer. for
radial symmeiry about the heater bridge, A7 w << 1, where w is the width of the bridge.
The available fabrication technology yields a minimum layer thickness of about 10 pm.
For the opposing limit, A7w >> 1, the conduction is approximately one-dimensional in
rectangular coordinates. The possibility of using this limit to measure the thermal

conductivity of thinner layers should be explored.
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The value of the thermal conductivity obtained using the 3-@ technique is not
necessarily equal to k,, .. If the thermal conductivity is anisotropic, the radial symmetry of
the technique yields a conductivity which is a function of the thermal conductivities both
normal to and along the layer. If the thermal conductivity in the iayer is nonuniform, the
measured value is affected most by regions near the surface of the layer. The influence of
thermal boundary resistances on this technique has not been assessed. These could be
important, particularly at low temperatures, and it may be possible to use this technique to
measure thermal boundary resistances. The thermal conducitivity obtained using the 3-@
method may not be appropriate for analyzing steady-state conduction normal to thin-layered
structures. The steady-state technique of Cahill et al. (1989) is much better for this case,
and is much simpler to perform. But the 3-w method is probably the best available for
investigating a layer within a targeted depth.

The second type of transient technique for measuring the thermal conductivity
normal to layers is non-contact and applies to free-standing layers. A brief pulse of laser
energy is applied at the layer surface, and the thermal conductivity is calculated from the
transient temperature at the back of the layer, measured using IR thermography. This
approach was recently applied to amorphous polymer layers by Tsutsumi and Kiyotsukuri
(1988), to metals by Shibata et al. (1991), and to diamond layers by Graebner et al.
(1992b). Like the optical techniques discussed in Section 3.2.2, this one benefits from the
deposition of optically-absorbing layers on the front and rear surfaces. The thermal
resistances and hLeat capacities per unit area of these layers can be made small compared to
those of the sample layer. For a sheet of laser light incident on one surface of the layer, the
analysis of one-dimensional conduction through the layer yields the approximate

temperature rise at the opposite side at time ¢ after the energy deposition (Graebner et al.,

1992b),
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AT(:):%[I-{-Z Y (- 1)~exp(-—%21ﬁaz)] (3-11)
- i=1

where @, is the thermal diffusivity in the direction normal to the layer, E"” is the energy
deposited per unit area and C is the specific heat per unit volume. Fitting the measured
response of the detector to Eq. (3-11) yields a. Both the period of the pump laser and the
response time of the detector need to be much smaller than @2 / ¢ This limits the practical
application of this technique to layers relatively thick compared to those in microelectronic
circuits. For 5 um amorphous layers at room temperature, d2 / ¢ is of the order of 25 ps,
which requires a rather fast IR detector. The time constant is several orders of magnitude
faster for highly-conductive layers, such as silicon and diamond, limiting this technique to
layers several tens of micrometers thick. The possibility of using an electrical-resistance
thermometer bridge, deposited on the back surface of the layer, should be investigated.
This would increase the response time for the temperature measurement by several orders

of magnitude, allowing thinner layers to be measured.

3.4 Summary and Recommendations

The techniques measuring the thermal conductivity along layers are summarized in
Table 3-1. The most versatile is the standard steady-state technique for free-standing layers
used by Pompe and Schmidt (1973), but the periodic optical techniques of Hatta (1985)
and Visser et al. (1992) are promising. The application of these techniques to very thin
layers with low absorptances is questionable because of the necessity for optical coatings,
which can perturb the measurement. These optical techniques will be more useful if the
coatings are optimized and the error for thin layers is investigated. Graebner et al. (1992c),
Tai et al. (1988), and Mastrangelo and Muller (1988) developed novel microstructures for

thermal conductivity measurements.
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Techniques measuring the effective thermal conductivity normal to layers are

summarized in Table 3-2. Goldsmid (1983) developed a useful technique whose

uncertainty needs further investigation. The technique of Cahill et al. (1989) is the .nost

accurate because it comes the closest to measuring the temperature on both sides of the

sample layer. The technique of Lambropoulos et al. (1989), which employs a thermal

comparator, is an easily-applied nondestructive technique, but requires much more work to

Table 3-1 Summary of technigues measuring the effective thermal conductivity along
layers.
Thin-Layer Tested| Heating Temperature References
Test Structure |Temp. Time- Measurement

Range | Dependence
and Source

1 free-standing 10- steady-state | thermocouple Nath and Chopra

bridge 450K heater (1973); Morelli et al.
(1988)

2 free-standing 80- | steady-state or| sample-bridge | Volklein and Kessler
electrically 700 K | periodic Joule resistance (1984); Mastrangelo
conducting heating and Muller (1988);

bridge Boiko et al. (1973);
Tai et al. (1988)

3 |substrate etched from| near | steady-state | thermocouple |Graebner et al. (1992c)
rectangular 300 K | heater-bridge bridges

portion of layer

4 free-standing near | periodic laser | thermocouple Hatta (1985)

bridge 300 K | sheet on half
of bridge

5 free-standing near laser pulse, |IR thermography| Shibata et al. (1991)

bridge 300 K | line focus

6 free-standing near | periodic laser, [IR thermography| Visser et al. (1992)

plane 300 K | point focus
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precisely determine the contact area. The 3-w technique of Cahill et al. (1989) allows a

targeted depth within the layer to be probed, but is limited to layers thicker than about

10 pm.

This review shows that more detailed uncertainty analysis is required for most of

the techniques available. Uncertainty analysis is made more important by the large heat

Table 3-2

Summary of techniques measuring the effective thermal conductivity normal
to layers.

Thin-Layer Tested| Heating Temperature References
Test Structure |Temp. Time- Measurement
Range | Dependence
and Source
1 dielectric layer near | steady-state | thermocouple |Goldsmid et al. (1983)
on substrate 300K | laser, disc- bridges
shaped focus
2 dielectric layer 10- steady-state bridge Cahill et al. (1989);
on substrate 400 K | heating bridge resistance Schafft et al. (1989)
thermometers
3 dielectric layer near | steady-state | thermocouple | Brotzen et al. (1992)
on substrate 300K heating on heater
bridge
4 layer near | heated copper | thermocouple | Lambropoulos et al.
on substrate 300 K block (1989)
5 layer 1- periodic bridge Cahill et al. (1989)
on substrate 300K heating resistance
bridge thermometer
6 free-standing near laser pulse, |IR thermography Graebner et al.
layer 300K sheet (1992b); Shibata et al.

(1991); Tsutsumi and
Kiyotsukuri (1988)
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fluxes present in thin layers in microelectronic circuits. A relatively small error in the
measured conductivity of a layer can cause a large absolute temperature error, resulting in
inaccurate predictions of the circuit performance and reliability.

The microstructures of thin layers depend strongly on the fabrication techniques
used to make them. Thermal conductivity measurements should be performed using
microstructures fabricated by the same processes as those of the real devices for which the
thermal conductivity is needed, as was done by Tai et al. (1988) and Mastrangelo and

Muller (1988).
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4. TECHNIQUES FOR ANALYZING MICROSCALE CONDUCTION
PROCESSES IN DIELECTRICS AND SEMICONDUCTORS

4.1 Introduction

The regime maps developed in Chapter 2 show when thermal unalysis of a
microelectronic structure must consider the boundary scattering of heat carriers. This
chapter investigates the techniques available for this microscale analysis in dielectrics and
semiconductors. The techniques are based on the microscopic equation of phonon
transport developed by Peierls (1929; 1955). The equation is very similar to the Boltzmann
equation for mnlecular transport (Boltzmann, 1964; Tien and Lienhard, 1979), and offers a
similar ability to investigate the interaction of carriers with boundaries. While the collision
integral in the molecular transport equation can sometimes be evaluated explicitly, the
complexity of phonon scattering processes necessitates the use of the relaxation-time
approximation to this integral when solving the Peierls-Boltzmann equation. Section 4.2
presents the transport equation and the relaxation-time approximation. Section 4.3 reviews

the techniques available for solving the equation.

4.2 The Peierls-Boltzmann Equation

Predictions of phonon energy transport are based on the Peierls-Boltzmann

equation (Beck, 1975),
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where the right-hand side is the collision integral. The equation must be satisfied in space r
and time ¢ by each phonon mode, which is distinguished by its wavevector q. The symbol
V is the gradient operator in space. The number of phonons in the mode q atlocation
and time tis N (¢, 7, ¢ ), and their velocity is ¥(g). The velocity V(¢) of phonons in a mode
is often assumed not to vary in space, allowing the second term to be written

v(¢)* V N(g, 7, 1). The collection of all N (g, 7, ¢ ) for a given time and location is
approximated by a function, called the phonon distribution function. Equation (4-1) and
those which foliow are written for a single phonon branch, e.g., the longitudinal branch,
corresponding to compression lattice waves. But the arguments and conclusions given
here are valid for a real system, which has longitudinal and transverse branches,

corresponding to compression and shear lattice waves.

4.2.1 Energy Conservation
The energy of a single phonon is h (q), where hp = 1.05 x 10 -34 J s is Planck's

constant divided by 2x, wis the phonon frequency, and w(q) is the phonon dispersion

relation (Kittel, 1986). The phonon energy per unit volume is

ulr,1) = VL Y. hpol@ NG 7T, (4-2)
all E inVo

The summation and those which follow are over all of the finite number of wavevectors
which are available in the volume Vp. Techniques for determining these wavevectors were

discussed by Peierls (1955). The net energy flux is
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Je(F 1) = ‘-}- Y, hpol@)v(g) N@G.T. e (4-3)
0 alla in Vg

Energy conservation requires

a ‘,t > > . >
"g: )+ 9 Te )= i) (4-4)

where L’tg(F, 1) is the energy added to the phonon system per unit volume and time. If the
phonons are the only carriers of energy in the material, as in dielectrics, it is valid to
assume ag(;, t)= 0. This is not an appropriate simplification when there is significant
interaction between phonons and other energy carriers, as in doped semiconductors or
during the absorption of thermal radiation energy or electron-beam energy. For these
cases, ug(F, t) is the net rate of energy transfer from other carriers to the phonon system per
unit volume and time. If simultaneous phonon and electron transport is studied, it,{7, ¢)
accounts for the energy exchange between the two systems due to electron-phonon
collisions.

If Eq. (4-1) is multiplied by Ap @(g) and summed over all wavevectors, the first
and second terms on the left of the resulting equation are respectively identical to the first
and second terms on the left of the energy Eq. (4-4), yielding the requirement for energy

conservation

LY wo@ LR g @s)
Vo & ot |coLL
allgin Vo

4.2.2 Reiaxation-Time Approximation

Quantitative predictions of phonon transport in solids use the relaxation-time

approximation (Beck, 1975),
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Noa[@(g) Va(F, o), T (7. 1)) - N(G.7.1)
Y [CU (2].), T (;v t)]

(4-6)
+

For a system which is not in equilibrium, the thermodynamic temperature of the phonon
system is not defined. The local temperature T (7', t) must be viewed as a parameter which
is used to calculate the rates of scattering of the phonons at location r and time ¢, and
guidelines for its determination are given in the next subsection. The relaxation time g is
for resistive scattering processes, such as phonon-defect and phonon-phonon Umklapp
scattering, which do not conserve the sum of the local phonon momenta. It determines the
rate of the relaxation of the distribution function to the local equilibrium distribution

function, which is the Planck distribution function at the temperature equal to the parameter

T (7, 1),

Nolw(@), T (7.1 = @7

Normal phonon-phonon scattering processes conserve the sum of the local phonon

momenta, causing the distribution function to approach

Noalo(q), V47, o), T (7. ¢)] = I S— (4-8)
oa[ (4) Vd(f ) (’ )] - hp_(l)(q)-vd(r,t)'q] -1
kBT(;,t)

at a rate determined by the relaxation time 7y. The local drift velocity V4 (7, 1) is the vectorial

sum of all phonon velocities at the location 7 and time ¢, is reduced by resistive scattering,

and is zero in equilibrium or when 7z << 7y. Note that the net energy flux, Eq. 4-3), can
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be nonzero even if the drift velocity is zero. The error resulting from using the relaxation-
time approximation increases as the system departs from equilibrium, but has not been

quantified.

4.2.3 Local Equilibrium Distribution Function

The local equilibrium distribution, No [@(g), T (7, 7)), to be employed in the
relaxation-time approximation, Eq. (4-6), is completely specified by 7 {7, 1). The correct
value of T (7, 1) is that which makes the relaxation-time approximation satisfy energy
conservation, Eq. (4-5). Substituting Eq. (4-6) into Eq. (4-5) yields the defining equation
of T (7, 1),

No [(l)(-q.), T (;’ t)] - N(ZI’, ;’ t)

— T -o’ .
L3 kol wle@rld 6 @
O alginve . Noa[o(@), (0, T(7. 1) - N@G.7.1)

L N [w(a)’ T (;’ t)] .

For dielectrics, the right-hand side is zero. If a value of T (F, #) exists which satisfies Eq.
(4-9), it may be obtained from the local distribution function, the drift velocity, the elastic
properties of the solid, which determine the available wavevectors, the functions

w{0(q), T (7, 1)) and w[w(g), T (7, 1)), and Egs. (4-7) and (4-8). It is not known whether
a value of T (F, z) which satisfies Eq. (4-9) may always be found.

Equation (4-9) may be simplified under certain conditions. Define the net relaxation

1 1-1
wlo(@) T )]

t[w(@), T (7 1) = 1 ) + (4-10)

tz[0(g), T (7, 1)
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If the drift velocity is zero, then No [@(q), T (%, )] and Nog[(g), V4 (7, 1), T (7, 1)) are
equal for each mode. If, in addition, T [w(?q'), T (7, t)] is independent of the phonon
frequency and itg(F, f) = 0, multiplication of both sides of Eq. (4-9) by 7[@(q), T«(F, )

and adding u (7, 1) to both sides yields

&= Y ho@ N T )
all g in Vo
4-11)

= Y wo@NGFe) = uGy
O anzinvo

These approximations may be appropriate for some processes in dielectrics above
room temperature, where phonons are the only energy carriers and the drift velocity is
strongly reduced by phonon-phonon Umklapp scattering. Equation (4-11) states that
T (7, 1) is uniquely related to the local energy per unit volume, u (7, r). This is illustrated in
Fig. 4-1, which shows an energy-entropy diagram (Gyftopoulos 'nd Beratta, 1991) for a
phonon system. The equilibrium states of the phonon system li¢ on the curve, whose slope
is the thermodynamic temperature. During net energy transport, the phonon system
occupies one of the nonequilibrium states. When Eq. (4-11) is valid, the value of T (7', 1)
which satisfies Eq. (4-10) in a nonequilibrium state is the thermodynamic temperature of

the equilibrium state with the same energy per unit volume.

4.3 Solutions to the Peierls-Boltzmann Equation

This section reviews existing methods for calculating phonon transport using the
Peierls-Boltzmann equation. The first subsection briefly discusses second sound. The
second subsection reviews the Fourier equation, the hyperbolic heat equation, and the
nonlocal theory of heat conduction, indicating that each employs an approximate form of

the left of Eq. (4-1) which renders it invalid for processes with small time- and
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PHONON ENERGY
PER UNIT VOLUME

Fig. 4-1

LOCAL STATE _,
OF PHONONS AT r,t

\

NCNEQUILIBRIUM
STATES

T (F.t)

QUILIBRIUM STATES

PHONON ENTROPY
PER UNIT VOLUME

Phonon energy-entropy diagram depicting Eq. (4-11). Note that this recipe

for determining T (7, t) is only exact under the conditions discussed
preceding Eq. (4-11).
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lengthscales. The second subsection discusses the iechaique of Majumdar (1991), which

has been proposed for these processes.

4.3.1 Second Sound

If the rate of resistive scattering is very small compared to that of normal scattering,
which may occur below 20 K in nearly perfect crystals, and if a disturbance in temperature
stnall compared to the absolute temperature is applied, a !inearized form of Egs. (4-1) and
(4-6) may be solved with the energy equation, Eq. (4-4). Because normal processes
conserve ihe phonon momentum, a local disturbance in the temperature propagates without
attenuatior. at a velocity near v, / Y3, where v; is the speed of sound. This phenomenon is
called second sound. The existence of second sound in solids was confirmed by

experimental heat pulse propagation data in a Nz_- crystal at 14 K and 19 K (Beck, 1975).

4.%4.2 The Fourier Equation, the Hyperboiic Heat Equation, and the
Nonlocal Theory of Conduction

When resistive scattering is significant, the drift velocity is oftei: assumed to be
zero, and the ret relaxation time is employed, Eq. (4-10). A more rigerous formula for
t{w(g), T (7, 1)) which accounts for a nonzero drift velocity was given for the case of
stea ' s-state cunduction by Callaway (1959). Equations (4-1) and (4-6) can be further
simpiified by employing the Debye model for phonons (Kitiel, 1986) which assumes a
linear dispersion relation @ = vs|gl,a ~aximum phonon frequency p, and yields a
phonon velocity v(q) = vs 7, where 7 is the unit vector in the direction of g. ‘The use of
thc Debye model lin.*s this apnraach to isotropic solids. The frequency @ and direction 1
now specify the phonon mode. Equations (4-1) and (4-6) reduce to

oNlw, 7, 7, t) « _ Nolo, T(7, 1)) - N{w, 7,7, 1)

S Vsh e VN, 1,7, 1) = o0 TG 1) (4-12)
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The differences between techniques for calculating phonon energy transport are

clarified by defining

Npe (@, B, 7, 8)= N(w, 7, 7, 1) - No[w, T(F, 1)] (4-13)

which is the departure of the value of the distribution function for a given mode from the
equilibrium value. Using this variable and the chain rule to expand the derivatives in time

and space of No [, T(7, 1)), Eq. (4-12) becomes

dNyp [(0 T (r, t)] oT (r t) aNDE (w, n,r, t)
aT ot ot

aNo[w T (7, 1))

= Ve e VT (7, 1) + vin *VNpe(w, 1,7,1) (4-14)

_ Npg (w,7,7,1)
tlo, T (7, 1))

Previous numerical calculations of transient phonon transport in solids neglected
either the second term, or the fourth term, or both the second and the fourth terms in
Eq. (4-14). These simplifications allowed the local energy flux to be related to T (7, t), and

the resulting expression was solved simultaneously with Eq. (4-4) using

au( t) C, [T (;’ t)] aTa(f, t) (4-15)

where Cs [T (7', t)] is the phonon specific heat at constant volume per unit volume of the
equilibrium state with temperature equal to T (F, f). Note that if Eq. (4-11) is satisfied, i.e.,
if the energy of the nonequilibrium state is equal to the energy of the equilibrium state with
temperature equal to T (7, z), then Eq. (4-15) is exactly correct. Otherwise, the validity of

this substitution is not guaranteed. A simple scaling analysis of Eq. (4-14) to estimate the
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importance of the second and fourth terms is not possible because the energy flux combines
solutions to Eq. (4-14) for all modes. But approximate criteria indicating when these terms
may not be neglected can be established by examining existing solutions.

The first technique employs the Fourier law for the energy flux,
Je(F, ) =- k[T (7, )] VT (7, 1), where & [T (7, )] is the thermal conductivity. To obtain the
Fourier law from Eq. (4-14), the second and fourth terms are neglected, allowing the
explicit solution for Npg (@, 7, 7, 1) in terms of T (7, 1} and known quantities. Equations
(4-13) and (4-3) yield the Fourier law. For the case of a frequency-independent relaxation

time, 7w, T (F, 1)) = [T (7, 1)}, the resulting conductivity is

k[T (7 0] ~ Lo2c[T (F N [T (7 )] (4-16)

U —

This is identical to Eq. (2-1) if the mean free path is substituted for v; ©[T (7, 7)]. Kittel
(1949; 1986) used Eq. (4-16), with a different numerical constam, and specific heat and
thermal conductivity data to show that the mean free path near room temperature in most
amorphous dielectrics is a few Angstroms. For a fiequency-dependent relaxation time, the
thermal conductivity is calculated using the frequency-dependent phonon specific heat

function at constant volume per unit volume Cy [ T (7, t)] (Berman, 1976),

/i)
T{7.1)
k[r (ol =L ) f Cslxw T (7, tl elxw, T (7, 1 dio (4-17)
0

where x,, = hw/ (kgT (7, t)) and @is the Debye ternperature, and kg = 1.38 x 10-3 J K-! is

the Boltzmann constant. The frequency-dependent phonon specific heat function is

= -3 (kp)* [T (7,0 (x0)* exp (x0)
Cs [Ia), T (f, t)] 5 2 (hp vs)s [exp (xa) - 1]2 (4-18)

3 (xo) 4 exp (Xo)
[exp (xo) - 1]2

T (7,1)
0
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where N, is the atomic number density. Callaway (1959) calculated the thermal
conductivity in this manner for the case of a frequency-dependent relaxation time. His
expression for the thermal conductivity employs two adjustable parameters in the function
tlo, T (7, t)], and fits experimental data for Ge within 30 percent between 3 K and 100 K.
A second class of solutions neglects the fourth term of Eq. (4-14), but retains the
second term. For [, T (, )] = ¢[T (7, 1)), Tavernier (1962) showed that Eq. (4-14)

without the fourth term yields the following expression for the energy flux,

Je(F. 0)= - k[T (7, ) VT (7 1) - <[T (7, ‘)]ng;,—'tl (4-19)

The hyperbolic energy equation can be derived from Eq. (4-19) (Joseph and Preziosi,
1989; 1990). Solutions to this equation differ significantly from those to the energy
equation based on the Fourier law if the transport process is microscale in time (Vedavarz et
al., 1991), i.e., the timescale of the process, such as the temporal duration of a laser pulse,
is comparable to or smaller than the relaxation time.

A third approach is to solve Eq. (4-14) in the steady state with the third and fourth
terms. This is identical to solving the equation neglecting only the second term, because
the first term does not contribute to the net energy flux. The resulting energy flux depends
on the geometry of the medium and the location, as well ason T (7, 1) 1t differs
significantly from the Fourier law only for processes which are microscale in space, i.e.,
which possess a geometric lengthscale, such as a dimension of the medium, comparable to
or smaller than the phonon mean free path vs7 [T (F, t)] The use of this energy flux in a
transient energy equation governing T (7, 1) was called the nonlocal theory of energy
transport by Claro and Mahan (1989).

A solution of the complete Eq. (4-14) is not available The following conclusions
can be drawn from this review: (a) The energy balance based on the Fourier equation fails
for processes which are microscale in either time or in space, (b) the nonlocal theory of

energy transport fails for processes which are microscale in time, and, as observed by
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Majumdar (1991), (c) the hyperbolic energy equation fails for processes which are

microscale in space.

4.3.3 Technique of Majumdar (1991)

Majumdar (1991) proposed an approximate technique for solving the complete
Eq. (4-14) which defines the value of the equilibrium number of phonons in a mode as the
average number of phonons in all modes having the same frequency at that location. The
equilibrium distribution Ng (o, T (7, t)] in Eq. (4-12) is replaced by an expression which
depends on , 7, and ¢, and is the average value of the distribution function for a given @

over all directions 7. This yields the following transport equation,

oN(w, 7, 7, 1)
ot

N(w, 7,7, t)@ - N, 7,7,1) (4-20)
i 4n

t[w, T (7, 1))

+ ven * VN(w, 7,7, 1)

where d{2is the differential solid angle. The set of the equilibrium numbers of phonons in
each of the modes at a given location and time employed by Eq. (4-20) is not necessarily a
Planck equilibrium distribution function, given by Eq. (4-7). Therefore, this is not an
exact technique for solving the Peierls-Boltzmann equation in the relaxaticn-time
approximation. The sum of the approximate collision integral in Eq. (4-20) over all modes
possessing a given frequency @ at a given location and time is zero. As a result, the
satisfaction of energy conservation, Eq. (4-5), is guaranteed by the conservation of energy
within each phonon frequency w. This approach neglects the transfer of phonon energy
between modes with different frequencies, and therefore makes an error when it is used to
predict phonon distribution functions. The impact of this error on the prediction of energy

transport is not clear. Neglecting energy transfer between modes may yield an estimate of
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the steady-state radiation energy flux in a non-gray medium (Brewster, 1992). Thisis a
promising, approximate technique whose accuracy needs to be experimentally determined.
Although Eq. (4-20) should not be used to predict phonon distribution functions
when energy exchange between phonon modes of different frequencies is appreciable, it
may be the best technique available for a very special regime of phonon transport. Define
7, as the characteristic relaxation time for phonon-phonon normal and Umklapp scattering,
74 as the characteristic relaxation time for phonon scattering on defects, and At as the
characteristic timescale of the transport process. If 7, < At << 7, holds, there is significant
scattering of phonons by defects, but the exchange of energy between phonons may be
negligibly small because few phonons have enough time to scatter on other phonons. For a
steady-state process, such as steady-state transport normal to a layer, an analogous
situation may occur if vsT; < Ax<< v, 7; holds, where Ax is the characteristic lengthscale
of the process, such as the layer thickness. Transport processes in this regime may include
those in amorphous materials at low temperatures, whose analysis 1s important for the

design of cryogenic silicon-on-insulator electronic circuits.

4.4 Summary and Recommendations

Microelectronic structures experience thermal conduction processes which are
microscale in space, such as those in a 200 A thick quantum-well laser, and microscale in
time, such as those in the channel of a transistor operating at 77 K and experiencing 100 ps
pulses of curreat. The validity of tools for analyziny these processes is summarized in
Table 4-1. For processes which are microscale in bot1 space and time, the technique
proposed by Majumdar (1991 is the only one availabie. Before these tnols can be applied
with confidence to processes in integrated circuits, they must be tested experimentally. The
assumption used by Majumdar (1991), that phonon modes of different frequencies act
independently, must be investigated. It is possible that this may render the technique

invalid in regimes where phonon-phonon scattering dominates, e.g., in crystals above

89



Table 4-1 Summary of the validity of techniques for analyzing microscale phonon
conduction processes.
Microscale Microscale Microscale
in Time in Space in Time
Only, Only, and Space,
At <7, At >> T, At £ 7,
Ax >> vsT Ax < vt Ax S vt
Fourier Mo No No
Equation
Hyperbolic
Equation Yes No No
Nonlocal
Theory No Yes No
Majumdar
(1991) Yes Yes Yes

room temperature. This assumption is less problematic in amorphous materials, where
phonon-defect scattering dominates, and is employed in Section 5.2 to determine the effect
~€ phonon-boundary scattering on conduction in amorphous layers. As was recently
observed by Tien and Chen (1992), the application of any of the techniques in Tabie 4-1 is
questionalle when the wavelength of a significant fraction of the phonons is comparable to
the dimensions of the conducting medium. When this is the case, the Boltzmann equation
is not strictly valid, and it may be necessary to solve the Schrodinger equation to determine
tt.e rate of energy transport. This is an outstanding problem in small-lengthscale heat

transfer.
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5. PREDICTION AND MEASUREMENT OF THE THERMAL
CONDUCTIVITY OF AMORPHOUS DIELECTRIC LAYERS

5.1 Introduction

The performance and reiiability of transistors and interconnects are affected by
temperature fields in circuits. Layers of amorphous dielcctric materials, e.g., silicon
dioxide and silicon nitride, electrically insulate circuit components and protect them from
corrosion. These layers have very low thermal conductivities, near 1 W m! K-1 at room
temperature. Conduction along the layers is not important due to the much higher thermal
conductivities of the bounding semiconducting and metal layers, but condu.!*nn normal to
the layers can be an important obstacle to the cooling of devices and interconnects. Energy
dissipated in aluminum inteicornects, for example, must travel through a silicon dioxide
layer between 0.5 and 1.0 um thick to reach the substrate heat sink. In silicon-on-insulator
(SOI) circuits, devices are separated from the substrate by a silicon-dioxide layer
approximately 0.4 um thick. To predict the median time to failure of an interconnect or the
drain current of a SOI field-effect transistor, both of which depend on the temperature field,
the thermal conductivity for conduction normal to amorphous layers is needed.

Data for the thermal conductivity of bulk amorphous dielectrics vary little among
different samples (Berman, 1976). In contrast, Fig. 5-1 shows that the effective thermal
conductivity for conduction normal to amorphous dielectric layers, k¢, depends on the
layer thickness and can be an order of magnitude less than the conductivity measured in

bulk samples, kpux. The conductivity k, ¢y is defined by Eq. (3-2) to account for the
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EFFECTIVE THERMAL CONDUCTIVITY
FOR CONDJUCTION NORMAL TO LAYER,

Fig. 5-1
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Previous data for the effective thermal conductivity for conduction normai to
silicon dioxide layers, K, o. The acronyms in the legend indicate the
fabrication techniques, whose full names are given in Table 5-1. The layers
of Schafft et al. (1989) contained 4 mass percent of Phosphorus atoms.

The bulk conductivity kp, was measured by Sugawara (1969).
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thermal resistance due to the layer boundaries. Analysis of the data in Fig. 5-1 is
complicated because different experimental methods were used, with often very large or
unknown uncertainties, and the layers were fabricated using different techniques. This is
summarized in Table 5-1. The difference between K, o and kpu has been attributed to
three phenomena: (a) Schafft et al. (1989) indicated qualitatively that the boundary
scattering of phonons may be responsible. (b) A microstructure or sioichiometry in the
layers different than in the bulk could make &, ¢y smaller than k. The conductivity
kn,e would be thickness dependent if the microstructure or stoichiometry changed near the

layer boundaries. (c) A therma! boundary resistance would cause k, ¢ to decrease with

Table 5-1 Summary of the data in Fig. 5-1. The relative uncerainty in the
measurement of k, . is Ulk, ). The measurement techniques are
reviewed on the indicated pages in Section 3.3.1.

Authors Layer Fabrication Measurement U(knp,.err)
Technique Technique

Schafft et al. (1989) | low-pressure chemicai- | microfabricated test 10 %

vapor deposition structure
(LPCVD) with 4 mass-| (see pp. 66 - 67)
percent Phosphorus

Lambropoulos et al. electron-beam thermal comparator 80 %
(1989) evaporation (EBE) (see pp. 68 - 70)
Lambropoulos et al. | ion-beam sputtering | thermal comparator 80 %
(1989) (IBS)
Brctzen et al. (1992) plasma-enhanced microfabricated test not
chemical-vapor structure determined

deposition (PECVD) (see pp. 66 - 67)
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decreasing layer thickness. This would be indistinguishable from the highly-resistive
interfacial layers proposed by Brotzen et al. (1992), so these two mechanisms are grouped
together.

This chapter makes progress towards resolving the puzzle by investigating two of
these hypotheses, and by mzasuring k, o in layers fabricated using different processing
techniques. Section 5.2 determines the effect of (a) phonon-boundary scattering on kp .,
and Section 5.3 investigates hypothesis (b) by showing how the porosity of low-pressure
chemical-vapor deposited (LPCVD) layers, which may depend on their annealing
temperature, can reduce k, . Section 5.4 develops a steady-state technique for measuring
kn,ef based on that of Cahill et al. (1989) and determines the experimental uncertainty.
Section 5.5.1 compares the predictions of the boundary-scattering analysis with data for
silicon-dioxide layers fabricated using the SIMOX process, :.€., separation by implintation
with oxygen. The substrates for silicon-on-insulator (SOI) circuits are made using the
SIMOX process, so these measurements help determine temperature fields in SOI circuits
in Chapter 6. Section 5.5.2 compares data for LPCVD silicon-dioxide layers which are
annealed at different temperatures with the predictions of the model accounting for

porosity.

5.2 Phonon-Boundary Scattering

Chapter 2 shows that boundary-scattering analysis in a layer begins with a
microscopic look at conduction in the bulk material, in this case amorphcus silicon dioxide.
Research on thermal conduction in amorphous materials was reviewed by Zaitlin and
Anderson (1975), Berman (1976), and Freeman and Anderson (1986b). Thermal
conduction in amorphous materials is governed by their microstructure, a subject reviewed
by Bartenev (1970) and Ziman (1979). Kittel (1949; 1986) explained the temperature
dependence of the thermal conductivity in amorphous materials by defining a lengthscale of

disorder comparable to the lattice constant of the material in crystalline form. Figure 5-2
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Fig. 5-2 Two-dimensional analogs of crystalline and amorphous Al,O5 (after
Zachariasen, 1932).
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shows the difference between the periodic structure of a crystal and the random network of
atoms in an amorphous material for two-dimensional analogs of sapphire. Phonons of
wavzlength small compared to this disorder lengthscale are scattered strongly by the
disorder and have mnean free paths of a few Angstroms. Phonons of wavelength long
compared to this lengthscale have mean free paths which increase rapidly with the
wavelength. This is analogous to the Rayleigh scattering of radiation on particles small
compared to the radiation wavelength, where the photon mean free path is proportional to
the fourth power of the wavelength (Bohren and Huffman, 1983).

Studies of phonon-boundary scattering in amorphous layers were for low
temperatures, where the long-wavelength, long-free-path phonons dominate conduction.
Matsumoto et al. (1977) showed that the boundary scattering of long-wavelength phonons
strongly reduces &, o5 of epoxy layers with thicknesses between 1 and 10 pm below
10 K. But Zaitlin et al. (1975) observed no effeci of boundary scattering on the thermal
conductivity along 2.9 to 71 pum thick mylar and glass layers below 10 K. This was
attributed to the specular reflection of phonons at the layer boundaries, which reduces
conduction normal to a layer but does not affect conduction along a layer. At higher
temperatures, from 77 K to 300 K, the long-wavelength phonons constitute a small fraction
of the energy in the material, but may contribute significantly to conduction because of their
relatively long mean free paths (Freeman and Anderson, 1986b). The boundary scattering
of these phonons may be responsible for the low values of &, ¢,y measured in amorphous
dielectric layers.

This section predicts the influence of boundary scattering on kp, g of amorphous
layers above 10 K. The frequency deperdence of phonon mean free paths in bulk
amorphcus silicon dioxide is determined using sound-attenuation data, Rayleigh scattering
theory, and the model of Kittel (1949). The effective conductivity considering boundary
scattering is calculated using the approximate expressions of Matsumoto et al. (1977) and

Chen and Tien (1992).
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5.2.1 Effective Conductivity Considering Boundary Scattering

The kinetic formula for the conductivity of dielectrics is given in Scciion 2.2,

kK = %cs vs As (5-1)

where C; is the phonon specific heat per unit volume and v; is the speed of sound.

Equation (5-1) defines the phonon mean free path A accounting for phonons of all
frequencies, and is used to construct the regime maps in Chapter 2. This section introduces
the frequency-dependent phonon mean free path, A,, the mean distance phonons of a given
frequency, or energy, travel between collisions. The usc of the phonon mean free path i
or the analogous electron mean free path A,, defined by Eq. (2. 1), neglects the energy
dependence of the carrier free paths. This approximation has been used with reasonable
success to analyze electron-boundary scattering (Tien et al., 1969; Flik and Tien. 1990;
Kumar and Vradis, 1991), since electrons contributing to net transport all possess nearly
the same energy. But in dielectrics, where phonons of energies varying by several orders
of magnitude contribute to conduction, A; must be used with care.

This was demonstrated by Savvides and Goldsmid (1972), who observed
boundary-scattering effects on the phonon conductivity in silicon crystals of dimensions
orders of magnitude larger than A;. The crystals had been irradiated with neutrons,
introducing point defects which cause the Rayleigh scattering of phonons. Kittel (1949,
1986) used Eq. (5-1) and specific heat and thermal conductivity data to show that near
room temperature in most amorphous materials, A is independent of temperature and equal
to a few Angstroms. This is much smaller than the thicknesses of most practically-used
layers, suggesting that boundary scattering is not important. But an accurate boundary-
scattering analysis for amorphous materials must account for the strong frequency

dependence of A, in these materials, which is similar to that in neutron-irradiated crystals.
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Equation (5-1) can be written as an integral over all phonon angular frequencies o,
but this requires a model for the phonon density of states. The Debye model for the
phonon density of states (Kittel, 1986), although derived for a crystal, remains the most
accurate available (Freeman and Anderson, 1986b). While it may be in error for phonons
of wavelength comparable to the lengthscale of disorder, it is a very good approximation
for the much-longer-wavelength phonons which experience significant boundary

scattering. Equation (4-17) applies in this case, written here using A, = v, T,
st Cs[xw, T] Ap[xen T]dxe (5-2)

The Debye model constants for amorphous silicon dioxide are 8= 492 K, vy = 4100 m 51,
and N; = 6.62 x 10 22 m-3 (Stephens, 1973). The Debye angular frequency, which is used
later, is wp = kg6/hp = 6.441 x 1013 rad s-1.

If the material is bulk, i.e., has no boundaries, then A, is the bulk mean free path,
Awpui. Callaway (1959) and Holland (1963) accounted for boundary scattering using a
frequency-independent mean free bath for boundary scattering, A, =B d, where Bis a
dimensionless constant not too far from unity and d is the smallest specimen dimension,

e.g., the layer thickness. Matthiessen's rule (Ziman, 1960) yields

1 1 __ 1 1
+ = + Bd (5_3)

1
Ao  Aopuk  Asp  Awbulk

Matsumoto et al. (1977) used Egs. (5-2) and (5-3) to calculate the kn,ef for epoxy layers
below 10 K. They assumed a frequency and temperature dependence for Agwbuix and fitted

bulk epoxy thermal conductivity data using d = oo, i.e., Ay = Agbulk- The predicted
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temperature dependence of kp oy agreed well with data for layers when B was used as an
adjustable parameter.

The nature of phonon reflection arid transmission at the boundaries depends on the
ratio of the phonon wavelength to the standard deviation of the boundary profile (Ziman,
1960). When this ratio is near or smaller than unity, the phonons are reflected and
transmitted diffusely. At room temperature, phonons with wavelengths from a few
Angstroms to a few tens of nanometers contribute to energy transport. The shortest
wavelength phonons, which carry most of the energy, are diffusely reflected by any
practical interface. The longest wavelength phonons may not scatter diffusely on the
boundaries of many interfaces. Swartz and Pohl (1989) derived the approximate diffuse
mismatch model for the diffuse transmission and reflection of phonons at an interface, and
showed that the boundary resistance predicted by this model is in excellent agreement with
data for metal-dielectric interfaces and differs little from that predicted by the theory of Little
(1959) for an ideal smooth interface. The diffuse mismatch model is much simpler than the
acoustic mismatch model of Little (1959) and is used here for the transmission coefficients
of phonons of all wavelengths. The error due to the non-diffuse transmission and specular
reflection of long wavelength phonons at the boundaries is expected to be small, but has
not been quantified.

The diffuse mismatch model assumes complete contact between the layer and the
bounding media, and accounts neither for changes in microstructure near the interface, nor
for interfacial layers. High-resolution transmission electron micrographs of interfaces of
deposited (Schroder, 1987) and SIMOX (Celler and White, 1992) amorphous silicon
dioxide layers with silicon show no evidence of incomplete contact on lengthscales down to
a few Angstroms, nor of a different microstructure in the silicon near the boundary. These
micrographs show only that the microstructures of the layers were not periodic up to the
interface with the silicon. Two of the hypotheses discussed in Section 5.1, (b) a thickness-

dependent microstructure or stoichiometry, and (c) thermal boundary resistances or
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interfacial layers, are not excluded. Section 5.2 investigates (a) phonon-boundary
scattering independently from (b) and (c), and assumes the microstructure and
stoichiometry of the layer are those of the bulk amorphous solid up to its boundaries with
the surrounding media. The diffuse mismatch model yields a good estimate of the
transmission coefficients for this case. Using the speeds of sound and the theory of Swartz
and Pohl (1989), the transmission coefficients from amorphous silicon dioxide into
aluminum and silicon are og = 0.586 and «; = 0.326, respectively.

If the diffuse mismatch model is employed at both boundaries, one-dimensional
phonon conduction normal to a layer is analogous to radiation between diffuse gray walls
in an absorbing medium. This problem has been solved for grey media, i.e., when the
photon mean free path is independent of the photon frequency (Siegel and Howell, 1981).
To estimate the energy transport for nongrey media, the solution for grey media can be

integrated over all frequencies to yield Egs. (5-2) and (5-3) with
B 3 (5-4)

B 4L +L -
(0.4)) (04}

where o and o are the phonon transmission coefficients from the layer into its bounding
media (Chen and Tien, 1992). This approximation assumes that phonon modes of
different frequencies are independent, i.e., that they do not exchange energy. The same
assumption makes possibie the technique of Majumdar (1991) for solving the Peierls-
Boltzmann equation, given by Eq. (4-20). As discussed in Section 4.3.3, this may yield
errors in predicted phonon distribution functions. But this approach provides a good

estimate of energy transport in nongrey media, and is the best available.

5.2.2 Bulk Phonon Mean Free Paths
The frequency-dependent phonon mean free path in bulk amorphous materials has

not been determined. But it is known that there are three regimes of its frequency
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dependence (Freeman and Anderson, 1986b). There are similarities among the expressions

for Ay puik in each of these regimes, which were used to fit bulk conductivity data from 0.1
to 100 K (Klemens, 1951; Walton, 1974; Matsumoto et al., 1977). But there is little
agreement on the mechanisms yielding these functions. This section combines models for
Awputk Which are successful in each regime into a single function for all frequencies.

For the high frequency regime, > ~ 0.1 wp, one of the best approaches uses a
frequency-independent phonon mean free path, Ag (Kittel, 1949; 1986). It is equal to A, in
Eq. (5-1) calculated using thermal-conductivity and specific-heat data above 300 K, where
Ay is nearly independent of temperature and the phonons in this regime dominate
conduction. This approach is problematic because Ay is shorter than the wavelengths A of
some phonons in the high frequency regime. The phonon transport equation, from which
Eq. (5-2) was derived, fails for these phonons due to the uncertainty principle. A phonon
with frequency wis a packet of waves with frequencies mostly within Aw of @. The
uncertainty in space of this wave packet is Az = (21 v5) / Aw. Energy transport by a
phonon is well defined only if its mean free path is much larger than its uncertainty in
space, i.e., Agpuik >> Az, and its energy hp @ is much larger than the uncertainty in its
energy, i.e., @> Aw. The uncertainty principle yields the requirement Awbutk >> As,
where A; = (2 v;) / . This is satisfied in crystals, but not in amorphous materizls in the
high frequency regime.

The failure of the transport equation may eventually be remedied by molecular-
dynamics calculations (e.g., Lee et al., 1991), but these techniques need refinement. The
model of Kittel (1949) is used here even when the phonon transport is not described by a
transport equation because it yields the correct conductivity at high temperatures, where the
high frequency excitations dominate energy transport. Since only low frequency phonons,
which satisfy the above requirement because of their very long mean free paths, scatter on
the layer boundaries, this work is not concerned with the subtleties of the high-frequency

lattice excitations as long as their contribution to the conductivity is correct. The smallest
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phonon mean free path A is calculated using Eq. (5-1), the measured bulk thermal
conductivity (Sugawara, 1969), and the measured specific heat (Touloukian and Buyco,
1970b) of amorphous silicon dioxide. The average value between 300 and 500 K is used,
Ag=494 A,

In the intermediate frequency regime, 0.01wp < w < 0.1wp, the mechanism
responsible for phonon scattering is unknown. Freeman and Anderson (1986a) closely
fitted the temperature dependence of the thermal conductivity of many amorphous solids,

including silicon dioxide, using Eq. (5-2) and

Awp = %% , Sp=176x 1042 mrad?s 4 (5-5)

This frequency dependence is analogous to the Rayleigh scattering of phonons on regions
with different elastic properties and dimensions small compared to the wavelength (Ziman,
1960). For a region with a deviation in mass density 8p compared to the surrounding

medium of density p, the phoncn mean free path is given approximately by Eq. (5-5) and

144 v¢ [8p)?
Sp = 144v¢ |9 (5-6)
n Np ab P

where Np is the number density and a the typical dimension of the scattering sites. The
opposing limit to Rayleigh scattering is geometrical scattering for high-frequency phonons,
which yields the frequency-independent mean free path Ag = (Np © a2/ 4)-!. To determine
if Ap and the Rayleigh scattering are brought about by the same defects, the expression for
geometrical scattering is solved with Eq. (5-6) using Ag = Ag and 8p = p, yielding

a=13 A and Np = 1.53 « 1027 m-3. The volume of scattering sites exceeds the material
volume, a difficulty remedied only if Ag > A is used. This indicates that if Rayleigh

scattering occurs, Ag is not determined by the same defects.
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The mean free paths of phonons in the low frequency regime, w < 0.01 wp, were
measured through the attenuation of sound waves. Research reviewed by Hunklinger and
Amold (1976) determined that a scattering process not present in crystals limits the mean
free paths of long-wavelength phonons in amorphous materials. In a crystal, one position
of an atom relative to the othicr atoms minimizes its potential energy, and the forces on the
atom always increase as it departs from this position. But in an amorphous material, there
may be two or more positions for an atom which yield local minima in its potential energy.
The potential-energy barrier between these two atomic positions is overcome by the
interaction of the atom with high-frequency phonons. The long-wavelength phonons,
shear and compression sound waves, change the potential-energy values of the local
minima. The motion of atoms to the favorable position, assisted by the high-frequency
phonons, is called structural relaxation. The structural relaxation can occur out of phase
with the long-wavelength phonons and absorb their energy, partic ularly if the time it takes
for atoms to shift their positions is comparable to the wave period. The theory for this
phenomenon is similar to the Debye relaxation model which determines the influence of
electric dipoles in liquids on the photon mean free path (Bohren and Huffman, 1983).

Gilroy and Phillips (1981) develcped an expression which closely fitted
experimental sound-attenuation data in amorphous silicon dioxide at low temperatures.

Bonnet (1991) approximated their integrals for higher temperatures, yielding

yd ) .
1 _ T Sso ﬁr(z M B SR A o 57
2v T* T+ 1-T* i
Awsr s r{.2_+%) cos(zT)

where A g is the phonon mean free path limited by structural rejaxation, w* = w1,
T* = kpT | Ey, and I'is the gamma function. Bonnet (1991) closely fitted the data of

Vacher et al. (1981) for amorphous silicon dioxide from 10 to 300 K using
T0=2.5x10"135, Ey=5.02x 10 -21 J, and S5z = 1.89 x 10 -3.
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In the present work, these parameters and Eq. (5-7) model phonon scattering on
structural relaxation in the low frequency regime. Equation (5-5) models Rayleigh
scattering in the intermediate frequency regime. The transition between the low and

intermediate frequency regimes is modeled using Matthiessen's rule,

L -1 ,_1
Appbuik  AwD  AwsR

(5-8)
In the high frequency regime, the model of Kittel (1949) is used, Ay puik = Ao. The
transition from the intermediate to the high frequency regimes occurs at
®=7.73 x 1012 rad s'1 = 0.12 wp for silicon dioxide. For @ <0.12 wp, the mean free
path is given by Eq. (5-8). For @> 0.12 wp, the mean free path is Ay puy = Ag = 4.94 A.
The bulk mean free path A, . developed here for silicon dioxide is graphed in
Fig. 5-3, showing its three regimes. Also shown is the phonon mean free path in silicon at
room temperature limited by Umklapp scattering (Holland, 1963). The room-temperature
thermal conductivity of silicon is about two orders of magnitude larger than that of silicon
dioxide, which is due almost entirely to the much larger mean free path of phonons. In
silicon dioxide, phonons experiencing Rayleigh scattering are responsible for more of the
specific heat at 77 K than at 300 K. Since these phonons have longer mean free paths than
the high-frequency phonons, boundary scattering is potentially more important at 77 K than
at room temperature. The use of Ag = A; for high frequency phonons overestimates Ag
because Eq. (5-1) includes the contribution to the conductivity of the long-wavelength
phonons. This error is small only if the contribution of phonons of frequency less than
0.12 @p is small compared to the total conductivity above 300 K. The curves in Fig. 5-4,
calculated using Eq. (5-2), show the fractions of the total thermal conductivity at 10 K,
77 K, and 300 K trought about by phonons with frequencies less than @. The integrand in

Eq. (5-2) is the product of the phonon mean free path in Fig. 5-3 and the Debye specific
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heat function, Eq. (4-18). The relative contribution of low-frequency phonons to the total
specific heat increases with decreasing temperature, which increases the importance of
these phonons for thermal conduction. Since the contribution of phonons of frequency
greater than 0.12 wp to the conductivity is less than 5 percent above 300 K, the technique
for obtaining Ay is acceptably accurate.

The effective conductivity of silicon dioxide layers is calculated using Egs. (5-2) -
(5-5), (5-7) and (5-8). From 10 to 300 K, the conductivity predicted using d = o differs
by up to 20 percent from bulk data. This is due to the approximate Debye model for the
phonon density of states. In this work, the Debye model is assumed only to predict the
relative contributions of phonons of different frequencies to the tctal conductivity. This
allows the calculated &y, o5 to be normalized by the kp, calculated using d = oo. The final

prediction for K, ¢f is

k
kn,eﬁ" = [kbulk] measured X [M] (5-9)
kbulkJ calculated

5.3 Influence of the Annealing Temperature of LPCVD Layers

The boundary-scattering analysis assumes that the microstructure and stoichiometry
of the layer are identical to those of the bulk material. Section 5.5.1 shows that this may be
a good approximation for SIMOX silicon-dioxide layers. But this is not a good
approximation for unannealed LPCVD silicon-dioxide layers, which are shown in this
section to have a mass density which depends on annealing temperature and can be up to 10
percent lower than that of bulk fused silicon dioxide. A model is developed here for the
annealing-temperature dependence of k, oy of LPCVD silicon dioxide layers. The first
subsection discusses the conditions under which the thermal conductivity internal to the

layer, kin;, and the total thermal boundary resistance, Rp, can be extracted from data for
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kn.efr- The second subsection relates ;y, to the annealing temperature by modeling the

layer as a porous medium.

5.3.1 Resistances-in-Series Model

When analyzing data for &, 4, it is often useful assume that thernal resistances at
the layer boundaries, Rp; and Rps, are in series with a volume resistance within the layer,
dflkin. The total thermal resistance is

Ry = d_ - d + Rpy + Rpy = + Rp (5-10)
kn.eff Kine Kint

where Rp = Rp; + Rps is the sum of the thermal resistances at both boundaries. Section
4.3.2 discusses the reasons why the Fourier equation, from which Eq. (5-10) is derived,
iails for microscale processes. Equation (5-10) is only useful if conduction in the layer is
macroscale, i.e., boundary scattering is not important. Section 5.5.1 shows that at room
temperature, the short mean free paths of phonons in amorphous silicon dioxide make this
a problem only in layers thinner than a few hundred Angstroms.

The thermal conductivity within a layer is not necessarily independent of the
position in the layer. This was recently demonstrated by Graebner et al. (1992a) for CVD
diamond layers, in which the grain size decreases near the substrate-layer interface. For
layers where the thermal conductivity varies only with y, where y is the distance from the

substrate, k; is related to the local thermal conductivity & (y) by

d
1 | a1 d 5-11
kinl L k(y) d ( )

The present work applies Eq. (5-10) with the following assumption: The layer

microstructure and interfacial properties which govern ki, and Rp, respectively, depend on
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the processing conditions, e.g., the annealing temperature, but not on the layer thickness.
This assumes that the distance over which the boundaries influence the microstructure
within the layer are small compared to the smallest layer thickness, which is about 350 A.
This allows k;n, and Rp to be determined for the LPCVD layers with a given annealing
temperature using data for the thickness-dependent thermal resistance and Eq. (5-10). This
assumption is consistent with the dependences of Ry on d measured here in the LPCVD
layers. Itis shown in Section 5.5.2 that on a plot of Ry as a function of d, all of the data

for a given annealing temperature can be fitted within the experimental uncertainty by a line.

5.3.2 Model accounting for Porosity

Chemical-vapor-deposition of silicon dioxide yields layers with an amorphous
microstructure (Adams, 1988). The mass density of a bulk amorphous material decreases
as its temperature is increased (Bartenev, 1970). This is due in part to structural changes in
the material which are facilitated by the increasing energies of the atoms, a phenomenon not
present in crystals. By annealing and rapidly cooling an amorphous material, it is possible
to achieve at low temperatures a level of the density which is smaller than the value
resulting from slow cooling. In contrast, measurements of the room-temperature mass
density of LPCVD silicon dioxide layers showed that annealing and rapid cooling in air
cause this property to increase (Nagasimi, 1972; Smolinsky and Wendling, 1985). For
LPCVD layers deposited near 650 K, such as those in the present study, Nagasimi (1972)
showed that the density incrcased by an amount which increased with the annealing
temperature. The largest increase was about 10 percent for a layer annealed at 1273 K.
Nagasimi (1972) suggested that the lower density of the unannealed layers was due to a
microstructure which was different from that of the annealed layers when observed on a
lengthscale of the order of the interatomic spacing.

The present analysis is based on a different, simpler hypothesis. It is assumed that

the LPCVD process introduces pores into the layers, which have characteristic dimensions
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much larger than the atomic spacing. In an amcrphous material, an imposed stress results
in a relaxation process with a time constant which decreases rapidly with increasing
temperature (Bartenev, 1970). The material flows until the stress is relieved. But when the
temperature is far below the glass transition temperature, ~ 1330 K for silicon dioxide,
these time constants are often too large to be observed experimentally. Pores cause stresses
in the amorphous material, due both to surface tension and to buoyancy forces. The
timescale for the relaxation of these stresses, which can cause the pore to move out of the
layer, depends on temperature. If the LPCVD process introduces pores into the layer, it is
plausible that the porosity could depend on the maximum temperature achieved for a
significant length of time during the processing, T,,. For annealed layers, T, is the
annealing temperature. For unannealed layers, T} is the deposition temperature. If p, is
the density of the porous material and p, is the density of the material without pores, the

data of Nagasimi (1972) are fitted within 0.5 percent by

Po _ (T_P) i (T_p)2 i
~ = 0636 + 0735\ - 03712 (5-12)

for 613 K < T < 1273 K, where T, = 1305 K. The porosity, p, is the volume fraction of
the pores. The density of the gases within the pores is assumed to be much smaller than
P4, yielding p =1 - p,/pa.

Thermal conduction in the porous layers is analyzed here using the Fourier
equation. This approach is valid when (a) the pores are of dimension large compared to the
wavelength of the phonons which carry the heat near room temperature, and (b) the pores
do not significantly reduce the phonon mean free path, A. If a is the characteristic pore
dimension, (a) may be written as a >> A; gom, where Ag 4o is the dominant phonon
wavelength (Ziman, 1960). It is approximately A5 gom ~ 3.9 hp v/ (kg T) ~ 4 A in silicon
dioxide. The requirement (b) is satisfied when A;, >> A, where Asp~1 /(Npa?) is the

mean free path for geometrical scattering on pores of number density Np (Kittel and
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Kroemer, 1976). The room-temperature phonon mean free path in amorphous materials is

shown in Section 5.2.2 to be approximately A; = 5 A. Using Np a3 ~ p allows (b) to be
- expressed as a/p >> A, which is less restrictive than (a) for amorphous materials.
Requirement (a) indicates that the present analysis is valid when the pores are of dimension
greater than about 50 A. Such pores are distinct from the Angstrom-scale differences in
structure proposed by Nagasimi (1972).

Research on thermal conduction in porous media was reviewed by Kaviany (1991).
The low levels of porosity considered in this work, p < 0.1, make it reasonable to neglect
the interaction of temperature fields around neighboring pores. Theories for this case
considering pores of different shapes agree within a few percent for p < 0.1. The simplest
of these is for conduction around a nonconducting sphere, and is approximated within 2

percent for p < 0.1 by

(5-13)

where k, is the effective thermal conductivity of the porous medium, &y is the thermal
conductivity of the material surrounding the pores, and the conductivity within the pores is
neglected. The use of this model assumes that the layer thickness is much larger than the
pore dimension, d >> a, and that the pores do not have a columnar structure, such as is
discussed by Lambropoulos (1991). If such columns are normal to the plane of the layer,
i.e., microcracks, Eq. (5-13) underpredicts ky/k.

The thermil conductivity within the LPCVD layers, ki, is assumed to be given by
Eq. (5-13) when kg = kpyy is used. The thermal conductivity &, is that measured in
nonporous, pure, bulk fused quartz (Sugawara, 1969), whose density is equal to that of
the layer of Nagasimi (1972) which was annealed at 1273 K. Combining Egs. (5-12) and
(5-13) yields
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Kim ~ 0457 + 110(ZP—) - 0.557 (Q)Z 5-14
Kbulk ' O\ T 19

Silicon dioxide layers fabricated using LPCVD contain up to 4 mass percent of silanol
(SiOH), as observed by infrared spectroscopy (Adams, 1988). Impurities account for
significant differences in the measured thermal conductivities of bulk fused silicon dioxide.
The use of k4 = kpuk, where kpux is the value for a very pure sample, neglects the
influence of the SiOH impurities on k4, and may cause Eq. (5-14) to overpredict ;,;. The

effect of impurities on the thermal conductivity of LPCVD layers needs to be investigated.

5.4 Experimental Technique
The technique of Cahill et al. (1989), described in Section 3.3.1 and illustrated in
Fig. 3-6, is adapted here to measured k, o in amorphous dielectric layers near room

temperature with a known uncertainty.

5.4.1 Apparatus

Figure 5-5 is a cross section of the new test structure. The width of bridge A is
w =35 um, yielding nearly nearly one-dimensional conduction normal to the sample layer.
The width of the non-heating bridges is near 1 um. Section 5.4.2 analyzes thermal
conduction in the substrate, whose contribution to the uncertainty is estimated using a
second non-heating bridge D. The center-to-center bridge separations are approximately xc
=7 um and xp = 16 um. The temperature change which occurs when the heater bridge A
is switched on, i.e., when it suddenly carries a large current, is AT. The temperature
change ATy is measured by bridge A, and ATy is obtained from AT by modeling the heat
conduction in the substrate. The conductivity &, ¢yis calculated from the heater power Q

and length L using
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Fig. 5-5 Cross section of test structure used here to measure ky, o
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_ 4 _ g ATA-ATy _
Rr=ta - Y 0D G-13)

where ‘¥is a parameter determined in Section 5.4.2 which depends on the ratio w/d and
accounts for two-dimensional conduction in the sample layer.

The wafer is secured to a Temptronic Model TP38B temperature-control chuck, a
copper disk with 88.9 mm diameter and thickness 19.1 mm, by means of suction through
holes on the surface of the chuck. A thermocouple with one junction soldered to the chuck
surface measures the test-structure temperature. The error due to this arrangement is
determined using a second thermocouple attached to a wafer. The difference between the
temperatures of the thermocouple junction and the test structure is due to temperature
variations on the chuck surface, and is less than 0.5 K at 303 K, 1.5 K at 373 K, and
275K at 423 K. The calibration of each bridge consists of determining the temperature
derivative of its electrical resistance, which is affected by an error in the measured
temperature change of the test structure. The relative uncertainty in the resistance
thermometer calibration is be U (dR;/ 9T;)= 0.04 for all temperature changes between 273
and 423 K, where U(q) is the relative uncertainty in the parameter q.

The bridge cross section is isothermal due to the low values of the thermal
resistances for conduction normal to the bridge and across its cross section compared to the
thermal resistance of the silicon dioxide layer. As a result, w in Eq. (5-15) is the width of
the aluminum-silicon dioxide contact. Scanning electron microscopy yields the relative
dimensions of the cross section of the bridge, from which w is calculated using the
measured electrical resistivity of the bridge material and the length and electrical resistance

of the bridge.
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5.4.2 Substrate Thermal-Conduction Analysis

The temperature change ATy is calculated from the measured AT by solving the
heat diffusion equation, V= 0, in the substrate. Except for the thinnest layers, the
difference between ATg and AT¢ is much less than ATy, and approximations in this
analysis have a small effect on the measurement. The model uses the two-dimensional

coordinate system in Fig. 5-5 and the following approximations:

1. The effect of bridges C and D on conduction in the substrate is neglected. This
results in a plane of symmetry and an adiabatic boundary condition at x = 0.

2. Substrate conduction is assumed to be two dimensional in the x-y plane. The ratio
of the bridge length to the substrate thickness is approximately 4.2.

3. The wafer is assumed to possess a uniform temperature Tg at y = 0.

4, The energy flux from bridge A, of width near 5 pm, is uniform in x and travels

directly through the silicon dioxide layer of thickness less than 0.4 pm. This
results in a heat-flux boundary condition at y = dy,, of - O/ (WL) for 0 <x < w/2.

5. Conduction out of the substrate through the silicon dioxide to the air on top is
neglected, yielding an adiabatic boundary condition at y = dy,, for x > w/2.

6. The substrate side boundaries are assumed to be far from the heater compared to
dsup. The boundary condition there has no effect on the temperature near the heater.
The boundary condition T = Tj at x = W and the requirement W/d,,; >> 1 are used.

Separation of variables yields AT¢ and ATp,

. w2 .
ATC' D= Zl%ksub i=z tanh (A‘ dsub) l (A;W / ) c0s (l‘ C. D)

0 (2)? (5-16)
L= 20
/1, = -g;(—‘-g—]-) , W>> dsub

The average temperature at the interface of the silicon and the silicon-dioxide underneath the

heater bridge is the average value of Eq. (5-16) for0 <x<w/2,

40 < sin?(A; w/2)
ATp = i Qsup) —————— -
T s=zo tanh (2; dyus) M (5-17)
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The temperature difference ATy for Eq. (5-15) is

[ATB]experimenl = [ATC]experimenl + [ATB - ATC]analysis (5-18)

The normalized uncertainty due to the approximate thermal-conduction analysis is estimated

from the difference between the predicted and measured temperatures of bridges C and D,

ATc - ATD]experimem - [ATC - ATD]analysis

(5-19)
[ATC - ATD]experiment

U([ATB - ATC]analysis) = [

The parameter ¥in Eq. (5-15) is calculated by neglecting temperature variations in
the x direction at y = dy,;, compared to the temperature difference normal to the amorphous
sample layer, and by assuming that the flux into the sample layer is uniform over the bridge
width. The average temperature drop normal to the amorphous sample layer is given by

Eq. (5-17) with the amorphous-layer thickness d substituted for dyy, yielding

(17 Wwd (5-20)

4 i tanh (A; ) sin2 (2w 7 2)/ (1,

Equation (5-20) is approximarted by

1-0.932exp(-1.538 Jat)] 1

¥ =11-0.54276 —d

(5-21)

which is within 0.5 percent for w /d > 0.6. This expression yields ¥ = 1.084 for

w/d =17, which is the largest value of this ratio in the present work.

116



5.4.3 Uncertainty Analysis
The thermal resistance determined in these experiments is related to the measured

quantities by

[ATA]experimem - [ATC]experiment B [ATB - A'1“C]analysis
Q/(wlL)

Ry =

(5-22)

V_A) d_RA)'l ] %(d_&:_,“ ] ) :
A Ix dTA Ic \dTc [ATB ATC]analys:s_

IaVA/(w L)

where Va, Ia, Vc, and I are the voltage drops and currents measured for bridges A and C.
A(Va/I4) and AV/Ic are the changes of the resistances of bridges A and C which occur
when /, is increased to turn the heater on. The current /¢ is very stable, but 7, Va, and
Vc experience small fluctuations in time which are used to for their uncertainties here. The
uncertainty in the bridge length L is negligible. For simplicity, the uncertainties in
A(Va/lp) and AV are treated as independent. The total uncertainty in the thermal
resistance is calculated using Eq. (5-22) and the sum-of-squares technique (Holman,

1984),

[URM)? = [U dTAr [ATAA- ATB] [ (A ” I:ATA TAATB]z

2 2
 [o[Ee)? [ AT ] ,,[U(AVC)]z[__Azc_:__]
cll |AT, - AT AT, - ATp

ATg - ATc]2
ATp - ATy

(5-23)
¥ [U([ATB - ATc]analysis )]2 [

+ [U(VA)? + [U(IA)? + [U(w)]?
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The relative uncertainty in Ry is found to be very similar for measurements yielding
the same value of R7. For Ry~ 5 x 107, 1.5 x 107, and 0.5 x 10-7 m2 K W-!, U(R7) is
approximately 8, 11, and 22 percent, respectively. The uncertainty is dominated by the
uncertainty in the measured temperature derivative of the electrical resistance of bridge A.
For the thinnest layers, where ATg - AT can be comparable to AT - ATg, the uncertainty
due to the thermal analysis is significant. This technique is similar to those of Schafft et al.
(1989) and Brotzen et al. (1989), because it uses a thin-layer bridge to heat the sample
layer. But both sets of authors determined ATg using the measured temperature at the
bottom of the substrate. This temperature difference is always much larger than
ATg - AT, so that the approximations in the thermal-conduction analysis are much more
important than those used here. It is important to minimize this component of the
uncertainty when measuring very thin layers, i.e., d <0.1 um. While this uncertainty was
negligible in the measurements of Schafft et al. (1989) for layers thicker than 1 pm, its
impact on the data of Brotzen et al. (1992) for layers as thin as 0.1 tm needs to be

assessed.

5.5 Results and Discussion

5.5.1 Phonon-Boundary Scattering and k, .y of SIMOX Layers

Figure 5-6 compares the predictions of the phonon-boundary scattering analysis
with the low-temperature data of Schwartz and Pohl (1989). They measured Ry for
PECVD silicon dioxide layers bounded by Rh:Fe, rhodium with a small fraction of iron,
and sapphire. The data points are represented in this plot of knefr/ Kpuik using the Kpuii
data of Zeller and Pohl (1971). Boundary scattering becomes more important at low
temperatures because low-frequency phonons, which have long mean free paths, contribute
more to the conductivity. The agreement is excellent at 10 K for a range of thicknesses

spanning more than an order of magnitude, which supports the frequency-dependence of
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the mean free path given in Fig. 5-3 and the approximate solution to the transport equation,
Egs. (5-2) - (5-4). The success of the prediction at 10 K relies heavily on the transmission
coefficients calculated using the diffuse mismatch model of Swartz and Pohl (1989),
because at this temperature many phonons travel ballistically between the boundaries,
without scattering internally. At 45 K, the ratio Ky 5/ kpui is overpredicted by the present
analysis. This would be consistent with the agreement at 10 K if the phonon mean free
paths in the layers were the same as in Fig. 5-3 in the low and the intermediate frequency
regimes, which are most important at low temperatures, but were less than those given in
Fig. 3 in the high frequency regime, which becomes important above about 10 K. But
Fig. 5-3 may still be correct for bulk fused silicon dioxide, since this material may have a
different microstructure than the PECVD layers. The poor agreement at 45 K may also be
due to a failure of the diffuse mismatch model above 30 K. This failure was observed for
many interfaces by Swartz and Pohl (1989), who argued that highly-resistive interfacial
layers at the interfaces could be responsible.

Figure 5-6 shows that Knef/ kvt is approximately unity at room temperature for
layers thicker than a few hundred Angstroms, i.e., phonon-boundary scattering is not
important. This is also the case if the calculation is performed using the transmission
coefficients from silicon dioxide into aluminum and silicon, which were the tounding
materials for the layers whose conductivities are given in Fig. 5-1. But the data in Fig. 5-1
yield ratios kn,ef/ kpuik Which are much smaller than unity, indicating that the problem at
45 K in Fig. 5-6 becomes more important at higher temperatures.

The mean free paths used here are probably the largest possible in the layers. This
is because microstructural differences between the layer and a bulk material may include a
finite porosity, particularly near the boundaries of the layer, or the presence of small
crystalline regions, both of which reduce the mean free paths of long-wavelength phonons.
Similarly, the mean free paths of long-wavelength phonons are reduced by localized

regions of different stoichiometry, which perturb the elastic properties of the material. As a
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result, the ratios given in Fig. 5-6 indicate the greatest possible impact of boundary
scattering on k¢4

The SOI wafers employed in this study were fabricated by Ibis Corporation in
Danvers, Massachusetts, using the SIMOX process, which is depicted in Fig. 5-7.
Oxygen atoms are implanted into a lightly-doped single-crystal silicon substrate, forming a
damaged sublayer. After an anneal near 1500 K, a silicon-dioxide layer forms beneath a
single-crystal silicon overlayer of thickness 0.22 um. Devices are usually fabricated from
the silicon overlayer. In this work, the silicon overlayers are etched away from SOI
wafers, and the bridges of the test structure are deposited onto the exposed silicon-dioxide
layers, which have thicknesses near 0.3 um. Figure 5-8 compares the data for the SIMOX
layers with the predictions of the phonon-boundary scattering analysis. Microscale
analysis considers phonon-boundary scattering, Ry = d / kn o, while macroscale analysis
yields the volume resistance of a layer from the bulk conductivity, R = d / kpu. The
microscale and macroscale predictions are within 3 percent of each other, which is
consistent with &y o/ kpwk ~ 1 shown in Fig. 5-6 for room temperature layers. Due to the
experimental uncertainty, the data are consistent with the boundary-scattering analysis, but
cannot confirm or refute its validity for thinner layers or lower temperatures. Figure 5-6
indicates that a 10 percent reduction in the effective conductivity normal to the layer will be
measured at room temperature only in layers thinner than about 420 A. Since the thermal
resistance of such a layer is already quite small, the impact of boundary scattering at room
temperature on practical applications is not very important.

The data show that the SIMOX fabrication technique results in layers which are far
different than those fabricated using the other techniques summarized in Table 5-1.
conductivities kn oy of SIMOX layers agree very well with kp,, which is a first for
amorphous silicon dioxide layers and is in stark contrast with the data shown in Fig. 5-1.
Previously reported conductivities vary from between two orders of magnitude smaller

(Guenther and Mclver, 1988) to about 70 percent of the bulk values. The data provide
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strong evidence that both the microstructure and stoichiometry of the annealed SOI silicon
dioxide layers closely resemble those in bulk samples. The absence of a thickness-
dependent conductivity in these layers indicates that neither thermal boundary resistances
nor highly-resistive interfacial layers are present. These findings are important for the
designers of SOI circuits and for Chapter 6 of the present work, which analyzes conduction
in SOI circuits, because they make it appropriate to use kn o = kpu rather than the much

smaller values of k, o7 reported previously for silicon-dioxide layers.

5.5.2 Effect of Annealing Temperature on k,, s of LPCVD Layers

The LPCVD layers are deposited at 673 K using a mixture of SiH and O,. Sets of
test structures are either measured as deposited, or are measured after a 30 minute anneal at
873, 1173, or 1423 K. The temperatures of the layers annealed at 1173 and
1423 K are slowly reduced to 1073 K over periods of 40 and 90 minutes, respectively,
after which they are removed from the cven and exposed to room-temperature air. The
layers annealed at 873 K are removed from the oven directly after the anneal.

Figure 5-9 shows the values of k, .y measured here. The data denoted by
T, = 673 K are for unannealed layers. For a given thickness, the values of kn,efr are much
larger than those reported by Lambropoulos et al. (1989), Brotzen et al. (1992), and
Schafft et al. (1989), but are less than the recommended bulk value and the values
measured here for SIMOX layers. The difference between the data measured here and
those of Lambropoulos et al. (1989) is not significant considering the experimental
uncertainty. The uncertainty in the thermal-comparator technique of Lambropoulos et al.
(1989) is governed by that in the radius of the probe-layer contact. The contact radius was
estimated to be between 20 um and 180 um. The measured conductivity was inversely
proportional to this radius, which was assumed to be 100 um. If the contact radius was
20 pm, all of the data would need to be increased by a factor of 5, which in every case

would yield kp ¢y larger than k. The difference between the data measured here and
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those of Schafft et al. (1989) may be due to the difference in the materials measured. Their
data are for silicon-dioxide layers with 4 mass percent of phosphorus. The effect of this
impurity on the thermal conductivity needs to be investigated.

Comparison of the data measured here with those of Brotzen et al. (1989) yields a
puzzle. The low values of k, osreported by Brotzen et al. (1992) may be due to a different
microstructure resulting from the PECVD process, which occurs at lower temperatures than
LPCVD. The porosity model developed in Section 5.3 is consistent with the data of
Brotzen et al. (1992) only if a very large thermal boundary resistance is assumed. Using a
lower-bound temperature for PECVD of 473 K (Adams, 1988) in Eq. (5-14) yields
Kins [ kpuik = 0.78, which agrees with the reported kn,ef for the 0.1 um layer only if
Rp ~10¢m2 K W-!is used in Eq. (5-10). This thermal boundary resistance is larger than
all of the roral thermal resistances Ry measured here, and is nearly two orders of magnitude
larger than the Ry measured here in the thinnest layers. The uncertainty in the technique of
Brotzen et al. (1992) for the thinnest layers still needs to be assessed. But there appears to
be a dramatic difference between the properties of LPCVD and PECVD silicon-dioxide
layers near their boundaries with silicon, which must be investigated further.

The values of k, o measured here for the highest annealing temperature are
somewhat less than those measured in the SIMOX layers. But when Eq. (5-10) is applied
to the LPCVD layers of the present study, the value of k;,, for the highest annealing
temperature is only 5 percent less than k.. Thus, the difference between the values of
kn,ef for the SIMOX layers and the LPCVD layers annealed at 1423 K may be due to a
larger thermal boundary resistance in the LPCVD layers. The SIMOX fabrication process
implants oxygen ions directly into silicon, providing no opportunity for impurities to enter
the layer. This is not the case for the LPCVD layers, whose lower values of kp, ¢ may also
be due to the presence of SiOH.

The data of the present work show that &, ¢ increases with T at a given layer

thickness. The low experimental uncertainty of the thickest layers allows the data to
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demonstrate this for T, = 673 and 1423 K. Figure 5-10 shows the dependence of the layer
thermal resistance on thickness and T,. The lines in this figure are linear regressions of the
data for a given value of T, and are used in Eq. (5-10) to determine &;, and Rp. The local
conductivity k(y) in Eq. (5-11) may decrease as y approaches zero, i.e., near the layer-
substrate interface. This is checked by estimating k(y) far from the substrate-layer
interface, which is approximately the inverse of the slope of the line segment connecting the
right-most two data points for a given annealing temperature in Fig. 5-10. For each case,
this yields a local conductivity which is slightly larger than k;,, by between 2 and 8
percent. This may be due to a porosity which decreases with increasing y. But the
difference between the largest local conductivity k(y) estimated in this way and k;, is less
than the experimental error in «;, for each case, making it inappropriate to draw
conclusions about local values of k(y).

The values of ki, and Rp are given in Table 5-2. An annealing-temperature

dependence of Rp cannot be resolved due to the experimental uncertainty, but for each case

Table 5-2 Values of ki, and Rp extracted from the data for each value of the highest
processing temperature, 7).

kint RB
(W m1K1) [(107m2 K W)
T, =673 K 1.08 +/- 0.09 0.36 +/- 0.12
(unannealed)
T, =873 K 1.11 +/- 0.09 0.27 +/- 0.10
T, =1173 K 1.28 +/- 0.10 0.21 +/- 0.10
T, = 1423 K 1.34 +/- 0.10 0.25 +/- 0.13
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Rp must be less than 5 x 10-8 m2 K W-1. Figure 5-11 compares the predictions of the
model developed in Section 5.3 with the measured dependence of kin on Tp. The data
show that annealing increases ki by up to 23 percent, which agrees very well with the
magnitude of the change predicted by the model. The agreement of the data with the model
for the maximum value of T, is good considering that the impurities in the LPCVD layers
are neglected. If these impurities reduce k4 by 10 percent compared to kp,u, the model
agrees within the experimental uncertainty with all of the-data. But a model accounting for
the impurities should consider the possibility that their concentration changes due to
annealing. The difference between the data and the predictions at the lower values of T},
may be due to the layers measured here having densities different from those of the layers
of Nagasimi (1972). Itis also possible that a mecharism other than porosity accounts for

the anneaiing-temperature dependence of k;p,.

5.6 Concluding Remarks

This work shows that phonon-boundary scattering is of little practical importance in
silicon dioxide layers above room temperature. The low conductivities in Fig. 5-1
measured elsewhere must be attributed due to one of the remaining two hypotheses
discussed in Section 5.1, (b) a thickness-dependent microstructure or stoichiometry, or (c)
thermal boundary resistances or distinct, highly-resistive interfacial layers. The interfacial
layer hypothesis is questionable. For an interfacial layer to contribute significantly to the
total thermal resistance, it would need a thermal conductivity much smaller than the
remainder of the amorphous silicon dioxide, which has a thermal conductivity among the
lowest of any nonporous solid. A more plausible explanation is an increased porosity near
the boundaries of the layer. This porosity would need to be considerably larger than largest
value used here for the unannealed LPCVD layers to account for the data in Fig. 5-1. The

large or unknown uncertainties of the previous data for k, ¢ in Fig. 5-1 show that there is
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a need for standardized techniques for this measurement with well-known limitations, such
as exist for bulk solids. The technique used here is recommended as a standard.

This work shows the importance of measuring the conductivity of layers fabricated
in the same way as those in the circuit for which the effective thermal conductivity is
needed. A SOI circuit designer using data from Fig. 5-1 rather than from Fig. 5-8 for &, .
of the implanted layer would overpredict the temperature of devices and interconnects,
which could result in a circuit of lower performance because it was overdesigned for
interconnect reliability. Using the PECVD data of Brotzen et al. (1992) to calculate the
temperature drop normal to LPCVD layers could result in a similar error.

Deposited silicon dioxide layers with thermal conductivities approaching those of
bulk fused silicon dioxide can be achieved by choosing the correct fabrication process.
This is very positive information for the designers of integrated circuits. The thermal
conductivity can be improved by up to an order of magnitude by the use of the LPCVD
rather than the PECVD fabrication process, and an improvement of an additional 23 percent
can be obtained by annealing when this is possible. These improvements come at the price
of higher processing temperatures, which may not be compatible with the state of the
wafer. For example, when the silicon dioxide is deposited after aluminum, T, must be
below about 723 K, where considerable diffusion of silicon into aluminum occurs.

The large difference between the conductivities of the LPCVD and PECVD layers is
an unsolved problem. There is an urgent need for direct measurements of microstructural
properties, employing electron diffraction, infrared spectroscopy, and transmission- and
scanning-electron microscopy, of the layers in thermal-conductivity measurement test
structures. Such a research effort may help to resolve the outstanding puzzle presented by

the data shown in Figs. 5-1 and 5-9.
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6. PREDICTION AND MEASUREMENT OF TEMPERATURE FIELDS IN
SILICON-ON-INSULATOR ELECTRONIC CIRCUITS

6.1 Introduction

As the lateral dimensions of transistors decrease, an increasing fraction of the
transistor-to-coolant temperature difference in an electronic system can be governed by
thermal conduction within a few micrometers of the transistors. This may be most
important in silicon-on-insulator (SOI) electronic circuits. As illustrated in Fig. 1-2, SOI
FETs are electrically insulated from the substrate by an implanted silicon-dioxide layer,
which improves the electrical performance of the devices but inhibits conduction cooling of
the channel by the substrate. The implantation proccss"is depicted in Fig. 5-7. McDaid et
al. (1989) indicated that the self-heating of SOI FETs can decrease the drain current for
given gate and drain voltages. Higher operating temperatures may also reduce the median
time to failure (MTF) of interconnects due to electromigration. The SOI circuit designer
needs to know the temperature fields in SOI FETs resulting from self heating.

Chapter 5 determined the thermal conductivity of the implanted silicon dioxide layer
in SIMOX wafers. Chapter 6 predicts and measures the channel temperature of SOI FET's
by modeling the source, drain, gate, and interconnects as cooling fins. The thermal
analysis yields a closed form solution for the temperature field in the FET and
interconnects, allowing the influence of design dimensions to be assessed. The available
experimental techniques measure an average SOI FET temperature (Lifka and Woerlee,

1990; Bunyan et al., 1991) and have insufficient resolution to confirm this analysis. A

132



technique is developed here to measure the channel temperature which uses the gate as an
electrical-resistance thermometer. The technique is similar to one for bulk FETs (Mautry
and Trager, 1990), but requires a new thermal analysis to calculate the channel temperature
from the gate electrical resistance. The SOI FET temperature field is shown to depend
strongly on circuit design parameters, e.g., the device thickness. This work indicates that
FET dimensions can be chosen to improve the MTF of FET-interconnect contacts. At low
temperatures, thermal conduction from the channel may be reduced by heat-carrier
boundary scattering in the source, gate, drain, and interconnects. The thermal model is
adapted tc estimate the effect of boundary scattering on the channel-to-substrate thermal
conductance using existing theory for the conduction size effect in thin layers.

This chapter helps to determine the impact of the thermal resistance of the implanted
layer on the practical potential of SOI technology. The thermal model will help with an
optimization of the implanted-layer thickness considering its influence on both the
temperature field and the electrical performance of FETs. The channel-temperature
measurement technique developed has a resolution in ff¥e X direction in Fig. 1-2 which is
equal to the channel length. It can be used to measure temperature locally in the transistor
with a satisfactory resolution even as the channel length decreases. Previous work has
shown that the boundary scattering of heat carriers can influence the heat flux in simple
geometries, e.g., normal to a layer. This chapter shows that microscale conduction
phenomena can have an impact on circuit design.

Section 6.2 develops the thermal model for SOI FETs, and discusses its application
to the experimental test structure used here. Section 6.3 describes the experimental
technique, and Section 6.4 compares the predictions of the model with the data, and gives

the estimates for the effects of microscale conduction.
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6.2 Thermal Analysis

6.2.1 Multi-Fin Model

Some of the materials in SOI circuits have thermal conductivities which are much
larger than that of the implanted silicon dioxide layer, as shown in Table 6-1. This section
uses this disparity to develop a simple model for thermal conduction in SOI FETs. The
model is for steady-state FET operation, which is the case in most measurements of FET

electrical properties. The time required for steady-state to be achieved is near (d,)2 / o,

Table 6-1 Thermal conductivities of SOI circuit materials. These values were
measured in bulk samples, although many of the components in the FET's
are thin layers. The basis for the use of these values is given in
Section 6.2.2.

. . Thermal
Coegion or Material Conductivity
p For Ty = 303 K
(W m-1 K1)
Substrate Single-Crystal Silicon, ksup= 148"
3 x 1015 Boron Atoms cm-3
Channel Single-Crystal Silicon k. = 148*
6 x 10!7 Boron Atoms cm-3
Source And Single-Crystal Silicon, kg = 63"
Drain 1 x 1020 Arsenic Atoms cm3
Gate Polysilicon, kg= 63"
1 x 1020 Arsenic Atoms cm-3
Interconnect Aluminum, km = 239"
1 Mass-Percent Silicon
SOI Implanted Silicon Dioxide, ko = 1.40°°
Layer Implanted
Other Silicon Dioxide, ke = 1.40""
Insulating Layers Thermally Grown or CVD

“Touloukian et al. (1970a)  **Sugawara (1969)
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where @, is the thermal diffusivity of silicon dioxide, yielding about 200 ns at 300 K. For
steady-periodic power dissipation, which can occur in clock-driven circuits, the model
yields a good estimate of the temperature in the source, drain, gate, and interconnects at
points separated from the channel by at least one thermal penetration depth. If . = 5 ns is
the clock period, the thermal penetration depth in the silicon source, drain, and gate is (z,
04)172 = 0.4 pm, where o is the thermal diffusivity of heavily-doped silicon.

The base-case dimensions used when the thermal model is applied to devices are
given in Table 1-1. Many of these dimensions were reported for the ultra-thin SOI FET of
Woerlee et al. (1989). A typical value of the device operating power calculated from the
current-voltage data in this reference is P = 0.74 mW for a gate-to-substrate bias of 3 V.
The rate of Joule heating in the source and drain, 2/ 2L, p, / (wd,), where p, is the
electrical resistivity of the source and drain based on the carrier concentration (Muller and
Kamins, 1986), is nearly two orders of magnitude smaller than the device power and is
neglected. Joule heating is also negligible in the aluminum interconnects. The channel is
modeled as an isothermal heating source. This neglects the complex distribution of heating
intensity in a real device, but yields a good estimate of the average channel temperature.

For a circuit packaged in a chip, the tops of the devices and interconnects are
covered by a thermally-insulating layer, typically made of silicon dioxide or silicon nitride,
which is thicker than the silicon-dioxide layer separating the device components and
interconnects from the substrate. The model neglects heat transfer from the tops of devices
and interconnects because the resulting thermal resistance is much larger than that for
conduction to the chip housing through the implanted silicon dioxide layer and the high-
conductivity substrate. Variations in the temperature of the substrate-silicon dioxide
interface are small compared to those within the implanted layer due to the high thermal
conductivity of the substrate, and this interface is assumed to possess the uniform

temperature T.
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The source, drain, gate, and interconnects are modeled as one-dimensional cooling
fins for the energy dissipated in the channel. The local thickness of silicon dioxide
separating a fin from the substrate is dj,. The temperature difference in the Z direction in
each fin is negligible compared to that in the silicon dioxide below it because dj,/ k, is
nearly two orders of magnitude larger than d,/ k, da/ k4 , and d, / k, for each case. Each
fin is nearly isothermal across its width w because the ratio of the thermal resistance for
conduction across its width to that for conduction down through the underlying silicon
dioxide, (w /k d)/(djo/ ko w), where k and d are the fin conductivity and thickness, is much
smaller than unity for each fin. The heat flow in the silicon dioxide in the direction along
each fin is negligible compared to that in the fin because the ratios &, dj,/ (km d,p.),
kodio/(kada), and k, dj, / (kg dg) are all much less than unity.

The local heat flux from the device or interconnect to the substrate through the
silicon dioxide is & (T - To), where T is the local device or interconnect temperature. The
heat transfer coefficient is h = ¥k /d), where k,/ dj, is the inverse volume resistance of
the silicon dioxide layer. The dimensionless parameter ¥is greater than unity and accounts
for two-dimensional conduction in the silicon dioxide in the X-Z plane for the gate, and in
the Y-Z plane for the source, drain, channel, and interconnects. It depends on the ratio
w/dy,, where w is the width of the fin in the Y direction for the source, drain, channel, and
interconnects, and is the width in the X direction of the gate fin. In the limit w/dj, >> 1,
the conduction in the silicon dioxide layer is one dimensional in the Z direction, and ¥
approaches unity. If the fin is assumed to deliver a heat flux to the silicon dioxide which
does not vary across the width of the fin, ¥ is well approximated by Eq. (5-21). Because
the fins are isothermal across their width, the heat-flux distribution into the silicon dioxide
is peaked at the side edges of the fin. This results in a value of ¥ which is larger than that
predicted by assuming that the heat flux is uniform over the fin width. The largest possible
error due to the use of Eq. (5-21) is 10 percent, determined using separation of variables

and a heat flux distribution which peaks at the fin edges. The inverse thermal healing
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length in a fin is m = (h/ k d) 122, where k is the thermal conductivity within the fin and 4
is the fin thickness. The product of the spatial coordinate in the fin and m is the argument
ot the exponential functions which solve the heat equation. The distance from a heating
source over which the fin temperature recovers to the substrate temperature is of the order
of the healing length.

Figure 6-1 is a schematic of the thermal model showing the fin geometry. The
devices are assumed to be in an infinite linear array, each connected by an interconnect of
length 2L,,, and each dissipating the same power P. This idealization results in an estimate
of the worst-case temperature distribution in a real circuit for a given value of the device
separation, 2L,,. It yields the two planes of symmetry shown, which are adiabatic
boundaries. The heat-transfer coefficient from the portion of the interconnect over the drain
is larger than A, but the heat transfer from the interconnect is calculated using h,, for all
values of x,,. This is justified if L,, and the thermal healing length in the interconnect,

1/ mpy = (kA / hm)'2 = 6.6 Pum, are large compared to the length of the overlap. The
additional silicon dioxide in Fig. 1-1 consists of a thermally-grown layer of thickness about
0.25 um and a deposited layer of thickness 0.35 um. The gaie is sandwiched between
these two layers. Atx,g ~ 2 pum the gate reaches a metal contact. In the present approximate
analysis, the gate is treated as a doped polysilicon fin of infinite length separated from the
substrate by an oxide of constant thickness (d, + 0.25 um), neglecting the contact. The
error resulting from this simplification is not large due to the short thermal healing length in
the gate, 1 /mg = (kydg/ hg)'/2 = 2.1 pm. The thermal healing length in the drain is
1/mg=(kada/ hg)'? = 1.0 um. The temperature and location within the interconnect are
given by T, and the coordinate x,,, within the drain by T and x4, and within the gate by T,
and x. The channel temperature is T.. The gate is separated from the channel by a thin
silicon dioxide layer, of thickness dg, = 5.5 nm. The channel temperature is assumed to be

equal to the gate temperature at x, = 0. This is justified because the thermal resistance of
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the thin oxide, dgo /(L. wak,) ~ 9.8 x 103 K W-1, is small compared to that for conduction

out through the gate and the buried silicon dioxide, which is approximately

1/ (mg L. dgkg) ~2.2 x 105 K W-1,

The one-dimensional energy equations and boundary conditions are

‘:xz (mm)z(T TO) =0
Ty - (ma)2(Ty-To) = 0
&7
dr
Ex_? - (mg)Z(Tg -To) =0
Tm(xm=0) = T4(xg=0)

Ty(xg=Lg) = Tg(xg=0) = T,

kdwd dd ‘-‘EQ’
dixg= Ld

Tg (xg e d °°) = To

QIA) =0
‘d-xm Xm = Lm

- kWi dyy (“T ) - kawq dg [T
mixm =

. kg Ledy (4T,

2

dx,

)xg=0
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The solutions to these equations are

Ty4-To = Zyexp[maxy) + Zs exp[ - mg x4 (6-11)
Tg-To = Zyexp[ - mg xg) (6-12)

The coefficients Zy, Z3, Z3, and Z,4 are determined using the following matrix equation:

[ -MmkmdmWm makadygwg -mgkygdiwg 0
x sinh(m,,L,,)
makadawa  -makadawa  Lemgkod,/Z
0 x explingLg) X exp(-my Ld) + Lghg Wy (6-13)
cosh (mpl.m) -1 -1 0
5 0 -exp(maLy) - exp(-mqLy) 1
Zy 0
% | 22| = |PR2
Z; 0
Zs 0

The channel temperature is T, = Ty(xg =0) =24 + To. The temperature of the
FET-interconnect contact, i.e., the largest temperature in the interconnect, is
Tp(xm =0) = Z3 + Z3 + 7. The channel-to-substrate thermal conductance is
G=P/(T. -Ty) =P /Z4. The channel-to-substrate thermal resistance is
R.=1/G=24/P.

This result neglects the temperature dependence of the thermal conductivities in the
fins. The error in the channel-te-substrate thermal conductance due to this approximation
increases with T, - Ty, which is proportional to the device power. This error is estimated
for different substrate temperatures by comparing the conductances calculated using thermal

conductivities for the temperature T with those calculated using thermal conductivities for
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the temperature T.. For T, - Ty = 25 K, the relative changes in the conductance are 2.5
percent, 11 percent, and 38 percent for Ty = 300 K, 77 K, and 50 K, respectively. While
the error is small at room temperature, it can be very important if precise calculations are

required at low temperatures.

6.2.2 Application to the Experimental Test Structure

This section determines the values of the parameters to be used in the thermal
model, i.e., the thermal conductivities and dimensions, when predicting the test-structure
channel temperature. It shows that the heat transfer to the ambient air from the test

structure is negligible.

Thermal Conductivities. The thermal conductivities of layers can differ from
those of the same material in bulk form due to (a) the boundary scattering of heat carriers,
(b) a process- or thickness-dependent microstructure, and (c) thermal boundary resistance.
Chapter 5 measures the thermal conductivity of implanted silicon-dioxide layers in SOI
wafers near room temperature. The data agree within the experimental error with values
recommended for bulk amorphous silicon dioxide (Sugawara, 1969), so the bulk values
are used here. The thermal conductivity of the additional silicon dioxide layers, which are
thermally grown or are fabricated using LPCVD, are approximated here by the bulk values
because a systematic study of the thermal conductivity of thermally-grown silicon dioxide
layers has not been reported. Chapter 5 showed that k, o5 for LPCVD silicon dioxide
layers can be somewhat less than kg, which results in a very small error in the heat flow
through the interconnects and in the predicted channel temperature because the test
structures have relatively large channel-interconnect separations.

The source and drain of the test structure are single-crystal silicon doped with
approximately 1 x 1020 arsenic atoms cm-3. While the layers possess some dislocations

due to the implantation of the silicon dioxide layer (Celler and White, 1992), these are
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separated by a distance much larger than the phonon mean free path, and are not expected
to reduce the thermal conductivity. Boundary scattering can reduce the conductivity in
these layers below 77 K, but this effect is negligible above 300 K. The best available data
are for bulk single-crystal silicon doped with 1.7 x 1020 phosphorus atoms cm-3
(Touloukian et al., 1970a). The thermal conductivity of doped silicon is governed by the
scattering of phonons on the free carriers, not on the dopant atoms, so that the use of data
for phosphorus-doped silicon is appropriate for the arsenic-doped silicon in the test
structure. The relative uncertainty in &, is estimated to be 0.2 due to the uncertainty in the
doping concentration in the source, drain, and gate. Transmission electron microscopy of a
0.2 um doped polysilicon layer indicates that the grain length in the plane of the layer is
similar to the layer thickness after annealing (Marcus and Sheng, 1983). Because d, is
much greater than the phonon mean free path in heavily-doped silicon above 300 K, the
grains are assumed not to affect the thermal conductivity. The gate has the same doping
level as the source and drain, yielding &, = k4. The thermal conductivity above 300 K of
silicon with less than 10!8 dopant-atoms cm-3 differs little from that recommended for
intrinsic silicon (Touloukian et al., 1970a), which is used here for the channel conductivity
k. and the substrate conductivity kgyp.

The thermal conductivity of aluminum layers containing 1 mass percent of silicon
has not been measured directly. The thermal conductivity calculated using the Wiedemann-
Franz law (Kittel, 1986) and the electrical resistivity of these layers is within 4 percent of
the thermal conductivity recommended for bulk aluminum (Touloukian et al., 1970a), so
the bulk value is used here. Boundary scattering in the aluminum interconnects is
negligible above room temperature.

The substrate temperature during the measurements is Tp = 303 K, and the largest
channel temperature is T, = 433 K. The thermal model developed in Section 6.2.1 neglects
the temperature dependence of the thermal conductivities of thc SOI FET materials. This is

a good approximation between 303 and 433 K for silicon dioxide and aluminum, whose
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bulk thermal conductivities vary by less than 13 and 2 percent in this range, respectively.
But the thermal conductivity of the heavily-doped silicon source and drain varies more
significantly in this temperature range. To help overcome this difficulty, the temperature
(To + T¢) / 2 is used when interpolating k4 from reported data. So that a single value of k4

may be used, (To + T,) / 2 is averaged for all of the data, yielding 349 K.

Dimensions. Figure 6-2 compares the experimental test structure with a FET
device. The dimensions of the test structures are given in Table 6-2. Some of these are
different from those of a device in an integrated circuit, given in Table 1-1. The
interconnect lengths are very long compared to 1/m,, so that L, = o is used. The gate of

the FET in the test structure extends out from both sides of the channel to interconnect

Table 6-2 Test-structure dimensions. The dimensions given in ranges varied among
the test structures.
Dimension Symbol | Value or Range
(um)
Implanted-SiO, Thickness d, 0.293 - 0.503
Additional-SiO, Thickness d, 0.6
Interconnect Thickness dm 1
Device Thickness dy 0.041 - 0.177
Gate Thickness d, 0.29
Gate-Channel Separation deo 0.0055
Channel-Interconnect Separation L4 0.8 - 3.8
Channel Length L. 0.32
Device Width in Y direction Wd 10
Channel-Gate Contact Separation W, 2




a) FET DEVICE. b) TEST STRUCTURE.

Fig. 6-2 Top views of: a) FET device. b) Test structure.
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contacts in the Y direction. This results in a plane of symmetry in the X direction. The
temperature field in each half of the test structure is predicted by the thermal model. The
thermal analysis is applied using wg = (Wa)test structure / 2:Wm = (Wmdiest swructure / 2, and

P= (P )test strucmre/ 2.

Parameter Uncertainties. An error in the predictions of the thermal analysis
results from the use of parameters, e.g., thermal conductivities and dimensions, which are
different from those in the test structure. This error is investigated using the sum-of-
squares technique (Holman, 1984) and the analytical model. The largest expected error is

+/- 10 percent. The uncertainties in k4 and d; are the largest contributors.

Heat Transfer to Ambient Air. The test structure is exposed to ambient air,
but heat transfer to the air is neglected. This is justified by the small value of the channel-
to-air thermal conductance compared to the channel-to-substrate thermal conductance,
which is predicted in this work to be G ~ 0.5 - 2 x 104 W K-1. The channel-to-air thermal
conductance is of the order of that from an isothermal disc of radius b on the boundary of a
semi-infinite medium of conductivity k, G = 4b k (Carslaw and Jaeger, 1959). Using
b = w42 and the room-temperature conductivity of air yields G = 5.2 x 10 -7W K-1. An
order-of-magnitude analysis of the momentum equation estimates the air velocity near the
device due to buoyancy forces (Rohsenow and Choi, 1961). The air velocity is of the
order of v, = pgb2f3 (T, - To)/u, where g is the acceleration due to gravity, and p is the
density, u is the viscosity, and 8~ 1/T} is the approximate coefficient of thermal expansion
of the air. Using room-temperature properties and T, - To = 130 K yields v, = 6.6 um s-1.
The thermal conductance contributed by the air motion is of the order of
G =v, nb?pc,=6.2x 1013 W K-1, where c, is the specific heat per unit mass at
constant pressure of air, which is much smaller than G for conduction. The thermal

conductance due to radiation is of the order of G =4 £ 6T> A , where £ s the emissivity
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of the surface, o'is the Stefan-Boltzmann constant, and A is the area of the emitting
surface. Usinge=1and A =m b2 yields G = 5.0 x 10 -10W K-1 at room temperature.
The channel-to-air thermal conductances are very small compared to those for conduction to

the substrate, showing that heat transfer to the air may be neglected.

6.2.3 Influence of Heat-Carrier Boundary Scattering

Boundary scattering reduces thermal conduction in a medium when the mean free
path of the carriers of heat is of the order of or larger than the smallest medium dimension.
Thermal conduction processes for which this significantly changes the heat flux are called
microscale in Chapter 2. This section determines the temperature-dependent mean free path
of heat carriers in each SOI circuit material, and compares it with the dimensions of the
circuit components made from that material. Theory for the thin-layer conduction size
effect yields the reduced effective conductivities of these circuit components, which in the
following section are used to calculate temperature distributions in the device and
interconnects.

Electrons are the dominant carriers of heat in the aluminum interconnects. Phonons
are the dominant carriers of heat in silicon and silicon dioxide. For each medium, Eq. (2-1)
relates the mean free path A of the dominant heat carrier to the specific heat due to that
carrier per unit volume C, the thermal conductivity &, and the speed of the carrier v. When
applying Eq. (2-1) to aluminum, C = C, = (135 m3 K-2) T is the electron specific heat
per unit volume, where T is the temperature, v =v, = 2.0 x 10 6 m s-! is the electron Fermi
velocity (Kittel, 1986), and k = k,, is the temperature-dependent thermal conductivity
(Touloukian et al., 1970a).

When applying Eq. (2-1) to the doped-silicon source, drain, and gate, & is the
phonon conductivity, v = v; is the phonon velocity, well approximated by the speed of
sound in silicon, and C = C; is the phonon specific heat per unit volume. The source and

drain of the FET are doped single-crystal silicon. The thermal conductivity of the gate
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differs from that of single-crystal doped silicon only when the conduction is also reduced
by scattering on the boundaries of the gate. To simplify the present analysis, the scattering
of phonons on the gate boundaries is assumed to dominate over the scattering on grain
boundaries within the gate. The phonon thermal conductivity and mean free path decrease
with increasing carrier concentration in doped semiconductors. In order to estimate the
largest effect of boundary scattering on cooling of the FET, thermal conductivity data for
silicon with a concentration of dopant atoms of 2.0 x 10!? phosphorus atoms cm-3 are
employed (Touloukian et al., 1970a). This is a lower doping concentration than is used for
the test structure in Section 6.2.2, resulting in a larger thermal conductivity and longer
phonon mean free paths. The experimental specific heat, which varies little with doping
concentration, is given by Touloukian and Buyco (1970a), and the speed of sound is

Vs = 6400 m s

The mean free path of phonons in silicon dioxide calculated using Eq. (2-1) is less
than 1 nm. But Section 5.2 shows how the strong frequency dependence of phonon free
paths in amorphous materials makes possible a conduction size effect in a layer even when
the mean free path is much smaller than the layer thickness. Section 5.2 determined the
effect of phonon-boundary scattering on thermal conduction normal to amorphous silicon
dioxide layers. For 0.4 um layers, the thermal conductivity normal to the layer is reduced
by less than 3 percent at 300 K, 9 percent at 77 K, and 29 percent at 45 K. These size
effects are overwhelmed by those in the source and drain, and are neglected here for
simplicity.

Values of the thermal conductivity used in the boundary-scattering analysis are
given in Table 6-3. The mean free paths of electrons in aluminum and phonons in doped
silicon are shown in Fig. 6-3. Since a SOI FET may eventually be as thin as 0.03 tm and
interconnects can be as thin as 0.5 um, boundary scattering must be considered,
particularly in the source and drain and at low temperatures. Carrier-boundary scattering

has the greatest impact on thermal conduction in the source and drain of the device.
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Table 6-3

Thermal conductivities used to determine the effect of boundary scattering.

These were recommended by Touloukian et al. (1970a; 1970b).

Temperature ka= kg km ko
(Wml K-1) (Wm! K- (Wm'l KD
S0K 256 1230 0.34
77 K 373 449 0.53
300K 120 237 1.40

Flik and Tien (1990) developed an approximate theory for the reduction of the
thermal conductivity along a layer as a function of the ratio of the layer thickness to the

carrier mean free path, § = d/A. For §> 1,

Kaeff _ | . 2
Kbuik 3Iné (6-14)
where k, o5 is the effective conductivity along the thin layer and kp,u is the bulk
conductivity. For 6< 1,
_¢3
Kaeff _ 1 - 2(1-5%) + 20 ln[ésag-l +0+S§| . 2 arecos(d) (6-15)
Kbutk 3nd T 1+5-S1 T

where S = (1-62)122, Equation (6-14) is used to determine the microscale thermal-
conduction regime for conduction along layers in Chapter 2. The thermal model of Section
6.2.1 is adapted to account for boundary scattering by calculating k, . at each temperature
using Eqgs. (6-14) and (6-15) for the source, drain, gate, and interconnect fins. The mean

free paths are given in Fig. 6-3 and kp, is given in Table 6-3. Equations (6-10) - (6-13)
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are then assumed to yield the temperature distribution in the FET and interconnects when
the reduced conductivities are used for each fin.

Equations (6-14) and (6-15) were derived by assuming that carrier scattering on the
top and bottom boundaries of the film is diffuse, and by neglecting the transmission of
carriers through the boundaries. The use of Egs. (6-14) and (6-15) also neglects carrier
scattering on the side boundaries of a bridge, i.e., on those boundaries parallel to the Z
direction in Fig. 1-2. This is important if the ratio of the carrier mean free path and the
microbridge width is of the order of or greater than unity. The doped silicon source and
drain and aluminum interconnect widths are 0.8 pm, and the doped polysilicon gate width
is 0.5 um. This condition is satisfied in the interconnects above about 70 K, in the source
and drain above about 180 K, and in the gate above about 230 K. Below these
temperatures, Eqgs. (6-14) and (6-15) overpredict the effective conductivity of the bridge

and result in an underestimate of the effect of boundary scattering.

6.3 Channel-Temperature Measurement Technique

This section develops the technique for measuring the channel temperature of SOI
FETs. Section 6.3.1 describes the apparatus and the general procedure, and Section 6.3.2
calculates the channel temperature from the measured gate electrical resistance. Section

6.3.3 determines the experimental uncertainty.

6.3.1 Apparatus and Procedure

Fig. 6-2 shows the experimental test structure. The electrical resistance of the gate
depends strongly on temperature. It serves as an electrical-resistance thermometer. The
calibration consists of measuring the gate electrical resistance, R, as a function of
temperature when there is no drain current, i.e., when the gate is isothermal, yielding
[R6{T))atibration. The substrate temperature is controlled usin g a Temptronic Model TP38B

chuck, a copper disk with a diameter of 88.9 mm and a thickness of 19.1 mm, to which a
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wafer is secured by suction. A thermocouple with one junction soldered to the chuck
surface measures the chuck temperature. The chuck is maintained at the temperature T and
the gate resistance is measured for varying values of the drain-source voltage drop, Vps,
and the gate-source voltage drop, Vs, i.e., for several different device powers,

P =1IpVps.

The average gate temperature is defined here as that of the gate segment whose
resistance is measured, i.e., the segment between the voltage contacts. The average
temperature in the channel is T,, which is shown in Section 6.2.1 to be very well
approximated by the average temperature of the gate segment over the channel. The
average gate temperature is influenced by the gate segments not over the channel heater,
and is less than 7.

Mautry et al. (1990) applied a technique similar to the one developed here to bulk
FETs, which do not have an implanted silicon-dioxide layer. The channel temperature was
obtained from R by inverting the calibration function, [Rg{T )lcatibration. This approach
ssumed that the average gate and average channel temperatures were equal. This
underestimated T, but the error was not assessed. The FET gate-temperature variation is
more important in a SOI wafer, where most of the temperature drop occurs within a few
micrometers of the channel due to the implanted layer, than in a normal substrate, where the
temperature-drop lengthscale is the thickness of the substrate, i.e., a few hundred

micrometers. This temperature variation must be considered when calculating T, from Rg.

6.3.2 Temperature Distribution in the Gate
This section calculates T, from the data for Rg. Temperature variations in the X

and Z directicns in the gate are neglected. The gate temperature is

Te(Y) = ATg F(Y) (6-16)
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where AT is the average gate-temperature rise from T, and Fg (Y) is a shape function

defined for Y] <w, + w4/2 whose average value is unity. For each measured Rg, AT is

determined iteratively using the shape function and

We + waf2
R = f [RA To + AT Fe{¥) )eatibration =—4¥— (6-17)

+
- We- Wd/2 2We Wd

The thermal resistance of the silicon-dioxide layer between the channel and gate,
dgol(Lewak,) = 1.2 x 103 K W-1, is small compared to the thermal resistance for
conduction along the gate to the contact in the Y direction, we/(Lcdgkg) = 3.3 x 105 K W-1,
This means that the channel- and gate-temperature distributions are almost identical for

[Y] < wq/ 2. The average channel temperature is

waf2
T, = Ty + I ATg F(;(Y)% (6-18)
'Wd/2

The channel-to-substrate thermal resistance is R, = (T, - To) / P = (T, - To) / (IpVps).
This section now develops two shape functions; from which Egs. (6-17) and
(6-18) yield upper and lower bounds for T, for a given Rg. Each shape function is even,
due to the symmetry of the test structure about Y = 0, and continuous. Because of the large
width in the X direction of the gate-interconnect contacts, 4 um, compared to the gate
width, L. = 0.32 pm, the contacts are very nearly isothermal at the substrate temperature,
Ty. This yields the boundary conditions Fg(Y) =0 at ¥ = +/- (W, + wq/ 2). The shape
function has an average value of unity between these boundaries. For a given Rg, T,
calculated using Eqgs. (6-17) and (6-18) increases with the difference between unity and the
average of Fg(Y) for-wy/2 <Y <wy/2,1i.e., with the assumed difference between the

average gate and channel temperatures.
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Shape LB in Fig. 6-4 assumes a linear temperature profile in the gate segments not
over the channel, which neglects conduction down through the buried-silicon-dioxide
layer, and an isothermal channei. Both of these assumptions underestimate the difference
between the average channel and average gate temperatures, yielding a lower bound for T.
Shape LB is

FoYj = Wdt2We 1y  Wa

Wa + We 2 (6-19)

2 e + 2) -y }
FG(Y) [ d-:' ‘:";e] [(W W;iv/e) H] , %¢<Iyl<we+ﬂz¢ (6-20)

An overestimate of the difference between the average gate and channel
temperatures requires an overestimate of the temperature drop from the center to the edge of
the channel in the Y direction. This is calculated by isolating the channel and gate from the
source and drain, whose wide cross sections in the X-Z plane reduce the channel-
temperature variation in the Y direction. The gate and channel are grcuped together as a
composite fin which meets a fin of different cross section and heat transter coefficicnt at
Y =wy/2. Solving the heat equation in the two fins yields shape UB in Fig. 6-4 for typical
dimensions in the test structure, Shape UB has a larger average in the channel region than
shape LB. Values of T, - Ty calculated using shapes UB and LB differ by less than 8
percent, and the simpler shape LB is used here, Egs. (6-19) and (6-20). This function
does not describe the temperature distribution in the channel. Rather, it is a shape function
which, when used in Egs. (6-17) and (6-18), yields a value for T close to the actual
average channel temperature. The difference between the upper and lower bounds is used

in the experimental-uncertainty analysis.
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Fig. 6-4 Shape functions for the gate-resistor temperature distribution. Shape LB,

given by Egs. (6-19) and (6-20), yields a lower bound for T,. Shape UB is
calculated by isolating the gate and channel from the source and drain, as
discussed on p. 153, which yields an upper bound for 7.
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6.3.3 Experimental Uncertainty

The uncertainty in R; = (T, - Tg) / F' has three independent components. (a) There
is a relative uncertainty of 0.04 in T - Ty due to the error in the substrate-temperature
change measured by the chuck thermocouple. (b) A relative uncertainty of 0.066 in T, - T,
is due to the measurement of Rg. (c) A relative uncertainty of 0.08 in T - T is due to the
approximate shape function for the temperature profile in the gate, as shown in Section
6.3.2. The total relative uncertainty in R, is +/- 0.11, determined using the sum-of-

squares technique (Holman, 1984).

6.4 Results and Discussion

6.4.1 Comparison of Measurements and Analysis

Channel-temperature measurements are performed on SOI test structures with
varying values of Ly, dy, and d,. Test structures fabricated from conventional (not SOI)
wafers are measured for comparison. The device voltages satisfy 0 V < Vps <3 V and
Ves =2 V and 2.5 V, which are typical operating conditions. The device powers vary
between 3 and 14 mW, and the values of T - T vary between 5 and 130 K.

The channel-to-substrate thermal resistance, R,, varies by less than the experimental
uncertainty for varying powers from a single device, as is shown in Fig. 6-5 for three SOI
devices and one conventional device. The data for each device for varying powers fall near
a line originating at P = 0 and T = 303 K, whose slope is R.. The conventional device,
which is in close thermal contact with the silicon substrate, has the lowest value of R,.
Values of R, for the SOI devices are as much as 10 times larger than R, for the
conventional device, due to the thermal resistance of the implanted silicon dioxide layer.
The value of R, decreases with the thickness of the SOI devices, because this increases the
heat flow into the source and drain fins. In what follows, each data point is the average of

the values of R, measured in a single test structure.
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Fig. 6-5 Channel-temperature data for SOI FET's with varying device thicknesses,
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Figure 6-6 shows that the sensitivity of R, to the device thickness is predicted by
the thermal medel from Section 6.2.1. The predictions agree well with the data,
considering the +/- 10 percent theoretical error due parameter uncertainties, and show that
increasing dy reduces the channel temperature for a given power. Examination of Eq.
(6-13) shows that k4 and d, are not independent, but always appear as a product in the
solution for the temperature distribution. Thus, the channel temperature is also sensitive to
k4, which depends on the doping level in the source and drain. Decreasing the dopant
concentration in silicon from 1.7 x 1029 to 2.0 x 109 cni3 increases the thermal
conductivity at 300 K by 60 percent (Rowe and Bhandari, 1986). This results in a
substantial decrease in R,, particularly for thin devices, i.e., ds < 50 nm. But the electrical
conductivity decreases as the dopant-atom concentration is decreased, which increases the
voltage drop and the Joule heating in the source and drain. The benefits of increasing k4
could be offset by the additional power dissipated in the source and drain. The thermal
design of SOI FETs should optimize the concentration of dopant atoms considering heat
conduction in the source and drain.

Figure 6-7 shows the dependence of R, on the implanted-silicon-dioxide layer
thickness. The data support the predictions of the model, and indicate that R, is as
sensitive to dy as it is to d,. This is in contrast to the predictions of McDaid et al. (1989),
whose model assumed that R, is independent of d;. By modeling one-dimensional
conduction in the implanted-silicon-dioxide layer, these researchers predicted that
R.=d,/ (A k,), where A is the device area in the X-Y plane. This neglects the spreading
of the temperature profile into the source and drain fins with increasing d,, and is not
consistent with the data. This can be remedied by a simple scaling analysis. The area in
the source and drain with significant temperature rise is of the order of A = 2w,/ m4, where
the thermal healing length 1/my is approximately (ks dyd,/ k,)'2. Using R; = d,/ (Ak,)

with this expression for A yields
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R. = 1 d, \1/2
€7 2wy \ky kgdyl

(6-21)

which is in qualitative agreement with the data in Fig. 6-7. This shows that R, is roughly
proportional to dom, and that the sensitivity of R, to d, and dj is similar, i.e, halving d,
and doubling d; have the same impact, if all other parameters are held constant. Equation
(6-21) assumes the thermal healing length in the source and drain is smaller than the
channel-interconnect separation, i.e., 1/my < Ly. Otherwise, there is significant heat
conduction into the interconnects, which are more effective fins than the source and drain
because of their large thickness and high thermal conductivity.

This is demonstrated in Fig. 6-8, which shows the dependence of R, on L;. AsL,
is decreased, conduction cooling of the channel through the interconnects becomes more
important, reducing R,. This approach to reducing the channel temperature becomes less
effective if the devices are densely packed, i.e., L,, is of the order of or smaller than 1/m,,.
In contrast to the behavior of the channel temperature, the FET-interconnect contact
temperature increases as L4 is reduced, because this brings the contact nearer to the channel
heat source. This reduces the reliability of a SOI circuit, whose electromigration-limited
mean time to failure (MTF) decreases with increasing temperature. It may be possible to
improve the reliability of a circuit by increasing L, but this must be weighed against the
need for small devices.

Electromigration limits the median time to failure (MTF) of FET-interconnect
contacts. Momentum transfer from electrons to atoms in the interconnect causes the metal
atoms to flow in the direction of the electron flow. This can cause voids to grow in the
interconnect and can result in open-circuit failure. This is an important problem at FET-
interconnect contacts, where the flux of aluminum atoms diverges because of the change of

conducting materials. Black (1967) developed an approximate formula for the MTF,
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MTF = K, J2exp ) (6-22)

E,
kgT
where E, is the activation energy for atomic diffusion, kg = 1.38 x 10-23 J K-! is the
Boltzmann constant, T is the metal temperature, J is the current density, and K is a
constant. Chern et al. (1986) studied the failure of contacts of heavily-doped silicon with
aluminum, and fitted MTF data within a few percent using Eq. (6-22). The variables K,
and E,, and the exponent of the current density were fitting parameters. The present work
requires the temperature dependence of the MTF, which is governed by the exponential
factor in Eq. (6-22), and uses E, = 0.5 eV =8 x 10 -20 J given by Chern et al. (1986).

The following uses Eq. (6-22) to show how the dimensions of FETSs can be chosen
to improve the electromigration-limited reliability of a SOI integrated circuit. The FET
dimensions in Table 1-1 are used, with an interconnect length between devices of
2L,, = 4 um. During steady power dissipation, SOI FETs with these dimensions may
dissipate as much as 1.61 W (Woerlee et al., 1989). The FETs are assumed to experience
steady-periodic heating and operate for one tenth of each clock cycle. The steady-state
thermal model provides a good estimate of the nearly-steady-state FET-interconnect contact
if the time-averaged power is used, Pz, =0.161 W. The interconnect temperature rise is
less than 8 K, but depends strongly on d,, and L. Figure 6-2 shows the ratio of the MTF
for FET interconnect contacts in a SOI circuit to that for contacts in a bulk circuit. These
predictions assume that the substrate temperature in the SOI case is equal to that in the bulk
case. The difference between the two contact temperatures is due to the thermal resistance
of the implanted silicon dioxide layer. The MTF increases as L, is increased, because the
interconnect moves away from the channel heater. Reducing d,, also increases the MTF,
because this reduces the contact temperature. Although the temperature rise in the
interconnects is only a few degrees Kelvin, the MTF may be increased significantly by the
proper choice of device dimensions. Because Eq. (6-22) has only been experimentally

verified using accelerated testing, i.e., the use of electrical current densities and
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temperatures which are higher than those in an operating circuit, the predictions in Fig. 6-9

should be taken as very approximate, and are given only to show the expected trends.

6.4.2 Influence of Heat-Carrier Boundary Scattering

This section provides an estimate of the impact of heat-carrier-boundary scattering
on the channel-to-substrate thermal conductance. The base case dimensions for these
calculations are those for a FET device given in Table 1-1. The approximate microscale
analysis described in Section 6.2.3 yields the results in the figures that follow, i.e., they
are calculated using the reduced thermal conductivities given by Egs. (6-14) and (6-15),
unless they are labeled "macroscale," in which case the bulk, unreduced values of the
thermal conductivities are used. For the base case with a substrat. .cmperature of
To =300 K and a long interconnect length, L,m,, >>1, the relative importances of the
cooling paths for the heat dissipated in the channel are as follows: 19 percent of the heat
flows directly from the device through the silicon dioxide layer into the substrate, 25
percent flows out through the gate, and 56 percent flows out through the metal
interconnects. The relative importance of the heat flow through the gate decreases if the
device width wy is increased.

Microscale and macroscale predictions of the thermal conductance G are shown in
Fig. 6-10. The calculations are for long interconnects, m,,L,, >> 1. Macroscale analysis
overpredicts the values of the effective thermal conductivity in the fins and therefore
overpredicts the thermal conductance. The error of the macroscale prediction is small at
room temperature, but increases with decreasing temperature due to the increasing mean
free paths of both phonons and electrons. The relative error of the macroscale prediction
increases with decreasing device thickness.

The effect of boundary scattering on the packing limit is estimated. Due to the

importance of lateral heat conduction, decreasing the separation between devices, 2L,,, has
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a strong effect on the FET temperature field for a given power. This is illustrated in
Fig. 6-11 for varying implanted-layer thicknesses. The channel and FET-interconnect
contact temperatures both increase as the device separation is decreased or the implanted
layer thickness is reduced. This figure shows clearly the advaritages of thinner silicon
dioxide layers for reducing the cperating temperature of SO devices and interconnects.

If a designer must achieve a targeted value of the channel-to-substrate thermal
conductance, a minimum allowable separation between devices can result. Figure 6-12
shows that microscale and macroscale predictions of the required separation between
connected devices vary as a function of the targeted value of G. The large slope of the
curves for large values of the device separation shows that beyond a certain separation, of
the order of the thermal healing length in the metal, 1/m,,, additional separation does not
enhance the heat transfer from the device. This figure indicates that for a given operating
temperature and set of FET parameters, there is a limited range of values of G which can be
achieved by variation of the device separation alone. It may be impossible to keep the
channel temperature below a targeted value without decreasing the device power. The error
in the required device separation due to neglectirg microscale effects is small at 300 K but
increases with decreasing temperature until it is of great importance at 50 and 77 K. The
predictions of microscale and macroscale analyses which considered the temperaturc
variation of material thermal properties would differ by less than those of the present
analysis because the impor tance of microscale effects in a given component is reduced as its
temperature increases from Tg. The present analysis provides an upper bound for the
impact of boundary scattering on G.

If the separation between devices in the X direction is 2L,,, taken from Fig. 6-12,

and in the Y direction is Wy = 10 um, the packing limit D can be estimated using

D (6-23)

— 1
- [(ZLm +2L4+ Lc)(wq + WO)]
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The error of macroscale predictions of the packing limit is given in Table 6-4. The values
of the channel-to-substrate conductance G are chosen such that the packing limit is the same
for all three substrate temperatures. Macroscale analysis neglects the reduction of thermal
conduction cooling due to heat-carrier boundary scattering and overpredicts the packing
limit. The error in the macroscale prediction increases with decreasing temperature due to
the increasing importance of boundary scattering at low temperatures. The table shows that
to achieve the same packing density at cryogenic temperatures in SOI circuits a lower

thermal conductance must be targeted.

6.5 Concluding Remarks
The mean time to failure of FET-interconnect contacts and the FET channel mobility
are important design parameters for SOI circuits. They are affected by the channel and

interconnect temperatures, which are shown here to depend strongly on the dimensions

Table 6-4 Effect of boundary scattering on the FET packing limi.

FET Packing Limit,
106 devices cm™2
Temperature, Microscale Macroscale Macroscale
Conductance Analysis Analysis Error
To = 300K, 1.42 1.52 6.6 %
G =18.5 uW K-!
To=TTK, 1.42 2.06 44 %
G=114uw K-l
To= 50K, 1.42 2.50 76 %
G =7.08 uW K-!
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and thermal conductivities of SOI FETs, e.g., kg4, d4, d,, and Lg. Some of these
parameters also affect the electrical perfurmance of the device directly. In order to achieve
circuits of optimal performance and reliability, design for electrical performance should be
accompanied by device-level thermal design, i.e., the choice of dimensions, materials, and
processing techniques which enhance heat conduction within a few micrometers of the
device. This chapter provides a basis for the thermal design of SOI FETs.

Mbore work is needed to determine the transient temperature fields near the
channels of FETs in integrated SOI circuits. While this steady-state analysis provides a
good estimate of the FET-interconnect contact temperature when the time-averaged power
of a device is used, the channel temperature will experience fluctuations due to periodic
heating. To accurately determine the transient channel temperature, a more detailed model
for the rate of heat dissipation within the channel is required. Channel-temperature
fluctuations in time will render electrical-property measurements performed on SOI devices
in the steady state inappropriate for devices in an integrated circuit.

Finite-element heat-conduction analysis packages are expected to become standard
elements of computer-aided design tools for the development of integrated circuits. For the
design of integrated circuits operating at 77 K, it is recommended to incorporate in these
packages the ability to account for size effects on the thermal conductivity. This is
imperative for SOI technology, due to the increased thermal resistance between the channel

and the substrate.
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7. CONCLUSIONS AND RECOMMENDATIONS

This work makes progress towards solving the problems posed in Chapter 1, i.e.,
the lack of knowledge of layer thermal conductivities and the need for techniques which
determine temperature fields in small electronic devices. But more work is needed before
device-level thermal design can be conducted with the needed precision. This will require a
multi-disciplinary research effort, as shown in Fig. 7-1, where research in heat transfer
determines circuit-material thermal properties and device-level temperature fields. This
helps researchers in materials science to measure the temperature-field dependence of the
behavior of materials, such as electromigration in interconnects. Similarly, researchers in
electrical engineering can experimentally relate device characteristics, such as the drain
current of a transistor for a given voltage bias, to temperature fields in devices. The
knowledge gained from these efforts allows the temperature fields to be used for device-
level thermal design.

Fig. 7-1 shows that this research will be important for hyorid superconductor-
semiconductor circuits, which combine superconducting Josephson junctions and
transmission lines with semiconducting transistors and may soon be able to process
information with unprecedented speed (e.g., Ono, 1992). One of the challenges for the
thermal design of hybrid circuits is to prevent the semiconducting components, which
dissipate energy, from significantly heating the superconducting components, whose
critical-current densities diminish with increasing temperature (Flik and Hijikata, 1990).

This thermal design requires the knowledge of the thermal conductivities of
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circuits.
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superconducting layers, which are not known, and are influenced by heat-carrier boundary

scattering due to the small dimensions and low operating temperatures of hybrid circuits.

7.1 Circuit-Material Thermal Properties

Many of the thermal conductivities of layers and the thermal boundary resistances
of interfacez needed to calculate temperature fields in circuits either are not known or need
to be measured more accurately. These thermal properties depend on the thickness,
ternperature, and fabrication processes of the layers. Advances in microfabrication
technology should be exploited to improve the accuracy of layer thermal-conductivity
measurements. These advances inciude etching techniques which can yield thin sample
membranes suspended above a single-crystal substrate, such as in the test structure of
Graebner ét al. (1992c) in Fig. 3-3. Microfabrication technology should be used to make
test structures which resemble as closely as possible the layers in the electronic structures to
be analyzed.

The data should be compared with predictions of microscopic transport analysis. In
layers where boundary scattering is important, the mean free paths cf heat carriers should
be related to quantities characterizing the microstructure, e.g., the grain size and the
impurity concentration. Layer thermal conductivities can be predicted considering the
fabrication process if parallel research in materials science determines the microstructure
resulting from the values of the processing parameters. When the mean free paths of heat
carriers are comparable to layer dimensions, the Boltzmann equation should be used to
predict the effect of boundary scattering on layer conductivities. For ultra-thin layers,
where the heat-carrier wavelength can be comparable to the layer thickness, it may prove
necessary to solve the Schrodinger equation or to resort to molecular dynamics

computations.
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7.2 Device-Level Temperature Fields

Techniques for local temperature measurements with sub-micrometer resolution are
urgently needed, such as that developed in Section 6.3. The need for transient
measurements is a major challenge, because transistor switching times can be much less
than 1 ns. One promising nondestructive technique employs an atomic-force microscope
(AFM) to hold a thermocouple junction at a fixed distance from the surface of circuit
components, and may provide the needed spatial resolution (Majumdar et al., 1992).
Another possibility is to measure local temperatures using microfabricated thermocouple
junctions fabricated within a test circuit, which would yield a resolution governed by the
dimension of the junction. Special effort should be given to interconnect .emperature
measurements, since these are needed to determine the dependence of electror:igration on
temperature fields.

Previous solutions to the Boltzmann equation, such as Egs. (5-2) - (5-4), apply to
simple geometries, e.g., conduction normal to or along a layer. But the equation must be
solved for other practical geometries, such as conduction in the channel of a transistor at
low temperatures, where the complex distribution of heating intensity necessitates a two-
dimensional treatment. It will be useful to determine the boundary conditions which couple
numerical solutions to the Boltzmann equation in regions where heat-currier-boundary
scattering is important, to finite-element techniques for solving the heat-conduction
equation in the bounding regions. Fer ultra-fast processes in circnits, the heat-conduction
equation can fail due to the finite velccity of heat carriers, as is discussed in reference to the
hyperbolic heat equation in Section 4.3.2. The transient Boltzmann equation needs to be
solved for these processes considering the energy dependence of the carrier mean free

paths.
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7.3 Sub-Micrometer Thermal Design of Circuits

This research must provide the information gathered in the left four boxes of
Fig. 7-1 in a form that is accessible to the circuit designer, e.g., in a thermal-design
package which can be used on a computer. This package must account for the process- and
thickness-dependent thermal conductivities of thin layers. Given a circuit geometry and the
processing parameters of its layers, the thermal-design package should predict the median
time to failure (MTF) of interconnects and the switching time of logic gates considering the
temperature fields in the circuit. This will allow the designer to explore sub-micrometer
thermal design with unprecedented precision. The potential benefits of this type of thermal
design are indicated in Chapter 6, v/hich shows that the channel temperz.ture of a silicon-
on-insulator (SOI) field-effect transistor (FET) can be significantly reduced by increasing
the device thickness, and that the temperature of the FET-interconnect contact can be
reduced by increasing the channel-interconnect separation. These dimensions also
influence the electrical behavior and the packing density of devices. With the proper sub-
micrometer thermal-design package, competing effects can be balanced to determine the
optimal set of dimensions. When the thermal conductivity of a layer depends on the
fabrication technique, the thermal design package will indicate which technique is most
desirable for a given application. If thermal isolation is required of a chemical-vapor
deposited (CVD) silicon-dioxide layer, for example, the recommended processing
parameters for the layer, such as the annealing temperature, would be those yielding

significant porcsity.
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