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Abstract—A large scale transportation simulation model for
the Greater Boston Area (GBA) is developed for the purpose of
energy estimation and optimization. This paper describes the
structure of the system model (SM) and the technical details of
its three key components (supply, demand, and energy models),
the data collected, and the estimation and on-going aggregated
calibration process. The purpose of the system model is to
replicate real-time data for individual travel behavior in a
multimodal system that includes public transportation modes,
personal vehicles, on-demand mobility, and ride sharing. The
system model can simulate any day with and without congestion
in order simulate changes in energy use due to changes in the
system. The system model will be open source, computationally
efficient, and validated both in terms of mobility and energy.

Index Terms—Mobility, control, real-time, personalization,
optimization, prediction, multi-modal, simulation.

I. INTRODUCTION

The objective of this research is to develop a large scale
transportation simulation model that can be used to estimate
energy consumption and optimize incentives for network-
wide energy consumption reduction. The System Model (SM)
modeling and simulation platform is developed to act as
a proxy for the real world and to replicate as closely as
possible travelers’ reaction to information and incentives, as
well as the multi-modal transportation system performance
for the Greater Boston area (GBA). SM consists of three main
components: supply, demand, and energy models. Supply and
demand are simulated using SimMobility [1] and the energy
consumption is simulated using TripEnergy [2].

SimMobility is an integrated agent-based simulation plat-
form used to evaluate a wide range of future mobility
related scenarios. It is comprised of three primary modules
differentiated by the time-frame in which we consider the
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behavior and operation of an urban system: short-term (a
microscopic mobility simulation, few hours stimulated at 0.1-
second time resolution), mid-term (an activity-based model
integrated with a dynamic multi-modal assignment simulator,
daily simulation at 5-second resolution), and long-term (a
land use and long-term behavioral model, at 6-months to
one year resolution) [1]. For this project we are utilizing the
mid-term (MT) module where SimMobility agents behavior
is modeled in terms of activity, travel plans and actions [3].
It is categorized as a mesoscopic simulator since it combines
the activity-based micro-simulator on the demand side with
macroscopic simulation on the supply side.

The energy model has two components: a trip matching
algorithm and a vehicle energy model. The matching al-
gorithm merges high-resolution 1-Hz velocity histories with
more representative but low-detail trip data (i.e., the trajecto-
ries produced from the mesoscopic simulator). The matched
velocity histories are then fed into the vehicle energy model
to produce energy estimates that account for driving style
and trip type [4, 5].

II. LITERATURE REVIEW

With advances in communications and computational
power, large-scale integrated models are becoming increas-
ingly common and complex. These models are typically com-
posed of several loosely interconnected models, each with a
specialized purpose. For example a land-use, demographic,
and economic simulator (e.g. Urbansim [6]) feeds into a
demand modeler (e.g. ALBATROSS [7] or FEATHERS [8],
which then feeds into a traffic assignment simulator (e.g.
DynaMIT [9, 10]). These components are often integrated
within platforms, such as TRANSIMS [11], CEMDAP [12],
or MATSim [13], which simulate both demand and traffic
assignment.
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Nearly all transport models provide speed and density of
traffic on links in the network. This information can then
be used to estimate energy or emissions using a vehicle
model. Coarse estimates can be achieved using empirically
measured energy and emission rates based on link speed with
models such as COPERT [14]. However, these models fail
to capture the effect of acceleration/deceleration on energy
and emissions. More accurate estimates can be made using
high resolution trajectories, such as with ADVISOR [15],
MOVES [16, 17], VT-Micro [18], or CMEM [19]; but are
computationally intensive and are not practical for large-
scale networks. More recently, simulations have interpolated
higher detail trajectories from moderate-resolution trajecto-
ries produced by a mesoscopic network simulation [20, 21].
These models rely on traffic flow theory to model acceler-
ation and deceleration behavior of drivers based on traffic
density, which then further infers VSP from the interpolated
trajectories.

The challenge in integrating long-term macroscopic mod-
els (e.g. housing and economics) and short term microsopic
models (e.g. traffic), is that it can impose certain limitations
on the simulation platform, such as restricting the ability
of agents to change their daily activity patterns. This poses
a problem when attempting to integrate auxiliary models,
such as emissions or energy models where outcomes may
be dependent upon intra-day or intra-trip changes.

III. DEMAND MODELS

Travel demand is modeled using three components: pre-
day models, within-day models, and a synthetic population.
Pre-day models estimate the daily activity of individuals, the
within-day models account for modifications that may occur
during the day. The synthetic population then provides the
disaggregated pool of individuals for which the models are
applied.

A. Population Synthesis

A fully disaggregated population of individuals, house-
holds, and vehicles with attributes is needed for agent-
based simulation. Such a population can be synthesized using
detailed samples and marginal total data available for the
simulated area. The synthetic population is generated in three
phases, (1) baseline generation with fixed work-trip distri-
bution, (2) auxiliary models and attribute assignment, and
(3) synthetic vehicle population and ownership model. The
baseline population is generated using Iterative Proportional
Fitting (IPF) [22]. IPF is a method to fit a joint distribution
of cells to match known marginal totals by proportionally
scaling cells across dimensions until error converges. Since
IPF is also used for fixed work-trip distribution, it has
been integrated directly into the population synthesis IPF for
improved accuracy [23].

The synthetic population was generated using US Census
data with aggregated marginals from the American Commu-
nity Survey (ACS) [24], disaggregated samples from Public
Use Microdata Samples (PUMS) [25], and trip distribution
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Fig. 1: Fixed work trip distribution fit

marginals from the Longitudinal Employer-Household Dy-
namics Origin-Destination Employment Statistics (LODES)
[26].

In order to estimate energy and emissions, a detailed
vehicle fleet is necessary. A synthetic population of vehicles
allocated to individuals is also generated and assigned to
owners in the person population. This is achieved using a
three-part process: (1) estimate a vehicle ownership choice
model as a multinomial logit model; (2) generate a pool
of assigned vehicle classes directly from individual persons
choices, and (3) assign a specific vehicle type to each vehicle,
based on its assigned class.

B. Pre-day
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Fig. 2: Pre-day Model Structure

Pre-day models follow the Daily Activity Schedule (DAS)
approach [27] to decide an initial overall daily activity
schedule of an agent. This includes tours, sub-tours, preferred
modes, departure times by half-hour slots, and destinations.
This is based on the sequential application of hierarchical
discrete choice models using a Monte-Carlo simulation. This
allows for a direct modeling of individual trip purposes and
is capable of capturing the dependencies between within-
day decision making, fundamental for the proper evaluation
of behavioral change and impacts. Figure 2 presents how
the pre-day models from lower levels are conditioned on
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decisions made with models from higher levels. There are
three different hierarchies in the system: day pattern level,
tour level, and intermediate stop level.

1. Day pattern models: Agents decide on the types of
activities to be performed during the day. These activities
can either be the primary activities of tours, or activities per-
formed at intermediate stops. After selecting their activities,
agents decide on the exact number of tours performed for
each activity type (e.g., work, education, shopping, recre-
ation, personal, or escort).

2. Tour level models: These include the tour
mode/destination models and tour time of day models.
Mode/destination choice models vary by primary activity:
for education tours the destination is known and therefore
only mode choice is simulated; for work tours, an additional
model is used depending on whether an individual has a
usual work location or not. If the usual work location is
known, only the tour mode is simulated. Otherwise if not,
then mode and destination are simulated simultaneously. In
addition, a work-based sub-tour generation model is applied
to work tours in order to simulate the number of sub-tours
performed by an individual during a work activity. Finally,
a tour time of day model is applied in order to simulate the
arrival and departure time for the primary activity of each
tour simultaneously.

3. Intermediate stop level models: An intermediate stop
generation model is applied for each tour in order to simulate
the number of stops within the tour. The mode/destination
choice is then simulated for each stop. Finally, the stop time
of the day model is applied in order to simulate the arrival
or departure time for each intermediate stop.

The pre-day models for Greater Boston travelers have
been estimated using Massachusetts Travel Survey (MTS)
data [28], which include activity diaries for 33,000 individ-
uals belonging to 15,000 households. Days are divided into
four different sections: AM peak, PM peak, mid-day, and
nighttime. Activities in MTS were categorized into six main
categories, which are work, education, shopping, personal
activities, recreation, and escort [29].

C. Within-day

The within-day models take the generated DAS from pre-
day and modify it throughout the day to account for the
changes in schedule due to event triggers, such as incidents,
information, controls, or incentives. As the simulation pro-
ceeds, the schedules of the individuals are monitored. If
an individual is on schedule, their activities and travel are
simulated as per the schedule generated in pre-day. Otherwise
if the individual is off-schedule, their scheduel is recomputed
for the rest of the day based on a framework similar to pre-
day, but adjusted for additional information and the current
state [29].

Figure 3 shows the times at which people make their
trips classified by tour types. With the exception of under-
representing the personal tour peak during the day which is
probably due to the fact that the time of day model decides
the time in a hierarchical order (personal is decided after

(a) Work trips (b) Education trips

(c) Recreational trips (d) Shopping trips

(e) Personal trips (f) Escort trips

Fig. 3: Tours by time-of-day

work and education), the model successfully captured the
time of day choices for other tour purposes.

IV. SUPPLY MODELS

The supply model consists of the road network (i.e.,
geometry and traffic performance characteristics), the transit
network (i.e., bus and train routes, stops/stations and sched-
ules) and the mobility service controllers (for the operation
and decision making of bus, rail and on-demand mobility
services).

Fig. 4: Supply network

The road network in SM is represented by a hierarchical
structure composed of links, segments, lane groups, lanes,
connectors, and turnings. The vehicle simulation in the SM
supply simulator is mesoscopic where the segment is the
basic processing unit. Each segment represents a section of
homogeneous roadway which is further divided into two
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traffic flow regions: the moving area and the queuing area
[9, 10]. Vehicles in the moving area travel at some uniform
positive speed determined by a segment-specific, predefined
macroscopic speed-density function. Vehicles in the queuing
area form a horizontal queue whenever the arrival rate of the
traffic flow exceeds the capacity of the segment. In terms of
resolution, the network is detailed up to the point of small
local streets. The final SM network for GBA has 17,817
nodes, 44,672 links, and 164,802 segments (see Figure 4).

Buses are also simulated to include bus stop related move-
ments and is composed of four steps: lane selection, entering
bus stop, boarding and alighting, and re-joining traffic flow.
The interaction between buses and the main flow of traffic
is also considered under this framework (such as queue
spillback). As a result, the impact of crowdedness, waiting
times, and denied boardings on traffic can be captured, which
is important for assessing the effectiveness of incentives and
controls.

The rail controller was developed for SM as a mesoscopic
simulator with three different components: (1) train vehicles
agents with predefined capacities that constantly accelerate or
decelerate towards the defined speed limit; (2) a controller
that dynamically defines all movement properties (dwell
time, speed limits, dispatching) based on internal predefined
control functions and the current state of the network; and
(3) agents assigned with the rail mode in their DAS trips;
these agents are considered as rail users and are the external
agents allowed to interact with the rail controller and the train
vehicle.

The rail network is constructed in the simulator as set of
station platforms as nodes connected by lines and poly-lines
as tracks. The attributes of a platform include the geograph-
ical location on the map and its associated walk times. Train
routes and schedules are defined in the SimMobility database
as an input to the controller (as a sequence of track blocks,
train stops and train dispatching frequency). The simulated
transit network for the GBA includes 8,387 stop/stations, 12
Commuter Rail routes, 13 Rapid transit routes, and 183 bus
routes.

On-demand mobility services is simulated to allow multi-
ple and different services to operate at the same time, e.g.,
regular taxi services and on-call services (Uber, Lyft). The
agents involved in these services are controllers (one per
each service), drivers, and passengers. Passengers can request
a trip by either hailing a taxi on the street or by sending
a request to one of the available controllers. Drivers can
both operate as taxi drivers or subscribe at the same time
to different on-call services. While operating taxis, drivers
can pick up passengers hailing on the street, without waiting
for controller instructions. If subscribed to an on-call service,
they can also accept instructions from the controller.

V. ENERGY MODELS

The energy estimator is based on the TripEnergy model
[2, 30, 31], which matches lower-resolution data on vehicle
trips with a more limited set of high-resolution GPS data from
real-world driving. Here, the low resolution inputs are the

timestep average speeds for each vehicle simulated, and the
high resolution data are portions of 1-Hz real-world velocity
histories. Before simulation, these high resolution trajectories
are divided into 5 second partial trajectories and stored in a
compressed format such that they can be easily accessed by
the simulation on the fly [31].

These high-resolution partial trajectories are matched with
the simulated vehicles movement over a timestep based on
three inputs: (1) the average velocity of a given vehicle for
the 5-second time period being estimated, (2) the average
velocity over the preceding time periods and (3) the average
velocity over the following time periods. The matched high
resolution trajectory attributes are combined with vehicle
attributes and fed into a simple energy model. In practice,
this is equivalent to matching each simulated vehicle with
a 5-second velocity history observed in the real world under
similar conditions. These high-resolution trajectory character-
istics are used to estimate the vehicle’s tractive and braking
energy use over the timestep, which are then combined with
the vehicle-specific efficiency parameters to come up with an
estimate for the total vehicle net energy consumption:

Etot = Eaccel/ηdrive − Ebrakeηbrake + PidleT (1)

where Pidle is the idling power consumption, ηdrive is the
peak efficiency between the energy storage device (gas tank
or battery) and the wheels, ηbrake is the average efficiency
between the brakes and the energy storage device for vehicles
with regenerative braking—parameters that are calibrated of-
fline in advance based on fuel economy test result data—and
where T is the trip duration. The current vehicle attributes
database, including vehicle mass and coastdown coefficients
needed for dynamometer tests and the unadjusted results
of the CAFE fuel economy tests, considers approximately
10,000 vehicle types tested by the EPA with model years
2010-2018.

VI. RESULTS

A total daily personal vehicle energy consumption of 55.6-
GJ (which is equivalent to 548 thousand gallons of gaso-
line) was estimated from a 24-hour simulation of the GBA
network. This equates to an average fuel economy of 25.8-
MPG, which is slightly higher than the average fleet wide fuel
economy in the U.S. for 2015 of 22.0-MPG. This discrepancy
may be due to localized fleet differences in Boston compared
to the average U.S. fleet as well as increased penetration of
alternative fuel and higher fuel economy vehicles since 2015.

The energy estimates for vehicle class matched the expec-
tations of vehicles performing better on highways compared
to stop-and-go travel, shown in Figure 5. Compared to trucks,
minivans, and SUVS; cars result in the greatest variability in
their energy estimates due to the wide range of vehicle power
trains, such as high-performance sport cars versus hybrid and
electric vehicles. Age groups also yielded varying levels of
fuel economy due to driving style (e.g. fast driving younger
drivers) and off-peak travel (e.g. older drivers), shown in
Figure 6. In Figure 7 it would appear that suburban areas
provide higher fuel economy; however, this is likely due to
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Fig. 5: Fuel economy for different vehicles, grouped by
vehicle class.

less congestion and higher traffic speeds experienced in these
low density areas.

Fig. 6: Energy use characteristics of different age groups.

Fig. 7: Average fuel economy of overall Traffic Analysis
Zones (TAZs) in the GBA

VII. CONCLUSIONS

The integration of the state-of-the-art models of TripEn-
ergy and SimMobility offers a new avenue of research
potential to model real-time system response. Although the
tests performed have raised a number of issues related

to calibration, runtime performance, and overall scalability,
these are merely mechanical issues solvable with further
refinement. Further simulations should be carried out to test
the performance of the proposed model when incidents and
disruptions are present in the network. If proved a reliable
simulation, next steps will include the integration of the
simulation platform into a larger optimization model with an
objective function, such as to minimize energy or emissions
through incentivized behavioral change.
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