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SHTUKAS AND THE TAYLOR EXPANSION OF L-FUNCTIONS (II)

ZHIWEI YUN AND WEI ZHANG

Abstract. For arithmetic applications, we extend and refine our results in [10] to allow
ramifications in a minimal way. Starting with a possibly ramified quadratic extension F ′/F
of function fields over a finite field in odd characteristic, and a finite set of places Σ of F
that are unramified in F ′, we define a collection of Heegner–Drinfeld cycles on the moduli
stack of PGL2-Shtukas with r-modifications and Iwahori level structures at places of Σ. For
a cuspidal automorphic representation π of PGL2(AF ) with square-free level Σ, and r ∈ Z≥0

whose parity matches the root number of πF ′ , we prove a series of identities between
(1) The product of the central derivatives of the normalized L-functions

L
(a)(π,

1

2
)L (r−a)(π ⊗ η,

1

2
),

where η is the quadratic idèle class character attached to F ′/F , and 0 ≤ a ≤ r;

(2) The self intersection number of a linear combination of Heegner–Drinfeld cycles.
In particular, we can now obtain global L-functions with odd vanishing orders. These identi-
ties are function-field analogues of the formulas of Waldspurger and Gross–Zagier for higher
derivatives of L-functions.
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1. Introduction

1.1. Main results. Let X be a smooth projective and geometrically connected curve over a
finite field k = Fq of characteristic p 6= 2. Let F = k(X) be the function field of X and AF
be the ring of adèles of F . Let G = PGL2. Let π be a cuspidal automorphic representation of
G(AF ). Let X ′ be another smooth projective and geometrically connected curve over k together
with a double cover ν : X ′ → X .

In [10], under the assumption that both π and ν are everywhere unramified, we proved
an analogue of the formulas of Waldspurger [9] and Gross–Zagier [4] for higher order central
derivatives of the base change L-function L(πF ′ , s). Our formula reads

|ωX |

2(log q)rL(π,Ad, 1)
L

(r)(πF ′ ,
1

2
) =

(
[ShtµT ]π, [Sht

µ
T ]π

)
Sht′rG

. (1.1)

Here r ≥ 0 is an even integer. This formula relates the r-th central derivative of a certain
normalization 1

L (πF ′ , s) of the L-function of the base change πF ′ to the self-intersection number
of a certain algebraic cycle [ShtµT ]π on the moduli stack of G-Shtukas Sht′rG with r modifications.
The cycles [ShtµT ]π are analogous to the Heegner points on modular curves.

In this paper, we generalize the formula (1.1) to the case where the double cover ν is allowed to
be ramified and the automorphic representation π is allowed to have square-free level. Moreover,
we refine the formula (1.1) to give a geometric expression of central derivatives of the form
L (a)(π, 12 )L

(b)(π⊗ η, 12 ). Below we set up some notation for the statement of our main results.

1.1.1. Ramifications of the automorphic representation. Let Σ be a finite set of closed points of
X . Let π be a cuspidal automorphic representation of G(A) which is isomorphic to an unramified
twist of the Steinberg representation at each x ∈ Σ, and unramified away from Σ. LetN = degΣ.

Let R be the ramification locus of the double cover ν, and let ρ = degR. Then the genus g′ of
X ′ and the genus g of X are related by g′− 1 = 2(g− 1)+ρ/2. Let η = ηF ′/F : F×\A×F → {±1}
be the idèle class character corresponding to the extension F ′/F .

We assume

The sets R and Σ are disjoint.

The normalized L-functions

L (π, s+
1

2
) = q(2g−2+N/2)sL(π, s+

1

2
)

L (π ⊗ η, s+
1

2
) = q(2g−2+ρ+N/2)sL(π ⊗ η, s+

1

2
)

1In [10], the definition of L (πF ′ , s) included the denominator L(π,Ad, 1); in the current paper, we separate
L(π,Ad, 1) from L (πF ′ , s).
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are either even or odd functions in s depending on the root numbers of π and π ⊗ η. We define
a normalized L-function in two variables

LF ′/F (π, s1, s2) := L (π, s1 + s2 +
1

2
)L (π ⊗ η, s1 − s2 +

1

2
)

so that its specialization to s1 = s, s2 = 0 gives the normalized base change L-function L (πF ′ , s+
1
2 ). Then LF ′/F (π, s1, s2) satisfies a function equation

LF ′/F (π, s1, s2) = (−1)r(πF ′ )LF ′/F (π,−s1,−s2)

where (−1)r(πF ′ ) is the root number for the base change πF ′ , and

r(πF ′ ) = #
{
x ∈ Σ

∣∣ x is inert in X ′
}
.

For r+, r− ∈ Z≥0, we define

L
(r+,r−)
F ′/F (π) :=

(
∂

∂s1

)r+ ( ∂

∂s2

)r−
LF ′/F (π, s1, s2)

∣∣∣
s1=s2=0

.

From the functional equation of LF ′/F (π, s1, s2), we see that L
(r+,r−)
F ′/F (π) = 0 unless

r+ + r− ≡ r(πF ′ ) mod 2.

1.1.2. The moduli of Shtukas with Iwahori level structure. On the geometric side, we will consider
the moduli stack of G-Shtukas with Iwahori level structures. The points with Iwahori level
structure come in two kinds: those resembling the finite primes dividing the level N for a
modular curve X0(N) and those resembling the Archimedean place. In fact, starting with a
finite subset Σ ⊂ |X | together with a disjoint union decomposition Σ = Σf ⊔ Σ∞ and a non-
negative integer r such that r ≡ #Σ∞ mod 2, we will define in §3.2.1 and §3.2.8 a moduli stack
ShtrG(Σ;Σ∞) equipped with a map

ΠrG : ShtrG(Σ;Σ∞) −→ Xr ×S∞,

where S∞ =
∏
x∈Σ∞ Spec k(x). Then ShtrG(Σ;Σ∞) is a smooth 2r-dimensional DM stack locally

of finite type over k (see Proposition 3.9). We will also consider the base change

Sht′rG(Σ;Σ∞) := ShtrG(Σ;Σ∞)×(Xr×S∞) (X
′r ×S

′
∞),

where S′∞ =
∏
x′∈Σ′

∞
Spec k(x′), and Σ′∞ = ν−1(Σ∞). If we base change Sht′rG(Σ;Σ∞) to k, it

decomposes as

Sht′rG(Σ;Σ∞)⊗ k =
∐

ξ

Sht′rG(Σ; ξ),

where ξ = (ξx′)x′∈Σ′
∞ runs over the choices of a k-point ξx′ over each x′ ∈ Σ′∞. We fix such a ξ.

There is an action of the spherical Hecke algebra H Σ
G = ⊗x∈|X|−ΣHx on the cohomology

groups H∗c(Sht
′r
G(Σ; ξ),Qℓ), which is infinite-dimensional in the middle degree. We have an

Eisenstein ideal IEis ⊂ H Σ
G defined in the same way as in [10, §4.1]. We prove a spectral

decomposition similar to the unramified case.

Theorem 1.1. There is a canonical decomposition of H Σ
G -modules

H2r
c (Sht′rG(Σ; ξ),Qℓ) =

(⊕

m

V ′(ξ)m
)
⊕ V ′(ξ)Eis, (1.2)

where

• m runs over a finite set of maximal ideals of H Σ
G which do not contain the Eisenstein ideal, and

V ′(ξ)m is the generalized eigenspace of the H Σ
G -action on H2r

c (Sht′rG(Σ; ξ),Qℓ) corresponding

to m. Moreover, V ′(ξ)m is finite-dimensional over Qℓ.

• V ′(ξ)Eis is a finitely generated H Σ
G -module on which the action of H Σ

G factors through H Σ
G /I

m
Eis

for some m > 0.

Using the cup product, we have a perfect pairing

(·, ·)Sht′rG (Σ;ξ) : V
′(ξ)m × V

′(ξ)m −→ Qℓ. (1.3)
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1.1.3. The Heegner–Drinfeld cycle. We make the following assumptions which are analogous to
the Heegner hypothesis:

All places in Σf are split in X ′; (1.4)

All places in Σ∞ are inert in X ′. (1.5)

By considering rank one Shtukas on X ′, we obtain a moduli stack Sht
µ

T (µ∞ ·Σ
′
∞) that depends

on the data µ ∈ {±1}r and µ∞ ∈ {±1}Σ∞. The stack Sht
µ

T (µ∞ · Σ
′
∞) is a finite étale cover of

X ′r ×S′∞.

To map Sht
µ

T (µ∞ ·Σ
′
∞) to Sht′rG(Σ;Σ∞) we need an extra choice µf , which is a section to the

two-to-one map Σ′f := ν−1(Σf )→ Σf . Altogether we have chosen an element

µ = (µ, µf , µ∞) ∈ Tr,Σ := {±1}r × Sect(Σ′f/Σf )× {±1}
Σ∞ . (1.6)

From this choice we have a map (cf. §4.2.2)

θ′µ : Sht
µ

T (µ∞ · Σ
′
∞) −→ Sht′rG(Σ;Σ∞).

Base-changing to k and taking the ξ-component, we get a map

θ′µξ : Sht
µ

T (µ∞ · ξ) −→ Sht′rG(Σ; ξ).

We define the Heegner–Drinfeld cycle to be the algebraic cycle with proper support

Zµ(ξ) := θ′µξ,∗[Sht
µ

T (µ∞ · ξ)] ∈ Chc,r(Sht
′r
G(Σ; ξ))Q.

Its cycle class in cohomology is denoted by

Zµ(ξ) := cl(Zµ(ξ)) ∈ H2r
c (Sht′rG(Σ; ξ),Qℓ).

1.1.4. Main result. Our main theorem is the following.

Theorem 1.2 (Main result, first formulation). Let π be a cuspidal automorphic representation
of G(AF ) ramified at a finite set of places Σ. Assume

• For each x ∈ Σ, πx is isomorphic to an unramified twist of the Steinberg representation;

• The ramification locus R of the double cover ν : X ′ → X is disjoint from Σ.

We decompose Σ as Σf ⊔ Σ∞ in a unique way so that the conditions (1.4) and (1.5) hold. Let
r be a non-negative integer such that

r ≡ #Σ∞ mod 2.

Let µ, µ′ ∈ Tr,Σ. Let

r+ = {1 ≤ i ≤ r | µi = µ′i}, r− = {1 ≤ i ≤ r | µi 6= µ′i}.

Then
|ωX |qρ/2−Nε−(π ⊗ η)
2(− log q)rL(π,Ad, 1)

L
(r+,r−)
F ′/F (π) =

(
Zµπ (ξ), Z

µ′
π (ξ)

)
Sht′rG (Σ;ξ)

. (1.7)

Here,

• |ωX | = q−(2g−2).

• ε−(π ⊗ η) ∈ {±1} is the product of the Atkin–Lehner eigenvalues of π ⊗ η at x ∈ Σ−(µ, µ′),
where Σ−(µ, µ′) ⊂ Σ is defined in (4.7).

• The automorphic representation π gives a character λπ of H Σ
G which does not factor through

the Eisenstein ideal; we denote by V ′(ξ)π the direct summand in (1.2) corresponding to the
maximal ideal mπ = ker(λπ) and let Zµπ (ξ) be the projection of Zµ(ξ) to V ′(ξ)π.

• The pairing (·, ·)Sht′rG (Σ;ξ) on the right side of (1.7) is (1.3).

The Galois involution for the double cover X ′/X induces an action of (Z/2Z)r on X ′r, hence
on Sht′rG(Σ; ξ) by acting only on the X ′r-factor. Let σi ∈ (Z/2Z)r be the element with only
the i-th coordinate nontrivial. For 0 ≤ r1 ≤ r, we define an idempotent in the group algebra
Q[(Z/2Z)r] by

εr1 =

r1∏

i=1

1 + σi
2

r∏

j=r1+1

1− σi
2

.
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Theorem 1.3 (Main result, second formulation). Keep the same assumptions as Theorem 1.2.
Let 0 ≤ r1 ≤ r be an integer, and µ ∈ Tr,Σ. Then

|ωX |qρ/2−N

2(− log q)rL(π,Ad, 1)
L

(r1)(π,
1

2
)L (r−r1)(π ⊗ η,

1

2
) =

(
εr1Z

µ
π (ξ), εr1Z

µ
π (ξ)

)
Sht′rG (Σ;ξ)

.

In the special case r1 = r, we may further reformulate the theorem as follows.

Corollary 1.4. Keep the same assumptions as Theorem 1.2. Let Y µπ (ξ) ∈ H2r
c (ShtrG(Σ; ξ),Qℓ)

be the class of the push-forward of Zµπ (ξ) to ShtrG(Σ; ξ) = ShtrG(Σ;Σ∞) ×S∞ ξ. Then Y µπ (ξ)
depends only on (r, µf , µ∞), and

2r−1|ωX |qρ/2−N

(− log q)rL(π,Ad, 1)
L

(r)(π,
1

2
)L (π ⊗ η,

1

2
) =

(
Y µπ (ξ), Y µπ (ξ)

)
ShtrG(Σ;ξ)

.

Remark 1.5. Consider the case where Σ∞ consists of a single place ∞, r = 1, and µ = µ′.
In this case the moduli stack Sht1G(Σ;Σ∞) over X is closely related to the moduli space of
elliptic modules originally defined by Drinfeld [2] (see the discussion in §3.2.3), the latter being
a perfect analogue of a semi-stable integral model for modular curves X0(N). In this special
case, Theorem 1.2 reads

−
|ωX |qρ/2−N

2 log q · L(π,Ad, 1)
L
′(πF ′ ,

1

2
) = (Zµπ (ξ), Z

µ
π (ξ))Sht′1G(Σ;ξ) . (1.8)

This is a direct analogue of the Gross-Zagier formula for modular curves [4]. We understand
that D. Ulmer has an unpublished proof of a formula similar to (1.8). The method of our proof
is quite different from that in [4] in that we do not need to explicitly compute either side of the
formula.

1.2. What’s new. We highlight both the new results and new techniques in this paper compared
to the unramified case treated in [10].

1.2.1. First we compare our results with our previous ones in [10]. Theorems 1.2 and 1.3 have
much wider applicability than the ones in [10]. In particular, for an elliptic curve E over F
with semistable reductions, its L-function L(E, s) is the automorphic L-function L(π, s + 1/2)
for some π satisfying the conditions of our theorems. Therefore, our results in this paper give
a geometric interpretation of Taylor coefficients of L-functions of semistable elliptic curves over
function fields. For potential applications to the arithmetic of elliptic curves, see the discussion
in §1.3.

In addition, in this paper we study the intersection of different Heegner–Drinfeld cycles by
varying the discrete datum µ. As a result we get products of derivatives of L (π, s) and L (π ⊗
η, s), as opposed to just the derivatives of their product L (πF ′ , s). So Theorems 1.2 and 1.3 are
new even in the unramified case.

1.2.2. Next we comment on the proof. To prove Theorem 1.2, we follow the general strategy
of relative trace formulae comparison as in [10]. In this paper, we have tried to avoid repeating
similar arguments from [10] and only write new arguments in detail. Here are some highlights
of the new techniques compared to the unramified case.

The key identity between relative traces takes the form
(

∂

∂s1

)r+ ( ∂

∂s2

)r−
(qN+s1+N−s2J(f ′, s1, s2))

∣∣∣
s1=s2=0

=
(
Zµ(ξ), f ∗ Zµ

′
(ξ)
)
Sht′rG (Σ;ξ)

where f ∈ H Σ∪R
G and f ′ ∈ Cc(G(A)) is a “matching function”. In the unramified case, we

simply took f ′ = f . At places x ∈ Σ, the corresponding factors of f ′ are not surprising: they
are essentially characteristic functions of the Iwahori. However, it is not obvious what to put at
places x ∈ R (where R is the ramification locus of F ′/F ). This is one of the main difficulties of
this work.

In §2.4.1 we give a somewhat surprising formula for the test function h�x to be put at x ∈ R
in f ′. The discovery of the function h�x was guided by the geometric interpretation of orbital
integrals. We wanted a moduli space Nd which looked like the counterpart ofMd (see Definition
5.1) for a split quadratic extension F × F but somehow remembers the ramification locus R.
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Once we realized the correct candidate for Nd (see Definition 6.1), the formula for h�x fell
out quite naturally as counting points on Nd. From the spectral calculation, we get another
characterization of h�x (see §2.4.2), which justifies its canonicity from a different perspective.
The idea should be applicable to other situations of relative trace formulas where one needs
explicit ramified test functions. We hope to return to this topic in the future.

The presence of Iwahori structures makes the geometry of the horocycles in Sht′rG(Σ;Σ∞)
much more complicated than in the unramified case, which explains the length of §3.4. The
study of the horocycles is needed in order to establish a cohomological spectral decomposition.
Also, the proof of the key finiteness results leading to the cohomological spectral decomposition
in §3.5 uses a new strategy: we introduce “almost isomorphisms” between ind-perverse sheaves
(i.e., we work with a quotient category of ind-perverse sheaves). Compared to our approach in
[10], this strategy is more robust in showing qualitative results for spaces of infinite type, and
should work for the cohomological spectral decomposition for higher rank groups.

1.3. Potential arithmetic applications.

1.3.1. Determinant of the Frobenius eigenspace. Let π be a cuspidal automorphic representation
of G(A) as in Theorem 1.2. By the global Langlands correspondence proved by Drinfeld [3],
there is a rank two irreducible Qℓ-local system ρπ attached to π over an open subset of X . Our
convention is that det(ρπ) ∼= Qℓ(−1); in particular, ρπ is pure of weight 1. Let j!∗ρπ be the
middle extension of ρπ to the complete curve X . The base change πF ′ corresponds to the local
system ν∗ρπ on an open subset of X ′, and we denote by j′!∗ν

∗ρπ its middle extension to X ′. Let

W ′π := H1(X ′ ⊗ k, j′!∗ν
∗ρπ).

This is a Qℓ-vector space with the geometric Frobenius automorphism Fr of weight 2. The
L-function L(πF ′ , s) is related to ν∗ρπ by

L(πF ′ , s−
1

2
) = det

(
1− q−s Fr

∣∣W ′π
)
.

Let ΠrG : ShtrG(Σ) → Xr × S∞ be the projection map. It is expected that under the H Σ
G -

action, the λπ-isotypical component of the complex RΠrG,!Qℓ on X
r ×S∞ takes the form

(RΠrG,!Qℓ)π = πK ⊗
(
j!∗ρπ[−1]⊠ · · ·⊠ j!∗ρπ[−1]︸ ︷︷ ︸

r times

)
⊗
(
⊠x∈Σ∞ ρIxπ,x

)
(1.9)

where K =
∏
x/∈ΣG(Ox) ×

∏
x∈Σ Iwx, and ρπ,x is the restriction of ρπ to SpecFx and Ix <

Gal(F sep
x /Fx) is the inertial group at x. Pulling back to X ′r ⊗ S′∞, (1.9) implies that the

generalized eigenspace V ′(ξ)π := V ′(ξ)ker(λπ) in (1.2) should take the form

V ′(ξ)π ∼= πK ⊗W ′⊗rπ ⊗ ℓπ,ξ

where ℓπ,ξ is the geometric stalk of ⊠x∈Σ∞ρ
Ix
π,x at ξ. Note that πK is one-dimensional since π is

an unramified twist of the Steinberg representation at x ∈ Σ.
Then the cohomology class of the Heegner–Drinfeld cycle gives rise to an element in Zµπ (ξ) ∈

πK ⊗W ′⊗rπ ⊗ ℓπ,ξ. It can be shown that Zµπ (ξ) is an eigenvector for the operator id⊗ Fr⊗r ⊗id,
with eigenvalue qr. Our main result (Theorem 1.2) together with the super-positivity proved in
[10, Theorem B.2] shows that Zµπ (ξ) does not vanish when r ≥ ords=1/2 L(πF ′ , s), provided that
L(πF ′ , s) is not a constant (i.e., 2(4g − 4 +N + ρ) > 0).

Partly motivated the standard conjecture about Frobenius semi-simplicity, we propose

Conjecture 1.6. Let r = ords=1/2 L(πF ′ , s) and µ ∈ Tr,Σ. Then the class Zµπ (ξ) belongs to

πK ⊗ ∧r
(
W ′Fr=qπ

)
⊗ ℓπ,ξ.

In particular, for the eigenvalue q, the generalized eigenspace of the Fr-action on W ′π coincides
with the eigenspace, and Zµπ (ξ) gives a basis of the line πK ⊗ ∧r

(
W ′Fr=qπ

)
⊗ ℓπ,ξ.

In a forthcoming work, the authors plan to prove (assuming that (1.9) holds):

(i) If r0 ≥ 0 is the smallest integer r such that Zµπ 6= 0 for some µ ∈ {±1}r, then dimW ′Fr=qπ = r0
and the class Zµπ (ξ) gives a basis of the line πK ⊗ ∧r0

(
W ′Fr=qπ

)
⊗ ℓπ,ξ.
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(ii) ords=1/2 L(πF ′ , s) = 1 if and only if dimW ′Fr=qπ = 1. In particular, if ords=1/2 L(πF ′ , s) = 3,

then dimW ′Fr=qπ = 3.

1.3.2. Elliptic curves. Let E be a non-isotrivial semi-stable elliptic curve over F . Attached to E
is a cuspidal automorphic representation π of G(AF ) such that ρπ ∼= Vℓ(E)∗ as representations of
Gal(F sep/F ). In particular, L(E, s) = L(π, s− 1

2 ), and L(EF ′ , s) = L(πF ′ , s− 1
2 ). Moreover, after

choosing a semistable model E ′ overX ′, we may identifyW ′π with a subquotient of H2(E ′ ⊗ k,Qℓ),
and think of it as the ℓ-adic Selmer group of E. The function-field analogue of the conjecture of
Birch and Swinnerton-Dyer, as formulated by Artin and Tate [7], predicts that the q-eigenspace
of Fr onW ′π is the same as the generalized eigenspace, and is spanned by classes of sections of E ′.
The expected result (ii) above would imply that if ords=1 L(EF ′ , s) = 3, then the q-eigenspace
of Fr on W ′π is the same as the generalized eigenspace.

While it is difficult to construct algebraic cycles on E ′ spanning W ′Fr=qπ , it may be easier
to construct a basis of the line ∧r(W ′Fr=qπ ). Conjecture 1.6 proposes a candidate generator for
∧r(W ′Fr=qπ ), namely the cycle Zµπ (ξ). It is not clear though how to relate the ambient space of
Zµπ (ξ), namely Sht′rG(Σ; ξ), to powers of E ′.

1.4. Notations.

1.4.1. Function field notation. Throughout this paper, we fix a finite field k = Fq of characteristic
p 6= 2. We fix a smooth, projective and geometrically connected curve X over k. Let F = k(X)
be the function field of X . Let |X | denote the set of closed points of X .

For x ∈ |X |, let Ox (resp. Fx) denote the completed local ring of X at x (resp. the fraction
field of Ox). Let mx ⊂ Ox be the maximal ideal and we typically denote a uniformizer of Ox by
̟x. Let AF denote the ring of adèles of F , and let O =

∏
x∈|X|Ox. Let k(x) denote the residue

field of Ox and let
dx = [k(x) : k], qx = qdx = #k(x).

Let vx : F×x → Z be the valuation normalized by vx(̟x) = 1.
We will also consider a double covering ν : X ′ → X where X ′ is also a smooth, projective

and geometrically connected curve X over k. The function field of X ′ is denoted by F ′. Other
notations for X extends to their counterparts for X ′.

1.4.2. Group-theoretic notation. The letter G always denotes the algebraic group PGL2 over k.
For x ∈ |X |, the standard Iwahori subgroup Iwx of G(Fx) is the image of the following subgroup
of GL2(Ox)

Ĩwx =

{[
a b
c d

]
∈ GL2(Ox)

∣∣∣∣ c ∈ mx

}
.

For an algebraic group H over F , we denote

[H ] := H(F )\H(A).

1.4.3. Algebro-geometric notation. For any stack S over k, FrS : S → S denotes the k-linear
Frobenius which raises functions to the q-th power.

For an S-point x : S → X , we denote by Γx ⊂ X × S the graph of x, which is a Cartier
divisor of X × S.

We fix a prime ℓ different from p, and an algebraic closure Qℓ of Qℓ. The étale cohomology
groups in this paper are with Qℓ or Qℓ coefficients.

Acknowledgement. The authors would like to thank Benedict Gross for useful discussions and
encouragement.

2. The analytic side: relative trace formula

We extend the results in [10, §2, §4] on Jacquet’s RTF [5] to our current setting. Since most
arguments in loc. cit. extend without any difficulty, we will not repeat them, but simply indicate
the necessary changes.

A new phenomenon is that we need to choose a new test function at the places where F ′/F
is ramified. This is done in §2.4, and is the most non-obvious point of the analytic part of this
paper.
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By convention, the automorphic representations we consider in this section are on C-vector
spaces.

2.1. Jacquet’s RTF. For f ∈ C∞c (G(A)), we consider the automorphic kernel function

Kf (g1, g2) =
∑

γ∈G(F )

f(g−11 γg2), g1, g2 ∈ G(A), (2.1)

and we define a distribution given by a regularized integral, for (s1, s2) ∈ C2

J(f, s1, s2) =
∫ reg

[A]×[A]

Kf (h1, h2)|h1|
s1+s2 |h2|

s1−s2η(h2) dh1 dh2. (2.2)

Here the measure on [A] = A(F )\A(A) is induced from the Haar measure on A(A) such that
vol(A(O)) = 1.

The regularization is the same as in [10, §2.2–§2.5], i.e., as the limit of the integral over a
certain sequence of increasing bounded subsets that cover [A] × [A]. Moreover, we define a
two-variable orbital integral

J(γ, f, s1, s2) =
∫

A(A)×A(A)
f(h−11 γh2)|h1h2|

s1 |h1/h2|
s2η(h2) dh1 dh2.

Recall the function inv : G(F ) → P1(F ) − {1} defined in [10, (2.1)]. When u = inv(γ) ∈
P1(F )\{0, 1,∞}, the integral J(γ, f, s1, s2) is absolutely convergent. When u = inv(γ) ∈ {0,∞},
the integral defining J(γ, f, s1, s2) requires regularization as in [10, §2.5], and the proof in loc.
cit. goes through in our two-variable setting.

Now J(f, s1, s2) and J(γ, f, s1, s2) are in C[q±s1 , q±s2 ], i.e., each of them is a finite sum of the
form ∑

(n1,n2)∈Z2

an1,n2 q
n1s1+n2s2 , an1,n2 ∈ C.

We have an expansion of J(f, s1, s2) into a sum of orbital integrals

J(f, s1, s2) =
∑

γ∈A(F )\G(F )/A(F )

J(γ, f, s1, s2), (2.3)

We also define

J(u, f, s1, s2) =
∑

γ∈A(F )\G(F )/A(F ), inv(γ)=u

J(γ, f, s1, s2), u ∈ P1(F )− {1}. (2.4)

2.2. The Eisenstein ideal. For x ∈ |X |, let Hx = Cc(G(Ox)\G(Fx)/G(Ox)) be the spherical
Hecke algebra of G(Fx). For a finite set S of closed points of X , define H S

G = ⊗x∈|X|−SHx.
In [10, §4.1] we defined the Eisenstein ideal IEis ⊂ HG for the full spherical Hecke algebra
HG = ⊗x∈|X|Hx, as the kernel of the composition of ring homomorphisms

aEis : HG
Sat
−−→ Q[Div(X)] ։ Q[PicX(k)].

Here the first map Sat is the tensor product of Satake transforms Hx → Q[tx, t
−1
x ]. We restrict

the homomorphism to the subalgebra H S
G

aSEis : H
S
G

Sat
−−→ Q[Div(X − S)] −→ Q[PicX(k)]

and define

ISEis : = Ker
(
aSEis : H

S
G −→ Q[PicX(k)]

)
.

Recall from [10, 4.1.2] that the image of aEis, hence that of aSEis lies in the Q[PicX(k)]ιPic for
an involution ιPic on Q[PicX(k)]. We have the following analogue of [10, Lemma 4.2] with the
same proof, which is not essential for the rest of the paper.

Lemma 2.1. The map aSEis : H S
G → Q[PicX(k)]ιPic is surjective.

We have a generalization of [10, Theorem 4.3].
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Theorem 2.2. Let fS ∈ ISEis and let fS ∈ C∞c (G(AS)) be left invariant under the Iwahori
IwS =

∏
x∈S Iwx. Then for f = fS ⊗ fS ∈ C∞c (G(A)) we have

Kf = Kf,cusp +Kf,sp.

Here Kf,cusp (resp. Kf,sp) is the projection of Kf to the cuspidal spectrum (resp. residual
spectrum, i.e., one-dimensional representations), see [10, §4.2].

Proof. We indicate how to the modify the proof of [10, Theorem 4.3]. Let KS =
∏
x/∈S G(Ox),

and let K = KS ·KS be a compact open subgroup of G(A) such that KS ⊂ IwS and that f is
bi-K-invariant. The analogue of equation [10, (4.9)] now reads

Kf,Eis,χ(x, y) =
log q

2πi

∑

α,β

∫ 2πi
log q

0

(ρχ,u(f)φα, φβ)E(x, φα, u, χ)E(y, φβ , u, χ)du, (2.5)

where {φα} is an orthonormal basis of V Kχ . Since f is left invariant under the Iwahori IwS×KS ,

(ρχ,u(f)φα, φβ) = 0 unless the IwS×KS-average of φβ is nonzero; i.e., (ρχ,u(f)φα, φβ) = 0 unless

V IwS×KS

χ 6= 0 which happens if and only if χ is everywhere unramified. When χ is everywhere
unramified, we have

(ρχ,u(f)φα, φβ) = χu+1/2(a
S
Eis(f

S))(ρχ,u(fS ⊗ 1KS)φα, φβ).

In particular, if fS lies in the Eisenstein ideal, then aSEis(f
S) = 0, and hence the integrand in

(2.5) vanishes. This completes the proof. �

2.3. The spherical character: global and local.

2.3.1. Global spherical characters and period integral. We first recall from [10, §4.3] the global
spherical character. Let π be a cuspidal automorphic representation of G(A), endowed with the
natural Hermitian form given by the Petersson inner product: 〈φ, φ′〉 for φ, φ′ ∈ π.

For a character χ : F×\A× → C×, the (A,χ)−period integral for φ ∈ π is defined as

Pχ(φ, s) :=

∫

[A]

φ(h)χ(h)
∣∣h
∣∣s dh. (2.6)

We simply write P(φ, s) if χ = 1 is trivial. The global spherical character (relative to (A ×
A, 1× η)) associated to π is a distribution on G(A) defined by

Jπ(f, s1, s2) =
∑

{φ}

P(π(f)φ, s1 + s2)Pη(φ, s1 − s2)

〈φ, φ〉
, f ∈ C∞c (G(A)), (2.7)

where the sum runs over an orthogonal basis {φ} of π. This expression is independent of the
choice of the measure on G(A) as long as we use the same measure to define the operator π(f)
and the Petersson inner product. The function Jπ(f, s1, s2) defines an element in C[q±s1 , q±s2 ].

Using Theorem 2.2, the same argument of [10, Lemma 4.4] proves the following Lemma.

Lemma 2.3. Let f be the same as in Theorem 2.2. Then

J(f, s1, s2) =
∑

π

Jπ(f, s1, s2),

where the sum runs over all cuspidal automorphic representations π of G(A) and the summand
Jπ(f, s) is zero for all but finitely many π.

2.3.2. Local spherical characters. We now recall the factorization of the global spherical character
(2.7) into a product of local spherical characters. For unexplained notation and convention we
refer to the proof of [10, Prop. 4.5].

Let ψ : F\A → C× be a nontrivial character, and let ψx be its restriction to Fx. For the
discussion of the local spherical characters, we will use Tamagawa measures on various groups,
which differ from our earlier convention. Strictly speaking, as in loc. cit., the measure on
A(A) = A× is not the Tamagawameasure, but an unnormalized (decomposable) one

∏
x∈|X| d

×tx
where d×tx = ζx(1)

dtx
|tx| for the self-dual measure dtx (with respect to ψx). In particular, we have
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vol(O×x ) = 1 when ψx is unramified (i.e., the conductor of ψx is Ox). Similar remark applies to
the measure G(A), cf. [10, p.804].

We consider the Whittaker model of πx with respect to the character ψx, denoted byWψx(πx).
For φ = ⊗x∈|X|φx ∈ π = ⊗′x∈|X|πx, the ψ-Whittaker coefficient Wφ decomposes as a product

⊗x∈|X|Wx, where Wx ∈ Wψx(πx). We define a normalized linear functional

λ♮x(Wx, ηx, s) :=
1

L(πx ⊗ ηx, s+ 1/2)

∫

F×
x

Wx

([
a

1

])
ηx(a)|a|

s d×a.

We define a local (invariant) inner product θ♮x on the Whittaker model Wψx(πx)

θ♮x(Wx,W
′
x) :=

1

L(πx × π̃x, 1)

∫

F×
x

Wx

([
a

1

])
W ′x

([
a

1

])
d×a.

Now we define the local spherical character as

Jπx(fx, s1, s2) :=
∑

{Wi}

λ♮x(πx(fx)Wi,1x, s1 + s2)λ
♮
x(W i, ηx, s1 − s2)

θ♮x(Wi,Wi)
. (2.8)

where the sum runs over an orthogonal basis {Wi} of Wψx(πx). By the product decomposition
of the period integrals (2.6) and the Petersson inner product (cf. the proof of [10, Prop. 4.5]),
the global spherical character decomposes into a product of local ones (cf. [10, (4.16)]):

Jπ(f, s1, s2) = |ωX |
−1 L(π, s1 + s2 +

1
2 )L(π ⊗ η, s1 − s2 +

1
2 )

2L(π,Ad, 1)

∏

x∈|X|
Jπx(fx, s1, s2). (2.9)

We note that the factor |ωX |−1 is due to the fact that in our earlier definition (2.2) of J(f, s1, s2),
the measure on A(A) gives vol(A(O)) = 1, while the (unnormalized) Tamagawa measure gives
vol(A(O)) = |ωX |1/2.

2.4. Local test functions. Out test function f ∈ C∞c (G(A)) will be a pure tensor f = ⊗x∈|X|fx
where fx ∈ Hx is in the spherical Hecke algebra for x /∈ Σ ∪ R. Below we define the local
components fx for x ∈ R (in §2.4.1-2.4.2) and for x ∈ Σ (in §2.4.3).

For any place x ∈ |X |, let px : GL2(Fx) → G(Fx) be the projection. The fibers of px are
torsors under F×x and are equipped with F×x -invariant measures such that any O×x -orbit has
volume 1. Let px,∗ : C∞c (GL2(Fx)) → C∞c (G(Fx)) be the map defined by integration along the
fibers of px with the above-defined measure.

2.4.1. The function h�x . For a ∈ Ox, we denote a its image in k(x). For any n ∈ Z, let
Mat2(Ox)vx(det)=n be the set of 2-by-2 matricesM with entries in Ox such that vx(det(M)) = n.

At x ∈ R, the character ηx|O×
x

factors through the unique nontrivial character ηx : k(x)× →
{±1}. We also denote by ηx : k(x)→ {0,±1} its extension by zero to the whole k(x).

When x ∈ R, let h̃�x ∈ C
∞
c (GL2(Fx)) be the function supported on Mat2(Ox)vx(det)=1 given

by

h̃�x ((aij)) =

{
1
2

∏
i,j∈{1,2}(1 + ηx(aij)) aij ∈ O×x ;∏

i,j∈{1,2}(1 + ηx(aij)) otherwise.
(2.10)

Define

h�x = px,∗h̃
�
x ∈ C

∞
c (G(Fx)).

We give an interpretation of the formula (2.10) as counting the number of certain “square-
roots” of (aij). Let Ξx be the set of pairs of matrices

([
a11 a12
a21 a22

]
,
[
α11 α12
α21 α22

])
∈ Mat2(Ox) ×

Mat2(k(x)) such that

(1) for 1 ≤ i, j ≤ 2, α2
ij = aij , the image of aij in k(x);

(2) det(αij) = 0 ;

(3) vx(det(aij)) = 1.

Lemma 2.4. Let µx : Ξx → Mat2(Ox) be the projection to the first factor (aij). We have

h̃�x = µx,∗1Ξx . (2.11)
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Proof. Let (aij) ∈ Mat2(Ox)vx(det)=1 be such that all aij are squares. Then its preimage in ΞD,x
consists of (αij) ∈ Mat2(k(x)) where αij is a square root of aij , such that det(αij) = 0. If all
aij are units, among the

∏
i,j(1 + ηx(aij)) = 24 = 16 choices of (αij), only half of them satisfy

det(αij) = 0. Hence the preimage of such (aij) in Ξx consists of 8 elements. If at least one of aij
is non-unit, then the condition vx(det(aij)) = 1 implies det(αij) = 0. Therefore, the preimage
of such (aij) ∈ Mat2(Ox)vx(det)=1 in Ξx has cardinality given by

∏
i,j(1+ ηx(aij)), as desired by

(2.10). �

2.4.2. The function f�
x . We introduce another test function, closely related to h�x , which will

be useful in the calculation of its action on representations.

For x ∈ R, let f̃�
x be the function supported on Mat2(Ox)vx(det)=1 given by the formula

f̃�

x ((aij)) =





ηx(a11a12) if a11, a12 ∈ O×x ;

ηx(a21a22) if a21, a22 ∈ O
×
x ;

0 otherwise.

Note that the first two cases above are not mutually exclusive, but when all aij ∈ O×x we have
ηx(a11a12) = ηx(a21a22) because the rank of (aij) ∈Mat2(k(x)) is one.

We then define

f�

x = px∗f̃
�

x ∈ C
∞
c (G(Fx)).

Lemma 2.5. The function f̃�
x is characterized up to a scalar by the following three properties:

(1) Its support is contained in Mat2(Ox)vx(det)=1;

(2) It is left invariant under GL2(Ox);

(3) Under the action of the diagonal torus Ã(Ox) by right multiplication, it is an eigenfunction
with eigencharacter diag(a, d) 7→ ηx(a/d).

Furthermore, we have

f̃�

x =
∑

u∈k(x)×
ηx(u) · 1GL2(Ox)

[
1 u
̟x

]. (2.12)

Proof. Let F be the space C-valued functions satisfying the above conditions. The coset space
GL2(Ox)\Mat2(Ox)vx(det)=1 has representatives given by

[
̟x 0
0 1

]
,

[
1 u
0 ̟x

]
, u ∈ k(x).

We have a bijection GL2(Ox)\Mat2(Ox)vx(det)=1
∼= P1(k(x)) = k(x)∪{∞} by sending

[
̟x 0
0 1

]
to

∞ and
[
1 u
0 ̟x

]
to u. The right multiplication of Ã(Ox) on GL2(Ox)\Mat2(Ox)vx(det)=1 factors

through Ã(Ox) → Ã(k(x)), and diag(a, d) acts as u 7→ (d/a) · u (u ∈ P1(k(x))). Therefore F is

isomorphic to the ηx-eigenspace of Ã(k(x)) on C(P1(k(x))) under right translation. The latter
space is one-dimensional and is spanned by fη : u 7→ ηx(u) for u ∈ k(x)

× and zero for u = 0 or
∞. Hence dimC F = 1.

The RHS of the expression (2.12) is the function in F corresponding to fη, therefore it is a

constant multiple of f̃�
x . But both sides take value 1 at

[
1 1
0 ̟x

]
, they must be equal. This proves

the lemma.
�

We compare the test functions h�x and f�
x .

Lemma 2.6. The difference h�x −f
�
x is a sum of two functions, one is invariant under the right

translation by A(Ox), and the other is η-eigen under the left translation by A(Ox).

Proof. The function h̃�x can be written as

h̃�x = Φ0 −
1

2
Φ1,
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where both Φ0 and Φ1 are supported on Mat2(Ox)vx(det)=1:

Φ0((aij)) =
∏

i,j∈{1,2}
(1 + ηx(aij))

and

Φ1((aij)) =

{∏
i,j∈{1,2}(1 + ηx(aij)) aij ∈ O×x 1 ≤ i, j ≤ 2;

0 otherwise.

For any subset S ⊂ {(1, 1), (1, 2), (2, 1), (2, 2)}, define the following functions supported on
Mat2(Ox)vx(det)=1:

δ̃0,S((aij)) : =
∏

(i,j)∈S
ηx(aij),

δ̃1,S((aij)) : =

{∏
(i,j)∈S ηx(aij), aij ∈ O×x 1 ≤ i, j ≤ 2;

0 otherwise.

Then

Φ0 =
∑

S

δ̃0,S , Φ1 =
∑

S

δ̃1,S ,

hence

h̃�x =
∑

S

δ̃0,S −
1

2

∑

S

δ̃1,S . (2.13)

On the other hand, let S1∗ = {(1, 1), (1, 2)} (entries in the first row) and S2∗ = {(2, 1), (2, 2)}
(entries in the second row). From the definition of f̃�

x , we have

f̃�
x = δ̃0,S1∗ + δ̃0,S2∗ −

1

2

(
δ̃1,S1∗ + δ̃1,S2∗

)
. (2.14)

In fact, the only non-obvious part of the equality is when all four entries are units, in which

cases all four functions δ̃0,S1∗ , δ̃0,S2∗ , δ̃1,S1∗ and δ̃1,S2∗ take the same value. Comparing (2.13)

and (2.14), we see that h̃�x − f̃
�
x is a linear combination of δ̃0,S and δ̃1,S for S in one of the three

cases

(1) |S| is odd;

(2) S is either a column, or contains every entry;

(3) S is one of the two diagonals.

Therefore h�x − f
�
x is a linear combination of δ0,S = px∗δ̃0,S and δ1,S = px∗δ̃1,S for S in one of

the above three cases.
In case (1), δ̃0,S and δ̃1,S are eigenfunctions under the translation by scalar matrices in O×x

with nontrivial eigenvalue ηx, therefore δ0,S = δ1,S = 0.

In case (2), δ̃0,S and δ̃1,S are right invariant under Ã(Ox). Therefore δ0,S and δ1,S are right
invariant under A(Ox).

In case (3), δ̃0,S and δ̃1,S are eigen under the left translation by Ã(Ox) with respect to the
character diag(a, d) 7→ ηx(a/d), and hence δ0,S and δ1,S are ηx-eigen under the left translation
by A(Ox).

Combining these calculations, we have proved the lemma. �

2.4.3. We fix a decomposition

Σ = Σ+ ⊔ Σ−. (2.15)

Let N± = degΣ±. Later such a decomposition will come from a pair µ, µ′ ∈ Tr,Σ (see (4.6),
(4.7)).
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For each x ∈ Σ, we define a subset Jx ⊂ G(Ox) by

Jx =





{
g ∈ G(Ox)|g ≡

[
∗ ∗

0 ∗

]
mod mx

}
= Iwx, if x ∈ Σ+,

{
g ∈ G(Ox)|g ≡

[
∗ ∗

∗ 0

]
mod mx

}
= Iwx · w, if x ∈ Σ−.

(2.16)

Here w =
[

1
−1

]
is the Weyl element. The local component fx of our test function f at x ∈ Σ

will be the characteristic function of Jx.

2.5. Calculations of local spherical characters. In this subsection we compute the local
distributions Jπx(fx, s1, s2) for certain pairs (πx, fx). We always assume that the additive char-
acter ψx is unramified. It follows that our measure d×tx = ζx(1)

dtx
|tx| on A(Fx) = F×x gives

vol(O×x ) = 1.

2.5.1. The case x ∈ R and πx unramified. We consider the test function introduced in §2.4.2

f̃x = f̃�

x , fx = f�

x .

We need an equivalent expression of the local spherical character (2.8):

Jπx(fx, s1, s2) =
∑

{Wi}

λ♮x(Wi,1, s1 + s2)λ
♮
x

(
πx(f∨x )Wi, ηx, s1 − s2

)

θ♮x(Wi,Wi)
, (2.17)

where
f∨x (g) : = fx(g−1).

Similar definition applies to the test function f̃x on GL2(Fx). By (2.12), we have

f̃∨x =
∑

u∈k(x)×
ηx(u) · 1[ 1 u

̟x

]−1
GL2(Ox)

.

Lemma 2.7. Let πx be unramified and Kx = G(Ox). Let W0 ∈ Wψx(πx)
Kx be the unique

element such that W0(12) = 1. Then

π(f∨x )W0

([
a

1

])
=

{
vol(Kx)ηx(−a) · q

1/2
x ǫ(ηx, 1/2, ψx), vx(a) = −1,

0, otherwise.

Here the local ǫ-factor for the quadratic character ηx is given by

ǫ(ηx, 1/2, ψx) = q−1/2x

∑

u∈k(x)×
ηx(a

′u)ψx(a
′u)

where a′ ∈ F×x is any element with vx(a
′) = −1.

Proof. Let
[ α

β

]
∈ SL2(C) (i.e., αβ = 1) be the Satake parameter of π. By Casselman–Shalika

formula, we have

W0

([
̟n
x

1

])
=

{
q
−n/2
x

αn+1−βn+1

α−β , n ≥ 0,

0, n < 0.

On the other hand, we have

πx

([
1 u

̟x

]−1)
W0

([
a

1

])
=W0

([
a

1

] [
1 u

̟x

]−1)

=W0

([
1 −au

1

] [
a

̟−1x

])
= ψx(−ua)W0

([
a̟x

1

])
.

It follows that

πx(f
∨
x )W0

([
a

1

])
= vol(Kx)


 ∑

u∈k(x)×
ηx(u)ψx(−ua)


W0

([
a̟x

1

])
.
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By the support of W0, the second factor in the RHS vanishes if vx(a) ≤ −2. Since ψx is
unramified, the first factor in the RHS vanishes if vx(a) ≥ 0. When vx(a) = −1, we have

πx(f
∨
x )W0

([
a

1

])
=vol(Kx)


 ∑

u∈k(x)×
ηx(u)ψx(−au)




=vol(Kx)ηx(−a)


 ∑

u∈k(x)×
ηx(−au)ψx(−au)




=vol(Kx)ηx(−a) · q
1/2
x ǫ(ηx, 1/2, ψx).

This completes the proof. �

Proposition 2.8. Let πx be unramified, and F ′x/Fx ramified. Then

Jπx(h
�

x , s1, s2) = Jπx(f
�

x , s1, s2) = vol(G(Ox))ζx(2) · ηx(−1)ǫ(ηx, 1/2, ψx) · q
s1−s2+1/2
x .

Proof. We use the formula (2.17) for the local spherical character evaluated at fx = f�
x . Now

we note that f∨x is right invariant under Kx = G(Ox). Therefore we may simplify the sum into
one term involving only the spherical vector W0 ∈ Wψx(πx)

Kx (normalized so that W0(12) = 1):

Jπx(fx, s1, s2) =
λ♮x(W0,1, s1 + s2)λ

♮
x

(
π(f∨)W0, ηx, s1 − s2

)

θ♮x(W0,W0)
. (2.18)

Since πx is unramified, we have

λ♮x(W0,1, s) = 1. (2.19)

The quadratic character ηx is ramified and hence

L(πx ⊗ ηx, s) = 1.

Using this and Lemma 2.7, we get

λ♮x

(
πx(f∨x )W0, ηx, s

)
= vol(Kx)ηx(−1)q

1/2
x ε(ηx, 1/2, ψx) · q

s
x. (2.20)

Again since πx is unramified (and ψx unramified), we have

θ♮x(W0,W0) = 1− q−2x = ζx(2)
−1. (2.21)

Plugging (2.19), (2.20) and (2.21) into (2.18), we get the desired formula for Jπx(f
�
x , s1, s2).

To show Jπx(h
�
x , s1, s2) = Jπx(f

�
x , s1, s2), by Lemma 2.6, it suffices to show that Jπx(f, s1, s2) =

0 when f is either

(1) invariant under right translation by A(Ox), or

(2) ηx-eigen under left translation by A(Ox).

In the first case, f∨ is invariant under the left translation by A(Ox). The desired vanishing
follows from the formula (2.17), and the fact that the linear functional λ♮x(−, ηx, s) of πx is
ηx-eigen under A(Ox). In the second case, the desired vanishing follows from the formula (2.8),
and the fact that the linear functional λ♮x(−,1, s) of πx is invariant under A(Ox). �

2.5.2. The case x ∈ Σ and πx a twisted Steinberg. Let St be the Steinberg representation of
G(Fx).

Proposition 2.9. Let πx = Stχ = St⊗χ be an unramified twist of Steinberg representation,
where χ is an unramified quadratic character of F×x . Then we have

Jπx(1Iwx
, s1, s2) = vol(G(Ox))ζx(2) · q

−1
x , (2.22)

Jπx(1Iwx·w, s1, s2) = vol(G(Ox))ζx(2) · ǫ(πx ⊗ ηx, 1/2, ψx)q
s1−s2−1
x . (2.23)

Proof. We first prove (2.22). By (2.8), the local spherical character evaluated at f = 1Iwx

simplifies into one term

Jπx(1Iwx
, s1, s2) = vol(Iwx)

λ♮x(W0,1, s1 + s2)λ
♮
x (W0, ηx, s1 − s2)

θ♮x(W0,W0)
, (2.24)
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whereW0 is any nonzero element in the lineWψx(Stχ)
Iwx . We normalizedW0 so thatW0(12) = 1,

then we have explicitly

W0

([
a

1

])
=

{
χ(a)|a|, vx(a) ≥ 0,

0, vx(a) < 0.

For any unramified character χ′ : F×x → C×, we have

λ♮x(W0, χ
′, s) = 1. (2.25)

We compute the inner product θ♮x(W0,W0). First we note
∫

F×
x

W0

([
a

1

])
W 0

([
a

1

])
d×a =

∞∑

i=0

q−2ix = (1− q−2x )−1.

For πx = Stχ, the local L-factor

L(πx × π̃x, s) = (1− q−1−sx )−1(1− q−sx )−1.

It follows that the normalized inner product

θ♮x(W0,W0) = 1− q−1x .

Finally we note
vol(Iwx) = (1 + qx)

−1 vol(G(Ox)).

Hence
vol(Iwx)θ

♮
x(W0,W0)

−1 = vol(G(Ox))ζx(2)q
−1
x . (2.26)

Plugging (2.25), (2.26) into (2.24), we get (2.22).
Now we prove (2.23). By definition, we have

Jπx(1Iwx·w, s1, s2) =
∑

{Wi}

λ♮x(πx(1Iwx·w)Wi,1, s1 + s2)λ
♮
x

(
W i, η, s1 − s2

)

θ♮x(Wi,Wi)

=
∑

{Wi}

λ♮x(πx(1Iwx
)πx(w)Wi,1, s1 + s2)λ

♮
x

(
πx(w)πx(w)Wi, ηx, s1 − s2

)

θ♮x(πx(w)Wi, πx(w)Wi)

Note that {π(w)Wi} is another orthogonal basis for Wψx(Stχ), therefore we may rename it by
{Wi} and rewrite the above as

Jπx(1Iwx·w, s1, s2) =
∑

{Wi}

λ♮x(πx(1Iwx)Wi,1, s1 + s2)λ
♮
x

(
πx(w)Wi, ηx, s1 − s2

)

θ♮x(Wi,Wi)

which again simplifies into one single term corresponding to the unique W0 ∈ Wψx(Stχ)
Iwx with

W0(12) = 1

Jπx(1Iwx·w, s1, s2) = vol(Iwx)
λ♮x(W0,1, s1 + s2)λ

♮
x

(
πx(w)W0, ηx, s1 − s2

)

θ♮x(W0,W0)
, (2.27)

We have an explicit formula

(πx(w)W0)

([
a

1

])
=W0

([
a

−1

])
=

{
−q−1x χ(a)|a|, vx(a) ≥ −1

0, vx(a) ≤ −2.

Using this we can calculate

λ♮x(πx(w)W0, ηx, s) = −(χηx)(̟x)q
s
x. (2.28)

Plugging (2.26), (2.25) and (2.28) into (2.27), we get

Jπx(1Iwx·w, s1, s2) = − vol(G(Ox))ζx(2)(χηx)(̟x)q
s1−s2−1
x . (2.29)

Finally recall the ε-factor for the twisted Steinberg πx ⊗ ηx = St⊗χηx and the unramified ψx is
the Atkin–Lehner eigenvalue

ǫ(πx ⊗ ηx, 1/2, ψx) = ε(St⊗χηx, 1/2, ψx) = −(χηx)(̟x).
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Using this we can rewrite (2.29) in the form of (2.23).
�

2.6. The global spherical character for our test functions.

2.6.1. Assumptions on π. Let π = ⊗′x∈|X|πx be a cuspidal automorphic representation of G(A)
which is ramified exactly at the set Σ. Assume that πx is isomorphic to an unramified twist of
the Steinberg representation at each x ∈ Σ.

Recall that R ⊂ |X | is the ramification locus of the double cover ν : X ′ → X . Assume
Σ ∩ R = ∅. Let Σ = Σf ⊔ Σ∞ be the decomposition determined by the conditions (1.4) and
(1.5).

The degrees of the L-functions L(π, s) and L(π ⊗ η, s) as a polynomials of q−s are

degL(π, s) = 4g − 4 +N, degL(π ⊗ η, s) = 4g − 4 + 2ρ+N.

We set

LF ′/F (π, s1, s2)

:= q(2g−2+N/2)(s1+s2)+(2g−2+ρ+N/2)(s1−s2)L(π, s1 + s2 +
1
2 )L(π ⊗ η, s1 − s2 +

1
2 )

L(π,Ad, 1)

= |ωX |
−2s1qρ(s1−s2)qNs1

L(π, s1 + s2 +
1
2 )L(π ⊗ η, s1 − s2 +

1
2 )

L(π,Ad, 1)
.

Then we have

LF ′/F (π, s1, s2) = (−1)#Σ∞LF ′/F (π,−s1,−s2).

Indeed, the sign that appears above is the root number of the base change L-function L(πF ′ , s),
which is the parity of the number of places in F ′ at which the base change of πx is the Steinberg
representation. If x ∈ Σf , x is split in F ′, its contribution to the root number is always +1; if
x ∈ Σ∞, x is inert in F ′, the base change of πx is always the Steinberg representation, hence it
contributes −1 to the root number.

Recall that in (2.15) we have a decomposition Σ = Σ+ ⊔ Σ− (right now arbitrary). We set

ǫ−(π ⊗ η) : =
∏

x∈Σ−

ǫ(πx ⊗ ηx, 1/2).

Note that this is the Atkin–Lehner eigenvalue at the set of places Σ−.
For each f ∈H Σ∪R

G , we define

fΣ± = f ⊗

(⊗

x∈R
h�x

)
⊗

(⊗

x∈Σ
1Jx

)
∈ C∞c (G(A)). (2.30)

Proposition 2.10. Let π be a cuspidal automorphic representation of G(A) satisfying the con-
ditions in §2.6.1. Let λπ : H Σ∪R

G → C be the homomorphism associated to π. Then for
f ∈H Σ∪R

G , we have

qN+s1+N−s2Jπ(f
Σ± , s1, s2) =

1

2
λπ(f) · ǫ−(π ⊗ η) · |ωX |q

ρ/2−N
LF ′/F (π, s1, s2).

Proof. We choose a nontrivial ψ : F\A→ C×. Such a ψ comes from a rational differential form

c on X , so that the conductor of ψx is m
vx(c)
x where vx(c) is the order of c at x. We choose such

a c so that c has no zeros or poles at Σ ∪R, so that ψx is unramified at x ∈ Σ ∪R.
When x /∈ Σ ∪R, fx is in the spherical Hecke algebra Hx, therefore

Jπx(fx, s1, s2) = λπx(fx) vol(G(Ox))
λ♮x(W0,1, s1 + s2)λ

♮
x(W 0, ηx, s1 − s2)

θ♮x(W0,W0)

for W0 ∈ Wψx(πx)
G(Ox) normalized by W0(12) = 1. By the same proof as [10, Lemma 4.6], we

obtain

λ♮x(W0,1, s1 + s2)λ
♮
x(W 0, ηx, s1 − s2)

θ♮x(W0,W0)
= ηx(c)|c|

−2s1+1/2
x ζx(2).
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Therefore

Jπx(fx, s1, s2) = vol(G(Ox))ζx(2) · ηx(c)|c|
−2s1+1/2
x λπx(fx). (2.31)

Now we use the calculation of local spherical characters at x ∈ Σ ∪R given in Prop. 2.8 and
2.9 together with (2.31), and plug them into (2.9) to obtain

Jπ(f
Σ± , s1, s2) (2.32)

= |ωX |
−1CvolC0CΣ+CΣ−CR

L(π, s1 + s2 +
1
2 )L(π ⊗ η, s1 − s2 +

1
2 )

2L(π,Ad, 1)

where

Cvol =
∏

x∈|X|
vol(G(Ox))ζx(2) = vol(G(O))ζF (2) = |ωX |

3/2,

C0 = λπ(f)
∏

x/∈R∪Σ
ηx(c)|c|

1/2−2s1
x = λπ(f)|ωX |

1/2−2s1
∏

x/∈R∪Σ
ηx(c), (2.33)

CΣ+ =
∏

x∈Σ+

q−1x = q−N+ ,

CΣ− =
∏

x∈Σ−

ε(πx ⊗ ηx, 1/2, ψx)q
s1−s2−1
x = ε−(π ⊗ η)q

N−(s1−s2)−N− ,

CR =
∏

x∈R
ηx(−1)ǫ(ηx, 1/2, ψx)q

s1−s2+1/2
x = qρ(s1−s2)+ρ/2

∏

x∈R
ǫ(ηx, 1/2, ψx). (2.34)

Here, in (2.33) we used that c is a differential form with no zeros or poles along Σ∪R; in (2.34)
we have used

∏
x∈R ηx(−1) = η(−1) = 1 since ηx(−1) is trivial for x /∈ R. Taking the product

and using (2.32) we get

Jπ(f
Σ± , s1, s2) (2.35)

=
1

2
λπ(f)|ωX |ε−(π ⊗ η) · Cη · |ωX |

−2s1qρ(s1−s2)+ρ/2q−NqN−(s1−s2)

×
L(π, s1 + s2 +

1
2 )L(π ⊗ η, s1 − s2 +

1
2 )

L(π,Ad, 1)

where

Cη =
∏

x∈R
ǫ(ηx, 1/2, ψx)

∏

x/∈R∪Σ
ηx(c).

We claim that Cη = 1. In fact, for x /∈ R we have

ǫ(ηx, 1/2, ψx) = ηx(c).

It follows that

Cη = ǫ(η, 1/2, ψ).

Recall that ǫ(η, s) = ǫ(η, s, ψ) =
∏
x∈|X| ǫ(ηx, s, ψx) is the ǫ-factor in the functional equation

L(η, s) = ǫ(η, s)L(η, 1 − s). It follows from the expression L(η, s) = ζF ′ (s)
ζF (s) that ǫ(η, 1/2) = 1.

This provesCη = 1. Comparing the other terms in (2.35) and in the definition of LF ′/F (π, s1, s2),
we get

Jπ(f
Σ± , s1, s2) =

1

2
λπ(f)ε−(π ⊗ η)|ωX |q

ρ/2−N qN−(s1−s2)−Ns1LF ′/F (π, s1, s2).

Multiplying both sides by qN+s1+N−s2 , the proposition follows. �

3. Shtukas with Iwahori level structures

In this section we will define various moduli stacks of Shtukas with Iwahori level structure
and “supersingular legs” at ∞. We study the geometric properties of such moduli stacks, and
establish the spectral decomposition of their cohomology under the action of the Hecke algebra.
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3.1. Bundles with Iwahori level structures. Let n be a positive integer. Let G = PGLn.
Let Σ ⊂ |X | be finite set of closed points of X .

Definition 3.1. Let Bunn(Σ) be the moduli stack whose S-points is the groupoid of

E† =

(
E , {E(−

j

n
x)}1≤j≤n−1,x∈Σ

)

where

• E is a rank n vector bundle over X ×k S;

• For each x ∈ Σ, {E(− j
nx)}1≤j≤n−1 form a chain of coherent subsheaves of E such that

E ⊃ E(−
1

n
x) ⊃ E(−

2

n
x) ⊃ · · · ⊃ E(−

n− 1

n
x) ⊃ E(−x) = E ⊗OX OX(−x)

and that the quotient E(− j−1n x)/E(− j
nx) is scheme theoretically supported at {x} ×k S =

Spec k(x) ×k S and is locally free of rank one on {x} ×k S.

The Picard stack PicX acts on Bunn(Σ) by tensoring on both E and the E(− j
nx)’s. We define

BunG(Σ) := Bunn(Σ)/PicX .

3.1.1. Fractional twists. Let E† = (E ; {E(− j
nx)}x∈Σ) ∈ Bunn(Σ)(S). For any rational divisor

D =
∑

x

cx · x

satisfying

cx ∈
1

n
Z for x ∈ Σ; cx ∈ Z otherwise, (3.1)

we may define a vector bundle E(D) in the following way. There is a unique way to write
D = D0 −D1 where D0 ∈ Div(X) and D1 =

∑
x∈Σ

ix
n x for integers 0 ≤ ix ≤ n− 1. We define

E(−D1) ⊂ E to be the kernel of the sum of projections

E −→
⊕

x∈Σ
E/E(−

ix
n
x).

Then we define E(D) = E(−D1)⊗X OX(D0). It is easy to check that E(D +D′) = (E(D))(D′)
whenever both D and D′ satisfy (3.1).

3.1.2. Variant of fractional twists. Now suppose Σ is decomposed into a disjoint union of two
subsets

Σ = Σ∞
∐

Σf . (3.2)

Let

S∞ =
∏

x∈Σ∞

Spec k(x) (product over k).

We now consider the base change

Bunn(Σ)×S∞.

An S-point of S∞ is a collection {x(1)}x∈Σ∞ where x(1) : S → Spec k(x) →֒ X , for each
x ∈ Σ∞. It will be convenient to introduce x(i) for all integers i inductively such that

x(i) = x(i−1) ◦ FrS : S
FrS−−→ S

x(i−1)

−−−−→ Spec k(x) →֒ X, i ∈ Z. (3.3)

Clearly we have x(i) = x(i+dx), where dx = [k(x) : k].
For each x ∈ Σ∞, we have a canonical point

x(1) : S∞ −→ Spec k(x) −→ X

given by projection to the x-factor. We define x(i) as in (3.3) with S replaced by S∞. Then the
graph Γx(i) of x(i) is a divisor in X ×S∞; moreover we have a decomposition

{x} ×k S∞ = Spec k(x) ×S∞ =

dx∐

i=1

Γx(i) .
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Now let {x(1)}x∈Σ∞ be an S-point of S∞, then the graphs of x(i) (x ∈ Σ∞, 1 ≤ i ≤ dx) are
divisors in X × S pulled back from the divisors Γx(i) on X ×S∞. For E† ∈ Bunn(Σ)(S), the

quotient E/E(− i
nx) then splits as a direct sum ⊕dxj=1Q

(j)
i where Q

(j)
i is supported on Γx(j) (with

rank i). We define E(− i
nx

(j)) to be the kernel

E(−
i

n
x(j)) := ker

(
E −→ E/E(−

i

n
x) ։ Q

(j)
i

)
.

In other words, {E(− i
nx

(j))}1≤i≤n−1 give an Iwahori level structure of E at x(j). With these

definitions, for E† ∈ Bunn(Σ)(S), the construction in §3.1.1 then allows us to make sense of
E(D) where D is a divisor on X ×S∞ of the form

D =
∑

x∈Σ∞,1≤j≤dx
c(j)x x(j) +

∑

x∈|X|−Σ∞

cxx (3.4)

where

c(j)x ∈
1

n
Z, for x ∈ Σ∞, 1 ≤ j ≤ dx;

cx ∈
1

n
Z, for x ∈ Σf ;

cx ∈ Z, otherwise.

More precisely, we write D = D0 − D1 where D0 ∈ Div(X × S∞) and D1 is supported on

{x(j)}x∈Σ∞,1≤j≤dx and Σf with coefficients
i(j)x

n (for x ∈ Σ∞) and ix
n (for x ∈ Σf ), both between

1
n and n−1

n . We define E(−D1) to be the kernel of the sum of the projections

E −→


 ⊕

x∈Σ∞,1≤j≤dx
E/E(−

i
(j)
x

n
x(j))


⊕


⊕

x∈Σf

E/E(−
ix
n
x)


 .

Finally let E(D) := E(−D1)⊗OX×S∞ OX×S∞(D).

Definition 3.2. Let D be a Q-divisor of X × S∞ satisfying the conditions as in (3.4). The
Atkin–Lehner automorphisms for Bunn(Σ) and BunG(Σ) are maps

ÃL(D) : Bunn(Σ)×S∞ −→ Bunn(Σ),

AL(D) : BunG(Σ)×S∞ −→ BunG(Σ)

sending E† = (E ; {E(− j
nx)}x∈Σ; {x

(1)}x∈Σ∞) to

E†(D) =

(
E(D); {E(D −

j

n
x)}x∈Σ

)

which makes sense by the discussion in §3.1.2.

The maps ÃL(D) and AL(D) are analogous to the Atkin–Lehner automorphisms on the
modular curves, hence their name. From the definition we see that AL(D∞) depends only on
D∞ mod Z.

3.1.3. Let r ≥ 0 be an integer and µ = (µ1, ..., µr) ∈ {±1}r. We define the Hecke stack with
Iwahori level structures.

Definition 3.3. Let Hk
µ
n(Σ) be the stack whose S-points is the groupoid of the following data:

• A sequence of S-points E†i = (Ei; {Ei(−
j
nx)}x∈Σ) ∈ Bunn(Σ)(S);

• Morphisms xi : S → X for i = 1, . . . , r, with graphs Γxi ⊂ X × S;

• Isomorphisms of vector bundles

fi : Ei−1|X×S−Γxi

∼
−→ Ei|X×S−Γxi

, i = 1, 2, . . . , r, (3.5)

These data are required to satisfy the following conditions

(1) If µi = 1, then fi extends to an injective map Ei−1 → Ei whose cokernel is an invertible sheaf

on the graph Γxi. Moreover, fi sends Ei−1(−
j
nx) to Ei(−

j
nx) for all x ∈ Σ and 1 ≤ j ≤ n−1.
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(2) If µi = −1, then f
−1
i extends to an injective map Ei → Ei−1 whose cokernel is an invertible

sheaf on the graph Γxi . Moreover, f−1i sends Ei(−
j
nx) to Ei−1(−

j
nx) for all x ∈ Σ and

1 ≤ j ≤ n− 1.

We have a morphism π
µ

Hk : Hk
µ
n(Σ) → Xr recording the points x1, . . . , xr in the above

definition. For 0 ≤ i ≤ r, let

p̃i : Hk
µ
n(Σ) −→ Bunn(Σ)

be the morphism recording the i-th point E†i ∈ Bunn(Σ).

There is an action of PicX on Hk
µ
n(Σ) by tensoring. We form the quotient

Hk
µ

G(Σ) = Hk
µ
n(Σ)/PicX

with maps recording E†i

pi : Hk
µ

G(Σ) −→ BunG(Σ), i = 0, . . . , r.

Proposition 3.4. (1) For 0 ≤ i ≤ r, the morphism p̃i : Hk
µ
n(Σ) → Bunn(Σ) is smooth of

relative dimension rn.

(2) For 0 ≤ i ≤ r, the morphism (p̃i, π
µ

Hk) : Hk
µ
n(Σ) → Bunn(Σ) × Xr is smooth of relative

dimension r(n− 1) when restricted to Bunn(Σ)× (X − Σ)r.

(3) For 0 ≤ i ≤ r, the morphism (p̃i, π
µ

Hk) : Hk
µ
n(Σ)→ Bunn(Σ)×Xr is flat of relative dimension

r(n− 1).

(4) The statements of (1)-(3) hold when Hk
µ
n(Σ) is replaced with Hk

µ

G(Σ) and Bunn(Σ) is re-
placed with BunG(Σ).

Proof. We first make some reductions. Once (1)-(3) are proved, (4) follows by dividing out by

PicX . By the iterative nature of Hk
µ
n(Σ), it is enough to treat the case r = 1. We consider the

case µ = 1 and i = 1; the other cases can be treated similarly. We also base change the situation

to k without changing notation (i.e., X now means Xk, Σ means Σ(k), etc). Moreover, if x ∈ Σ

and Σx = Σ − {x}, we observe that over X − Σx there is an isomorphism Hk
µ
n(Σ)|X−Σx ∼=

(Hk
µ
n({x})|X−Σx)×Bunn({x})Bunn(Σ) such that the projection p1 is the projection to the second

factor. Therefore to show the statements over X − Σx, it suffices to show the same statements
for Σ = {x}. Since the X − Σx cover X as x runs over Σ, we reduce to the case where Σ is a
singleton {x}. In other words, we are concerned with the map

p̃1 : Hk1n({x}) −→ Bunn({x})×X.

(2) Since Hk1n({x})|X−{x} ∼= (Hk1n|X−{x})×Bunn
Bunn({x}), we have a Cartesian diagram

Hk1n({x})|X−{x}
p̃1|X−{x}

//

��

Bunn({x})× (X − {x})

��

Hk1n
p̃1

// Bunn ×X

Since the bottom horizontal map Hk1n → Bunn×X is the projectivization of the universal bundle
over Bunn ×X , it is smooth of relative dimension n− 1. Therefore the same is true for the top
horizontal map.

(1) and (3). Let S = SpecR where R is a local k-algebra. Let E† ∈ Bunn({x})(S). The fiber
p̃−11 (E†) classifies F† ∈ Bunn({x}) such that F(− i

nx) ⊂ E(−
i
nx) with length-one quotient. Such

F(− i
nx) is classified by the projectivization P(E(− i

nx)) over X × S. The fiber p̃−11 (E†) is then
a closed subscheme of

P(E)×X×S P(E(−
1

n
x)) ×X×S · · · × P(E(−

n− 1

n
x)).

We will write down defining equations of this closed subscheme. Let Ux ⊂ X be an open affine
neighborhood of x, and let t ∈ O(Ux) be a coordinate at x. Shrinking Ux we may assume t
only vanishes at x. Since we know (2) already, to show (1) and (3), it is enough to show the
corresponding statements over Ux.
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After étale localizing S, we may assume that E† is trivialized on Ux × S. Thus we fix a
trivialization ι : E|Ux×S

∼
→ OnUx×S so that

ι(E(−
i

n
x)|Ux×S) = tOUx×S ⊕ · · · ⊕ tOUx×S ⊕OUx×S ⊕ · · · ⊕ OUx×S (3.6)

where the first i summands are tOUx×S and the last n− i are OUx×S . Using the decomposition
(3.6), we may canonically identify P(E(− i

nx))|Ux×S ∼= Pn−1 × Ux × S. Let S′ = SpecR′ where
R′ is a local R-algebra. Then an R′ point in p̃−1(E†)|Ux×S may be expressed using homogeneous

coordinates a(i) = [a
(i)
0 , . . . , a

(i)
n−1] ∈ Pn−1(R′) for i = 0, . . . , n − 1 (which gives F(− i

nx)) and a

point y ∈ Ux(R). The superscripts and subscripts of a
(i)
j are understood as elements in Z/nZ,

so a
(0)
j = a

(n)
j etc..

The condition F(− i
nx) ⊂ F(−

i−1
n x) means that the following diagram can be completed into

a commutative diagram by a choice of λ ∈ R′

E(− i
nx)

evy
//

� _

��

R′n

τi−1:=diag(1,··· ,t(y),··· ,1)
��

a(i) // R′

λ

��
✤

✤

✤

E(− i−1n x)
evy

// R′n
a(i−1)

// R′

where the middle vertical map τi−1 is the diagonal matrix with t(y) ∈ R′ on the (i, i)-entry

and 1 elsewhere on the diagonal (so τi−1(a(i−1)) multiplies a
(i−1)
i−1 by t(y) and leaves the other

coordinates unchanged). This gives the closed condition

τi−1(a(i−1)) is in the line spanned by a(i). (3.7)

We study the special fiber of p̃i over (E†, x). Fix a k-point of F† ∈ p̃−11 (E†) over y = x with

coordinates a(i) = [a
(i)
0 , . . . , a

(i)
n−1], i ∈ Z/nZ. Let [ei] ∈ Pn−1 be the coordinate line where only

the i-th coordinate can be nonzero. Define

I = {i ∈ Z/nZ|a(i) = [ei]}.

It is easy to see from the condition (3.7) that I 6= ∅. The points in I cut the cyclically ordered
set Z/nZ into intervals (think about the n-th roots of unity on the unit circle). For neighboring
i1, i2 ∈ I, we have an interval (i1, i2] (excluding i1 and containing i2 and not containing any
other elements in I). When I is a singleton i1, we understand (i1, i1] to be the whole Z/nZ.

These intervals give a partition of Z/nZ. By (3.7), the homogeneous coordinates [a
(i)
0 , . . . , a

(i)
n−1]

for F(− i
nx) satisfy

If i is in the interval (i1, i2], then a
(i)
j = 0 unless j ∈ [i, i2].

Moreover, by the definition of I, a
(i)
i is nonzero when i ∈ I. The relation (3.7) implies that

whenever i ∈ (i1, i2], where i1, i2 ∈ I are neighbors, a
(i)
i2

is nonzero.

Now we give equations defining p̃−11 (E†) near the point F†. Let a(i) = [a
(i)
0 , . . . , a

(i)
n−1], 0 ≤

i ≤ n− 1 be the coordinates of such an R′-valued point that specializes to F†. For an interval

(i1, i2] and i ∈ (i1, i2], since a
(i)
i2
6= 0, a

(i)
i2

is interval in R′, therefore we may assume a
(i)
i2

= 1
for i ∈ (i1, i2]. We now use the following affine coordinates: for any interval (i1, i2] formed by
neighboring elements i1, i2 ∈ I, we consider

a
(i1+1)
i1+1 , · · · , a

(i1+1)
i2−1 , and a

(i1)
i2

. (3.8)

There are n such variables. The condition (3.7) implies that
∏

i1∈I
a
(i1)
i2

= t(y) (3.9)

where i1 runs over I and i2 is its immediate successor. It turns out that the other coordinates
can be uniquely determined by the ones in (3.8) using the condition (3.7), and that (3.9) is the
only relation implied by (3.7). From this description we conclude that étale locally near F†,
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p̃−11 (E†)|Ux is isomorphic to AnS with the map p̃−11 (E†)|Ux → Ux × S
t
−→ A1

S corresponding to
AnS → A1

S given by the product of a subset of coordinates. Therefore (1) and (3) follow. �

3.2. Shtukas with Iwahori level structures.

3.2.1. Moduli of rank n Shtukas with Iwahori level structures. Let µ ∈ {±1}r. Fix a divisor D∞
on X ×S∞ supported at Σ∞ ×S∞ of the form

D∞ =
∑

x∈Σ∞,1≤i≤dx
c(i)x x(i), c(i)x ∈

1

n
Z. (3.10)

We assume that µ satisfies the following condition

r∑

i=1

µi =
∑

x∈Σ∞,1≤i≤dx
nc(i)x = n degD∞. (3.11)

Definition 3.5. We define the stack Sht
µ
n(Σ;D∞) by the Cartesian diagram

Sht
µ
n(Σ;D∞) //

��

Hk
µ
n(Σ)×S∞

(p̃0,ÃL(−D∞)◦(p̃r×idS∞ ))

��

Bunn(Σ)
(id,Fr)

// Bunn(Σ)× Bunn(Σ)

(3.12)

Concretely, for a k-scheme S, an S-point of Sht
µ
n(Σ;D∞) consists of the following data:

• For each 0 ≤ i ≤ r, a point E†i = (Ei; {Ei(−
j
nx)}x∈Σ) ∈ Bunn(Σ)(S);

• For each x ∈ Σ∞, a morphism x(1) : S → Spec k(x);

• For each 1 ≤ i ≤ r, a morphism xi : S → X ;

• Maps f1, . . . , fr as in the definition of Hk
µ
n(Σ);

• An isomorphism ι : Er ∼= (τE0)(D∞) (first pullback by Frobenius, then fractional twist by
D∞) respecting the Iwahori level structures at all x ∈ Σ.

By definition, we have a morphism recording xi and {x(1)}x∈Σ∞ in the definition above

Π
µ

n,D∞
: Sht

µ
n(Σ;D∞) −→ Xr ×S∞. (3.13)

Lemma 3.6. Let D∞ be a divisor of the form (3.10). Then the isomorphism type of Shtµn(Σ;D∞)

depends only on the sum
∑

1≤i≤dx c
(i)
x for each x ∈ Σ∞. In other words, Shtµn(Σ;D∞) only

depends on the image of D∞ in Div(Σ∞)⊗Z
1
nZ.

Proof. Let D′∞ =
∑
x∈Σ∞

(
∑

1≤i≤dx c
(i)
x )x(1). It suffices to give a canonical isomorphism α :

Shtµn(Σ;D∞)
∼
→ Shtµn(Σ;D

′
∞). Let (E†i ;xi; {x

(1)}; ι) be an S-point of Shtµn(Σ;D∞). For 0 ≤ t ≤
r, let

F†i = E†i


−

∑

2≤j≤j′≤dx
c(j

′)
x x(j)


 .

One checks that ι induces an isomorphism ι′ : F†r ∼=
τF†0 (D

′
∞). Define α(E†i ;xi; {x

(1)}; ι) =

(F†i ;xi; {x
(1)}; ι′), which is easily seen to be an isomorphism. �

3.2.2. The case r = 0. When r = 0, Sht∅n (Σ;Σ∞) is zero dimensional. We describe the groupoid
of k-points of Sht∅n (Σ;Σ∞). For any ξ : S∞ → k (which amounts to choosing a k-point x(1)

over each x ∈ Σ∞), let Sht∅n (Σ; ξ) be the fiber of Sht∅n (Σ;Σ∞) over ξ.
Let B be the central simple algebra over F of dimension n2, which is split at points away from

Σ∞, and has Hasse invariant invx(B) =
∑

1≤i≤dx cx(i) for x ∈ Σ∞. Let B× denote the algebraic

group over F of the multiplicative group of units in B. For x ∈ Σ, let Kx ⊂ B×(Fx) be a
minimal parahoric subgroup (so for x ∈ Σf , Kx is an Iwahori subgroup of B×(Fx) ∼= GLn(Fx)).
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For x ∈ |X − Σ|, let Kx be a maximal parahoric of B×(Fx) ∼= GLn(Fx) such that almost all of
them come from an integral model of B over X . Then we have an isomorphism of groupoids

Sht∅n (Σ; ξ)(k)
∼= B×(F )\B×(AF )/

∏

x∈|X|
Kx.

3.2.3. The case r = 1 and Drinfeld modules. We consider the special case where r = 1, µ = −1,
Σ∞ consists of a single point ∞, and D∞ = − 1

n∞
(1). In this case the stack Shtµn(Σ;D∞) is

closely related to the moduli stack DrModn(Σf ) of Drinfeld A = Γ(X−{∞},OX)-modules with
Iwahori level structure at Σf . In fact, in [1, Theorem 3.1.4] it is shown that DrModn(Σf ) can be

identified with the open and closed substack of Shtµn(Σ;D∞)|X−{∞} consisting of those (E†i ; . . . )
where E0 has degree n(g − 1) + 1. This implies an isomorphism over X − {∞}:

DrModn(Σf )/Pic
0
X(k) ∼= ShtµG(Σ;D∞)|X−{∞}.

3.2.4. Relation with the usual Shtukas. We explain how Sht
µ
n(Σ;D∞) is related to the Shtukas

in the sense of [8]. Let Σ∞ = {y1, . . . , ys}, and di = [k(yi) : k]. Let r′ = r +
∑s

i=1 di. For each
c ∈ 1

nZ we have a unique coweight µ(c) = (a1, . . . , an) ∈ Zn of GLn such that
∑
i ai = nc and

an ≤ an−1 ≤ . . . ≤ a1 ≤ an + 1 (in other words µ(c) is a minuscule coweight). Let D∞ take the
form (3.10). Let

µ′ = (µ1, . . . , µr, µ(c
(1)
y1 ), . . . , µ(c

(d1)
y1 ), µ(c(1)y2 ), . . . , µ(c

(d2)
y2 ), . . . , µ(c(1)ys ), . . . , µ(c

(ds)
ys )).

This is an r′-tuple of minuscule dominant coweights of GLn. We consider the stack Sht
µ′

n (Σ) of
rank n Shtukas with modification types given by µ′ and Iwahori level structure at Σ: it is given
by the Cartesian diagram

Sht
µ′

n (Σ)

��

// Hk
µ′

n (Σ)

(p̃0,p̃r′ )

��

Bunn(Σ)
(id,Fr)

// Bunn(Σ)× Bunn(Σ)

where Hk
µ′

n (Σ) is defined similarly as Hk
µ
n(Σ). There is a natural map π

µ′

n : Sht
µ′

n (Σ) → Xr′ .
We have a map

eΣ∞ : Xr ×S∞ 7−→ Xr′

given by sending (x1, . . . , xr, y
(1)
1 , . . . , y

(1)
s ) to (x1, . . . , xr, y

(1)
1 , . . . , y

(d1)
1 , y

(1)
2 , . . . , y

(ds)
s ).

Lemma 3.7. There is a canonical closed embedding ẽ : Sht
µ
n(Σ;D∞) →֒ Sht

µ′

n (Σ) making the
following diagram commutative

Sht
µ
n(Σ;D∞)

ẽ //

Π
µ

n,D∞
��

Sht
µ′

n (Σ)

π
µ′
n

��

Xr ×S∞
eΣ∞

// Xr′

Proof. The map ẽ is defined by sending (E†i , fi, ι) ∈ Sht
µ
n(Σ;D∞) over (x1, . . . , xr, y

(1)
1 , . . . , y

(1)
s ) ∈

Xr ×S∞ to the following point (F†i , f
′
i , ι
′) over eΣ∞(x1, . . . , xr , y

(1)
1 , . . . , y

(1)
s ). We define

F†i =





E†i 0 ≤ i ≤ r;

(τE†0)(D∞ − c
(1)
y1 y

(1)
1 − c

(2)
y1 y

(2)
1 − · · · − c

(j1)
y1 y

(j1)
1 ) i = r + j1, 1 ≤ j1 ≤ d1;

(τE†0)(D∞ −
∑d1
j1=1 c

(j1)
y1 y

(j1)
1 − c

(1)
y2 y

(1)
2 − · · · − c

(j2)
y2 y

(j2)
2 ) i = r + d1 + j2, 1 ≤ j2 ≤ d2;

· · · · · · ;

(τE†0)(c
(js+1)
ys y

(js+1)
s + · · ·+ c

(ds)
ys y

(ds)
s ) i = r + d1 + · · ·+ ds−1 + js, 1 ≤ js ≤ ds.
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The map f ′r is E†r
ι
−→ (τE†0)(D∞) 99K (τE†0)(D∞ − c

(1)
y1 y1), and the other maps f ′i , ι

′ are the

obvious ones. The above equation for F†i gives a closed condition on Sht
µ′

n (Σ) without changing

automorphisms, realizing Sht
µ
n(Σ;D∞) as a closed substack of Sht

µ′

n (Σ). �

3.2.5. Sht
µ

G(Σ;D∞) and its geometric properties. The groupoid PicX(k) acts on Sht
µ
n(Σ;D∞)

by tensoring. We define the quotient (see [10, 5.2.1] for the explanation why the quotient makes
sense as a stack)

Sht
µ

G(Σ;D∞) := Sht
µ
n(Σ;D∞)/PicX(k).

We have a Cartesian diagram

Sht
µ

G(Σ;D∞) //

ω0

��

Hk
µ

G(Σ)×S∞

(p0,AL(−D∞)◦(pr×idS∞ ))

��

BunG(Σ)
(id,Fr)

// BunG(Σ)× BunG(Σ)

(3.14)

The map Π
µ

n,D∞ in (3.13) induces a map

Π
µ

G,D∞ = (π
µ

G, πG,∞) : Sht
µ

G(Σ;D∞) −→ Xr ×S∞. (3.15)

Since the action AL(D∞) on BunG(Σ) depends only on D∞ mod Z, combined with Lemma
3.6 we conclude that

Lemma 3.8. The moduli stack Sht
µ

G(Σ;D∞) depends only on the image of D∞ in Div(Σ∞)⊗Z

( 1nZ/Z).

Proposition 3.9. (1) The stack Sht
µ

G(Σ;D∞) is a smooth DM stack of dimension rn.

(2) The morphism Π
µ

G,D∞ is separated, and is smooth of relative dimension r(n− 1) over (X −
Σ)r ×S∞.

Proof. To show the smoothness statements in (1) and (2), we adapt the argument of [6, Prop.
2.11] and apply [6, Lemme 2.13] to the diagram (3.14). Without giving all the details, the same

argument of [6, Prop. 2.11] shows that after an étale base change, the fibration pr : Hk
µ

G(Σ)→
BunG(Σ) can be trivialized. Therefore the same is true for qr := AL(−D∞) ◦ (pr × idS∞) :

Hk
µ

G(Σ) × S∞ → BunG(Σ) because AL(−D∞) is étale. Then [6, Lemme 2.13] applied to the

diagram (3.14) implies that Sht
µ

G(Σ;D∞) is étale locally isomorphic to a fiber of qr. More
precisely, for a fixed choice of E† ∈ BunG(Σ)(k) (for example the trivial bundle with any Iwahori

level structure at Σ), there exists an étale covering {Ui} of Sht
µ

G(Σ;D∞) together with étale
maps Ui → q−1r (E†) over Xr ×S∞.

Since pr is smooth of relative dimension rn by Prop. 3.4(1), so is qr and hence q−1r (E†) is

smooth over k of dimension rn. This implies that Sht
µ

G(Σ;D∞) is smooth of dimension rn.
By Prop. 3.4(2), p−1r (E†)|(X−Σ)r is smooth of relative of dimension r(n − 1) over (X − Σ)r.

Therefore the same is true for q−1r (E†)|(X−Σ)r×S∞ . By the discussion in the first paragraph,

this implies that Sht
µ

G(Σ;D∞)|(X−Σ)r×S∞ is smooth over (X −Σ)r ×S∞ of relative dimension
r(n− 1).

We now show that Sht
µ

G(Σ;D∞) is DM. By Lemma 3.7, Sht
µ

G(Σ;D∞) is a closed substack

of Sht
µ′

G (Σ) := Sht
µ′

n /PicX(k). The map Sht
µ′

G (Σ) → Sht
µ′

G (forgetting the level structure) is

clearly representable. By [8, Prop. 2.16(a)], Sht
µ′

G is DM, hence so are Sht
µ′

G (Σ) and its closed

substack Sht
µ

G(Σ;D∞).

Finally we show that Π
µ

G,D∞
is separated. The map Sht

µ′

G → Xr′ is separated, as can be

seen from the same argument following [10, Theorem 5.4]. This implies that π
µ′

n : Sht
µ′

G (Σ) →

Xr′ × S∞ is also separated as Sht
µ′

G (Σ) → Sht
µ′

G is proper. Since Sht
µ

G(Σ;D∞) is a closed

substack of Sht
µ′

G (Σ), Π
µ

G,D∞
is also separated. �
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3.2.6. The base-change situation. Now let X ′ be another smooth, projective curve over k with
a map ν : X ′ → X satisfying

The map ν is unramified over Σ. (3.16)

Let

S
′
∞ =

∏

x′∈ν−1(Σ∞)

Spec k(x′).

Then we have a natural map induced by ν

ν′r : X ′r ×S
′
∞ −→ Xr ×S∞. (3.17)

Define the base change of Sht
µ

G(Σ;D∞)

Sht
′µ
G (Σ;D∞) := Sht

µ

G(Σ;D∞)×(Xr×S∞) (X
′r ×S

′
∞).

Proposition 3.10. Under the assumption (3.16), the stack Sht
′µ
G (Σ;D∞) is a smooth DM stack

of dimension rn.

Proof. Only the smoothness of Sht
′µ
G (Σ;D∞) requires an argument. Let Hk

′µ
G (Σ) = Hk

µ

G(Σ)×Xr

X ′r. As in the proof of Prop. 3.9(1), we reduce to showing that p′r : Hk
′µ
G (Σ) → BunG(Σ) is

smooth of relative dimension rn. As in the proof of Prop. 3.4, it suffices to treat the case r = 1
and µ = 1.

Let R′ be the ramification locus of ν. Then Hk
′µ
G (Σ)|X′−R′ → Hk

µ

G(Σ) is étale, hence by

Prop. 3.4(1), p′1 : Hk
′µ
G (Σ) → BunG(Σ) is smooth of relative dimension n when restricted to

Hk
′µ
G (Σ)|X′−R′ . On the other hand, let Σ′ = ν−1(Σ). By Prop. 3.4(2), (p1, π

µ

Hk) : Hk
µ

G(Σ)|X−Σ →
BunG(Σ)×(X−Σ) is smooth of relative dimension n−1. Base change along ν|X′−Σ′ : X ′−Σ′ →
X−Σ, we see that Hk

µ

G(Σ)|X′−Σ′ → BunG(Σ)× (X ′−Σ′) is smooth of relative dimension n−1,

hence p′1 is smooth of relative dimension n when restricted to Hk
′µ
G (Σ)|X′−Σ′ . By assumption

(3.16), R′ ∩ Σ′ = ∅ hence X ′ − Σ′ and X ′ − R′ cover X ′, we conclude that p′1 is smooth of
relative dimension n, which finishes the proof. �

3.2.7. Atkin–Lehner for Sht
µ

G(Σ;D∞). For x ∈ Σ, fractional twisting by 1
nx gives an automor-

phism of Bunn(Σ) and Hk
µ
n(Σ). By the diagram (3.12), we have an induced automorphism on

Sht
µ
n(Σ;D∞)

ÃLSht,x : Sht
µ
n(Σ;D∞) −→ Sht

µ
n(Σ;D∞)

sending (E†i , xi, . . . ) to (E†i (−
1
nx), xi, . . . ). This also induces an automorphism on Sht

µ

G(Σ;D∞)

ALSht,x : Sht
µ

G(Σ;D∞) −→ Sht
µ

G(Σ;D∞).

3.2.8. The case n = 2 and a specific choice of D∞. For the rest of the paper G denotes PGL2.
Let D∞ be the set of 1

2Z-valued divisors on X ×S∞ supported on the points x(i) for x ∈ Σ∞
and 1 ≤ i ≤ dx. Then Sht

µ

G(Σ;D∞) is defined for D∞ ∈ D∞ satisfying (3.11) for n = 2. As

in [10, Lemma 5.5], one can show that Hk
µ

G(Σ) is canonically independent of µ. In this case we

denote Hk
µ

G(Σ) by HkrG(Σ). This implies

Lemma 3.11. For fixed r and D∞ ∈ D∞, and any two µ, µ′ ∈ {±1}r satisfying the same

condition (3.11), there is a canonical isomorphism of stacks Sht
µ

G(Σ;D∞) ∼= Sht
µ′

G (Σ;D∞) over
Xr.

Lemma 3.8 implies that Sht
µ

G(Σ;D∞) depends only on the image of D∞ in Div(Σ∞)⊗ 1
2Z/Z.

We consider the following specific choice of D∞

D(1)
∞ =

∑

x∈Σ∞

1

2
x(1).
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Definition 3.12. Assume r satisfies the parity condition

r ≡ #Σ∞ mod 2. (3.18)

Let µ = (µ1, . . . , µr) ∈ {±1}r. For any D∞ ∈ D∞ such that

D∞ ≡ D
(1)
∞ mod 2D∞, and

r∑

i=1

µi = 2degD∞, (3.19)

we define
ShtrG(Σ;Σ∞) := Sht

µ

G(Σ;D∞).

By Lemma 3.11 and Lemma 3.8, this is independent of the choice of µ and D∞ satisfying the
condition (3.19), justifying the notation.

We remark that the parity condition (3.18) guarantees that for any µ ∈ {±1}r, the D∞ ∈ D∞
satisfying (3.19) exists.

We denote AL(−D
(1)
∞ ) simply by

ALG,∞ := AL(−D(1)
∞ ) : BunG(Σ)×S∞ −→ BunG(Σ). (3.20)

Then the diagram (3.14) becomes

ShtrG(Σ;Σ∞) //

ω0

��

HkrG(Σ)×S∞

(p0,ALG,∞◦(pr×idS∞ ))

��

BunG(Σ)
(id,Fr)

// BunG(Σ)× BunG(Σ)

(3.21)

For D∞ satisfying (3.19), we denote the morphism Π
µ

G,D∞
in (3.15) by

ΠrG = (πrG, πG,∞) : ShtrG(Σ;Σ∞) −→ Xr ×S∞.

3.2.9. Notation. For the rest of the paper, we will use G to denote PGL2. We will focus on the
the stack ShtrG(Σ;Σ∞) for r and Σ∞ satisfying the parity condition (3.18).

3.3. Hecke symmetry.

3.3.1. Hecke correspondence. For x ∈ |X − Σ| let Hx be the spherical Hecke algebra

Hx = Cc(G(Ox)\G(Fx)/G(Ox),Q).

Let H Σ
G = ⊗x∈|X−Σ|Hx. Then H Σ

G has a Q-basis {hD} indexed by effective divisors D ∈

Div+(X − Σ), where hD is defined in [10, §3.1].
Let D be an effective divisor on X − Σ. For µ ∈ {±1}r and D∞ =

∑
x∈Σ∞

cxx
(1) as in

Definition 3.12, we define a stack Sht
µ

2 (Σ;D∞;hD) whose S-points classify the data

• Two objects (E†i , fi, ι, . . . ) and (E ′†i , f
′
i , ι
′, . . . ) of Sht

µ

2 (Σ;D∞)(S) which map to the same S-

point of (x1, . . . , xr, {x(1)}) ∈ (Xr ×S∞)(S);

• For each i = 0, 1, . . . , r, an embedding of coherent sheaves ϕi : Ei → E ′i compatible with the
Iwahori level structures, such that det(ϕi) : det(Ei) → det(E ′i) has divisor D × S ⊂ X × S,
and such that the following diagram is commutative

E0
f1

//❴❴❴

ϕ0

��

E1
f2

//❴❴❴

ϕ1

��

· · ·
fr

//❴❴❴ Er

ϕr

��

ι // (τE0)(D∞)

τϕ0

��

E ′0
f ′
1 //❴❴❴ E ′1

f ′
2 //❴❴❴ · · ·

f ′
r //❴❴❴ E ′r

ι′ // (τE ′0)(D∞)

(3.22)

Let ShtrG(Σ;Σ∞;hD) = Sht
µ

2 (Σ;D∞;hD)/PicX(k), which is independent of the choice of (µ,D∞)

as it is for ShtrG(Σ;Σ∞). Then ShtrG(Σ;Σ∞;hD) can be viewed as a self-correspondence of
ShtrG(Σ;Σ∞) over Xr ×S∞

ShtrG(Σ;Σ∞) ShtrG(Σ;Σ∞;hD)
−→p

//
←−p

oo ShtrG(Σ;Σ∞)

where the maps ←−p and −→p record the first and the second row of (3.22).
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Lemma 3.13. Let D be an effective divisor on X − Σ.

(1) The two maps ←−p ,−→p : ShtrG(Σ;Σ∞;hD)→ ShtrG(Σ;Σ∞) are representable and proper.

(2) The restrictions of ←−p and −→p over (X −D)r are finite étale.

(3) The fibers of ΠrG(hD) : Sht
r
G(Σ;Σ∞;hD)→ Xr ×S∞ all have dimension r.

Proof. (1) For a rank two vector bundle E over X × S, let QuotDX×S/S(E) be the S-scheme

classifying quotients ED×S ։ Q, flat over S and with divisor D (namely for every geometric
point s ∈ S, Q|s is a torsion sheaf on X × s with length nx at x × s for any x ∈ |X |, where nx
is the coefficient of x in D). Then QuotDX×S/S(E) is a closed subscheme of the Quot-scheme of

E , hence projective over S. The fiber of −→p over any point (E ′†i , xi, f
′
i , ι
′) ∈ ShtrG(Σ;Σ∞)(S) is a

closed subscheme of QuotDX×S/S(E
′
1)×SQuotDX×S/S(E

′
2)×· · ·×SQuotDX×S/S(E

′
r), hence projective

over S. This shows that −→p are representable and proper. The argument for ←−p is similar.

(2) When (E†i , xi, fi, ι) ∈ ShtrG(Σ;Σ∞)(S) and xi are disjoint from D (which is assumed

to be disjoint from Σ), the restriction E|D×S carries a Frobenius structure ι|D×S : E|D×S
∼
→

τE|D×S , and hence descends to a GD-torsor ED over S, with GD = ResOD

k G the Weil restriction.
Recording this GD-torsor defines a map

ωD : ShtrG(Σ;Σ∞)|(X−D)r −→ BGD.

Let L̃D be the moduli stack whose S-points are triples (FD,F ′D, ϕD) where FD,F ′D are lisse
sheaves over S that are locally free OD-modules of rank two, and ϕD : FD → F ′D is an OD-linear
map whose cokernel at each geometric point of S has divisor D (i.e., if D = dimx nxx, then the

cokernel as an OD-module has length nx when localized at x). Let LD = L̃D/BO
×
D where BO×D

acts by simultaneously tensoring. The stack LD itself is the quotient of a finite discrete scheme
over k by a finite group, hence is finite étale over k, and it has two maps to BGD recording FD
and F ′D

BGD LD
←−
ℓoo

−→
ℓ // BGD

which are also finite étale.
There is a natural map

ω̃D : ShtrG(Σ;Σ∞;hD)|(X−D)r −→ LD.

In fact, each point (E†i , xi, . . . , E
′†
i , . . . , ϕi) ∈ ShtrG(Σ;Σ∞;hD)(S) gives a pair of GD-torsors ED

and E ′D over S. If we lift Ei and E ′i to rank two vector bundles on X × S, ED and E ′D have

associated O⊕2D -torsors FD and F ′D over S, well-defined up to simultaneous twisting by O×D-
torsors on S. The ϕi then induces an OD-linear map ϕD : ED → E

′
D whose cokernel has divisor

D.
When the points xi are disjoint from D, knowing the top row (or the bottom row) of (3.22)

and any of the vertical arrows recovers the whole diagram. Any vertical arrow ϕi : Ei → E ′i is in
turn determined by Ei (or E ′i) together with its image in LD. Therefore, the whole diagram is
uniquely determined by the top row (or the bottom row) and its image in LD. Moreover, since
D is disjoint from Σ, the level structures of the top row determines that of the bottom row, and
vice versa. This shows the two squares below are Cartesian

ShtrG(Σ;Σ∞)|(X−D)r

ωD

��

ShtrG(Σ;Σ∞;hD)|(X−D)r

←−p
oo

−→p
//

ω̃D

��

ShtrG(Σ;Σ∞)|(X−D)r

ωD

��

BGD LD
←−
ℓoo

−→
ℓ // BGD

This implies that both ←−p and −→p are finite étale, because the maps
←−
ℓ and

−→
ℓ are.

(3) The argument is similar to that of [10, Lemma 5.9], so we only give a sketch.
Fix a geometric point x = (x1, . . . , xr) ∈ Xr, and we will show that the fiber ShtrG(Σ;Σ∞;hD)x

has dimension r. We introduce the moduli stack HD(Σ) classifying (E†, E ′†, ϕ) up to the action
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of PicX , where E†, E ′† ∈ Bun2(Σ) and ϕ : E → E ′ is an injective map with divisor D. Let
HkrH,D(Σ) classify diagrams

E0
f1

//❴❴❴

ϕ0

��

E1
f1

//❴❴❴

ϕ1

��

· · ·
fr

//❴❴❴ Er

ϕr

��

E ′0
f ′
1 //❴❴❴ E ′1

f ′
2 //❴❴❴ · · ·

f ′
r //❴❴❴ E ′r

(3.23)

satisfying the same conditions as the diagram (3.22) without the last column, modulo simulta-
neous tensoring by PicX . We have a Cartesian diagram

ShtrG(Σ;Σ∞;hD)x //

��

HkrH,D(Σ)x

(p0,pr)

��

HD(Σ)×S∞
(id,ALH,∞◦Fr)

// HD(Σ)×HD(Σ)

Here ALH,∞ : HD(Σ) × S∞ → HD(Σ) is given by applying ALG,∞ to both E† and E ′†. The
stacks HD(Σ) and HkrH,D(Σ) will turn out to be fibers of the stacks Hd(Σ) and HkrH,d(Σ) over
D ∈ Xd, to be introduced in §5.2.1.

We introduce the analog H♮
D(Σ) of the HD,D introduced in [10, 6.4.4], which is an open

substack of HD(Σ) where ϕ does not land in E ′(−x) for any x ∈ D. We claim that the map

H♮
D(Σ)→ BunG(Σ) sending (E†, E ′†, ϕ) to E ′† is smooth. Indeed, its fiber over E ′† ∈ BunG(Σ)(S)

is ResD×SS (PD×S(E ′D×S)), the restriction of scalars of the projectivization of the rank two bundle

E ′D×S over D × S (the Σ-level structure on E† is automatically inherited from E ′†, since D is

disjoint from Σ). In particular, H♮
D(Σ) is smooth over k.

Similarly we introduce the open substack Hkr,♮H,D(Σ)x ⊂ HkrH,D(Σ)x by requiring each column

of (3.23) to be in H♮
D(Σ). We define the open substack Shtr,♮G (Σ;Σ∞;hD)x ⊂ ShtrG(Σ;Σ∞;hD)x

to fit into a Cartesian diagram

Shtr,♮G (Σ;Σ∞;hD)x //

��

Hkr,♮H,D(Σ)x

(p0,pr)

��

H♮
D(Σ)×S∞

(id,ALH,∞◦Fr)
// H♮

D(Σ)×H
♮
D(Σ)

As in [10, 6.4.4], it suffices to show that dim Shtr,♮G (Σ;Σ∞;hD)x = r. As in the case without level

structures, pr : Hk
r,♮
H,D(Σ)x → H♮

D(Σ) is an étale locally trivial fibration. Using a slight variant

of [6, Lemme 2.13], Shtr,♮G (Σ;Σ∞;hD)x is étale locally isomorphic to a fiber of pr. It remains

to show that the geometric fibers of pr have dimension r. The iterative nature of Hkr,♮H,D(Σ)x
allows us to reduce to the case r = 1.

First consider the case x1 /∈ D. Then the diagram (3.23) is determined by its top row and the
last column, which means that the fibers of p1 are the same as the fibers of p1 : Hk1G(Σ)x1 →
BunG(Σ), which are 1-dimensional by Prop. 3.4(3).

Next consider the case x1 ∈ D. Since Σ is disjoint from D, the Iwahori level structures along
Σ of E1 and E ′1 uniquely determine the Iwahori level structures along Σ of all bundles in the

diagram (3.23). Thus the fibers of p1 are the same as the fibers of p1 : Hk1,♮H,D,x → H♮
D (the

version without level structure); this latter map was denoted Hk1D,D,x → HD,D in [10, 6.4.4]

and in the last paragraph of [10, 6.4.4] it was shown that its fibers are 1-dimensional. We are
done. �

3.3.2. Hecke symmetry on the Chow group. Using the dimension calculation in Lemma 3.13, the
same argument as in [10, Prop 5.10] proves the following result.

Proposition 3.14. The assignment

hD 7−→ (←−p ×−→p )∗[Sht
r
G(Σ;Σ∞;hD)]
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extends linearly to a ring homomorphism

H
Σ
G −→ cCh2r(Sht

r
G(Σ;Σ∞)× ShtrG(Σ;Σ∞))Q.

In particular, we get an action of H Σ
G on the Chow group of proper cycles Chc,∗(Sht

r
G(Σ;Σ∞))Q.

3.3.3. Hecke symmetry on cohomology. We shall define an action of H Σ
G on H∗c(Sht

r
G(Σ;Σ∞)⊗ k,Qℓ)

following the strategy in [10, 7.1.4]. For this we need a presentation of ShtrG(Σ;Σ∞) as an in-
creasing union of open substacks of finite type. Here we are satisfied with a minimal version of
such a presentation, and we postpone a more refined version to §3.4. For N ≥ 0 we define ≤NSht
to be the open substack of ShtrG(Σ;Σ∞) consisting of those (E†i ; . . . ) where inst(E0) ≤ N . Since
the forgetful map ShtrG(Σ;Σ∞) → BunG recording E0 is of finite type, ≤NSht is of finite type
over k. As N increases, ShtrG(Σ;Σ∞) is the union of the increasing sequence of open substacks
≤NSht.

With the finite-type open substacks ≤NSht, we can copy the construction of [10, 7.1.4] by first
defining the action of hD as a map Rπ≤N,!Qℓ → Rπ≤N ′,!Qℓ (where π≤N : ≤NSht→ Xr ×S∞)
for N ′ − N ≥ degD, and then pass to cohomology and pass to inductive limits. Using the
dimension calculation in Lemma 3.13(3), the same argument as in [10, Prop. 7.1] shows

Proposition 3.15. The assignment hD 7→ C(hD), extended linearly, defines an action of H Σ
G ⊗

Qℓ on Hic(Sht
r
G(Σ;Σ∞)⊗ k,Qℓ) for each i ∈ Z.

The following two results are analogues of [10, Lemma 5.12, Lemma 7.2, and Lemma 7.3],
with the same proofs.

Lemma 3.16. Let f ∈ H Σ
G . Then the action of f on the Chow group Chc,∗(Sht

r
G(Σ;Σ∞))Q

(resp. on the cohomology H2r
c (ShtrG(Σ;Σ∞)⊗ k,Qℓ)(r)) is self-adjoint with respect to the inter-

section pairing (resp. cup product pairing).

Lemma 3.17. The cycle class map

cl : Chc,i(Sht
r
G(Σ;Σ∞))Q −→ H4r−2i

c (ShtrG(Σ;Σ∞)⊗ k,Qℓ)(2r − i)

is equivariant under the H Σ
G -actions for all i.

3.3.4. The base-change situation. Consider another curve X ′ as in §3.2.6. Let

Sht′rG(Σ;Σ∞) = ShtrG(Σ;Σ∞)×(Xr×S∞) (X
′r ×S

′
∞).

We may define the Hecke correspondence Sht′rG(Σ;Σ∞;hD) for Sht
′r
G(Σ;Σ∞) as the base change of

ShtrG(Σ;Σ∞) from Xr×S∞ to X ′r×S′∞. The smoothness of Sht′rG(Σ;Σ∞) proved in Prop. 3.10
allows to apply the formalism of correspondences acting on Chow groups, see [10, A.1.6]. The
same argument as in [10, Prop. 5.10] gives an analogue of Prop. 3.14: there is an action of H Σ

G

on the Chow group of proper cycles Chc,∗(Sht
′r
G(Σ;Σ∞))Q, where hD acts via the fundamental

class of Sht′rG(Σ;Σ∞;hD).
Similarly, with the smoothness of Sht′rG(Σ;Σ∞) proved in Prop. 3.10, analogues of Prop. 3.15,

Lemma 3.16 and Lemma 3.17 make sense and continue to hold true for Sht′rG(Σ;Σ∞) in place of
ShtrG(Σ;Σ∞).

Remark 3.18. Besides the action of H Σ
G , the Atkin–Lehner involutions ALSht,x for x ∈ Σ (see

§3.2.7) also act on ShtrG(Σ;Σ∞) and Sht′rG(Σ;Σ∞). Therefore they induce involutions on the
Chow groups and cohomology groups of ShtrG(Σ;Σ∞) and Sht′rG(Σ;Σ∞), which we still denote
by ALSht,x. These involutions commute with the action of H Σ

G .

3.4. Horocycles. This subsection studies the geometry of ShtrG(Σ;Σ∞) “near infinity”. It
serves as technical preparation for the proof of the spectral decomposition in the next subsection.

To alleviate notation, in this subsection, we abbreviate ShtrG(Σ;Σ∞) simply by Sht.

3.4.1. Index of instability. Let us first introduce the notion of instability for points in Bun2(Σ).
For a rank two bundle E on X , inst(E) ∈ Z is defined as in [10, §7.1.1]. For a geometric point
E† = (E , {E(− 1

2x)}x∈Σ) ∈ Bun2(Σ)(K), we have a bundle E(12D) for any divisor D ⊂ XK

supported in Σ(K). We call E† purely unstable if inst(E(12D)) > 0 for all D ≤ Σ(K). Note that
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the condition inst(E(12D)) > 0 depends only on the class of D modulo 2, i.e., we may think of
D as an element in Z/2Z[Σ(K)], the free Z/2Z-module with basis given by Σ(K). Define

inst(E†) := min

{
inst(E(

1

2
D));D ∈ Z/2Z[Σ(K)]

}
.

Both the notion of pure instability and the number inst(E†) depends only on the image of E† in
BunG(Σ).

Suppose F ∈ Bun2(K) is unstable, with maximal line bundle L and quotientM := F/L. For
any effective divisor D′, we denote by FyD′ the resulting rank two bundle by pushing out the
exact sequence 0 → L → F → M → 0 along L →֒ L(D′). Similarly let pD′F be the pullback
of the same exact sequence alongM(−D′) →֒ M. Note that we have a canonical isomorphism
FyD′ ∼= (pD′F)(D′), which means that FyD′ and pD′F have the same image in BunG.

Lemma 3.19. Under the above notation, we have:

(1) If E† ∈ BunG(Σ)(K) is purely unstable, there is a unique D ∈ Z/2Z[Σ(K)] such that
inst(E†) = inst(E(12D)). (Note that E(12D) is a well-defined point of BunG(Σ) when D ∈
Z/2Z[Σ(K)].)

(2) The point E† is uniquely determined by E(12D) in the following way: for any effective divisor

D′ supported on Σ(K), E(12D + 1
2D
′) = E(12D)yD′ .

(3) For any D′ ∈ Z/2Z[Σ(K)], we have

inst(E(
1

2
D′)) = inst(E†) + |D −D′| (3.24)

where, for a divisor D′′ =
∑

x∈Σ(K) εxx ∈ Z/2Z[Σ(K)], we define |D′′| = #{x ∈ Σ(K)|εx 6=

0}.

Proof. We prove all statements simultaneously. Let D ∈ Z/2Z[Σ(K)] be some divisor such that
inst(E†) = inst(E(12D)) (we do not assume D is unique for now). Write F = E(12D). For any

x ∈ Σ(K), we have inst(F(12x)) = inst(F)±1. Since F achieves the minimal index of instability,

we must have inst(F(12x)) = inst(F) + 1. This means that F(12x) = Fyx. For any effective

D′ supported on Σ(K) and multiplicity-free, F(12D
′) is the union of F(12x) for x ∈ D′, we get

F(12D
′) = FyD′ . This implies (2) and also shows that

inst(F(
1

2
D′)) = inst(F) + degD′ = inst(F) + |D′ mod 2|. (3.25)

Since the set of points {F(12D
′)}D′≤Σ(K), as points of BunG(Σ), is exactly {E(12D

′)}D′≤Σ(K),

we see that inst(E(12D
′)) achieves its minimum exactly when D′ = D and nowhere else.

The equality (3.24) follows from (3.25). �

By the above lemma, for a purely unstable E† ∈ BunG(Σ)(K), we may define an invariant

κ(E†) = (D, inst(E†)) ∈ Z/2Z[Σ(K)]× Z>0.

where D ∈ Z/2Z[Σ(K)] is the unique element such that inst(E†) = inst(E(12D)).

3.4.2. Strata in BunG(Σ). For N > 0, we also denote by NBunG the locally closed substack of
BunG whose geometric points are exactly those E with inst(E) = N .

For any field K containing k, we have a canonical bijection Σ(k)
∼
→ Σ(K). For κ ∈

Z/2Z[Σ(K)] × Z>0, there is a locally closed substack κBunG(Σ) ⊂ BunG(Σ) ⊗ k whose geo-
metric points are exactly those geometric points E† with κ(E†) = κ.

We define a partial order on Z/2Z[Σ(k)] × Z by saying that κ = (D,N) ≤ κ′ = (D′, N ′) if
and only if

N ′ −N ≥ |D −D′|.

Let ≤κBunG(Σ) ⊂ BunG(Σ) ⊗ k be the open substack consisting of E† such that for any D′ ∈
Z/2Z[Σ(k)], inst(E(12D

′)) ≤ N + |D′ −D|. We see that κBunG(Σ) ⊂ ≤κ
′
BunG(Σ) if and only

if κ ≤ κ′. Moreover, κBunG(Σ) is closed in ≤κBunG(Σ), with open complement denoted by
<κBunG(Σ).
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Corollary 3.20 (of Lemma 3.19). For κ = (D,N) ∈ Z/2Z[Σ(k)] × Z>0, the map E† 7→ E(12D)

gives an isomorphism of k-stacks

κBunG(Σ)
∼
−→ NBunG ⊗ k.

3.4.3. Elementary modifications. Next we study how the invariant κ changes under an elemen-
tary modification of bundles. Recall the stack Hk1G(Σ) classifying (E

†,F†, y, ϕ) modulo tensoring
with line bundles, where E†,F† ∈ Bun2(Σ) and ϕ : E →֒ F is an injective map compatible with
Iwahori structures whose cokernel is an invertible sheaf on the graph of y : S → X . Recording
y gives a map π1

Hk : Hk1G(Σ)→ X .

For two elements κ = (D,N), κ′ = (D′, N ′) ∈ Z/2Z[Σ(k)]× Z>0 we define

|κ− κ′| := |D −D′|+ |N −N ′| ∈ Z≥0

with |D −D′| defined in Lemma 3.19(3).

Lemma 3.21. Suppose (E†,F†, y, ϕ) ∈ Hk1G(Σ)(K) (where K is an algebraically closed field,
E†,F† are lifted to Bun2(Σ)(K), ϕ : E →֒ F and y is the support of coker(ϕ)), and E† and F†

are both purely unstable. Write κ(E†) = (D,N), κ(F†) = (D′, N ′).

(1) |κ(E†)− κ(F†)| = 1.

(2) If N = N ′, then D and D′ differ at a unique point x ∈ Σ(K), and we have y = x. The
points E† and F† are uniquely determined by the triple (E(12D),F(12D

′), α) where α is an
isomorphism of G-bundles

α : E(
1

2
D)yx ∼= F(

1

2
D′)yx.

(3) If N = N ′ − 1, then D = D′, and E† and F† are determined by the single bundle E(12D)

in the following way: E† is determined by E(12D) as in Lemma 3.19(2); F(12D) = E(12D)yy
and F† is determined by F(12D) again by Lemma 3.19(2).

(4) If N = N ′ +1, then D = D′, and E† and F† are determined by the single bundle F(12D) in

the following way: F† is determined by F(12D) as in Lemma 3.19(2); E(12D) = py(F(
1
2D))

and E† is determined by E(12D) again by Lemma 3.19(2).

Proof. For any D′′ ∈ Z/2Z[Σ(k)], we have inst(E(12D
′′)) = inst(F(12D

′′))±1, therefore N−N ′ ∈
{0, 1,−1}.

When N − N ′ = −1, E(12D) achieves the minimal index of instability among all the bun-

dles {E(12D
′′),F(12D

′′)}D′′∈Z/2Z[Σ(K)]. Since inst(F(12D)) = inst(E(12D)) ± 1, we must have

inst(F(12D)) = N +1, therefore inst(F(12D)) = N ′ and D′ = D. The same argument as Lemma

3.19(2) shows that F(12D) is determined by E(12D). This proves (3).
The analysis of the case N −N ′ = 1 is similar, which takes care of (4).
Finally consider the case N = N ′. Since inst(F(12D)) = inst(E(12D))± 1 and inst(F(12D)) ≥

N ′ = N = inst(E(12D)), we must have inst(F(12D)) = N + 1. On the other hand, we have

inst(F(12D
′)) = N ′ = N by definition. By Lemma 3.19(3), we have |D−D′| = (N +1)−N = 1,

i.e., D′ and D differ by one point x ∈ Σ(K). We show that y must be equal to x. Suppose not,
consider the bundle G = F(12D) (represented by a rank two bundle on XK) with subsheaves

G(− 1
2y) := E(12D) and G(− 1

2x) := F(12D −
1
2x). Then G† := (G,G(− 1

2y),G(−
1
2x)) defines

a point in Bun2({x, y})(K). Note that inst(G(− 1
2y)) = N by definition and inst(G(− 1

2x)) =

inst(F(12D −
1
2x)) = inst(F(12D

′)) = N ; also inst(G) = N + 1 and inst(G(− 1
2x −

1
2y)) =

inst(E(12D −
1
2x)) = N + 1. It follows that G† is purely unstable. This contradicts Lemma

3.19(1) because both G(− 1
2x) and G(− 1

2y) achieve the minimal index of instability. This con-

tradiction proves y = x. The isomorphism α comes from the fact that G(− 1
2y)yx = G =

G(− 1
2x)yx. The triple (E(12D),F(12D

′), α) first determines E† and F† by Lemma 3.19(2). Now
we represent D and D′ by multiplicity-free effective divisors on Σ(K). When D′ = D + x,
the map α then determines the injective map ψ : E(− 1

2D) →֒ F(− 1
2D
′)yx which then gives

ϕ : E = E(− 1
2D)yD

ψ
−→ F(− 1

2D
′)yx+D = F(− 1

2D
′)yD′ = F . When D′ = D − x, the map α
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gives the injective map ψ : E(− 1
2D)yx →֒ F(−

1
2D
′) which then gives ϕ : E = E(− 1

2D)yD =

(E(− 1
2D)yx)yD′

ψ
−→ F(− 1

2D
′)yD′ = F . Part (2) is proved.

All three cases above satisfy |κ(E†)− κ(F†)| = 1, which verifies (1). �

For κ = (D,N) and κ′ = (D′, N ′) in Z/2Z[Σ(k)]× Z>0, let
κ,κ′

Hk1G(Σ) be the locally closed

substack of Hk1G(Σ)⊗k whose geometric points are exactly those (E†,F†, y, ϕ) such that κ(E†) =
κ and κ(F†) = κ′.

Corollary 3.22 (of Lemma 3.21). (1) The stack κ,κ′
Hk1G(Σ) is empty unless |κ− κ′| = 1.

(2) When N = N ′ and D and D′ differ only at x ∈ Σ(k), the map π1
Hk maps κ,κ′

Hk1G(Σ) to a
single point x, and there is an isomorphism

κ,κ′
Hk1G(Σ)

∼
−→ (NBunG ×N+1BunG

NBunG)⊗ k

where with both maps NBunG → N+1BunG given by (−)yx. The above isomorphism is given
by (E†,F†, x, ϕ) 7→ (E(12D),F(12D

′), α) as in Lemma 3.21(2).

(3) When N = N ′ − 1 and D = D′, we have an isomorphism

κ,κ′
Hk1G(Σ)

∼
−→ (NBunG ×X)⊗ k

given by (E†,F†, y, ϕ) 7→ (E(12D), y).

(4) When N = N ′ + 1 and D = D′, we have an isomorphism

κ,κ′
Hk1G(Σ)

∼
−→ (N

′
BunG ×X)⊗ k

given by (E†,F†, y, ϕ) 7→ (F(12D
′), y).

Definition 3.23. Let κ = (κ0, κ1, . . . , κr) be a sequence of elements in Z/2Z[Σ(k)]× Z>0.

(1) The horocycle of type κ of Sht⊗k is the locally closed substack κSht ⊂ Shtk whose geometric

points are exactly those (E†i ; . . . ) ∈ Sht such that each E†i is purely unstable with κ(E†i ) = κi,
for i = 0, 1, . . . , r.

(2) The truncation up to κ of Sht⊗ k is the open substack of Sht⊗ k consisting of (E†i ; . . . ) such
that E†i ∈

≤κiBunG(Σ) for all 0 ≤ i ≤ r.

Then κSht is closed in ≤κSht and we denote its open complement by <κSht.

3.4.4. The index set for horocycles. Above we defined horocycles for any r-tuple of elements κ
in Z/2Z[Σ(k)]× Z>0. However, for many such κ, κSht turns out to be empty.

Lemma 3.24. Let κ = (κ0, κ1, . . . , κr) be a sequence of elements in Z/2Z[Σ(k)]×Z>0. If κSht
is non-empty, then

(1) For each i = 1, . . . , r, |κi−1 − κi| = 1;

(2) If we write κi = (Di, Ni), then N0 = Nr, and Fr(D0) (applying the arithmetic Frobenius to

each point appearing D0) and Dr differ at exactly one k-point above each place of Σ∞ and
nowhere else.

Proof. Suppose (E†i , . . . ) ∈
κSht is a geometric point over {x(1)}x∈Σ∞ ∈ S∞, then |κi−1 − κi| =

1 by Corollary 3.22(1). The isomorphism Er ∼= (τE0)(
1
2

∑
x∈Σ∞

x(1)) implies N0 = Nr and

Fr(D0) +
∑
x∈Σ∞ x(1) ≡ Dr mod 2, which implies the second condition. �

Definition 3.25. Let Kr be the set of κ = (κ0, κ1, . . . , κr), where each κi ∈ Z/2Z[Σ(k)] × Z,
satisfying the two conditions in Lemma 3.24.

From the definition and Lemma 3.24 we see that

Sht⊗ k =
⋃

κ∈Kr

≤κSht.

The partial order on Z/2Z[Σ(k)]×Z extends to one on Kr: we say that (κ0, . . . , κr) ≤ (κ′0, . . . , κ
′
r)

if and only if κi ≤ κ′i for all 0 ≤ i ≤ r. Then it is easy to check that, for κ, κ′ ∈ Kr,
κSht ⊂ ≤κ

′
Sht

if and only if κ ≤ κ′.
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For κ ∈ Kr and N ∈ Z, we write κ > N if Ni(κ) > N for all 0 ≤ i ≤ r (Ni(κ) denotes the
Z-part of the i-th component of κ).

Remark 3.26. If r < #Σ∞, then the set Kr is empty, and hence all horocycles in Sht ⊗ k are
empty. In fact, if κ = (κ0, . . . , κr) ∈ Kr, then the first condition implies |Dr−D0| ≤ r (Di is the
divisor part of κi), while the second condition implies that for each x ∈ Σ∞, D0 and Dr must
differ at a geometric point above x, hence |Dr −D0| ≥ #Σ∞.

3.4.5. I(κ) and X(κ). For κ = (κ0, . . . , κr) ∈ Kr, we define the subset I(κ) ⊂ {1, 2, . . . , r} as

I(κ) = {1 ≤ i ≤ r|Ni−1 6= Ni}.

For i ∈ {1, 2, . . . , r} − I(κ), there is a unique point x ∈ Σ(k) such that Di−1 and Di differ at
x. We denote this point x by xi(κ). Also, by the second condition on κ above, the difference
between Dr and Fr(D0) consists of a k-point x

(1)(κ) over each x ∈ Σ∞.
For i ∈ I(κ) we have Ni = Ni−1 ± 1. Since Nr = N0, we see that #I(κ) is even.
We define X(κ) ⊂ (Xr ×S∞)⊗ k to be the coordinate subspace

X(κ) = {(x1, . . . , xr, {x
(1)}x∈Σ∞)|xi = xi(κ) for all i /∈ I(κ);x

(1) = x(1)(κ) for all x ∈ Σ∞}.

The projection to the I(κ)-coordinates gives an isomorphism

X(κ)
∼
−→ XI(κ) ⊗ k.

Viewing Z/2Z[Σ] as a subgroup of Z/2Z[Σ(k)] by Σ ∋ x 7→
∑

Σ(k)∋x 7→x x, there is an action

of Z/2Z[Σ] on Z/2Z[Σ(k)] by translation. This induces a diagonal action of Z/2Z[Σ] on Kr by
acting only on the divisor parts of each κi. For κ, κ′ ∈ Kr, we say κ ∼ κ′ if the divisor parts of
κ and κ′ are in the same Z/2Z[Σ]-orbit. This defines an equivalence relation on Kr. Let [Kr] be
the quotient

[Kr ] := Kr/ ∼ .

The following lemma is a direct calculation.

Lemma 3.27. The map

X(·) : Kr −→ {subschemes of (Xr ×S∞)⊗ k}

κ 7−→ X(κ)

factors through [Kr], and induces an injective map

X(·) : [Kr ] →֒ {subschemes of (Xr ×S∞)⊗ k}.

By the above lemma, for σ ∈ [Kr], we may write

X(σ), I(σ)

for X(κ) and I(κ), where κ is any element in the orbit σ.

Corollary 3.28 (of Lemma 3.21 and Corollary 3.22). For κ ∈ Kr and κ > 0, the restriction of
the map ΠrG : Sht→ Xr ×S∞ to κSht has image in X(κ). We denote the resulting map by

πκ : κSht −→ X(κ).

3.4.6. Geometry of horocycles. For any N > 0, we have a map

∆ : NBunG −→ PicNX

sending E to the line bundle ∆(E) = L ⊗M−1 of degree N on X , where L ⊂ E is the maximal
line subbundle andM = E/L.

Now if κ ∈ Kr and κ > 0, for (E†i ; . . . ) ∈
κSht, we have a sequence of line bundles ∆i :=

∆(Ei(
1
2Di)) by the above construction applied to Ei(

1
2Di) ∈ NiBunG (recall κi = (Di, Ni), so

Ei(
1
2Di) has the smallest index of instability among all fractional twists of Ei). By Lemma 3.21,

these line bundles are related by canonical isomorphisms

∆i
∼=





∆i−1 if Ni = Ni−1;

∆i−1(xi) if Ni = Ni−1 + 1;

∆i−1(−xi) if Ni = Ni−1 − 1.
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Finally ∆r
∼= τ∆0. Therefore ∆ = (∆0, . . . ,∆r) together with the above isomorphisms give a

point in Sht
N(κ)
1 , the moduli of rank one Shtukas (L0,L1, . . . ,Lr) over X with deg(Li) = Ni

(when Ni−1 = Ni we have an isomorphism Li−1
∼
→ Li). This gives a morphism

qκ : κSht −→ Sht
N(κ)
1 ⊗ k.

through which the canonical map ΠrG : κShtrG(Σ;Σ∞)→ X(κ) ∼= XI(κ) ⊗ k factors.

Lemma 3.29. Suppose κ ∈ Kr and κ > max{2g − 2, 0}. Then the map qκ is smooth of relative

dimension r −#I(κ)/2. The geometric fibers of qκ are isomorphic to [Gr−#I(κ)/2a /Z] for some

finite étale group scheme Z acting on Gr−#I(κ)/2a via a homomorphism Z → Gr−#I(κ)/2a .

Proof. The argument is similar to [10, Lemma 7.5], so we only sketch the difference with the
situation without level structures. We define κHkrG(Σ) ⊂ HkrG(Σ) ⊗ k to be the locally closed

substack where κ(E†i ) = κi for 0 ≤ i ≤ r. Then κHkrG(Σ) is the iterated fiber product of
κi−1,κiHk1G(Σ). By definition, we have a Cartesian diagram

κShtrG(Σ;Σ∞) //

p0

��

κHkrG(Σ)

(p0,ALG,∞◦pr)
��

κ0BunG(Σ)
(id,Fr/k)

// κ0BunG(Σ)×
Fr(κ0)BunG(Σ)

(3.26)

where the map Fr/k : κ0BunG(Σ) → Fr(κ0)BunG(Σ) is the restriction of the k-linear Frobenius

Fr×idk : BunG(Σ) ⊗ k → BunG(Σ) ⊗ k to the stratum κ0BunG(Σ). Using Corollary 3.20, we

may replace the bottom row by (id,Fr×idk) :
N0BunG ⊗ k → (N0BunG ⊗ k) ×k (

N0BunG ⊗ k).
The diagram (3.26) now reads

κShtrG(Σ;Σ∞) //

h0

��

κHkrG(Σ)

(h0,hr)

��

N0BunG ⊗ k
(id,Fr×idk) // (N0BunG ⊗ k)×k (

N0BunG ⊗ k)

(3.27)

where hi :
κHkrG(Σ)→

NiBunG⊗k is the composition of pi with the isomorphism κiBunG(Σ)
∼
→

NiBunG ⊗ k in Corollary 3.20.
Let S be a k-algebra. Fix an S-point y = (y1, . . . , yr) ∈ X(κ), denote κHkrG(Σ)y the fiber

over y. Let NBunG,S be the base change of NBunG from Spec k to S.
For 1 ≤ i ≤ r, let

Mi = min{Ni−1, Ni}+ 1.

Then using the description of κi−1,κiHk1G(Σ) in Corollary 3.22, we get an isomorphism

κHkrG(Σ)y
∼= N0BunG,S ×M1BunG,S

N1BunG,S ×M2BunG,S

N2BunG,S × · · · ×MrBunG,S

NrBunG,S
(3.28)

where the maps Ni−1BunG,S → MiBunG,S and NiBunG,S → MiBunG,S are either the identity
map or the pushout yyi .

There is a map ∆Hk,y : κHkrG(Σ)y → PicN0

X,S ×PicNr

X,S , which is induced by the map ∆ :
NiBunG → PicNi

X on each factor in (3.28). Now we fix an S-point ∆ = (∆0,∆1, . . . ,∆r) ∈

Sht
N(κ)
1 (S) over y, namely deg∆i = Ni and ∆i = ∆i−1((Ni − Ni−1)yi) for 1 ≤ i ≤ r. Let

Ei ⊂ NiBunG,S be the preimage of ∆i ∈ PicNi

X (S) under ∆ (so Ei is an S-stack). Since
Ni > max{2g−2, 0}, we have Ei ∼= BHi is the classifying space of the vector bundle Hi = pS∗∆i

over S (where pS : X × S → S). Similarly, we let Ci ⊂ MiBunG,S be the preimage of the
following line bundle under ∆

∆′i :=





∆i(yi) if Ni = Ni+1,

∆i if Ni = Ni−1 + 1,

∆i−1 if Ni = Ni−1 − 1.
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We have Ci ∼= BJi for the vector bundle Ji = pS∗∆′i over S. The canonical embeddings
∆i−1,∆i →֒ ∆′i induce embeddings Hi−1 →֒ Ji and Hi →֒ Ji, hence maps Ei−1 → Ci and
Ei → Ci for 1 ≤ i ≤ r. By (3.28), the preimage of ∆ under ∆Hk,y is

E0 ×C1 E1 ×C2 · · · ×Cr Er

which is isomorphic to the stack over S

H0\J1
H1

× J2
H2

× · · ·
Hr−1

× Jr/Hr

which is the quotient of J1 × · · · Jr (product over S) by the action of H0 on J0, the diagonal
action of H1 on J1 and J2,..., the diagonal action of Hi on Ji and Ji+1,..., and the action of Hr

on Jr.
Using the Cartesian diagram (3.27), we get

q−1κ (∆) ∼= (J1
H1

× J2
H2

× · · ·
Hr−1

× Jr)/H0

where the action of H0 is by translation on J1 and on Jr, via composing with the relative
Frobenius FrH0/S : H0 → Hr and the Hr-translation on Jr. This presentation shows that

q−1κ (∆) is smooth over S. Hence qκ is smooth.
To calculate the relative dimension of qκ, we take S = SpecK to be a geometric point, and

dim q−1κ (∆) =

r∑

i=1

dim Ji −
r−1∑

i=0

dimHi.

Since

dim Ji−dimHi−1 = dimH0(XK ,∆
′
i)−dimH0(XK ,∆i−1) =

{
1 if Ni = Ni−1 or Ni = Ni−1 − 1,

0 if Ni = Ni−1 + 1,

we see that

dim q−1κ (∆) = r −#{1 ≤ i ≤ r|Ni = Ni−1 − 1} = r −#I(κ)/2.

This proves the dimension part of the statement. The rest of the argument is the same as the
last part of the proof of [10, Lemma 7.5], using the fact that the translation of H0 on J1 induces

a free action on the vector space J1
H1

× J2
H2

× · · ·
Hr−1

× Jr. �

Corollary 3.30 (of Lemma 3.29). Suppose κ ∈ Kr and κ > max{2g − 2, 0}. Let π
N(κ)
1 :

Sht
N(κ)
1 ⊗ k → X(κ) be the projection. Then we have a canonical isomorphism

Rπκ,!Qℓ ∼= Rπ
N(κ)
1,! Qℓ[−2r +#I(κ)](−r +#I(κ)/2).

In particular, Rπκ,!Qℓ is a local system shifted in degree 2r −#I(κ), and

Pκ := Rπκ,!Qℓ[2r](r) ∈ D
b(X(κ),Qℓ) (3.29)

is a perverse sheaf on X(κ) with full support and pure of weight 0.

3.5. Cohomological spectral decomposition. In this subsection, we use the abbreviations
Sht, κSht as in §3.4. Let

V = H2r
c (Sht⊗ k,Qℓ)(r).

Since Sht⊗ k is the union of open substacks ≤κSht for κ ∈ Kr, we have by definition

V = lim
−→

κ∈Kr,κ>0

H2r
c (≤κSht,Qℓ)(r).

For κ ∈ Kr, κ > 0, let π≤κ : ≤κSht→ (Xr ×S∞)⊗ k be the restriction of ΠrG. Let

K≤κ = Rπ≤κ,!Qℓ[2r](r) ∈ D
b((Xr ×S∞)⊗ k,Qℓ).

For 0 < κ ≤ κ′ ∈ Kr , the open inclusion ≤κSht →֒ ≤κ′
Sht induces a map

ικ,κ′ : K≤κ −→ K≤κ′ .
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3.5.1. Ind-perverse sheaves. The perverse sheaves {pHiK≤κ}κ∈Kr form an inductive system in-
dexed by the directed set Kr. Consider the inductive limit

pHiK := lim
−→
κ

pHiK≤κ ∈ indPerv((Xr ×S∞)⊗ k,Qℓ).

Here the right side is the category of ind-objects in the abelian category Perv((Xr×S∞)⊗k,Qℓ)
of perverse (in particular constructible) sheaves on (Xr × S∞) ⊗ k, which is again an abelian
category. Note that the notation pHiK comes as a whole, as we are not defining K as the
inductive limit of K≤κ, but only defining the ind-perverse sheaves pHiK.

Definition 3.31. Let ϕ : P → P ′ be a morphism in indPerv((Xr ×S∞)⊗ k,Qℓ).

(1) We say ϕ is an mc-isomorphism (mc for modulo constructibles), if the kernel and cokernel

of ϕ are in the essential image of the natural embedding Perv((Xr × S∞) ⊗ k,Qℓ) →֒
indPerv((Xr ×S∞)⊗ k,Qℓ).

(2) We say ϕ ismc-zero if its image is in the essential image of the natural embedding Perv((Xr×
S∞)⊗ k,Qℓ) →֒ indPerv((Xr ×S∞)⊗ k,Qℓ).

Likewise we have the notion of an mc-commutative square of ind-perverse sheaves, i.e., the
appropriate difference of the compositions is mc-zero. Concatenation of mc-commutative squares
is still mc-commutative.

Lemma 3.32. Let 0 < κ ≤ κ′ ∈ Kr. Then the map ικ,κ′ on the perverse cohomology sheaves

pHiικ,κ′ : pHiK≤κ −→
pHiK≤κ′

is injective for i = 0, surjective for i = 1 and an isomorphism for i 6= 0, 1.
In particular, pHiK is eventually stable when i 6= 0 (i.e., the natural map pHiK≤κ →

pHiK
is an isomorphism for sufficiently large κ).

Proof. Let (κ,κ′]Sht = ≤κ
′
Sht−≤κSht, which is a union of horocycles κ

′′
Sht for κ′′ ≤ κ′ but κ′′ �

κ. The horocycles form a stratification of ≤κ
′
Sht−≤κSht. Let π(κ,κ′] :

(κ,κ′]Sht→ (Xr×S∞)⊗k
be the projection. Then K(κ,κ′] := Rπ(κ,κ′],!Qℓ[2r](r) is the cone of ικ,κ′ , and it is a successive

extension of Pκ′′ (see (3.29)), viewed as a complex on (Xr ×S∞) ⊗ k. By Corollary 3.30, Pκ′′

is a perverse sheaf, therefore so is K(κ,κ′]. The long exact sequence for the perverse cohomology
sheaves attached to the triangle K≤κ → K≤κ′ → K(κ,κ′] → K≤κ[1] then gives the desired
statements. �

3.5.2. Hecke symmetry on ind-perverse sheaves. A variant of the construction in §3.3.3 gives
an H Σ

G -action on pHiK for any i ∈ Z. Namely, for each effective divisor D on X − Σ, the
fundamental cycle of the Hecke correspondence ShtrG(Σ;Σ∞;hD) (as a cohomological correspon-
dence between constant sheaves on truncated ShtrG(Σ;Σ∞)) induces a map K≤κ → K≤κ′ for
κ′ − κ ≥ d. Passing to perverse cohomology sheaves and passing to inductive limits, we get a
map in indPerv((Xr ×S∞)⊗ k,Qℓ)

pHi(hD) :
pHiK −→ pHiK.

The same argument as [10, Prop. 7.1], using the dimension calculation in Lemma 3.13(3), shows
that the assignment hD 7→

pHi(hD), extended linearly, gives an action of H Σ
G on pHiK.

3.5.3. The constant term map. Let

K
♯
r = {κ ∈ Kr |κ > max{2g − 2, 0}}

♯Sht = ∪κ∈K♯
r

κSht.

Then ♯Sht consists of (E†i ; . . . ) where all inst(E†i ) > max{2g − 2, 0}, therefore it is a closed

substack. Let ♭Sht = Sht⊗ k − ♯Sht be its open complement.

Lemma 3.33. The substack ♭Sht is of finite type.
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Proof. Let (E†i ; . . . ) be a geometric point of ♭Sht. Then for some i0, inst(E
†
i0
) ≤ max{2g − 2, 0},

hence inst(Ei0) ≤ max{2g − 2, 0} + degΣ. Since E0 is related to Ei0 by at most r steps of
elementary modifications, we have inst(E0) ≤ r +max{2g − 2, 0} + degΣ =: c for any i. Then
♭Sht is contained in the preimage of ≤cBunG under the map p

0
: Sht → BunG (recording only

E0). Since p0 is of finite type and ≤cBunG is of finite type over k, so is ♭Sht. �

Let π♭ :
♭Sht→ (Xr ×S∞)⊗ k and K♭ = Rπ♭,!Qℓ[2r](r) ∈ Db((Xr ×S∞)⊗ k,Qℓ).

We have a stratification of ♯Sht by locally closed substacks κSht. Therefore we may similarly
define pHiK♯ as the inductive limit of the perverse sheaves pHiK♯,≤κ as κ runs over Kr, where

K♯,≤κ is the direct image complex of ♯Sht ∩ ≤κSht→ (Xr ×S∞)⊗ k.

Lemma 3.34. (1) The restriction map associated to the closed inclusion ♯Sht →֒ Sht induces
an mc-isomorphism of ind-perverse sheaves

pH0K −→ pH0K♯.

(2) We have pHiK♯ = 0 for all i 6= 0. Moreover, there is a canonical isomorphism of perverse

sheaves on (Xr ×S∞)⊗ k
pH0K♯

∼= ⊕κ∈K♯
r
Pκ.

Proof. (1) Since ♭Sht is of finite type, for κ large enough, we have ♭Sht ⊂ ≤κSht whose comple-

ment is ∪κ′∈K♯
r,κ′≤κ

κ′
Sht. This gives a distinguished triangle K♭ → K≤κ → K♯,≤κ →. The long

exact sequence of perverse cohomology sheaves gives

pH0K♭ −→
pH0K≤κ −→

pH0K♯,≤κ −→
pH1K♭.

Taking inductive limit we get an exact sequence

pH0K♭ −→
pH0K −→ pH0K♯ −→

pH1K♭.

Since K♭ is constructible, the middle map is an mc-isomorphism.
To show (2), it suffices to give a canonical isomorphism (again κ is large enough so that

♭Sht ⊂ ≤κSht)
K♯,≤κ ∼= ⊕κ′∈K♯

r ,κ′≤κPκ′ .

compatible with the transition maps when κ grows. Since K♯,≤κ is a successive extension of Pκ′

for κ′ ∈ K♯r and κ′ ≤ κ, we have a canonical decomposition according support

K♯,≤κ ∼= ⊕σ∈[Kr](K♯,≤κ)σ

where we recall from Lemma 3.27 that the support of Pκ is determined by the image of κ in [Kr ],
and different classes in [Kr] give different supports. Each (K♯,≤κ)σ is then a successive extension

of those Pκ′ where κ′ ∈ K
♯
r ∩ σ and κ′ ≤ κ. Hence (K♯,≤κ)σ is a local system on X(σ) shifted in

degree − dimX(σ) = −#I(σ). Let ησ be a geometric generic point of X(σ). It suffices to give
a canonical decomposition of the stalks at ησ:

(K♯,≤κ)σ|ησ ∼= ⊕κ′∈K♯
r∩σ,κ′≤κPκ′ |ησ . (3.30)

Now K♯,≤κ|ησ ∼= H2r−#I(σ)
c (♯Shtησ ∩

≤κShtησ ,Qℓ)(r), and
♯Shtησ ∩

≤κShtησ = ∪κ′≤κκ
′
Shtησ .

If κ
′
Shtησ 6= ∅, we must have X(κ′) ⊃ X(σ), hence dim κ′

Shtησ = r −#I(κ′)/2 ≤ r −#I(σ)/2
with equality if and only if κ′ ∈ σ. Hence dim ♯Shtησ ∩

≤κShtησ ≤ r − #I(σ)/2, with top-

dimensional components given by κ′
Shtησ for those κ′ ∈ K♯r ∩ σ and κ′ ≤ κ. This implies a

canonical isomorphism

H2r−#I(σ)
c (♯Shtησ ∩

≤κShtησ ,Qℓ)(r) ∼= ⊕κ′∈K♯
r∩σ,κ′≤κH

2r−#I(σ)
c (κ

′
Shtησ ,Qℓ)(r),

which is exactly (3.30). �

Combining the two maps in the above lemma, we get a canonical map of ind-perverse sheaves
which is an mc-isomorphism

γ : pH0K −→ ⊕κ∈K♯
r
Pκ. (3.31)

This can be called the cohomological constant term operator.
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Remark 3.35. Compared to the treatment in [10, §7.3.1], we do not need the generic fibers
of the horocycles to be closed in Sht. In fact the horocycle κSht is not necessarily closed when
restricted to the generic point of X(κ): for example this fails when X(κ) is a point.

3.5.4. Constant term intertwines with Satake. Recall from Corollary 3.30 that whenever κ ∈ K♯r ,
we have an isomorphism

Pκ ∼= Rπ
N(κ)
1,! Qℓ[−#I(κ)](−#I(κ)/2)

The map π
N(κ)
1 : Sht

N(κ)
1 ⊗ k → X(κ) is a Pic0X(k)-torsor.

Now for any κ ∈ Kr , the stack Sht
N(κ)
1 is always defined, and π

N(κ)
1 : Sht

N(κ)
1 ⊗ k → X(κ) is

a PicX(k)-torsor. Moreover, the union

∐

κ′∈κ+Z

Sht
N(κ′)
1 ⊗ k −→ X(κ)

is a PicX(k)-torsor, extending the Pic0X(k)-torsor structure on each component of the LHS. Here
we write κ + Z for Z-orbit of κ in Kr, and Z acts by translating the degree parts of κ ∈ Kr

simultaneously (note that X(κ) is unchanged under the Z-action). The PicX(k)-action then
gives an action on the ind-perverse sheaf

⊕κ′∈κ+ZRπ
N(κ)
1,! Qℓ[−#I(κ)](−#I(κ)/2).

Summing over all Z-orbits of Kr we get a canonical PicX(k)-action on

⊕κ∈KrRπ
N(κ)
1,! Qℓ[−#I(κ)](−#I(κ)/2).

For any u ∈ PicX(k), restricting the source to ⊕κ∈K♯
r
Pκ and projecting the target to ⊕κ∈K♯

r
Pκ,

the u-action gives a map

α(u) : ⊕κ∈K♯
r
Pκ −→ ⊕κ∈K♯

r
Pκ.

However, this no longer gives an action of PicX(k). Instead, it is an mc-action: for u, v ∈ PicX(k),
the endomorphism a(uv)−a(u)a(v) of ⊕κ∈K♯

r
Pκ is zero on Pκ for κ large enough, hence a mc-zero

map. This mc-action extends to an mc-action of Qℓ[PicX(k)] on ⊕κ∈K♯
r
Pκ, which we also denote

by α.
Recall the ring homomorphism

aEis : H
Σ
G

Sat
−−→H

Σ
A = Q[Div(X − Σ)] −→ Q[PicX(k)].

Lemma 3.36. For any f ∈H Σ
G , we have an mc-commutative diagram

pH0K
pH0(f)

//

γ

��

pH0K

γ

��

⊕κ∈K♯
r
Pκ

α(aEis(f))
// ⊕κ∈K♯

r
Pκ

In particular, if f ∈ IEis, then the action pH0(f) : pH0K → pH0K is mc-zero.

Proof. Since {hy}y∈|X−Σ| generate H Σ
G as an algebra, it suffices to check the lemma for f = hy

(we are also using the fact that u 7→ α(u) is an mc-action of Qℓ[PicX(k)] on ⊕κ∈K♯
r
Pκ). Let

dy = [k(y) : k]. We will show that γ ◦ pH0(f) and α(aEis(f)) ◦ γ : pH0K → ⊕κ∈K♯
r
Pκ agree

on the factors Pκ whenever κ > max{2g − 2, 0}+ dy. Since we are checking whether two maps
pH0K → Pκ agree, and Pκ is a perverse sheaf all of whose simple constituents have full support
on X(κ), it suffices to check at a geometric generic point η of X(κ).

Since aEis(hy) = 1O(y) + qdy1O(−y), we see that aEis(hy)Pκ′ has Pκ-component only when

κ′ > max{2g − 2, 0} and κ′ ∈ κ + Z. In particular, κ′ ∈ K♯r. Therefore, we only need to check
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that the following diagram is commutative

H2r−#I(κ)
c (Shtη)

hy
//

γη

��

H2r−#I(κ)
c (Shtη)

γη,κ

��

⊕κ′∈K♯
r,κ′∈κ+ZH

0
c(Sht

N(κ′)
1,η )

(aEis(hy))κ
// H0
c(Sht

N(κ)
1,η )

(3.32)

Here the κ′ component of γη is the composition (where the first one is induced by the closed

embedding of the closure of κ
′
Shtη)

γη,κ′ : H2r−#I(κ)
c (Shtη) −→ H2r−#I(κ)

c (κ′Shtη) ∼= H2r−#I(κ)
c (κ

′
Shtη) ∼= H0

c(Sht
N(κ′)
1,η ).

The proof of (3.32) is similar to that of [10, Lemma 7.8]. The key point is: if we restrict the
Hecke correspondence Sht(hy)η

Shtη Sht(hy)η
−→p η

//

←−p η
oo Shtη

over the horocycle κShtη via ←−p η, it decomposes into two pieces, one mapping isomorphically to
κ−dyShtη via −→p η and the other one is a finite étale cover of κ+dyShtη of degree qdy via −→p η. We
omit details. �

3.5.5. Key finiteness results. For i ∈ Z, let

V≤i := lim
−→
κ

H0((Xr ×S∞)⊗ k, pτ≤iK≤κ).

Then we have natural maps

· · · −→ V≤−1 −→ V≤0 −→ V≤1 −→ · · · −→ V.

which are not necessarily injective. Since the action of f comes from a cohomological correspon-
dence, the same cohomological correspondence also acts on each V≤i making the above maps
equivariant under the action of H Σ

G . We also have an H Σ
G -module map

V≤i −→ H−i((Xr ×S∞)⊗ k, pHiK).

Lemma 3.37. (1) The kernel and the cokernel of V≤0 → V are finite-dimensional.

(2) The kernel and the cokernel of V≤0 → H0((Xr ×S∞)⊗ k, pH0K) are finite-dimensional.

Proof. (1) Since pHiK = 0 for i large, V≤i
∼
→ V for i sufficiently large. Similarly, Vi = 0 for

i sufficiently small. Therefore it suffices to show that V≤i/V≤i−1 (namely modulo the image of
V≤i−1) is finite-dimensional for i 6= 0.

The triangle pτ≤i−1K≤κ → pτ≤iK≤κ →
pHiK≤κ[−i]→ 0 induces an injective map

H0(pτ≤iK≤κ)/H
0(pτ≤i−1K≤κ) →֒ H−i((Xr ×S∞)⊗ k, pHiK≤κ).

Taking inductive limit over κ, we have an injection

V≤i/V≤i−1 →֒ lim
−→
κ

H−i((Xr ×S∞)⊗ k, pHiK≤κ) = H−i((Xr ×S∞)⊗ k, pHiK). (3.33)

(we use that lim
−→κ

commutes with taking cokernel). By Lemma 3.32, the right side stabilizes as

{pHiK≤κ} stabilizes for i 6= 0, hence is finite-dimensional. Therefore, for i 6= 0, V≤i/V≤i−1 is
finite-dimensional. In particular, V≤−1 is finite-dimensional.

(2) The injection (3.33) is still valid for i = 0, and it can be extended to an exact sequence

0 −→ V≤0/V≤−1 −→ H0((Xr ×S∞)⊗ k, pH0K) −→ lim
−→
κ

H1((Xr ×S∞)⊗ k, pτ≤−1Kκ).

By Lemma 3.32, pτ≤−1Kκ is eventually stable (in fact a constant inductive system), hence the last

term above is finite-dimensional. Since V≤−1 is also finite-dimensional, V≤0 → H0((Xr ×S∞)⊗ k, pH0K)
has finite-dimensional kernel and the cokernel. �

Corollary 3.38 (of Lemma 3.36 and 3.37). If f ∈ IEis, then the image of f · (−) : V → V is
finite-dimensional.
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Proof. By Lemma 3.37(1), it suffices to show that the f -action on V≤0 has finite rank. By

Lemma 3.37(2), it suffices to show that pH0(f) : pH0K → pH0K induces a finite-rank map after

applying H0((Xr ×S∞)⊗ k,−). However, by Lemma 3.36, pH0(f) is mc-zero since aEis(f) = 0,
and the conclusion follows. �

Proposition 3.39. For any place y ∈ |X | − Σ, V is a finitely generated Hy ⊗Qℓ-module.

Proof. By Lemma 3.37, it suffices to show that H0((X ×S∞)⊗ k, pH0K) is a finitely generated
Hy ⊗Qℓ-module.

The ind-perverse sheaf pH0K has an increasing filtration given by pH0K≤κ (by Lemma 3.32)

with associated graded Pκ. Let F≤N (pH0K) ⊂ pH0K be the sum of pH0K≤κ for κ ∈ K♯r and

κ ≤ Ndy. Then {F≤N (pH0K)} gives an increasing filtration on pH0K. The map γ in (3.31)
induces

GrFN (γ) : GrFN (pH0K) −→ ⊕κ∈K♯
r ,κ≤Ndy,κ�(N−1)dyPκ

which is an isomorphism for large N , by Lemma 3.34.
Now hy sends F≤N (pH0K) to F≤N+1(

pH0K). By Lemma 3.36, for N large enough, the
induced map

GrFN (hy) : GrFN (pH0K) −→ GrFN+1(
pH0K)

is the same as the action of 1O(y) ∈ PicX(k)

1O(y) : ⊕κ∈K♯
r ,κ≤Ndy,κ�(N−1)dyPκ −→ ⊕κ∈K♯

r ,κ≤(N+1)dy,κ�Ndy
Pκ. (3.34)

Since 1O(y) maps Pκ isomorphically to Pκ+dy , (3.34) is an isomorphism. Therefore, GrFN (hy) is
an isomorphism for large N .

Next we apply H0((Xr ×S∞)⊗ k,−) to F≤N (pH0K) and pH0K, which we abbreviate as

H0(F≤N (pH0K)) and H0(pH0K). Note that each F≤N (pH0K) has aWeil structure, H0(F≤N
pH0K)

is a Frobenius module and we can talk about its weight. We have an exact sequence

H0(GrFN (pH0K)) −→ H1(F≤N−1(
pH0K)) −→ H1(F≤N (pH0K)) −→ H1(GrFN (pH0K)) (3.35)

Since GrFN (pH0K) is a sum of Pκ, it is pure of weight 0 by Corollary 3.30. Therefore H
0(GrFN(

pH0K))

is pure of weight 0 and H1(GrFN (pH0K)) is pure of weight 1. Then (3.35) implies the weight ≤ 0
part W≤0H

1(F≤N (pH0K)) is eventually stable for N large. The same long exact sequence gives

H0(F≤N−1(
pH0K)) −→ H0(F≤N (pH0K)) −→ H0(GrFN (pH0K)) −→

−→W≤0H
1(F≤N−1(

pH0K)) −→W≤0H
1(F≤N (pH0K)) −→ 0

Therefore the top row above is exact on the right for N large. As GrFN (hy) is an isomorphism

for large N , it induces an isomorphism H0(GrFN (pH0K))
∼
→ H0(GrFN+1(

pH0K)) for large N .

This implies that for large N , the image of H0(F≤N (pH0K)) in H0(pH0K) generates it as an
Hy ⊗Qℓ-module. �

Let H
Σ

ℓ be the image of the ring homomorphism

H
Σ
G ⊗Qℓ −→ EndQℓ

(V )×Qℓ[PicX(k)]ιPic

given by the product of the action map on V and aΣEis.

Corollary 3.40 (of Prop. 3.39). (1) H
Σ

ℓ is a finitely generated Qℓ-algebra of Krull dimension
one.

(2) V is finitely generated as a H
Σ

ℓ -module.

Proof. (2) is an obvious consequence of Prop. 3.39. The proof of part (1) is the same as
[10, Lemma 7.13(2)]. �

Theorem 3.41 (Cohomological spectral decomposition). (1) There is a decomposition of the

reduced scheme of SpecH
Σ

ℓ into a disjoint union

Spec(H
Σ

ℓ )
red = ZEis,Qℓ

∐
ZΣ
0,ℓ

where ZEis,Qℓ
= SpecQℓ[PicX(k)]ιPic and ZΣ

0,ℓ consists of a finite set of closed points.
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(2) There is a unique decomposition

V = V0 ⊕ VEis

into H Σ
G ⊗Qℓ-submodules, such that Supp(VEis) ⊂ ZEis,Qℓ

, and Supp(V0) = ZΣ
0,ℓ.

(3) The subspace V0 is finite dimensional over Qℓ.

Proof. (1) By Lemma 2.1, aΣEis induces a closed embedding ZEis,Qℓ
→֒ SpecH

Σ

ℓ . We are going

to show that the complement of ZEis,Qℓ
in SpecH

Σ

ℓ is a finite set of closed points.

Let IEis be the image of IEis in H
Σ

ℓ , then by Corollary 3.40, H
Σ

ℓ is noetherian and hence
IEis is finitely generated, say by f1, . . . , fN . By Corollary 3.38, each fi · V is finite-dimensional,
therefore so is IEis · V = f1 · V + · · · + fN · V . Now let Z ′0 ⊂ Spec(H Σ

ℓ )red be the support of

the finite-dimensional H
Σ

ℓ -module IEis · V . Hence Z ′0 is a finite set of closed points. The same
argument as that of [10, Theorem 7.14] shows that Spec(H Σ

ℓ )red is the union of ZEis,Qℓ
and Z ′0.

Finally we let ZΣ
0,ℓ be the complement of ZEis,Qℓ

in Spec(H
Σ

ℓ )
red.

The argument for (2) and (3) is the same as that of [10, Theorem 7.14]. �

3.5.6. The base-change situation. Consider the situation as in §3.2.6. We argue that the analogue
of Theorem 3.41 holds for Sht′rG(Σ;Σ∞) in place of ShtrG(Σ;Σ∞). Let

V ′ = H2r
c (Sht′rG(Σ;Σ∞)⊗ k,Qℓ)(r).

Then V ′ is also a H Σ
G -module, see the discussion in §3.3.4. The results in this subsection for the

H Σ
G -module V have obvious analogues for V ′, because most of these results are consequences

of finiteness results on pHiK and similar results formally hold for its pullback to X ′r × S′∞.
There is one place in the proof of Prop. 3.39 where we used purity argument for the cohomology
H∗((Xr ×S∞)⊗ k, Pκ), which continues to hold for H∗((X ′r ×S′∞)⊗ k, ν′r,∗Pκ). Therefore all
results in this subsection hold for V ′ in place of V . In particular, Theorem 1.1 holds.

4. The Heegner–Drinfeld cycles

In this section we define Heegner–Drinfeld cycles in the ramified case. All the notation
appearing on the geometric side of our main Theorem 1.2 will be explained in this section.

4.1. T -Shtukas.

4.1.1. The double cover. Let X ′ be another smooth, projective and geometrically connected
curve over k and ν : X ′ → X be a finite morphism of degree 2. Let R′ ⊂ X ′ be the (reduced)
ramification locus of ν, and let R ⊂ X be its image under ν. Then ν induces an isomorphism
R′
∼
→ R. Let σ : X ′ → X ′ be the nontrivial involution over X .
We always assume that the conditions (1.4) and (1.5) hold. In particular, they imply that

R ∩ Σ = ∅.

Let

Σ′∞ = ν−1(Σ∞) ⊂ |X ′|.

Then ν : Σ′∞ → Σ∞ is a bijection. For x ∈ Σ∞ we denote its preimage in Σ′∞ by x′. Set

S
′
∞ =

∏

x′∈Σ′
∞

Spec k(x′).

An S-point of S′∞ is {x′(1)}x′∈Σ′
∞ , where x′(1) : S → Spec k(x′) →֒ X ′. We introduce the

notation x′(i) for all i ∈ Z as before.
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4.1.2. Hecke stack for T -bundles. Let

BunT = PicX′ /PicX .

As a special case of [10, Definition 5.1], for µ ∈ {±1}r, we have the Hecke stack Hk
µ

1,X′ classifying

a chain of r + 1 line bundles on X ′

L0
f ′
1 //❴❴❴ L1

f ′
2 //❴❴❴ · · ·

f ′
r //❴❴❴ Lr

with modification type of f ′i given by µi. Then Hk
µ

1,X′ ∼= PicX′ ×X ′r where the projection to

PicX′ records L0, and the projection to X ′r records the locus of modification of fi : Li−1 99K Li.
We define

Hk
µ

T := Hk
µ

1,X′/PicX

together with maps recording Li

p
µ

T,i : Hk
µ

T −→ BunT , i = 0, . . . , r.

4.1.3. T -Shtukas. For x′ ∈ Σ′∞ and i ∈ Z, we have a map

x′(i) : S′∞ −→ Spec k(x′)
Fri−1

−−−→ Spec k(x′) →֒ X ′, 1 ≤ i ≤ dx′ = 2dx.

where the first map is the projection to the x′-factor, and the last one is the natural embedding.
Let D ′∞ be the set of divisors on X ′ ×S′∞ of the form

D′∞ =
∑

x′∈Σ′
∞,1≤i≤dx′

c
(i)
x′ x
′(i), c

(i)
x′ ∈ Z. (4.1)

For any D′∞ ∈ D ′∞ as above, we have morphisms

ÃL(D′∞) : PicX′ ×S′∞ −→ PicX′ ,

AL(D′∞) : BunT ×S
′
∞ −→ BunT

(L, {x′(1)}x′∈Σ′
∞) 7−→ L(

∑

x′∈Σ′
∞,1≤i≤dx′

c
(i)
x′ Γx′(i)).

Suppose µ ∈ {±1}r and D′∞ ∈ D ′∞ satisfy

r∑

i=1

µi = degD′∞ =
∑

x′∈Σ′
∞,1≤i≤dx′

c
(i)
x′ . (4.2)

We then apply the definition of Sht
µ
n(Σ∞;D∞) to the case n = 1, the curve being X ′ and Σ and

Σ∞ are both replaced by Σ′∞. Denote the resulting moduli stack by Sht
µ

1,X′(D′∞).

The groupoid PicX(k) acts on Sht
µ

1,X′(D′∞) by tensoring all the line bundles in the data with

the pullback of K ∈ PicX(k) to X ′. We define

Sht
µ

T (D
′
∞) = Sht

µ

1,X′(D
′
∞)/PicX(k).

We have a morphism

Π
µ

T,D′
∞

: Sht
µ

T (D
′
∞) −→ X ′r ×S

′
∞.

From the definition we have a Cartesian diagram

Sht
µ

T (D
′
∞) //

ωT,0

��

Hk
µ

T ×S′∞

(p
µ

T,0,AL(−D′
∞)◦(pµT,r×idS′∞ ))

��

BunT
(id,Fr)

// BunT × BunT

(4.3)

From the diagram we get the following statement.

Lemma 4.1. The moduli stack Sht
µ

T (D
′
∞) depends only on the image of D′∞ in D ′∞/ν

∗D∞.

The following alternative description of Sht
µ

T (D
′
∞) follows easily from the definitions.



SHTUKAS AND THE TAYLOR EXPANSION (II) 43

Lemma 4.2. We have a Cartesian diagram

Sht
µ

T (D
′
∞)

ωT,0
//

Π
µ

T,D′∞
��

BunT

λ

��

X ′r ×S
′
∞
α

µ

D′∞ // BunT

where λ : L 7→ L−1⊗ τL is the Lang map for BunT ; α
µ

D′
∞

sends (x′1, . . . , x
′
r; {x

′(1)}x′∈Σ′
∞) to the

image of the line bundle

OX′




r∑

i=1

µiΓx′
i
−

∑

x′∈Σ′
∞,1≤i≤dx′

c
(i)
x′ Γx′(i)




in BunT .

Corollary 4.3 (of Lemma 4.2). The morphism Π
µ

T,D′
∞

is a torsor under the (finite discrete)

groupoid BunT (k). In particular, Sht
µ

T (D
′
∞) is a smooth and proper DM stack over k of dimen-

sion r.

4.1.4. Specific choice of D′∞. For each µ∞ = (µx)x∈Σ∞ ∈ {±1}
Σ∞ , define the following element

in D ′∞
µ∞ · Σ

′
∞ :=

∑

x∈Σ∞

µxx
′(1) ∈ D

′
∞.

Definition 4.4. Fix r satisfying the parity condition (3.18). Let µ ∈ {±1}r, µ∞ ∈ {±1}Σ∞ .
For any D′∞ ∈ D ′∞ satisfying D′∞ ≡ µ∞ · Σ

′
∞ mod ν∗D∞ and (4.2), define

Sht
µ

T (µ∞ · Σ
′
∞) := Sht

µ

T (D
′
∞).

The notation is justified because the right side above depends only on µ∞ by Lemma 4.1. We

denote the projection Π
µ

T,D′
∞

for such D′∞ by

Π
µ

T,µ∞
: Sht

µ

T (µ∞ · Σ
′
∞) −→ X ′r ×S

′
∞.

Remark 4.5. Whenever r satisfies the parity condition (3.18), for any (µ, µ∞) ∈ {±1}r ×

{±1}Σ∞, the divisor D′∞ ∈ D ′∞ satisfying the conditions in Definition 4.4 always exists. There-

fore, Sht
µ

T (µ∞ · Σ
′
∞) is always defined (and non-empty).

The following lemma is a direct consequence of the diagram (4.3).

Lemma 4.6. The following diagram is Cartesian

Sht
µ

T (µ∞ · Σ
′
∞)

��

// Hk
µ

T ×S′∞

(p
µ

T,0×idS′∞ ,AL♯
T,µ∞◦(p

µ

T,r×idS′∞ ))

��

BunT ×S
′
∞

(id,Fr)
// (BunT ×S

′
∞)× (BunT ×S

′
∞)

(4.4)

where AL♯T,µ∞ is the map

AL♯T,µ∞ = (AL(−µ∞ · Σ
′
∞),FrS′

∞) : BunT ×S
′
∞ −→ BunT ×S

′
∞. (4.5)

4.1.5. Relation to T -Shtukas in [10]. For (µ, µ∞) ∈ {±1}r × {±1}Σ∞, let µ̃ = (µ,−µ∞). Then

Shtµ̃T is defined as in [10, §5.4] (the loc. cit. also applies to a ramified cover X ′/X), with a

map πµ̃T : Shtµ̃T → X ′r × X ′Σ∞ . Let S
′
∞ →֒ X ′Σ∞ be the product of the natural embeddings

Spec k(x′) →֒ X ′ for each x ∈ Σ∞. From the definitions, we see that Sht
µ

T (µ∞ · Σ
′
∞) fits into a

Cartesian diagram

Sht
µ

T (µ∞ · Σ
′
∞) �

�
//

Π
µ

T,µ∞
��

Shtµ̃T

πµ̃
T

��

X ′r ×S
′
∞
� � // X ′r ×X ′Σ∞
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4.2. The Heegner–Drinfeld cycles. In this subsection we will define a map from Sht
µ

T (µ∞ ·
Σ′∞) to ShtrG(Σ;Σ∞) depending on an auxiliary choice.

Recall that the condition (1.4) is assumed. Let Σ′f = ν−1(Σf ). Let Sect(Σ′f/Σf) be the set

of sections of the two-to-one map Σ′f → Σf . Then Sect(Σ′f/Σf) is a torsor under {±1}Σf . The

auxiliary choice we need is an element µf ∈ Sect(Σ′f/Σf ).

4.2.1. The map θµΣ

Bun. Let µΣ = (µf , µ∞) ∈ Sect(Σ′f/Σf )× {±1}
Σ∞ . We define a map

θ̃µΣ

Bun : PicX′ ×S′∞ −→ Bun2(Σ).

To an S-point (L, {x′(1)}x′∈Σ′
∞) of PicX′ ×S′∞, we assign the following S-point of Bun2(Σ)

E† = (E , {E(−
1

2
x)}x∈Σ)

where

• E = νS,∗L, where νS = ν × idS : X ′ × S → X × S.

• For x ∈ Σf , denote the value of µf at x by µx ∈ ν−1(x). Then E(− 1
2x) = νS,∗(L(−µx)).

• For x ∈ Σ∞,

E(−
1

2
x) =

{
νS,∗(L(−Γx′(1) − Γx′(2) − · · · − Γx′(dx))) µx = 1;

νS,∗(L(−Γx′(dx+1) − Γx′(dx+2) − · · · − Γx′(2dx))) µx = −1.

Note here that for x ∈ Σ∞, the divisors Γx′(1) + Γx′(2) + · · ·+ Γx′(dx) and Γx′(dx+1) + Γx′(dx+2) +
· · ·+ Γx′(2dx) in the above formulas are “half” of the divisor {x′} × S ⊂ X ′ × S.

Dividing by PicX we get a morphism

θµΣ

Bun : BunT ×S
′
∞ −→ BunG(Σ).

The next lemma is a direct calculation.

Lemma 4.7. Let µΣ = (µf , µ∞). The following diagram is commutative

BunT ×S′∞

(θ
µΣ
Bun,ν∞)

��

AL♯
T,µ∞ // BunT ×S′∞

θ
µΣ
Bun

��

BunG(Σ)×S∞
ALG,∞

// BunG(Σ)

where ν∞ : S′∞ → S∞ is the map induced from ν.

4.2.2. Heegner–Drinfeld cycle. We define

Tr,Σ := {±1}r × Sect(Σ′f/Σf )× {±1}
Σ∞ .

For µ = (µ, µf , µ∞) ∈ Tr,Σ, we have a map

θµHk : Hk
µ

T ×S
′
∞ −→ HkrG(Σ)

by applying θµΣ

Bun (where µΣ = (µf , µ∞)) to each member of the chain {Li}0≤i≤r classified by

Hk
µ

T . By construction we have pi ◦ θ
µ
Hk = θµΣ

Bun ◦ (p
µ

T,i × idS′
∞) : Hk

µ

T × S′∞ → BunG(Σ) for
1 ≤ i ≤ r.

Now compare the Cartesian diagrams (4.4) and (3.21). Each corner of the diagram (4.4) except
the upper left corner maps to the corresponding corner of (3.21) by θBun and θµHk; Lemma 4.7
says that the corresponding maps in the two diagrams are intertwined. Therefore we get a
morphism between the upper left corners since both diagrams are Cartesian

θµ : Sht
µ

T (µ∞ · Σ
′
∞) −→ ShtrG(Σ;Σ∞).

We have a commutative diagram

Sht
µ

T (µ∞ · Σ
′
∞)

θµ //

Π
µ

T,µ∞
��

ShtrG(Σ;Σ∞)

Πr
G

��

X ′r ×S
′
∞

(νr ,ν∞)
// Xr ×S∞
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which induces a morphism

θ′µ : Sht
µ

T (µ∞ · Σ
′
∞) −→ Sht′rG(Σ;Σ∞) := ShtrG(Σ;Σ∞)×Xr×S∞ (X ′r ×S

′
∞).

Since Sht
µ

T (µ∞·Σ
′
∞) is proper over k of dimension r by Corollary 4.3, its image in Sht′rG(Σ;Σ∞)

defines an element in the Chow group of proper cycles.

Definition 4.8. The Heegner–Drinfeld cycle of type µ = (µ, µf , µ∞) ∈ Tr,Σ is the class

Zµ := θ′µ∗ [Sht
µ

T (µ∞ · Σ
′
∞)] ∈ Chc,r(Sht

′r
G(Σ;Σ∞))Q.

Definition 4.9. Let µ, µ′ ∈ Tr,Σ. Define a linear functional Iµ,µ
′
on H Σ

G by

Iµ,µ
′
(f) =


 ∏

x′∈Σ′
∞

dx′



−1

〈Zµ, f ∗ Zµ
′
〉Sht′rG (Σ;Σ∞) ∈ Q. f ∈H

Σ
G .

Here we are using the H Σ
G -action on Chc,r(Sht

′r
G(Σ;Σ∞))Q defined in §3.3.4.

4.3. Symmetry among Heegner–Drinfeld cycles. Let µ = (µ, µf , µ∞) ∈ Tr,Σ. We study
how Zµ changes when we vary µ.

4.3.1. Changing µ. As in [10, §5.4.6], for two choices µ, µ′ ∈ {±1}r, there is a canonical isomor-

phism ιµ,µ′ : Sht
µ

T (µ∞ · Σ
′
∞) ∼= Sht

µ′

T (µ∞ · Σ′∞) preserving the T -bundle Li and the projection

to S′∞. However, ιµ,µ′ does not preserve the projections Π
µ

T,µ∞ and Π
µ′

T,µ∞ . Instead, we have a

commutative diagram

Sht
µ

T (µ∞ · Σ
′
∞)

ι(µ,µ′)
//

Π
µ

T,µ∞
��

Sht
µ′

T (µ∞ · Σ′∞)

Π
µ′
T,µ∞

��

X ′r ×S′∞
σ(µ,µ′)×id

// X ′r ×S′∞

where the involution σ(µ, µ′) : X ′r → X ′r sends a point (x′1, . . . , x
′
r) to the point (x′′1 , . . . , x

′′
r ),

where, for 1 ≤ i ≤ r,

x′′i =

{
x′i if µi = µ′i;

σ(x′i) if µi 6= µ′i.

Letting µ′ = (µ′, µf , µ∞), it is easy to check that ι(µ, µ′) intertwines the map θµ and θµ
′
.

4.3.2. Changing µf . Let µ′f = {µ′x}x∈Σf
∈ Sect(Σ′f/Σf ) be another element. Consider the

following divisor on X ′

D(µf , µ
′
f ) =

∑

x∈Σf ,µx 6=µ′
x

µx.

We have an automorphism

ι(µf , µ
′
f ) : Sht

µ

T (µ∞ · Σ
′
∞) −→ Sht

µ

T (µ∞ · Σ
′
∞)

sending (Li;xi; {x′(1)}) to (Li(−D(µf , µ
′
f ));xi; {x

′(1)}). Letting µ′ = (µ, µ′f , µ∞), direct calcu-
lation shows that the following diagram is commutative

Sht
µ

T (µ∞ · Σ
′
∞)

ι(µf ,µ
′
f )

//

θµ

��

Sht
µ

T (µ∞ · Σ
′
∞)

θµ
′

��

ShtrG(Σ;Σ∞)
ALSht(µf ,µ

′
f )

// ShtrG(Σ;Σ∞)

where ALSht(µf , µ
′
f ) is the composition of ALSht,x (see §3.2.7) for x ∈ Σf such that µx 6= µ′x.
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4.3.3. Changing µ∞. Let µ′∞ ∈ {±1}
Σ∞ be another element. Consider the following divisor on

X ′ ×S′∞

D(µ∞, µ
′
∞) =

∑

µx=1,µ′
x=−1

(x′(1) + · · ·+ x′(dx)) +
∑

µx=−1,µ′
x=1

(x′(dx+1) + · · ·+ x′(2dx)).

where both sums are over x ∈ Σ∞. Define an isomorphism

ι(µ∞, µ
′
∞) : Sht

µ

T (µ∞ · Σ
′
∞) −→ Sht

µ

T (µ
′
∞ · Σ

′
∞)

sending (Li;xi; {x′(1)}) to (Li(−D(µ∞, µ′∞));xi; {x′(1)}). Letting µ′ = (µ, µf , µ
′
∞), direct cal-

culation shows that the following diagram is commutative

Sht
µ

T (µ∞ · Σ
′
∞)

ι(µ∞,µ′
∞)

//

θµ

��

Sht
µ

T (µ
′
∞ · Σ

′
∞)

θµ
′

��

ShtrG(Σ;Σ∞)
ALSht(µ∞,µ′

∞)
// ShtrG(Σ;Σ∞)

where ALSht(µ∞, µ′∞) is the composition of ALSht,x for x ∈ Σ∞ such that µx 6= µ′x.

4.3.4. The action of Ar,Σ. We observe that Tr,Σ is a torsor under the groupAr,Σ := (Z/2Z){1,2,...,r}⊔Σ.
We denote the action of a ∈ Ar,Σ on Tr,Σ by a · (−).

We also have an action of Ar,Σ on Sht′rG(Σ;Σ∞) defined as follows. The factor of Z/2Z indexed
by 1 ≤ i ≤ r acts on the ith factor of X ′ by Galois involution over X . For x ∈ Σ, the nontrivial
element in the factor of Z/2Z indexed by x acts by the involution ALSht,x defined in §3.2.7 on
the ShtrG(Σ;Σ∞)-factor and identity on X ′r ×S′∞. We denote this action by

Ar,Σ ∋ a 7−→ ALSht′,a.

The following lemma summarizes the calculations in §4.3.1, §4.3.2 and §4.3.3.

Lemma 4.10. For any µ ∈ Tr,Σ and a ∈ Ar,Σ, the following diagram is commutative

Sht
µ

T (µ∞ · Σ
′
∞)

θ′µ

��

ι(µ,a·µ)
// Sht

a·µ
T ((a · µ∞) · Σ′∞)

θ′a·µ

��

Sht′rG(Σ;Σ∞)
ALSht′,a

// Sht′rG(Σ;Σ∞)

Here the upper horizontal arrow is the composition of ι(µ, µ′), ι(µf , µ′f ) and ι(µ∞, µ′∞) defined
in §4.3.1, §4.3.2 and §4.3.3. In particular, we have

Zµ = AL∗Sht′,a(Z
a·µ), ∀µ ∈ Tr,Σ, a ∈ Ar,Σ.

Let µ = (µ, µf , µ∞), µ′ = (µ′, µ′f , µ
′
∞) ∈ Tr,Σ. Let

∆(µ, µ′) := {1 ≤ i ≤ r|µi 6= µ′i};

Σ−(µ, µ
′) := {x ∈ Σ|µx 6= µ′x} ⊂ Σ; (4.6)

Σ+(µ, µ
′) := {x ∈ Σ|µx = µ′x} = Σ− Σ−(µ, µ

′). (4.7)

Corollary 4.11 (of Lemma 4.10). Let µ, µ′ ∈ Tr,Σ. Then Iµ,µ
′
depends only on the sets ∆(µ, µ′)

and Σ−(µ, µ′).

Proof. Let a(µ, µ′) ∈ Ar,Σ be the unique element such that a(µ, µ′) · µ = µ′. Then ∆(µ, µ′) and
Σ−(µ, µ′) determines a(µ, µ′) and vice versa. Therefore we only need to show that Iµ,µ

′
depends

only on a(µ, µ′).
Suppose µ, µ′ and µ̂, µ̂′ satisfy a(µ, µ′) = a(µ̂, µ̂′), we will show that Iµ,µ

′
= Iµ̂,µ̂

′
. Since Tr,Σ

is a torsor under Ar,Σ, there is a unique b ∈ Ar,Σ such that µ̂ = b · µ, µ̂′ = b · µ′. Since ALSht′,b

commutes with the action of any f ∈H Σ
G , we have

〈Z µ̂, f ∗ Z µ̂
′
〉 = 〈AL∗Sht′,b(Z

µ̂),AL∗Sht′,b(f ∗ Z
µ̂′
)〉 = 〈AL∗Sht′,b(Z

µ̂), f ∗AL∗Sht′,b(Z
µ̂′
)〉.

By Lemma 4.10, we have

AL∗Sht′,b(Z
µ̂) = Zµ, AL∗Sht′,b(Z

µ̂′
) = Zµ

′
.
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Therefore we get

〈Z µ̂, f ∗ Z µ̂
′
〉 = 〈Zµ, f ∗ Zµ

′
〉.

i.e., Iµ,µ
′
(f) = Iµ̂,µ̂

′
(f) for all f ∈H Σ

G . �

We will see later (in Theorem 5.6) that in fact Iµ,µ
′
only depends on Σ−(µ, µ′) and the

cardinality of ∆(µ, µ′).

4.3.5. Heegner–Drinfeld cycles over k. Fix a k-point ξ ∈ S′∞(k). Concretely this means a
collection of field embeddings

ξ = (ξx′)x′∈Σ′
∞ , ξx′ : k(x′) →֒ k.

Then ξ also determines a k-point of S∞ by the projection S′∞ → S∞, which we still denote by
ξ. We denote

ShtrG(Σ; ξ) := ShtrG(Σ;Σ∞)×S∞ ξ;

Sht′rG(Σ; ξ) := Sht′rG(Σ;Σ∞)×S′
∞ ξ ∼= ShtrG(Σ; ξ)×Xr X ′r;

Sht
µ

T (µ∞ · ξ) := Shtµ(µ∞ · Σ
′
∞)×S′

∞ ξ.

Then we have maps

Sht
µ

T (µ∞ · ξ)
θ′µξ

ww♣♣
♣♣
♣♣
♣♣
♣♣
♣

θµξ

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

Sht′rG(Σ; ξ) // ShtrG(Σ; ξ)

Definition 4.12. The Heegner–Drinfeld cycle of type µ = (µ, µf , µ∞) ∈ Tr,Σ over ξ is the class

Zµ(ξ) := θ′µξ,∗[Sht
µ

T (µ∞ · ξ)] ∈ Chc,r(Sht
′r
G(Σ; ξ))Q.

By definition, the pullback of Zµ to Sht′rG(Σ;Σ∞)⊗k is the disjoint union of Zµ(ξ) for various
ξ ∈ S′∞(k).

Corollary 4.13 (of Lemma 4.10). For µ = (µ, µf , µ∞) ∈ Tr,Σ and a ∈ Ar,Σ, we have

Zµ(ξ) = AL∗Sht′,a(Z
a·µ(ξ)).

Lemma 4.14. For any ξ ∈ S′∞(k), any µ, µ′ ∈ Tr,Σ and any f ∈H Σ
G , we have an identity

Iµ,µ
′
(f) = 〈Zµ(ξ), f ∗ Zµ

′
(ξ)〉Sht′rG (Σ;ξ). (4.8)

In particular, by Corollary 4.11, the right side depends only on the sets ∆(µ, µ′) and Σ−(µ, µ′).

Proof. Since Sht′rG(Σ;Σ∞)⊗k is the disjoint union of Sht′rG(Σ; ξ) for
∏
x′∈Σ′

∞
dx′ different choices

of ξ, it suffices to show that the right side of (4.8) is independent of the choice of ξ. To compare
a general ξ′ to ξ, we may reduce to the case where ξ′ ∈ S′∞(k) is obtained by changing ξx′ to
Fr(ξx′) for a unique x′ ∈ Σ′∞, and keeping the other coordinates.

Consider the isomorphism

x′ : Sht
µ

T (µ∞ · Σ
′
∞)

∼
−→ Sht

µ

T (µ∞ · Σ
′
∞)

sending (Li;x′i;x
′(1), {y′(1)}y′∈Σ′

∞,y′ 6=x′) to (Li(−µxx′(1));x′i;x
′(2), {y′(1)}y′∈Σ′

∞,y′ 6=x′). Direct cal-
culation shows that the following diagram is commutative

Sht
µ

T (µ∞ · Σ
′
∞)

θ′µ

��

x′
// Sht

µ

T (µ∞ · Σ
′
∞)

θ′µ

��

Sht′rG(Σ;Σ∞)
AL

(1)

x′
// Sht′rG(Σ;Σ∞)

(4.9)

where AL
(1)
x′ sends (E†i ;x

′
i;x
′(1), {y′(1)}y′∈Σ′

∞,y
′ 6=x′) to (E†i (−

1
2x

(1));x′i;x
′(2), {y′(1)}y′∈Σ′

∞,y′ 6=x′)

(here x(1) is the image of x′(1)). The diagram (4.9) implies that

(AL
(1)
x′ )
∗Zµ(ξ′) = Zµ(ξ).



48 ZHIWEI YUN AND WEI ZHANG

Therefore, using that AL
(1)
x′ commutes with the H Σ

G -action, we have

〈Zµ(ξ), f ∗ Zµ
′
(ξ)〉Sht′rG (Σ;ξ) = 〈(AL

(1)
x′ )
∗(Zµ(ξ′)), f ∗ (AL(1)

x′ )
∗Zµ

′
(ξ′)〉Sht′rG (Σ;ξ)

= 〈(AL
(1)
x′ )
∗(Zµ(ξ′)), (AL(1)

x′ )
∗(f ∗ Zµ

′
(ξ′))〉Sht′rG (Σ;ξ)

= 〈Zµ(ξ′), f ∗ Zµ
′
(ξ′)〉Sht′rG(Σ;ξ′).

�

5. The moduli stack Md and intersection numbers

The goal of this subsection is to give a Lefschetz-type formula for the intersection number
Iµ,µ

′
r (hD), see Theorem 5.6. This is parallel to [10, §6] in the unramified case.
Recall that Σ′ and R′ are the preimages of Σ and R under ν. We introduce the notation

U = X − Σ−R;

U ′ = X ′ − Σ′ − R′.

Our construction below will rely on variants of the Picard stack with an extra choice of a square
root along the divisor R, which naturally appears in the geometric class field theory of X with
ramification along R. We refer to our Appendix A for the definitions and properties of such
variants of the Picard stack.

5.1. Definition ofMd and statement of the formula. Let d be an integer. We shall define
an analog of the moduli stacksMd and Ad in [10, §6.1], for the possibly ramified double cover
ν : X ′ → X .

5.1.1. The stack Md. For any divisor D of X disjoint from R, OX(D) has a canonical lift

OX(D)♮ = (OX(D),OR, 1) ∈ Pic
√
R

X (k), and a canonical lift ȮX(D) = (OX(D),OR, 1, 1) ∈

Pic
√
R;
√
R

X (k).
Suppose we are given a decomposition

Σ = Σ+ ⊔ Σ−.

Let

ρ = degR = degR′; N = degΣ; N± = degΣ±.

Definition 5.1. Let Md = Md(Σ±) be the moduli stack whose S-points consist of tuples
(I,J , α, β, ) where

• I is a line bundle on X ′ × S with fiber-wise degree d+ ρ−N−, and α is a section of I.

• J is a line bundle on X ′ × S with fiber-wise degree d+ ρ−N+, and β is a section of J .

•  is an isomorphism Nm
√
R(I)⊗OX(Σ−)♮

∼
→ Nm

√
R(J )⊗OX(Σ+)

♮, as S-points of Pic
√
R,d+ρ

X .
Concretely,  is a collection of isomorphisms

Nm : Nm(I) ⊗OX(Σ−)
∼
−→ Nm(J )⊗OX(Σ+), (5.1)

x : I|x′×S
∼
−→ J |x′×S , ∀x ∈ R

such that the following diagram is commutative for all x ∈ R

I⊗2|x′×S

≀
��

⊗2
x

∼
// J ⊗2|x′×S

≀
��

Nm(I)|x×S
Nm|x×S

∼
// Nm(J )|x×S

(5.2)

Here the vertical maps are the tautological isomorphisms.

These data are required to satisfy the following conditions

(1) α|ν−1(Σ+)×S is nowhere vanishing.

(2) β|ν−1(Σ−)×S is nowhere vanishing.
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(3) For each x ∈ R, we have
x(α|x′×S) = β|x′×S .

Moreover, Nm(α)−Nm(β) vanishes only to the first order along R× S.

(4) This condition is non-void only when Σ = ∅ and R = ∅: for each geometric point s ∈ S,
the restriction (Nm(α)−Nm(β))|X×s is not identically zero.

From the definition we have an open embedding

ιd :Md →֒ X̂ ′d+ρ−N− ×Pic
√

R;
√

R,d+ρ
X

X̂ ′d+ρ−N+
(5.3)

where the fiber product is taken over

να : X̂ ′d+ρ−N−
ν̂
√

R

−−−→ X̂
√
R

d+ρ−N−

ÂJ

√
R;

√
R

d+ρ−N−
−−−−−−−→ Pic

√
R;
√
R,d+ρ−N−

X

⊗ȮX(Σ−)
−−−−−−→ Pic

√
R;
√
R,d+ρ

X

and

νβ : X̂ ′d+ρ−N+

ν̂
√

R

−−−→ X̂
√
R

d+ρ−N+

ÂJ

√
R;

√
R

d+ρ−N+
−−−−−−−→ Pic

√
R;
√
R,d+ρ−N+

X

⊗ȮX(Σ+)
−−−−−−→ Pic

√
R;
√
R,d+ρ

X

Here the Abel-Jacobi maps ÂJ

√
R;
√
R

d+ρ−N± are defined in §A.1.5.

Remark 5.2. When Σ = ∅ and R = ∅, there is a slight difference between the current definition
of Md and the one in [10]. In [10], we only require that α|X′×s and β|X′×s are not both zero
for any geometric point s ∈ S; here we impose a stronger open condition that Nm(α) −Nm(β)
is nonzero on X × s for any geometric point s ∈ S. Therefore the current version ofMd is the
one denoted byM♥d in [10]. A similar remark applies to the space Ad to be defined below.

5.1.2. The base Ad.

Definition 5.3. Let Ad = Ad(Σ±) be the moduli stack whose S-points consist of tuples

(∆,ΘR, ι, a, b, ϑR)

where

• (∆,ΘR, ι) ∈ Pic
√
R,d+ρ

X (S). Namely, ∆ is a line bundle on X × S of fiber-wise degree d + ρ,

ΘR a line bundle over R× S and ι an isomorphism Θ⊗2R
∼= ∆|R×S .

• a and b are sections of ∆.

• ϑR is a section of ΘR.

These data are required to satisfy the following conditions.

(1) a|Σ−×S = 0, and a|Σ+×S is nowhere vanishing.

(2) b|Σ+×S = 0, and b|Σ−×S is nowhere vanishing.

(3) a|R×S = ι(ϑ⊗2R ) = b|R×S . Moreover, a− b vanishes only to the first order along R× S.

(4) This condition is only non-void when Σ = ∅ and R = ∅: for every geometric point s of S,
(a− b)|X×s 6= 0.

The assignment (∆,ΘR, ι, a, b, ϑR) 7→ (∆(−Σ−),ΘR, ι, a, ϑR) gives a map

Ad −→ X̂
√
R

d+ρ−N−
.

Similarly, the assignment (∆,ΘR, ι, a, b, ϑR) 7→ (∆(−Σ+),ΘR, ι, b, ϑR) gives a map

Ad −→ X̂
√
R

d+ρ−N+
.

Combining these maps, we get an open embedding

ωd : Ad →֒ X̂
√
R

d+ρ−N−
×

Pic
√

R;
√

R,d+ρ
X

X̂
√
R

d+ρ−N+
(5.4)

where the the fiber product is formed using the Abel-Jacobi maps

νa : X̂
√
R

d+ρ−N−

ÂJ
√

R;
√

R

d+ρ−N−
−−−−−−−→ Pic

√
R;
√
R,d+ρ−N−

X

⊗ȮX(Σ−)
−−−−−−→ Pic

√
R;
√
R,d+ρ

X .

νb : X̂
√
R

d+ρ−N+

ÂJ

√
R;

√
R

d+ρ−N+
−−−−−−−→ Pic

√
R;
√
R,d+ρ−N+

X

⊗ȮX(Σ+)
−−−−−−→ Pic

√
R;
√
R,d+ρ

X .
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5.1.3. The base A♭d. Later we will need to use another base space A♭d.

Definition 5.4. Let A♭d = A
♭
d(Σ±) be the moduli stack whose S-points consist of tuples (∆, a, b)

where

• ∆ is a line bundle on X × S of fiber-wise degree d+ ρ,

• a and b are sections of ∆,

such that the same conditions (1)-(4) hold as in Definition 5.3.

Similar to the case of Ad, we have an open embedding

ω♭d : A
♭
d →֒ X̂d+ρ−N− ×Picd+ρ

X
X̂d+ρ−N+ (5.5)

By [10, §3.2.3], A♭d is a scheme over k. Later it will be technically more convenient to apply the

Lefschetz trace formula to the base scheme A♭d instead of the stack Ad.
There is a forgetful map

Ω : Ad −→ A
♭
d

which corresponds to the forgetful maps X̂
√
R

d+ρ−N±
→ X̂d+ρ−N± under the embeddings (5.4) and

(5.5).
We have a morphism

δ : A♭d −→ Ud

sending (∆, a, b) to the divisor of a− b as a nonzero section of ∆(−R), the latter having degree
d. The conditions (1), (2) and (3) in Definition 5.3 imply that the divisor of a− b does not meet
Σ or R.

For D be an effective divisor on U of degree d, let

A♭D = δ−1(D) ⊂ A♭d. (5.6)

5.1.4. Geometric properties ofMd. We have a morphism

fd :Md −→ Ad

defined by applying ν̂
√
R to both X̂ ′d+ρ−N− and X̂ ′d+ρ−N+

. In other words, we have a commuta-

tive diagram

Md
� � //

fd

��

X̂ ′d+ρ−N− ×να,Pic
√

R;
√

R,d+ρ
X ,νβ

X̂ ′d+ρ−N+

ν̂
√

R
d+ρ−N−×ν̂

√
R

d+ρ−N+

��

Ad
� � // X̂

√
R

d+ρ−N−
×
νa,Pic

√
R;

√
R,d+ρ

X ,νb
X̂
√
R

d+ρ−N+

(5.7)

We denote by f ♭d the composition

f ♭d :Md
fd−→ Ad

Ω
−→ A♭d.

The following is a generalization of [10, Prop 6.1] to the ramified situation.

Proposition 5.5. (1) When d ≥ 2g′− 1 +N = 4g − 3 + ρ+N , the stackMd is a smooth DM
stack pure of dimension m = 2d+ ρ−N − g + 1.

(2) The diagram (5.7) is Cartesian.

(3) The morphisms fd and f ♭d are proper.

(4) When d ≥ 3g − 2 +N , the morphism fd is small: it is generically finite and for any n > 0,
{a ∈ Ad| dim f−1d (a) ≥ n} has codimension ≥ 2n+ 1 in Ad.

(5) The stackMd admits a finite flat presentation in the sense of [10, Definition A.1].

Proof. (1) To show thatMd is smooth DM, it suffices to show that both of following stacks

X̂ ′d+ρ−N− ×να,Pic
√

R;
√

R,d+ρ
X ,νβ

X ′d+ρ−N+
(5.8)

X ′d+ρ−N− ×να,Pic
√

R;
√

R,d+ρ
X ,νβ

X̂ ′d+ρ−N+
(5.9)

are smooth DM.
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Let QR
′

X′ be the moduli stack of pairs (L′, ϑR′) where L′ ∈ PicX′ and ϑR′ is a section of L′|R′ .

Then QR
′

X′ ∼= PicX′ ×
Pic

√
R

X

Pic
√
R;
√
R

X . In particular, the norm map QR
′

X′ → Pic
√
R;
√
R

X is smooth

and relative DM.
For any geometric point s and line bundle L on X ′×s of degree n ≥ 2g′+ρ−1, the restriction

map H0(X ′ × s,L)→ H0(R′ × s,L|R′×s) is surjective with kernel dimension n− g′+1− ρ. This

implies X̂ ′n → QR
′

X′ is a vector bundle of rank n− g′ +1− ρ, whenever n ≥ 2g′− 1 + ρ, in which

case X̂ ′n itself is also smooth.

If d ≥ 2g′ − 1 +N ≥ 2g′ − 1 +N+, then d+ ρ−N+ ≥ 2g′ − 1 + ρ, the map νβ : X̂ ′d+ρ−N+
→

QR
′

X′ → Pic
√
R,
√
R

X is then smooth and relative DM by the above discussion, therefore the fiber
product (5.9) is smooth over its first factor X ′d+ρ−N− . Since X

′
d+ρ−N− is a scheme smooth over

k, the fiber product (5.9) is smooth DM over k. The argument for (5.8) is the same.
For the dimension, we have

dimMd = dim X̂ ′d+ρ−N− + dim X̂ ′d+ρ−N+
− dimPic

√
R,
√
R

X

= (d+ ρ−N−) + (d+ ρ−N+)− (g − 1 + ρ)

= 2d+ ρ−N − g + 1.

(2) follows directly by comparing the four conditions in Definition 5.1 and in Definition 5.3.
(3) Since Ω is proper, it suffices to show that fd is proper. By (2), it suffices to show that

ν̂
√
R

n : X̂ ′n → X̂
√
R

n is proper for any n ≥ 0. We consider the factorization of the usual norm map

ν̂n : X̂ ′n
ν̂
√

R
n−−−→ X̂

√
R

n

ω̂
√

R
n−−−→ X̂n.

The same argument of [10, Prop. 6.1(4)] shows that ν̂n is proper. On the other hand, ω̂
√
R

n is sep-

arated because it is obtained by base change from the separated map [2] : [ResRk A1/ResRk Gm]→
[ResRk A1/ResRk Gm] (see the diagram (A.1)). Therefore, ν̂

√
R

n is proper.

(4) OverA♦d := (X
√
R

d+ρ−N−
×

Pic
√

R;
√

R,d+ρ
X

X
√
R

d+ρ−N+
)∩Ad, fd is finite. The complementAd−A

♦
d

is the disjoint union of Aa=0
d and Ab=0

d corresponding to the locus a = 0 or b = 0. Note Aa=0
d = ∅

unless Σ+ = ∅; Ab=0
d = ∅ unless Σ− = ∅.

We first analyze the fibers over Ab=0
d when Σ− = ∅. The coarse moduli space of Ab=0

d is
Ud (by taking div(a) − R, note that Σ = Σ+). Hence dimAb=0

d = d, and codimAd
(Ab=0

d ) =
d− g+1+ ρ−N . The restriction of fd to Ab=0

d is, up to passing to coarse moduli spaces, given
by the norm map with respect to the double cover U ′ → U

U ′d ×Pic
√

R,d+ρ
X

Pic
d+ρ−N+

X′ −→ Ud.

From this we see that the fiber dimension of fd over Ab=0
d is the same as that of the norm map

PicX′ → Pic
√
R

X , which is g′ − g.
Similar argument shows that when Σ+ = ∅, codimAd

(Aa=0
d ) = d − g + 1 + ρ − N and the

fiber dimension of fd over Aa=0
d is still g′ − g. In either case, since d ≥ 3g − 2 +N , we have

d− g + 1 + ρ−N ≥ 2g − 1 + ρ = 2(g′ − g) + 1

which checks the smallness of fd.
(5) We need to show that there is a finite flat map Y → Md from an algebraic space Y of

finite type over k. As in [10, proof of Prop. 6.1(1)], by introducing a rigidification at some closed
point y ∈ U ′, we may define a schematic map

Md −→ Jd+ρX′ × PrymX′/X

where Jd+ρX′ is the Picard scheme of X ′ of degree d+ρ, and PrymX′/X := ker(Nm
√
R

X′/X : Pic0X′ →

Pic
√
R,0

X ). Since Jd+ρX′ is a scheme and PrymX′/X is a global finite quotient of an abelian variety,

Jd+ρX′ × PrymX′/X admits a finite flat presentation, therefore the same is true forMd. �
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5.1.5. The incidence correspondences. To state the formula for Iµ,µ
′
(hD), we need to introduce

two self-correspondences of Md. We define H+ to be the substack of Md × X ′ consisting of
those (I,J , α, β, , x′) such that β vanishes on Γx′ . We have the natural projection

←−γ + : H+ −→Md

recording (I,J , α, β, ). We also have another projection

−→γ + : H+ −→Md

sending (I,J , α, β, , x′) to (I,J (Γσx′−Γx′), α, β, ). This makes sense since twisting byOX′(Γσx′−

Γx′) does not affect the image under Nm
√
R, and that β can be viewed as a section of J (Γσx′−Γx′)

since it vanishes along Γx′ . Via (←−γ +,
−→γ +), we view H+ as a self-correspondence of Md. We

have a commutative diagram

H+
←−γ +

}}③③
③③
③③
③③ −→γ +

!!
❉❉

❉❉
❉❉

❉❉

Md

fd ""
❉❉

❉❉
❉❉

❉❉
Md

fd||③③
③③
③③
③③

Ad

(5.10)

Similarly, we define H− to be the substack of Md ×X ′ consisting of those (I,J , α, β, , x′)
such that α vanishes on Γx′ . We view H− as a self-correspondence ofMd over Ad

H−
←−γ −

}}③③
③③
③③
③③ −→γ −

""
❉❉

❉❉
❉❉

❉❉

Md

fd ""
❉❉

❉❉
❉❉

❉❉
Md

fd||③③
③③
③③
③③

Ad

(5.11)

where←−γ −(I,J , α, β, , x′) = (I,J , α, β, ) and −→γ −(I,J , α, β, , x′) = (I(Γσx′−Γx′),J , α, β, ).

Let A♦d = (X
√
R

d+ρ−N−
×

Pic
√

R;
√

R
X

X
√
R

d+ρ−N+
)∩Ad be the locus where a, b 6= 0 2. LetM♦d ⊂Md

be the preimage of A♦d . Let H
♦
+ and H♦− be the restriction of H+ and H− to A♦d .

Consider the incidence correspondence

I ′d+ρ−N+

←−
i

yyrr
rr
rr
rr
rr −→

i

%%▲
▲▲

▲▲
▲▲

▲▲
▲

X ′d+ρ−N+
X ′d+ρ−N+

(5.12)

Here I ′d+ρ−N+
= {(D, x′) ∈ X ′d+ρ−N+

×X ′|x′ ∈ D},
←−
i (D, x′) = D and

−→
i (D, x′) = D+σ(x′)−x′.

By definition, over M♦d , H
♦
+ is obtained from the incidence correspondence I ′d+ρ−N+

by

applying X ′d+ρ−N− ×Pic
√

R;
√

R
X

(−) and then restricting to A♦d . Similarly, H♦− is obtained from

the incidence correspondence I ′d+ρ−N− by applying (−)×
Pic

√
R;

√
R

X

X ′d+ρ−N+
and then restricting

to A♦d (c.f. [10, Lemma 6.3]).

From this description, we see that dimH♦± = dimM♦d = 2d+ ρ−N − g + 1. Let H
♦
± be the

closure of H♦± and let [H
♦
±] denote its cycle class as an element in HBM

2(2d+ρ−N−g+1)(H±). Then

[H
♦
±] is a cohomological correspondence between the constant sheaf on Md and itself, which

then induces an endomorphism of Rfd,!Qℓ

fd,![H
♦
±] : Rfd,!Qℓ −→ Rfd,!Qℓ.

2The definition of A♦
d

is different from the one in [10].
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Taking direct image under Ω : Ad → A♭d, we get an endomorphism

f ♭d,![H
♦
±] : Rf

♭
d,!Qℓ −→ Rf ♭d,!Qℓ.

For a ∈ A♭d(k), let (f
♭
d,![H

♦
±])a be the action of f ♭d,![H

♦
±] on the geometric stalk (Rfd,!Qℓ)a.

5.1.6. The formula. For the rest of the section, we fix a pair

µ = (µ, µf , µ∞), µ′ = (µ′, µ′f , µ
′
∞) ∈ Tr,Σ.

We set

Σ+ := Σ+(µ, µ
′), Σ− := Σ−(µ, µ

′)

be defined as in (4.6) and (4.7). ThusMd =Md(Σ±) is defined. We also let

r+ = {1 ≤ i ≤ r|µi = µ′i}; r− = {1 ≤ i ≤ r|µi 6= µ′i}. (5.13)

The following is the main theorem of this section, parallel to [10, Theorem 6.5].

Theorem 5.6. Suppose D is an effective divisor on U of degree d ≥ max{2g′ − 1 + N, 2g}.
Under the above notation, we have

Iµ,µ
′
(hD) =

∑

a∈A♭
D(k)

Tr
(
(f ♭d,![H

♦
+])

r+
a ◦ (f

♭
d,![H

♦
−])

r−
a ◦ Fra, (Rf

♭
d,!Qℓ)a

)
(5.14)

where Fra is the geometric Frobenius at a.

5.1.7. Outline of the proof. The rest of the section is devoted to the proof of Theorem 5.6. The
proof consists of three steps

I. Introduce a moduli stackMd(µΣ, µ
′
Σ) and a Hecke correspondence Hkµ,µ

′

M,d forMd(µΣ, µ
′
Σ).

This step is done in §5.2. We also introduce certain auxiliary spaces which form the
“master diagram” (5.18). Later we will apply the octahedron lemma [10, Theorem A.10] to
this diagram.

II. RelateMd(µΣ, µ
′
Σ) andMd; relate Hkµ,µ

′

M,d and a composition of H±.
This is done in §5.3. This step is significantly more complicated than the unramified case

treated in [10]. It amounts to showing that Md is a descent of Md(µΣ, µ
′
Σ) from S′∞ to

Spec k.

III. Show that Iµ,µ
′
(hD) can be expressed as the intersection number of a cycle class supported

on Hkµ,µ
′

M,d and the graph of Frobenius ofMd(µΣ, µ
′
Σ), and rewrite this intersection number

into a trace as in the right hand side of (5.14).
This step is done in §5.4. The argument is quite similar to the proof of [10, Theorem 6.6],

together with a standard application of a version of the Lefschetz trace formula reviewed in
[10, Prop A.12].

5.2. Auxiliary moduli stacks.

5.2.1. The stack Hd(Σ).

Definition 5.7. (1) Let H̃d(Σ) be the moduli stack whose S-points consist of triples (E†, E ′†, ϕ)
where
• E† = (E ; {E(− 1

2x)}) and E
′† = (E ′; {E ′(− 1

2x)}) are S-points of Bun2(Σ) such that deg(E ′|X×s)−
deg(E|X×s) = d for all geometric points s ∈ S.

• ϕ : E → E ′ is a map of coherent sheaves which is injective when restricted to X × s for all
geometric points s ∈ S, and mapping E(− 1

2x) to E
′(− 1

2x) for all x ∈ Σ.

• The restriction ϕ|(Σ⊔R)×S is an isomorphism.

(2) We define

Hd(Σ) = H̃d(Σ)/PicX

where PicX acts by tensoring on E† and E ′† simultaneously.
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We have a map
←→pH = (←−pH ,

−→pH) : Hd(Σ) −→ BunG(Σ)
2

recording E† and E ′†. We also have a map

s : Hd(Σ) −→ Ud (5.15)

recording the vanishing divisor of det(ϕ) as a section of det(E)−1 ⊗ det(E ′).
We also have an Atkin–Lehner operator

ALH,∞ : Hd(Σ)×S∞ −→ Hd(Σ) (5.16)

defined by applying ALG,∞ (see (3.20)) to both E and E ′, and keeping ϕ.

5.2.2. The Hecke correspondence for Hd(Σ).

Definition 5.8. Let µ ∈ {±1}r.

(1) Let H̃k
µ

H,d(Σ)
3 be the moduli stack of ({E†i }0≤i≤r, {E

′†
i }0≤i≤r, {xi}1≤i≤r) together with a

diagram

E0
f1

//❴❴❴

ϕ0

��

E1
f1

//❴❴❴

ϕ1

��

· · ·
fr

//❴❴❴ Er

ϕr

��

E ′0
f ′
1 //❴❴❴ E ′1

f ′
2 //❴❴❴ · · ·

f ′
r //❴❴❴ E ′r

(5.17)

where
• Each Ei and E ′i are underlying rank two vector bundles of points E†i , E

′†
i of Bun2(Σ).

• The upper and lower rows form objects in Hk
µ

2 (Σ) with modifications at {xi}1≤i≤r ∈ Xr.

• The vertical maps ϕi are such that (E†i , E
′†
i , ϕi) ∈ H̃d(Σ).

(2) Let

HkrH,d(Σ) := H̃k
µ

H,d(Σ)/PicX

where PicX acts on H̃k
µ

H,d(Σ) by simultaneously tensoring on all E†i and E ′†i .

The notation for HkrH,d(Σ) is justified because one can check, as in the case of Hk
µ

G(Σ), that

H̃k
µ

H,d(Σ)/PicX is canonically independent of µ.
We have projections

pH,i : Hk
r
H,d(Σ) −→ Hd(Σ), i = 0, . . . , r.

recording the i-th column of the diagram (5.17). We also have projections recording the upper
and lower rows of the diagram (5.17)

←→q = (←−q ,−→q ) : HkrH,d(Σ) −→ HkrG(Σ)
2

Let

Hk′rH,d(Σ) := HkrH,d(Σ)×Xr X ′r,

Hk′rG(Σ) := HkrG(Σ)×Xr X ′r.

The maps pH,i and
←→q induce maps

p′H,i : Hk′rH,d(Σ) −→ HkrH,d(Σ)
pH,i
−−−→ Hd(Σ), i = 0, . . . , r.

←→q ′ = (←−q ′,−→q ′) : Hk′rH,d(Σ) −→ Hk′rG(Σ)
2.

3In [10], the analogue of H̃k
µ

H,d(Σ) was denoted by H̃k
µ

G,d.
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5.2.3. The master diagram. Recall µ = (µ, µΣ), µ
′ = (µ′, µ′Σ) ∈ Tr,Σ. We consider the following

diagram in which each square is commutative

Hk
µ

T ×Hk
µ′

T ×S′∞

(p
µ

T,0×p
µ′
T,0×idS′∞ ,αT )

��

θµ,µ′
Hk ×idS′∞ // Hk′rG(Σ)

2 ×S′∞

(p′2G,0,αG)

��

Hk′rH,d(Σ)×S′∞

(p′H,0,αH)

��

←→q ′×id
S′∞oo

(Bun2T ×S′∞)× (Bun2T ×S′∞)
θµ,µ′
Bun ×θ

µ,µ′
Bun // BunG(Σ)

2 × BunG(Σ)
2 Hd(Σ)×Hd(Σ)

←→pH×←→pH
oo

Bun2T ×S′∞

(id,Fr)

OO

θµ,µ′
Bun // BunG(Σ)

2

(id,Fr)

OO

Hd(Σ)
←→pH

oo

(id,Fr)

OO

(5.18)

The map θµ,µ
′

Bun : Bun2T ×S′∞ → BunG(Σ)
2 is given by θµΣ

Bun× θ
µ′
Σ

Bun, using a common copy of S′∞;

θµ,µ
′

Hk : HkµT ×Hkµ
′

T ×S
′
∞ → Hk′rG(Σ)

2 is similarly defined using θµHk and θµ
′

Hk.
Let us explain the three maps αT , αG and αH that appear as the second components of the

vertical maps connecting the first and the second rows.

• The map αT is the composition

Hk
µ

T ×Hk
µ′

T ×S
′
∞

p
µ

T,r×p
µ′
T,r×idS′∞−−−−−−−−−−−→ Bun2T ×S

′
∞

ALT,µ∞,µ′∞−−−−−−−−→ Bun2T ×S
′
∞

where ALT,µ∞,µ′
∞ is defined as

ALT,µ∞,µ′
∞(L1,L2, {x

′(1)}) =

(
L1(−

∑

x∈Σ∞

µxx
′(1)),L2(−

∑

x∈Σ∞

µ′xx
′(1)), {x′(2)}

)
. (5.19)

Hence on the S′∞-factor, αT is the Frobenius morphism.

• The map αG is the composition

Hk′rG(Σ)
2 ×S

′
∞

p′2G,r×ν∞
−−−−−−→ BunG(Σ)

2 ×S∞
AL

(2)
G,∞

−−−−→ BunG(Σ)
2

where AL
(2)
G,∞ is ALG,∞ on both copies of BunG(Σ) using a common copy of S∞.

• The map αH is the composition

Hk′rH,d(Σ)×S
′
∞

p′H,r×ν∞
−−−−−−→ Hd(Σ)×S∞

ALH,∞
−−−−−→ Hd(Σ).

5.2.4. We define Sht′rH,d(Σ;Σ∞) to be the fiber product of the third column of (5.18), i.e., the
following diagram is Cartesian

Sht′rH,d(Σ;Σ∞) //

��

Hk′rH,d(Σ)×S′∞

(p′H,0,αH)

��

Hd(Σ)
(id,Fr)

// Hd(Σ)×Hd(Σ)

(5.20)

Then the fiber product of the three columns are

Sht
µ

T (µ∞ · Σ
′
∞)×S′

∞ Sht
µ′

T (µ′∞ · Σ
′
∞)

θ′µ×θ′µ′
// Sht′rG(Σ;Σ∞)×S′

∞ Sht′rG(Σ;Σ∞) Sht′rH,d(Σ;Σ∞)oo

(5.21)
Recall the map s : Hd(Σ) → Ud from (5.15). The Hecke correspondence Hk′rH,d(Σ) preserves

the map s while the Frobenius map on Hd(Σ) covers the Frobenius map of Ud. Therefore, from
the definition of Sht′rH,d(Σ;Σ∞), we get canonical decomposition of it indexed by k-points of Ud,
i.e., effective divisors of degree d on U . As in [10, Lemma 6.12], one shows that the piece indexed
by D ∈ Ud(k) is exactly the Hecke correspondence Sht′rG(Σ;Σ∞;hD) for Sht

′r
G(Σ;Σ∞). In other

words, we have a decomposition

Sht′rH,d(Σ;Σ∞) =
∐

D∈Ud(k)

Sht′rG(Σ;Σ∞;hD). (5.22)
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5.2.5. The stackMd(µΣ, µ
′
Σ) and its Hecke correspondence. Now we consider the fiber product

of the three rows of the master diagram (5.18).

Definition 5.9. LetMd(µΣ, µ
′
Σ) be the fiber product of the bottom row of (5.18), i.e., we have

the following Cartesian diagram

Md(µΣ, µ
′
Σ)

//

��

Hd(Σ)

←→pH
��

Bun2
T ×S′∞

θµ,µ′
Bun // BunG(Σ)

2

(5.23)

Our notation suggests thatMd(µΣ, µ
′
Σ) depends only on µΣ and µ′Σ. This is indeed the case,

because θµ,µ
′

Bun depends only on µΣ and µ′Σ.
From the definition of Md(µΣ, µ

′
Σ), the Atkin–Lehner automorphisms ALG,∞ (see (3.20)),

ALH,∞ (see (5.16)) and ALT,µ∞,µ′
∞ (see (5.19)) together with Lemma 4.7 induce an Atkin–

Lehner automorphism forMd(µΣ, µ
′
Σ)

ALM,∞ :Md(µΣ, µ
′
Σ) −→Md(µΣ, µ

′
Σ).

Definition 5.10. Let Hkµ,µ
′

M,d be the fiber product of the top row of (5.18). Equivalently, we
have the following Cartesian diagram

Hkµ,µ
′

M,d
//

��

Hk′rH,d(Σ)

←→q
��

Hk
µ

T ×Hk
µ′

T ×S′∞
θµ,µ′
Hk // Hk′rG(Σ)

2

(5.24)

Comparing the diagrams (5.23) and (5.24), we get projections

pM,i : Hk
µ,µ′

M,d −→Md(µΣ, µ
′
Σ), i = 0, . . . , r

as the fiber product of pµT,i × p
µ′

T,i × idS′
∞ and p′H,i over p

′2
G,i. We also let

αM = ALM,∞ ◦ pM,r : Hk
µ,µ′

M,d −→Md(µΣ, µ
′
Σ).

The fiber products of the three rows of (5.18) now read

Hkµ,µ
′

M,d

(pM,0,αM)

��

Md(µΣ, µ
′
Σ)×Md(µΣ, µ

′
Σ)

Md(µΣ, µ
′
Σ)

(id,Fr)

OO

(5.25)

5.2.6. The stack Shtµ,µ
′

M,d.

Definition 5.11. Let Shtµ,µ
′

M,d be the fiber product of the maps in (5.25), i.e., we have a Cartesian
diagram

Shtµ,µ
′

M,d
//

��

Hkµ,µ
′

M,d

(pM,0,αM)

��

Md(µΣ, µ
′
Σ)

(id,Fr)
//Md(µΣ, µ

′
Σ)×Md(µΣ, µ

′
Σ)

(5.26)
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By the diagram (5.18), Shtµ,µ
′

M,d is also the fiber product of the maps in (5.21), i.e., the following
diagram is also Cartesian

Shtµ,µ
′

M,d

��

// Sht′rH,d(Σ;Σ∞)

��

Sht
µ

T (µ∞ · Σ
′
∞)×S′

∞ Sht
µ′

T (µ′∞ · Σ
′
∞)

θ′µ×θ′µ′
// Sht′rG(Σ;Σ∞)×S′

∞ Sht′rG(Σ;Σ∞)

(5.27)

According to the decomposition (5.22), we get a corresponding decomposition of Shtµ,µ
′

M,d

Shtµ,µ
′

M,d =
∐

D∈Ud(k)

Shtµ,µ
′

M,D (5.28)

where Shtµ,µ
′

M,D is the preimage of Sht′rG(Σ;Σ∞;hD) ⊂ Sht′rH,d(Σ;Σ∞) under the upper horizontal

map in (5.27). We have a Cartesian diagram

Shtµ,µ
′

M,D

��

// Sht′rG(Σ;Σ∞;hD)

(←−p ′,−→p ′)

��

Sht
µ

T (µ∞ · Σ
′
∞)×S′

∞ Sht
µ′

T (µ′∞ · Σ
′
∞)

θ′µ×θ′µ′
// Sht′rG(Σ;Σ∞)×S′

∞ Sht′rG(Σ;Σ∞)

(5.29)

5.3. Relation between Md and Md(µΣ, µ
′
Σ). In this subsection, we relate Md(µΣ, µ

′
Σ) to

the moduli stackMd which was defined earlier. For this, we first give an alternative description
ofMd(µΣ, µ

′
Σ) in the style of the definition ofMd in [10, §6.1.1].

5.3.1. Some preparation. Let S be any scheme, and L and L′ two line bundles over X ′× S. We
denote by HR′(L,L′) be the set of pairs (α, β) where

α : L −→ L′(R′) := L′ ⊗OX′ OX′(R′) (5.30)

β : σ∗L −→ L′(R′) (5.31)

such that their restrictions to R′ × S satisfy

α|R′×S = β|R′×S . (5.32)

Note that L and σ∗L are the same when restricted to R′ × S, hence the above equality makes
sense.

Recall νS = ν × idS : X ′ × S → X × S.

Lemma 5.12. There is a canonical bijection

HomX×S(νS,∗L, νS,∗L
′)
∼
−→ HR′(L,L′)

such that, if ϕ : νS,∗L → νS,∗L′ corresponds to (α, β) under this bijection, we have

det(ϕ) = Nm(α)−Nm(β) (5.33)

as sections of det(νS,∗L)−1 ⊗ det(νS,∗L′) ∼= Nm(L)−1 ⊗Nm(L′).

Proof. By adjunction a map ϕ : νS,∗L → νS,∗L′ is equivalent to a map ν∗SνS,∗L → L
′. Note that

ν∗SνS,∗L ∼= OX′ ⊗OX L ∼= (OX′ ⊗OX OX′)⊗OX′ L, whose OX′-module structure is given by the
first factor of OX′ .

We have an injective map  : OX′⊗OXOX′ → OX′⊕OX′ sending a⊗b 7→ ab+aσ(b). By a local

calculation at points in R′ we see that the image of  is OX′ ⊕R′ OX′ := ker(OX′ ⊕OX′
(i∗,−i∗)
−−−−−→

OR′) (the difference of two restriction maps i∗ : OX′ → OR′). Therefore ν∗SνS,∗L ∼= (OX′ ⊕R′

OX′)⊗OX′ L = L ⊕R′ σ∗L = ker(L⊕ σ∗L
(i∗,−i∗)
−−−−−→ LR′×S). Hence the map ϕ is equivalent to a

map
ψ : L ⊕R′ σ∗L −→ L′.

Since L(−R′)⊕ σ∗L(−R′) ⊂ L⊕R′ σ∗L, the map ψ restricts to a map

L(−R′)⊕ σ∗L(−R′) −→ L′
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or
L⊕ σ∗L −→ L′(R′).

We then define the two components of above map to be α and −β. The condition (5.32) is
equivalent to that the map α ⊕ (−β) : L ⊕ σ∗L → L′(R′), when restricted to L ⊕R′ σ∗L, lands
in L′.

If ϕ corresponds to (α, β), we may pullback ϕ to X ′ so it becomes the map L ⊕R′ σ∗L →
L′ ⊕R′ σ∗L′ given by the matrix [

α −β
−σ∗β σ∗α

]
.

Therefore det(ϕ) = Nm(α)−Nm(β). �

5.3.2. Alternative description ofMd(µΣ, µ
′
Σ). We define M̃d(µΣ, µ

′
Σ) by the Cartesian diagram

M̃d(µΣ, µ
′
Σ)

//

��

H̃d(Σ)

←→̃
pH
��

PicX′ ×PicX′ ×S′∞
θ̃µ,µ′
Bun // Bun2(Σ)× Bun2(Σ)

Here θ̃µ,µ
′

Bun is given by θ̃µΣ

Bun× θ̃
µ′
Σ

Bun, using a common copy of S′∞. Comparing with the Definition
5.9, we have

Md(µΣ, µ
′
Σ)
∼= M̃d(µΣ, µ

′
Σ)/PicX .

For x′ ∈ Σ′∞ and x′(1) : S → Spec k(x′)
x′
−→ X ′, recall we inductively defined x′(j) using

x′(j) = x′(j−1) ◦ FrS for j ≥ 2. We have a morphism

D+ : S′∞ −→ X ′N+

which sends {x′(1)}x′∈Σ′
∞ ∈ S′∞(S) to the following divisor of X ′ × S of degree N+

D+({x
′(1)}) :=

∑

x∈Σf∩Σ+

µ′x × S +
∑

x∈Σ∞∩Σ+

{
(Γx′(1) + Γx′(2) + · · ·+ Γx′(dx)), if µ′x = 1

(Γx′(dx+1) + Γx′(dx+2) + · · ·+ Γx′(2dx)), if µ′x = −1.

Similarly, we define
D− : S′∞ −→ X ′N−

by sending {x′(1)}x′∈Σ′
∞ ∈ S′∞(S) to the following divisor of X ′ × S of degree N−

D−({x
′(1)}) :=

∑

x∈Σf∩Σ−

µ′x × S +
∑

x∈Σ∞∩Σ−

{
(Γx′(1) + Γx′(2) + · · ·+ Γx′(dx)), if µ′x = 1

(Γx′(dx+1) + Γx′(dx+2) + · · ·+ Γx′(2dx)), if µ′x = −1.

Now we can state the alternative description ofMd(µΣ, µ
′
Σ).

Lemma 5.13. For a scheme S, M̃d(µΣ, µ
′
Σ)(S) is canonically equivalent to the groupoid of

tuples (L,L′, α, β, {x′(1)}x′∈Σ′
∞) where

• L and L′ are line bundles on X ′×S such that deg(L′|X′×s)−deg(L|X′×s) = d for all geometric
points s ∈ S;

• α : L → L′(R′), β : σ∗L → L′(R′).

These data are required to satisfy the following conditions.

(1) α|D−({x′(1)}) = 0, and α|ν−1(Σ+)×S is an isomorphism.

(2) β|D+({x′(1)}) = 0, and β|ν−1(Σ−)×S is an isomorphism.

(3) α|R′×S = β|R′×S. Moreover, Nm(α) − Nm(β), viewed as a section of Nm(L)−1 ⊗ Nm(L′),
is nowhere vanishing along R× S.

(4) This is non-void only when Σ = ∅ and R = ∅: for every geometric point s of S, Nm(α) −
Nm(β) is not identically zero on X × s.

Proof. By definition, S-points of M̃d(µΣ, µ
′
Σ) consist of tuples (L,L

′, ϕ, {x′(1)}x′∈Σ′
∞) where

• L and L′ are line bundles on X ′×S such that deg(L′|X×s)−deg(L|X×s) = d for all geometric
points s ∈ S.
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• ϕ : νS,∗L → νS,∗L′ is an injective map when restricted to X × s for every geometric point
s ∈ S. Moreover, ϕ is an isomorphism along (Σ ⊔R)× S.

• For each x′ ∈ Σ′∞, x′(1) : S → Spec k(x′)
x′
−→ X ′.

These data are required to satisfy the following condition. We have two S-points of Bun2(Σ):

E† = θ̃µΣ

Bun(L, {x
′(1)}x′∈Σ′

∞),

E ′† = θ̃
µ′
Σ

Bun(L
′, {x′(1)}x′∈Σ′

∞).

Then ϕ : E = νS,∗L → E ′ = νS,∗L′ should respect the level structures of E† and E ′†.
By Lemma 5.12, the map ϕ : νS,∗L → νS,∗L′ becomes a pair α : L → L′(R′) and β : σ∗L →

L′(R′) satisfying α|R′×S = β|R′×S . Since ϕ|R×S is an isomorphism, the formula (5.33) implies
that Nm(α)−Nm(β) is nowhere vanishing along R× S, hence condition (3) in the statement of
the lemma is verified. Condition (4) also follows from (5.33) and the condition on ϕ above.

Since ϕ respects the Iwahori level structures of νS,∗L and νS,∗L′, it sends νS,∗(L(−µx)) to
νS,∗(L′(−µ′x)) for all x ∈ Σf (recall µx is the value of µf at x). A local calculation shows that α
should vanish along µ′x×S for those x ∈ Σf such that µx 6= µ′x, and β should vanish along µ′x×S
for those x ∈ Σf such that µx = µ′x. A similar local calculation at x ∈ Σ∞ implies the vanishing
of α and β along the corresponding parts of D− and D+. For example, if µx = µ′x = 1, then ϕ
should send νS,∗(L(−Γx′(1) −· · ·−Γx′(dx))) to νS,∗(L′(−Γx′(1) −· · ·−Γx′(dx))), which implies that
β vanishes along Γx′(1) +Γx′(2) + · · ·+Γx′(dx) . These verify the vanishing parts of the conditions
(1)(2).

Finally, since ϕ|Σ×S is an isomorphism, det(ϕ) = Nm(α) − Nm(β) is nowhere vanishing
on Σ × S. Since Nm(α)|Σ−×S = 0 and Nm(β)|Σ+×S = 0 by the vanishing parts of (1)(2),
Nm(α)|Σ+×S and Nm(β)|Σ−×S are nowhere vanishing. These verify the nonvanishing parts of the

conditions (1)(2). We have verified all the desired conditions for (L,L′, α, β, {x′(1)}x′∈Σ′
∞). �

Using the description ofMd(µΣ, µ
′
Σ) given in Lemma 5.13, we can describe its Atkin–Lehner

automorphism ALM,∞ as follows.

Lemma 5.14. Let (L,L′, α, β, {x′(1)}x′∈Σ′
∞) be an S-point of M̃d(µΣ, µ

′
Σ) as described in Lemma

5.13, and we use the same notation to denote its image in Md(µΣ, µ
′
Σ). Then

ALM,∞(L,L′, α, β, {x′(1)}x′∈Σ′
∞)

=


L(−

∑

x∈Σ∞

µxΓx′(1)),L′(−
∑

x∈Σ∞∩Σ+

µxΓx′(1) −
∑

x∈Σ∞∩Σ−

µxΓx′(dx+1)), α′, β′, {x′(2)}x′∈Σ′
∞




Here, α′ is induced from α using the fact that α|D− = 0; β′ is induced from β using the fact that
β|D+ = 0.

The proof is by tracking the definitions and we omit it.
The next result clarifies the relation betweenMd andMd(µΣ, µ

′
Σ).

Proposition 5.15. There is a canonical isomorphism over S′∞

ΞM :Md ×S
′
∞

∼
−→Md(µΣ, µ

′
Σ) (5.34)

such that:

(1) The automorphism id × FrS′
∞ on the left corresponds to the automorphism ALM,∞ on the

right.

(2) The following diagram is commutative

Md ×S′∞
Fr×id

//

≀ ΞM
��

Md ×S′∞

≀ ΞM
��

Md(µΣ, µ
′
Σ)

AL−1
M,∞◦Fr

//Md(µΣ, µ
′
Σ)
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Proof. We first define a map

ıd :Md(µΣ, µ
′
Σ) −→Md ×S

′
∞ ⊂ (X̂ ′d+ρ−N− ×Pic

√
R;

√
R,d+ρ

X

X̂ ′d+ρ−N+
)×S

′
∞.

Using the description of points of M̃d(µΣ, µ
′
Σ) in Lemma 5.13, we have a morphism

ıα :Md(µΣ, µ
′
Σ) −→ X̂ ′d+ρ−N−

sending (L,L′, α, β, {x′(1)}x′∈Σ′
∞) to the line bundle L−1 ⊗L′(R′ −D−({x′(1)})) and its section

given by α. Similarly we have a morphism

ıβ :Md(µΣ, µ
′
Σ) −→ X̂ ′d+ρ−N+

sending (L,L′, α, β, {x′(1)}x′∈Σ′
∞) to the line bundle σ∗L−1⊗L′(R′−D+({x′(1)})) and its section

given by β. We have a canonical isomorphism να ◦ ıα ∼= νβ ◦ ıβ using α|R′ = β|R′ . The map ıd
is given by (ıα, ıβ) and the natural projection to S′∞. It is easy to see that the image of ıd lies
in the open substackMd ×S

′
∞.

Next we construct the desired map ΞM as in (5.34). Start with a point (I,J , α, β, ) ∈ Md(S),
and {x′(1)}x′∈S′

∞ ∈ S′∞(S). Let D± = D±({x′(1)}) (a divisor of degree N± on X ′ × S with
image Σ± × S in X × S), and I ′ = I(D−) and J ′ := J (D+). The isomorphism  then gives

an Nm
√
R

X′/X(I ′) ∼= Nm
√
R

X′/X(J ′) ∈ Pic
√
R,d+ρ

X (S), or a trivialization of Nm
√
R

X′/X(I ′⊗−1 ⊗ J ′) as

an S-point of Pic
√
R,d+ρ

X . The exact sequence (A.6) then implies, upon localizing S in the étale
topology, there exists a line bundle L ∈ PicX′(S) together with an isomorphism τ : L−1⊗σ∗L ∼=
I ′⊗J ′−1, and such a pair (L, τ) is unique up to tensoring with PicX(S) (upon further localizing
S). Let L′ = L ⊗ I ′(−R′), then α can be viewed as a section of L−1 ⊗ L′(R′), or a map
L → L′(R′) which vanishes along D−. Since J ′ ∼= I ′ ⊗ L ⊗ σ∗L−1 ∼= σ∗L−1 ⊗ L′(R′), β can
be viewed as a section of σ∗L−1 ⊗ L′(R′), or a map σ∗L → L′(R′) which vanishes along D+.
Moreover, the equality α|R′×S = β|R′×S is built into the definition ofMd. This way we get an

S-point (L,L′, α, β, {x′(1)}) ofMd(µΣ, µ
′
Σ) using the description of M̃d(µΣ, µ

′
Σ) given in Lemma

5.13.
It is easy to see that ΞM is inverse to ıd. Therefore ΞM is an isomorphism. This finishes the

construction of the isomorphism ΞM.
Now property (1) follows from Lemma 5.14 by a direct calculation.
To check property (2), observe that the total Frobenius morphisms Fr×Fr onMd×S′∞ and

Fr on Md(µΣ, µ
′
Σ) correspond to each other under ΞM. On the other hand, by (1), id × Fr on

Md ×S′∞ corresponds to ALM,∞ onMd(µΣ, µ
′
Σ). Therefore, Fr×id = (id × Fr−1) ◦ (Fr×Fr)

onMd ×S′∞ corresponds to AL−1M,∞ ◦ Fr onMd(µΣ, µ
′
Σ). �

5.3.3. Comparison of Hecke correspondences for Md(µΣ, µ
′
Σ) and for Md. We have already

defined two self-correspondences H+ and H− ofMd in §5.1.5. For λ = (λ1, . . . , λr) ∈ {±1}r, let

Hλi =

{
H+, λi = 1;

H−, λi = −1.

Let ←−γ i,
−→γ i : Hλi →Md be the two projections. Then define Hλ to be the composition of Hλi

as follows

Hλ := Hλ1 ×−→γ 1,Md,
←−γ 2
Hλ2 ×−→γ 2,Md,

←−γ 3
· · · ×−→γ r−1,Md,

←−γ r
Hλr .

We apply this construction to λ = µµ′ = (µ1µ
′
1, . . . , µrµ

′
r). Then we have (r + 1) projections

γi : Hµµ′ −→Md, i = 0, 1, . . . , r.

Proposition 5.16. There is a canonical isomorphism over S′∞

ΞH : Hµµ′ ×S
′
∞

∼
−→ Hkµ,µ

′

M,d (5.35)
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such that the following diagram is commutative for i = 0, 1, . . . , r

Hµµ′ ×S
′
∞

ΞH
∼

//

γi×idS′∞
��

Hkµ,µ
′

M,d

pM,i

��

Md ×S′∞
ΞM
∼

//Md(µΣ, µ
′
Σ)

Proof. By the iterative nature of Hkµ,µ
′

M,d, it suffices to prove the case r = 1 (at this point we may
drop the assumption r ≡ #Σ∞ mod 2 because everything makes sense without this condition,
before passing to Shtukas). We distinguish two cases.

Case 1. µ1 = µ′1. We treat only the case µ1 = µ′1 = 1 and the other case is similar. In this

case, Hkµ,µ
′

M,d(S) classifies the following data up to the action of PicX :

• A map x′1 : S → X ′ with graph Γx′
1
.

• For each x′ ∈ Σ′∞, an S-point x′(1) : S → Spec k(x′)
x′
−→ X ′.

• Line bundles L0 and L′0 on X ′×S such that deg(L′0|X×s)−deg(L0|X×s) = d for all geometric
points s ∈ S. Let

L1 = L0(Γx′
1
), L′1 = L′0(Γx′

1
).

• A map ϕ1 : νS,∗L1 → νS,∗L′1 that restricts to a map ϕ0 : νS,∗L0 → νS,∗L′0. Moreover, for

i = 0 and 1, we require the tuple (Li,L′i, ϕi, {x
′(1)}) to give a point ofMd(µΣ, µ

′
Σ). In other

words, ϕi preserves the level structures of νS,∗Li and νS,∗L′i given in §4.2.1; ϕi is injective
when restricted to X × s for every geometric point s ∈ S; and ϕi|(Σ∪R)×S is an isomorphism.

Using Lemma 5.13, we may replace the data ϕi above by a pair of maps (αi, βi) where αi : Li →
L′i(R

′), βi : σ∗Li → L′i(R
′) satisfying certain conditions. Let D± = D±({x′(1)}), then αi|D− = 0

and βi|D+ = 0. Denote by

α♮i : Li −→ L
′
i(R
′ −D−)

β♮i : σ
∗Li −→ L

′
i(R
′ −D+)

the maps induced by αi and βi.
The relation between ϕ0 and ϕ1 implies that the following two diagrams are commutative

L0

α♮
0

��

� � // L1

α♮
1

��

L0(Γx′
1
)

L′0(R
′ −D−)

� � // L′1(R
′ −D−) L′0(R

′ −D− + Γx′
1
)

(5.36)

σ∗L0

β♮
0

��

� � // σ∗L1

β♮
1

��

(σ∗L0)(Γσ(x′
1)
)

L′0(R
′ −D+)

� � // L′1(R
′ −D+) L′0(R

′ −D+ + Γx′
1
)

(5.37)

The diagram (5.36) simply says that α♮1 is determined by α♮0 (no condition on α♮0, hence no

condition on α0). The diagram (5.37) imposes a nontrivial condition on β♮0, as claimed below.

Claim. β♮0 vanishes along Γσ(x′
1)
.

Proof of Claim. The argument for this claim is more complicated than the argument in [10,
Lemma 6.3] because of the ramification of ν. To prove the Claim, it suffices to argue for the

similar statement for the restriction of β♮0 to (X ′ − R′) × S and to the formal completions
SpecOx′×̂S for each x′ ∈ R′.

Computing the divisors of the maps in the first square of (5.37), we get

div(β♮0) + Γx′
1
= div(β♮1) + Γσ(x′

1)
. (5.38)
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Restricting both sides to (X ′ − R′) × S, and observing that Γx′
1
and Γσ(x′

1)
are disjoint when

restricted to (X ′−R′)×S, we see that Γσ(x′
1)
∩ ((X ′−R′)×S) is contained in div(β♮0)∩ ((X

′−
R′)× S).

Now we consider the restriction of the diagram (5.37) to the formal completion SpecOx′×̂S
at any x′ ∈ R′. Since D± is disjoint from R′, after restricting to SpecOx′×̂S we may identify

βi and β
♮
i . We may assume S is affine, and by extending k we may assume k(x′) = k. Choose a

uniformizer ̟ at x′ such that σ(̟) = −̟, then SpecOx′×̂S = SpecOS [[̟]]. After trivializing
Li,L′i(R

′) near x′ × S, we may assume f1 = f ′1 = ̟ − a for some a ∈ OS , α0 = α1 ∈ OS [[̟]],
The diagram (5.37) implies the equation in OS [[̟]]

f ′1 · β0 = σ∗f1 · β1,

where β0, β1 ∈ OS [[̟]]. This equation is the same as

(̟ − a)β0(̟) = (−̟ − a)β1(̟). (5.39)

Recall we also have the condition βi|R′×S = αi|R′×S for i = 0, 1, which implies that β0(0) =
α0(0) = α1(0) = β1(0), or β1(̟) = ̟γ(̟) + β0(̟) for some γ ∈ OS [[̟]]. Combining this with
(5.39) we get

2̟β0(̟) = (−̟ − a)̟γ(̟).

Since ̟ is not a zero divisor, we conclude that β0(̟) = −(̟ + a)γ(̟)/2, hence ̟ + a divides
β0(̟). This implies that Γσ(x′

1)
∩ (SpecOx′×̂S) is contained in div(β0) ∩ (SpecOx′×̂S) =

div(β♮0) ∩ (SpecOx′×̂S). The proof of the claim is complete. �

On the other hand, the condition that β♮0 vanishes along Γσ(x′
1)

is sufficient for the existence of

β1 making (5.37) commutative. Therefore, in this case, Hkµ,µ
′

M is the incidence correspondence for
the divisor of β♮ inMd(µΣ, µ

′
Σ) under the description of Lemma 5.13. This gives the isomorphism

ΞH : Hµµ′ ×S′∞ ∼= Hkµ,µ
′

M .

Case 2. µ1 6= µ′1. Let us consider only the case µ1 = 1, µ′1 = −1. We only indicate
the modifications from the previous case. In this case, L1 = L0(Γx′

1
) but L′1 = L′0(−Γx′

1
).

We may change L′1 to L′0(Γσ(x′
1)
) (which has the same image as L′0(−Γx′

1
) in BunT ) so that

degL′1 − degL1 = d still holds. The diagrams (5.36) and (5.37) now become

L0

α♮
0

��

� � // L1

α♮
1

��

L0(Γx′
1
)

L′0(R
′ −D−)

� � // L′1(R
′ −D−) L′0(R

′ −D− + Γσ(x′
1)
)

(5.40)

σ∗L0

β♮
0

��

� � // σ∗L1

β♮
1

��

(σ∗L0)(Γσ(x′
1)
)

L′0(R
′ −D+)

� � // L′1(R
′ −D+) L′0(R

′ −D+ + Γσ(x′
1)
)

(5.41)

Now (5.41) imposes no condition on β0, but (5.40) gives

div(α♮0) + Γσ(x′
1)

= div(α♮1) + Γx′
1
.

An analog of the Claim in Case 1 says that α♮0 must vanish along Γx′
1
. Therefore, in this case,

Hkµ,µ
′

M is the incidence correspondence for the divisor of α♮ inMd(µΣ, µ
′
Σ) under the description

of Lemma 5.13. This gives the isomorphism ΞH. �

5.4. Proof of Theorem 5.6.
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5.4.1. Geometric facts. We first collect some geometric facts about the stacks involved in the
constructions in §5.2.

Proposition 5.17. (1) The stack BunG(Σ) is smooth of pure dimension 3(g − 1) +N .

(2) The stack HkrG(Σ) is smooth of pure dimension 3(g − 1) +N + 2r.

(3) The stack BunT is smooth, DM and proper over k of pure dimension g′ − g = g − 1 + 1
2ρ.

(4) The stack Hk
µ

T is smooth, DM and proper over k of pure dimension g − 1 + 1
2ρ+ r.

(5) The morphisms ←−pH ,
−→pH : Hd(Σ) → BunG(Σ) are representable and smooth of pure relative

dimension 2d. In particular, Hd(Σ) is a smooth algebraic stack over k of pure dimension
2d+ 3(g − 1) +N .

(6) The stack HkrH,d(Σ) has dimension 2d+ 2r + 3(g − 1) +N .

(7) For d ≥ 2g′ − 1 + N , Md(µΣ, µ
′
Σ) is a smooth and separated DM stack pure of dimension

m = 2d+ ρ−N − g + 1.

(8) Let D be an effective divisor on U . The stack Shtµ,µ
′

M,D is proper over k.

Proof. (1), (3) and (4) are standard facts. (2) follows from Prop. 3.4(4).
(5) Recall the stackHd defined in [10, §6.3.2], with two maps←−p ,−→p to BunG. We have an open

embedding Hd(Σ) →֒ BunG(Σ)×BunG,
←−p Hd because once the Σ-level structure of E is chosen, it

induces a unique Σ-level structure on E ′ via ϕ (which is assumed to be an isomorphism near Σ).
Since ←−p : Hd → BunG is smooth of relative dimension 2d by [10, Lemma 6.8(1)], so is its base
change ←−pH . Similar argument works for −→pH .

(6) As in [10, §6.3.4], we have a map HkrH,d(Σ)→ BunG(Σ)×Ud×Xr (the first factor records

E†0 , second records the divisor of det(ϕ0) and the third records xi). The same argument as
[10, Lemma 6.10] shows that all geometric fibers of this map have dimension d+ r (note that the
horizontal maps are allowed to vanish at points in Σ, but this does not complicate the argument
because the vertical maps do not vanish at Σ). Therefore dimHkrH,d(Σ) = d + r + d + r +
dimBunG(Σ) = 2d+ 2r + 3(g − 1) +N .

(7) By Prop. 5.15, Md(µΣ, µ
′
Σ)
∼=Md ×S′∞. Therefore, the required geometric properties

ofMd(µΣ, µ
′
Σ) follow from those ofMd proved in Prop. 5.5(1).

(8) Consider the Cartesian diagram (5.29). Since Sht′rG(Σ;Σ∞) is separated over S′∞ by Prop.
3.9 and ←−p ′ : Sht′rG(Σ;Σ∞;hD)→ Sht′rG(Σ;Σ∞) is proper by Lemma 3.13(1), the map (←−p ′,−→p ′) :

Sht′rG(Σ;Σ∞;hD)→ Sht′rG(Σ;Σ∞)×S′
∞Sht′rG(Σ;Σ∞) is proper. This implies Shtµ,µ

′

M,D → Sht
µ

T (µ∞·

Σ′∞)×S′
∞ Sht

µ′

T (µ′∞ · Σ
′
∞) is proper. Since Sht

µ

T (µ∞ · Σ
′
∞) and Sht

µ′

T (µ′∞ · Σ
′
∞) are proper over

k by Corollary 4.3, so is Shtµ,µ
′

M,D. �

Proposition 5.18. Suppose D is an effective divisor on U of degree d ≥ max{2g′− 1+N, 2g}.
Then the diagram (5.18) satisfies all the conditions for applying the Octahedron Lemma [10,
Theorem A.10].

Proof. We refer to [10, Theorem A.10] for the statement of the conditions.
Condition (1): we need to show the smoothness of all members in the diagram (5.18) except

for Hk′rH,d(Σ). This is done in Prop. 5.17.

Condition (2): we need to check thatMd(µΣ, µ
′
Σ),Md(µΣ, µ

′
Σ)

2, Sht
µ

T (µ∞·Σ
′
∞)×S′

∞Sht
µ′

T (µ′∞·
Σ′∞) and Sht′rG(Σ;Σ∞) ×S′

∞ Sht′rG(Σ;Σ∞) are smooth of the expected dimensions. These facts
follow from Prop. 5.17(7), Corollary 4.3 and Prop. 3.9.

Condition (3): we need to show that the diagrams (5.24) and (5.20) satisfy either the condi-
tions in [10, §A.2.8], or the conditions in [10, §A.2.10].

We first show that (5.24) satisfies the conditions in [10, §A.2.8]. We claim that Hkµ,µ
′

M,d is a

DM stack that admits a finite flat presentation. By Prop. 5.15,Md(µΣ, µ
′
Σ)
∼=Md ×S′∞. By

Prop. 5.5(5), Md is DM and admits a finite flat presentation, therefore the same is true for

Md(µΣ, µ
′
Σ). Since the map pM,0 : Hkµ,µ

′

M,d → Md(µΣ, µ
′
Σ) is schematic, the same is true for

Md(µΣ, µ
′
Σ). It remains to check that θµ,µ

′

Hk can be factored into a regular local immersion and

a smooth relative DM map. It suffices to show the same thing for θµHk : Hk
µ

T ×S′∞ → Hk′rG(Σ)
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(and the same result applies to µ′ as well). The argument is similar to that in [10, Lemma

6.11(1)], and we only give a sketch here. We may enlarge the set Σ to Σ̃ ⊂ |X − R| such that

deg Σ̃ > ρ/2. By enlarging the base field k, we may assume that all points in ν−1(Σ̃) are defined
over k. Choose a section of ν−1(Σ̃)→ Σ̃ extending the existing section µf , and call this section

Σ̃′. Using Σ̃′ we have a map θ̃µHk : Hk
µ

T → Hk′rG(Σ̃). Since the projection Hk′rG(Σ̃) → Hk′rG(Σ) is

smooth and schematic, it suffices to show that θ̃µHk : Hk
µ

T = BunT ×X ′r → Hk′rG(Σ̃) is a regular

local embedding. To check this, we calculate the tangent map of θ̃µHk at a geometric point
b = (L, x′1, . . . , x

′
r) ∈ BunT (K)×X ′r(K). Or rather we calculate the relative tangent map with

respect to the projections to X ′r. We base change to K without changing notation. The relative

tangent complex of Hk
µ

T at b is H∗(X,OX′/OX)[1]. The relative tangent complex of Hk′rG(Σ̃) at

θ̃µHk(b) is H∗(X,Adx
′,Σ̃(ν∗L))[1], where Adx

′,Σ̃(ν∗L) = Endx
′,Σ̃(ν∗L)/OX , and Endx

′,Σ̃(ν∗L) is
the endomorphism sheaf of the chain ν∗L → ν∗(L(x′1))→ · · · preserving the level structures at

Σ̃. The tangent map of θ̃µHk is induced by a natural embedding e : ν∗OX′/OX →֒ Adx
′,Σ̃′

(ν∗L).
A calculation similar to Lemma 5.12 gives

Endx
′,Σ̃(ν∗L) ⊂ ν∗(OX′(R′))⊕R′ ν∗(σ

∗L−1 ⊗ L(R′ − Σ̃′′))

where Σ̃′′ = σ(Σ̃′). Therefore we have

Adx
′,Σ̃(ν∗L) ⊂ (ν∗(OX′(R′))/OX)⊕R′ ν∗(σ

∗L−1 ⊗ L(R′ − Σ̃′′))

under which e corresponds to the embedding of ν∗OX′/OX into the first factor. One checks the

projection coker(e)→ ν∗(σ∗L−1⊗L(R′−Σ̃′′)) is injective, the latter having degree ρ/2−deg Σ̃ <

0, we have H0(X, coker(e)) = 0, which implies that the tangent map of θ̃µHk is injective.
Next we show that (5.20) satisfies the conditions in [10, §A.2.10]. The argument is similar to

that of [10, Lemma 6.14(1)], using the smoothness of Hd(Σ) proved in Prop. 5.17(5).
Condition (4): we need to show that (5.26) and (5.27) both satisfy the conditions in [10,

§A.2.8]. Again the argument is completely similar to the corresponding argument in the proof
of [10, Theorem 6.6]. We omit details here. �

5.4.2. The cycle ζ. Using the dimension calculations in Prop. 5.17(6)(4) and (2), we have

dimHk′rH,d(Σ) + dim(Hk
µ

T ×Hk
µ′

T ×S
′
∞)− 2 dimHk′rG(Σ) = m = 2d+ ρ−N − g + 1.

Therefore the Cartesian diagram (5.24) defines a cycle

ζ = (θµ,µ
′

Hk )![Hk′rH,d(Σ)] ∈ Chm(Hkµ,µ
′

M,d). (5.42)

Lemma 5.19. Assume d ≥ max{2g′ − 1 + N, 2g + N}. Let ζ♯ ∈ Ch∗(Hµµ′ × S′∞) be the

pullback of ζ under the isomorphism ΞH. Then when restricted over A♦d , ζ
♯ coincides with the

fundamental class of Hµµ′ ×S
′
∞.

Proof. We have a map HkrH,d(Σ) → Ud × Xr similar to the one defined in [10, §6.3.4]. Let
(Ud × Xr)◦ be the open subset consisting of (D, x1, . . . , xr) such that each xi is disjoint from

the support of D. Let Hk′r,◦H,d(Σ) be the preimage of (Ud ×Xr)◦. Similarly, let Hkµ,µ
′,◦

M,d be the

preimage of (Ud ×Xr)◦ in Hkµ,µ
′

M,d, which corresponds under ΞH to an open subset of the form

H◦µµ′ ×S′∞.

We have a map HkrH,d(Σ) → HkrG(Σ) ×BunG(Σ) Hd(Σ) by considering the top row and left
column of the diagram (5.17). When restricted to (Ud × Xr)◦, this map is an isomorphism.
Therefore Hkr,◦H,d(Σ), hence Hk

′r,◦
H,d(Σ) is smooth of dimension 3(g− 1)+N +2r+2d. Restricting

the diagram (5.24) to (Ud×Xr)◦, Hkµ,µ
′,◦

M,d is the intersection of smooth stacks with the expected

dimension dimHk′r,◦H,d(Σ) + dim(Hk
µ

T × Hk
µ′

T × S′∞) − dimHk′rG(Σ) = m, therefore, ζ is the

fundamental class when restricted to Hkµ,µ
′,◦

M,d = H◦µµ′ ×S
′
∞.

It remains to show that dim(H♦µµ′ − H◦µµ′) < dimH♦µµ′ . The map H♦µµ′ → M
♦
d → A

♦
d are

finite surjective. On the other hand, as in [10, §6.4.3], the image of H♦µµ′ − H◦µµ′ in A♦d lies
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in the closed substack C consisting of those (∆,ΘR, ι, a, b, ϑR) where div(a) and div(b) (both
are divisors of degree d + ρ on X) have one point in common which lies in U . Therefore it
suffices to show that dim Cd < dimAd = m. Now Cd is contained in the image of a map

U × (X
√
R

d+ρ−N−−1 ×Pic
√

R;
√

R
X

X
√
R

d+ρ−N+−1) → X
√
R

d+ρ−N−
×

Pic
√

R;
√

R
X

X
√
R

d+ρ−N+
. Using d ≥ 2g + N

we may calculate the dimension of X
√
R

d+ρ−N−−1 ×Pic
√

R;
√

R
X

X
√
R

d+ρ−N+−1 by Riemann-Roch, from

which we conclude again that dim Cd ≤ m− 1. This completes the proof. �

5.4.3. Consider the cycle

(id,FrMd(µΣ,µ′
Σ))

!ζ ∈ Ch0(Sht
µ,µ′

M,d).

This is well-defined because Md(µΣ, µ
′
Σ) is smooth DM by Prop. 5.17(7), hence (id,Fr) is a

regular local immersion. Let

((id,FrMd(µΣ,µ′
Σ))

!ζ)D ∈ Ch0(Sht
µ,µ′

M,D)

be its D-component. Since Shtµ,µ
′

M,D is proper by Prop. 5.17(8), it makes sense to take degrees
of 0-cycles on it. Hence we define

〈ζ,Γ(FrMd(µΣ,µ′
Σ))〉D := deg((id,FrMd(µΣ,µ′

Σ))
!ζ)D ∈ Q.

Theorem 5.20. Suppose D is an effective divisor on U of degree d ≥ max{2g′ − 1 + N, 2g}.
We have 

 ∏

x′∈Σ′
∞

dx′


 · Iµ,µ′

(hD) = 〈ζ,Γ(FrMd(µΣ,µ′
Σ))〉D. (5.43)

Proof. From the definition of Heegner–Drinfeld cycles, it is easy to see using the diagram (5.29)
that 

 ∏

x′∈Σ′
∞

dx′


 · Iµ,µ′

(hD) = deg
(
(θ′µ × θ′µ

′
)![Sht′rG(Σ;Σ∞;hD)]

)
. (5.44)

On the other hand, applying the Octahedron Lemma [10, Theorem A.10] to (5.18), we get
that

(θ′µ × θ′µ
′
)!(id,FrHd(Σ))

![Hk′rH,d(Σ)×S
′
∞]

= (id,FrMd(µΣ,µ′
Σ))

!(θµ,µ
′

Hk × idS′
∞)![Hk′rH,d(Σ)×S

′
∞]

= (id,FrMd(µΣ,µ′
Σ))

!ζ ∈ Ch0(Sht
µ,µ′

M,d). (5.45)

If we can show that

(id,FrHd(Σ))
![Hk′rH,d(Σ)×S

′
∞] = [Sht′rH,d(Σ;Σ∞)] (5.46)

then extracting the D-components of (5.45) and (5.46) identifies [(θ′µ × θ′µ
′
)![Sht′rG(Σ;Σ∞;hD)]

with the cycle ((id,FrMd(µΣ,µ′
Σ))

!ζ)D. Taking degrees then identifies the right side of (5.44)

with the right side of (5.43), and we are done. Therefore it remains to show (5.46). The
argument is similar to [10, Lemma 6.14(2)]. Let Sht′r,◦H,d(Σ;Σ∞) ⊂ Sht′rH,d(Σ;Σ∞) be the

preimage of (Ud × Xr)◦. By (5.22), Sht′r,◦H,d(Σ;Σ∞) is the disjoint union over D ∈ Ud(k) of

(ShtrG(Σ;Σ∞;hD)|(X−D)r ×Xr X ′r. By Lemma 3.13(2), ShtrG(Σ;Σ∞;hD)|(X−D)r is smooth
of dimension 2r, which is the expected dimension from the diagram (5.20). Therefore, the
restriction of (id,FrHd(Σ))

![Hk′rH,d(Σ) × S
′
∞] to Sht′r,◦H,d(Σ;Σ∞) is the fundamental class. By

Lemma 3.13(3), ShtrG(Σ;Σ∞;hD) has the same dimension as its restriction over (X − D)r ,
hence dimSht′r,◦H,d(Σ;Σ∞) = Sht′rH,d(Σ;Σ∞), therefore (5.46) holds as cycles on the whole of

Sht′rH,d(Σ;Σ∞). This finishes the proof. �
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5.4.4. Proof of Theorem 5.6. Now we can deduce Theorem 5.6 from Theorem 5.20.
Consider the diagram (5.26). Moving the Atkin–Lehner automorphism ofMd(µΣ, µ

′
Σ) from

the vertical arrow to the horizontal arrow, we get another Cartesian diagram

Shtµ,µ
′

M,d

��

// Hkµ,µ
′

M

(pM,0,pM,r)

��

Md(µΣ, µ
′
Σ)

(id,AL−1
M,∞◦Fr)

//Md(µΣ, µ
′
Σ)×Md(µΣ, µ

′
Σ)

(5.47)

From this we get

(id,FrMd(µΣ,µ′
Σ))

!ζ = (id,AL−1M,∞ ◦ Fr)
!ζ ∈ Ch0(Sht

µ,µ′

M,d). (5.48)

Define Sµµ′ by the Cartesian diagram

Sµµ′ //

��

Hµµ′

(pH,0,pH,r)

��

Md
(id,Fr)

//Md ×Md

(5.49)

Using the isomorphisms ΞM and ΞH established in Prop. 5.15 and 5.16, (5.47) is isomorphic
to the Cartesian diagram

Sµµ′ ×S
′
∞ //

��

Hµµ′ ×S
′
∞

(pH,0×idS′∞ ,pH,r×idS′∞ )

��

Md ×S′∞
(id,FrMd

×id
S′∞ )

// (Md ×S′∞)× (Md ×S′∞)

(5.50)

Here we are using Prop. 5.15(2) to identify AL−1M,∞ ◦ Fr on Md(µΣ, µ
′
Σ) with FrMd

×idS′
∞ on

Md ×S′∞. In particular, we get an isomorphism

ΞS : Sµµ′ ×S
′
∞

∼
−→ Shtµ,µ

′

M,d.

Recall that ζ♯ ∈ Chm(Hµµ′ ×S′∞) is the transport of ζ under the isomorphism ΞH, then we

have

(id,AL−1M,∞ ◦ Fr)
!ζ = (id,FrMd

×idS′
∞)!ζ♯ ∈ Ch0(Sµµ′ ×S

′
∞). (5.51)

By Lemma 5.19, ζ♯ is the fundamental cycle of Hµµ′ × S′∞ when restricted to A♦d . By Prop.

5.5(4), the complement of M♦d ×A♦
d
M♦d in Md ×Ad

Md has dimension strictly smaller than

dimMd (the condition d ≥ 2g′− 1+N = 4g− 3+ ρ+N implies d ≥ 3g− 2+N). Therefore, we
may replace ζ♯ with the fundamental cycle of the closure of Hµµ′ |A♦

d
×S′∞ and the intersection

number on the right hand side of (5.51) does not change. We denote the latter by H
♦
µµ′ ×S′∞.

Combining (5.48) and (5.51) we get

(id,FrMd
×idS′

∞)!ζ♯

= (id,FrMd
×idS′

∞)![H
♦
µµ′ ×S

′
∞]

= ((id,FrMd
)![H

♦
µµ′ ])× [S′∞] ∈ Ch0(Sµµ′ ×S

′
∞).

Taking the degree of the D-component, we get

〈ζ,Γ(FrMd(µΣ,µ′
Σ))〉D = deg(S′∞) · 〈[H

♦
µµ′ ],Γ(FrMd

)〉D.
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Using Theorem 5.20, we get

Iµ,µ
′
(hD) =


 ∏

x′∈Σ′
∞

dx′



−1

〈ζ,Γ(FrMd(µΣ,µ′
Σ))〉D

=


 ∏

x′∈Σ′
∞

dx′



−1

deg(S′∞) · 〈[H
♦
µµ′ ],Γ(FrMd

)〉D

= 〈[H
♦
µµ′ ],Γ(FrMd

)〉D.

It remains to calculate 〈[H
♦
µµ′ ],Γ(FrMd

)〉D.

Note that Hµµ′ is a self-correspondence ofMd over Ad. By the discussion in [10, §A.4.5], the

map Sµµ′ →Md
f♭
d−→ A♭d lands in the rational points A♭d(k), hence we have a decomposition

Sµµ′ =
∐

a∈A♭
d(k)

Sµµ′(a).

Under the isomorphism ΞM, this gives a refinement of the decomposition (5.28), namely

Shtµ,µ
′

M,D

∐
a∈A♭

D(k) Sµµ′(a)×S′∞.
ΞS
∼

oo

The fundamental cycle [H
♦
µµ′ ] gives a cohomological correspondence between the constant

sheaf onMd and itself. It induces an endomorphism of the complex Rfd,!Qℓ

fd,![H
♦
µµ′ ] : Rfd,!Qℓ −→ Rfd,!Qℓ.

Taking direct image under Ω, we also get an endomorphism of Rf ♭d,!Qℓ

f ♭d,![H
♦
µµ′ ] : Rf ♭d,!Qℓ −→ Rf ♭d,!Qℓ.

Applying the Lefschetz trace formula [10, Prop. A.12] to the diagram (5.49) (which is stated for
S being a scheme, so we apply it to the map f ♭d rather than fd), we get that

〈[H
♦
µµ′ ],Γ(FrMd

)〉D =
∑

a∈A♭
D(k)

Tr(f ♭d,![H
♦
µµ′ ] ◦ Fra, (Rf

♭
d,!Qℓ)a) (5.52)

Since Hµµ′ is the composition of r+ times H+ and r− times H−, the cohomological corre-

spondence [H
♦
µµ′ ] is equal to the composition of r+ times [H

♦
+] and r− times [H

♦
−] over A

♦
d . By

Prop. 5.5(4), the complement ofM♦d ×A♦
d
M♦d in Md ×Ad

Md has dimension strictly smaller

than dimMd, therefore [H
♦
µµ′ ] and the composition of r+ times [H

♦
+] and r− times [H

♦
−] induce

the same endomorphism on fd,!Qℓ . This implies

fd,![H
♦
µµ′ ] = (fd,![H

♦
+])

r+ ◦ (fd,![H
♦
−])

r− ∈ End(Rfd,!Qℓ).

Taking direct image under Ω, we get

f ♭d,![H
♦
µµ′ ] = (f ♭d,![H

♦
+])

r+ ◦ (f ♭d,![H
♦
−])

r− ∈ End(Rf ♭d,!Qℓ).

This combined with (5.52) gives (5.14). The proof of Theorem 5.6 is now complete.

6. The moduli stack Nd and orbital integrals

In this section we introduce another moduli stack Nd, similar to Md. The point-counting
on Nd is closely related to orbital integrals appearing in Jacquet’s RTF we set up in §2 for our
specific test functions.

6.1. Definition of Nd.
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6.1.1. Our moduli space Nd depends on the ramification set R with degree ρ, a fixed finite set
Σ and a decomposition

Σ = Σ+ ⊔Σ−, N± = degΣ±.

In our application, such a decomposition comes from a pair µ, µ′ ∈ Tr,Σ, for which we take
Σ± = Σ±(µ, µ′) as in (4.6) and (4.7). We are also assuming that Σ ∩R = ∅.

Let d ≥ 0 be an integer. Let Qd be the set of quadruples d = (d11, d12, d21, d22) ∈ Z4
≥0

satisfying d11 + d22 = d12 + d21 = d+ ρ.

Definition 6.1. Let d ∈ Qd. Let Ñd = Ñd(Σ±) be the stack whose S-points consist of

(L♮1,L
♮
2,L
′♮
1 ,L

′♮
2 , ϕ, ψR)

where

• For i = 1, 2, L♮i = (Li,Ki,R, ιi) and L
′♮
i = (L′i,K

′
i,R, ι

′
i) ∈ Pic

√
R

X (S), such that for any geometric

point s ∈ S, deg(L′i|X×s)− deg(Lj |X×s) = dij for i, j ∈ {1, 2}.

• ϕ is an OX×S-linear map L1 ⊕ L2 → L′1 ⊕ L
′
2. We write it as a matrix

ϕ =

[
ϕ11 ϕ12

ϕ21 ϕ22

]

where ϕij : Lj → L′i.

• ψR is an OR×S-linear map K1,R ⊕K2,R → K′1,R ⊕K
′
2,R. Again we write ψR as a matrix

ψR =

[
ψ11,R ψ12,R

ψ21,R ψ22,R

]

with ψij,R : Kj,R → K′i,R.

These data are required to satisfy the following conditions.

(0) The following diagram is commutative for 1 ≤ i, j ≤ 2

K⊗2j,R
ψ⊗2

ij,R
//

ιj

��

K′⊗2i,R

ι′i
��

Lj |R×S
ϕij |R×S

// L′i|R×S

(6.1)

(1) ϕ22|Σ−×S = 0; ϕ11|Σ+×S and ϕ22|Σ+×S are nowhere vanishing.

(2) ϕ21|Σ+×S = 0; ϕ12|Σ−×S and ϕ21|Σ−×S are nowhere vanishing.

(3) det(ψR) = 0. Moreover, det(ϕ) vanishes only to the first order along R × S (by (6.1) and
det(ψR) = 0, det(ϕ) does vanish along R× S).

(4) This condition is only non-void when Σ = ∅ and R = ∅: det(ϕ) is not identically zero on
X × s for any geometric point s of S.

(5) For each geometric point s ∈ S the following conditions hold. If d11 < d22 − N−, then
ϕ11|X×s 6= 0; if d11 ≥ d22 −N−, then ϕ22|X×s 6= 0. If d12 < d21 −N+ then ϕ12|X×s 6= 0; if
d12 ≥ d21 −N+ then ϕ21|X×s 6= 0.

There is an action of Pic
√
R

X on Ñd by twisting each L♮i and L
′♮
i simultaneously (i = 1, 2). Let

Nd be the quotient

Nd := Ñd/Pic
√
R

X .

Let Nd be the disjoint union

Nd =
∐

d∈Qd

Nd.
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6.1.2. Next we give an alternative description of Nd in the style of [10, §3], which makes its
similarity withMd more transparent.

Let (L♮1,L
♮
2,L
′♮
1 ,L

′♮
2 , ϕ, ψR) ∈ Nd(S). For i, j ∈ {1, 2}, define L♮ij = L♮,⊗−1j ⊗ L′♮i = (L⊗−1j ⊗

L′i,K
⊗−1
j,R ⊗ K′i,R, ι

−1
j ⊗ ι′i). We have L♮ij ∈ Pic

√
R

X (S). By the diagram (6.1), (L♮ij , ϕij , ψij,R)

defines a point in X̂
√
R

dij
(S).

For (i, j) = (1, 1) or (1, 2), we thus have a morphism ij : Nd → X̂
√
R

dij
sending the data

(L♮1,L
♮
2,L
′♮
1 ,L

′♮
2 , ϕ, ψR) ∈ Nd(S) to (L♮ij , ϕij , ψij,R) ∈ X̂

√
R

dij
(S).

The condition ϕ21|Σ+×S = 0 allows us to view ϕ21 as a section of L21(−Σ+), which has degree

d21 −N+ and extends to a point L♮21(−Σ+) ∈ Pic
√
R

X (S) using the original K21,R = K⊗−11 ⊗K′2
and ι−11 ⊗ ι

′
2 (because Σ+ ∩ R = ∅). We then define a morphism 21 : Nd → X̂

√
R

d21−N+
sending

(L♮1,L
♮
2,L
′♮
1 ,L

′♮
2 , ϕ, ψR) to (L♮21(−Σ+), ϕ21, ψ21,R). Similarly we can define 22 : Nd → X̂

√
R

d22−N−
.

We have constructed a morphism

d = (ij)i,j∈{1,2} : Nd −→ X̂
√
R

d11
× X̂

√
R

d22−N−
× X̂

√
R

d12
× X̂

√
R

d21−N+
.

In the above construction, we have canonical isomorphisms L11 ⊗ L22 ∼= L12 ⊗ L21 and
K11,R ⊗K22,R

∼= K12,R ⊗ K21,R, which give a canonical isomorphism

L♮11 ⊗ L
♮
22
∼= L

♮
12 ⊗ L

♮
21 ∈ Pic

√
R,d+ρ

X (S). (6.2)

Moreover, the condition that det(ψR) = 0 implies that ψ11,Rψ22,R = ψ12,Rψ21,R. Therefore, the
isomorphism (6.2) extends to an isomorphism

(L♮11 ⊗ L
♮
22, ψ11,Rψ22,R) ∼= (L♮12 ⊗ L

♮
21, ψ12,Rψ21,R) ∈ Pic

√
R;
√
R,d+ρ

X (S).

Therefore d lifts to a morphism

d : Nd −→ (X̂
√
R

d11
× X̂

√
R

d22−N−
)×

Pic
√

R;
√

R,d+ρ
X

(X̂
√
R

d12
× X̂

√
R

d21−N+
). (6.3)

Here the fiber product is formed using the following maps

X̂
√
R

d11
× X̂

√
R

d22−N−

(AJ
√

R,
√

R
d11

,AJ
√

R,
√

R
d22−N−

)

−−−−−−−−−−−−−−→ Pic
√
R;
√
R,d11

X ×Pic
√
R;
√
R,d22−N−

X

(id,⊗ȮX(Σ−))
−−−−−−−−−→ Pic

√
R;
√
R,d11

X ×Pic
√
R;
√
R,d22

X
mult
−−−→ Pic

√
R;
√
R,d+ρ

X

(where mult is the multiplication map for Pic
√
R;
√
R

X ) and

X̂
√
R

d12
× X̂

√
R

d21−N+

(AJ
√

R;
√

R
d12

,AJ
√

R;
√

R
d21−N+

)

−−−−−−−−−−−−−−→ Pic
√
R;
√
R,d12

X ×Pic
√
R;
√
R,d21−N+

X

(id,⊗ȮX(Σ+))
−−−−−−−−−→ Pic

√
R;
√
R,d12

X ×Pic
√
R;
√
R,d21

X
mult
−−−→ Pic

√
R;
√
R,d+ρ

X .

6.1.3. We have a morphism to the base (cf. §5.1.2)

gd : Nd −→ Ad = Ad(Σ±)

sending (L♮1,L
♮
2,L
′♮
1 ,L

′♮
2 , ϕ, ψR) to (∆,ΘR, ι, a, b, ϑR) where ∆ = L⊗−11 ⊗L⊗−12 ⊗L′1⊗L

′
2, ΘR =

K⊗−11,R ⊗K
⊗−1
2,R ⊗K

′
1,R⊗K

′
2,R, ιR is the obvious product of ι1ι2 and ι′1ι

′
2, a = ϕ11ϕ22, b = ϕ12ϕ21,

ϑR = ψ11,Rψ22,R = ψ12,Rψ21,R. We also have the composition

g♭d = Ω ◦ gd : Nd
gd
−→ Ad

Ω
−→ A♭d.

Proposition 6.2. Let d ∈ Σd. Then

(1) The morphism d in (6.3) is an open embedding, and Nd is geometrically connected.

(2) If d ≥ 4g − 3 + ρ+N , Nd is a smooth DM stack of dimension 2d+ ρ− g −N + 1 = m.
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(3) The following diagram is commutative

Nd
� �

d
//

gd

��

(X̂
√
R

d11
× X̂

√
R

d22−N−
)×

Pic
√

R;
√

R,d+ρ
X

(X̂
√
R

d12
× X̂

√
R

d21−N+
)

âdd

√
R×âdd

√
R

��

Ad
� � ωd // X̂

√
R

d+ρ−N−
×

Pic
√

R;
√

R,d+ρ
X

X̂
√
R

d+ρ−N+

(6.4)

(4) The morphisms gd and g♭d are proper.

Proof. The proofs of (1) and (3) are similar to their counterparts in [10, Prop 3.1].
(2) We first show that Nd is a DM stack. By conditions (4) and (5) of Definition 6.1, at most

one of ϕij can be identically zero, so Nd is covered by four open substacks Uij , i, j ∈ {1, 2}, in
which only ϕij is allowed to be zero (in fact two of these will be empty by condition (5)). We
will show that U11 is a DM stack, and the argument for other Uij is similar. Since U11 is open
in

V11 = (X̂
√
R

d11
×X

√
R

d22−N−
)×

Pic
√

R;
√

R
X

(X
√
R

d12
×X

√
R

d21−N+
)

it suffices to show V11 is DM. The projection V11 → X
√
R

d22−N−
×X

√
R

d12
×X

√
R

d21−N+
is schematic.

By Lemma A.4(2), X
√
R

n is DM for any n, therefore V11, hence U11 is also DM.
We now prove the smoothness of Nd in the case d11 < d22 − N− and d12 < d21 − N+; the

other cases are similar. In this case the image of d lies in the open substack

(X
√
R

d11
× X̂

√
R

d22−N−
)×

Pic
√

R;
√

R
X

(X
√
R

d12
× X̂

√
R

d21−N+
)

Since d12+(d21−N) = d+ρ−N ≥ 2(2g−1+ρ)−1 by assumption on d, and d12 < d21−N+, we
have d21−N+ ≥ 2g−1+ρ. Similarly, we have d22−N− ≥ 2g−1+ρ. Therefore the Abel-Jacobi

maps X̂
√
R

d22−N−
→ Pic

√
R;
√
R,d22−N−

X and X̂
√
R

d21−N+
→ Pic

√
R;
√
R,d21−N+

X are affine space bundles

by Riemann-Roch, hence smooth. It therefore suffices to show the smoothness of

Q := (X
√
R

d11
× Pic

√
R;
√
R,d22−N−

X )×
Pic

√
R;

√
R

X

(X
√
R

d12
× Pic

√
R;
√
R,d21−N+

X ). (6.5)

We have the evaluation maps (by recording the square root line along R and its section)

ev
√
R

dij
: X
√
R

dij
−→ [ResRk A1/ResRk Gm]

ev
√
R

Pic : Pic
√
R;
√
R

X −→ [ResRk A1/ResRk Gm]

which are both smooth, by Lemma A.4. To simplify notation, we write

[ResRk A1/ResRk Gm] = [A1/Gm]R.

Then the fiber product of these maps give a smooth map

ev
√
R
Q : Q −→ ([A1/Gm]R × [A1/Gm]R)×[A1/Gm]R ([A1/Gm]R × [A1/Gm]R).

Let CR := ResRk A2 ×ResRk A1 ResRk A2 with the two maps ResRk A2 → ResRk A1 both given by

(u, v) 7→ uv. Then the target of ev
√
R
Q can be written as [CR/Res

R
k G3

m] where the torus G3
m

is the subtorus of G4
m consisting of (u, v, s, t) such that uv = st. Base change to k, we have

CR,k
∼=
∏
x∈R(k) Cx, where Cx ⊂ A4

k
is the cone defined by uv − st = 0. Note that C◦x =

Cx − {(0, 0, 0, 0)} is smooth over k. The product
∏
x∈R(k) C

◦
x defines a smooth open subset

C◦R ⊂ CR. We claim that the image of ev
√
R
Q lies in [C◦R/Res

R
k G3

m]. For otherwise, there would

be a point (Li, . . . , ϕ, ψR) ∈ Nd(k) and some x ∈ R(k) such that ψij,R (hence ϕij) vanishes at
x for all i, j ∈ {1, 2}, implying that det(ϕ) vanished twice at x and contradicting the condition

(3). Therefore the image of ev
√
R
Q lies in the smooth locus of [CR/Res

R
k G3

m], showing that Q
is itself smooth over k. This implies that Nd is smooth over k. The dimension calculation is
similar to Prop. 5.5(1) for dimMd and we omit it here.
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(4) Since Ω is proper, it suffices to show that gd is proper. As in the proof of [10, Prop.

3.1(3)], it suffices to show that the restriction of âdd

√
R

d1,d2

X
√
R

d1
× X̂

√
R

d2
−→ X̂

√
R

d1+d2
(6.6)

is proper for any d1, d2 ≥ 0. Since X̂
√
R

n → X̂n is finite (hence proper), the properness of (6.6)

follows from the properness of âddd1,d2 : Xd1 × X̂d2 → X̂d1+d2 , which was shown in the proof of
[10, Prop. 3.1(3)]. �

6.2. Relation with orbital integrals.

6.2.1. The rank one local system. Recall the double cover ν : X ′ → X from §4.1.1. Let σ :
X ′ → X ′ be the nontrivial involution over X . The direct image sheaf ν∗Qℓ has a decomposition
ν∗Qℓ = Qℓ⊕LX′/X into σ eigenspaces of eigenvalue 1 and −1. Then LX′/X |X−R is a local system

of rank one with geometric monodromy of order 2 around each k-point of the ramification locus
R.

Starting with L = LX′/X , in §A.3.2 we construct a rank one local system LPic on Pic
√
R

X whose
corresponding trace function is the quadratic idèle class character η = ηF ′/F (Prop. A.12). Via

pullback along ÂJ

√
R

d : X̂
√
R

d → Pic
√
R,d

X , it gives a rank one local system L̂d on X̂
√
R

d for each

d ∈ Z extending the local system Ld on X
√
R

d defined in Lemma A.7.
For d ∈ Qd, we define a local system Ld on Nd by

Ld = ∗d(L̂d11 ⊠Qℓ ⊠ L̂d12 ⊠Qℓ).

6.2.2. Recall that, for each f ∈H Σ∪R
G , we have defined by (2.30)

fΣ± = f ·

(⊗

x∈R
h�x

)
⊗

(⊗

x∈Σ
1Jx

)
∈ C∞c (G(A)).

Let D be an effective divisor on U = X − Σ−R of degree d. In [10, §3.1] we have defined a

spherical Hecke function hD ∈H Σ∪R
G . Therefore the element h

Σ±
D ∈ C∞c (G(A)) is defined.

For u ∈ P1(F )− {1} and h ∈ C∞c (G(A)), let

J(u, h, s1, s2) =
∑

γ∈A(F )\G(F )/A(F ),inv(γ)=u

J(γ, h, s1, s2). (6.7)

Note that when u /∈ {0, 1,∞}, the RHS of (6.7) has only one term; when u = 0 or ∞, the RHS
of (6.7) has three terms (cf. [10, 3.3.2]).

Recall the space A♭D defined in (5.6). Then we have a map

invD : A♭D(k) −→ P1(F )− {1}

sending (∆, a, b) to the rational function b/a ∈ P1(F ). As in [10, 3.3.2], the map invD is injective.

Theorem 6.3. Let D be an effective divisor on U = X−Σ−R of degree d. Let u ∈ P1(F )−{1}.

(1) If u is not in the image of invD : A♭D(k) →֒ P1(F )− {1}, then J(u, hΣ±
D , s1, s2) = 0.

(2) If u /∈ {0, 1,∞} and u = invD(a) for a ∈ A♭D(k) (which is then unique), then

J(u, hΣ±
D , s1, s2) =

∑

d∈Qd

q(2d12−d−ρ)s1+(2d11−d−ρ)s2 Tr(Fra, (Rg
♭
d,!Ld)a). (6.8)

(3) Assume d ≥ 4g − 3 + ρ+N . If u = 0 or ∞, and u = invD(a) for a ∈ A♭D(k) (which is then
unique), then (6.8) still holds.

The proof of this Prop. will occupy the rest of this subsection. From now on, we fix an
effective divisor D on U of degree d.



72 ZHIWEI YUN AND WEI ZHANG

6.2.3. The set XD,γ̃. Recall from §A.1.6 the definition of O×√
R
, which maps to O× and hence

acts on A× by translation. Define a groupoid

Div
√
R(X) = A×/O×√

R

There are natural maps

AJ
√
R(k) : Div

√
R(X) −→ F×\A×/O×√

R
= Pic

√
R

X (k),

ω : Div
√
R(X) −→ A×/O× = Div(X).

We denote an element in Div
√
R(X) by E♮, and denote its image in Div(X) by E. We denote

the multiplication in Div
√
R(X) by +. For E♮ ∈ Div

√
R(X), the line bundle OX(−E), when

restricted to R, carries a canonical square root which we denote by OX(−E♮)√R (an invertible

OR-module). The character η = ηF ′/F on Pic
√
R

X (k) can also be viewed as a character on

Div
√
R(X) by pullback.

Let γ̃ ∈ GL2(F ). Let X̃D,γ̃ be the groupoid of (E♮1, E
♮
2, E

′♮
1 , E

′♮
2 , ψR) where

• E♮i , E
′♮
i ∈ Div

√
R(X), for i = 1, 2.

• ψR : OX(−E♮1)
√
R⊕OX(−E♮2)

√
R → OX(−E′♮1 )√R⊕OX(−E′♮2 )√R is an OR-linear map. Write

ψR as a matrix
[ ψ11,R ψ12,R

ψ21,R ψ22,R

]
.

These data are required to satisfy the following conditions.

(0) The rational map γ̃ : O2
X 99K O2

X given by the matrix γ̃ induces an everywhere defined map

ϕ : OX(−E1)⊕OX(−E2) −→ OX(−E′1)⊕OX(−E′2).

We write ϕ as a matrix
[ ϕ11 ϕ12
ϕ21 ϕ22

]
. Moreover, ψ2

ij,R = ϕij |R for 1 ≤ i, j ≤ 2.

(1) ϕ22 vanishes along Σ−.

(2) ϕ21 vanishes along Σ+.

(3) det(ϕ) has divisor D +R.

Define the groupoid

XD,γ̃ = X̃D,γ̃/Div
√
R(X)

with the action of Div
√
R(X) given by simultaneous translation on E♮i and E

′♮
i . We may identify

XD,γ̃ with the sub groupoid of X̃D,γ̃ where E′♮2 is equal to the identity element in Div
√
R(X).

Lemma 6.4. We have

J(γ, hΣ±
D , s1, s2) (6.9)

=
∑

Λ=(E♮
1,··· ,E

′♮
2 ,ψR)∈XD,γ̃

1

#Aut(Λ)
q− deg(E1−E2+E

′
1−E′

2)s1q− deg(−E1+E2+E
′
1−E′

2)s2η(E♮1 − E
♮
2).

Proof. Let Ã ⊂ GL2 be the diagonal torus, and Z ⊂ GL2 be the center. Let

h̃
Σ±
D = h̃D ·

(⊗

x∈R
h̃�x

)
⊗

(⊗

x∈Σ
1
J̃x

)
.

Here h̃D ∈ HGL2 is as defined in [10, proof of Prop 3.2], and J̃x ⊂ GL2(Ox) is defined by the

same formulae as Jx (see (2.16)), with G replaced by GL2. Then we have h
Σ±
D = p∗h̃

Σ±
D where

p∗ : C∞c (GL2)→ C∞c (G(A)) is the tensor product of px,∗. This allows us to convert the integral

J(γ, hΣ±
D , s1, s2) into an integral on GL2, i.e.,

J(γ, hΣ±
D , s1, s2) =

∫

∆(Z(A))\(Ã(A)×Ã(A))
h̃
Σ±
D (t′−1γ̃t)|α(t)α(t′)|s1 |α(t′)/α(t)|s2η(α(t))dtdt′.

(6.10)

Here α : Ã → Gm is the positive root
[
t1 0
0 t2

]
7→ t1/t2, and the measure on A× is such that

vol(O×) = 1.
For x ∈ |X |, define a set ΞD,x as follows:
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• For x ∈ R, let ΞD,x = Ξx defined in §2.4.1;

• For x ∈ Σ, ΞD,x = J̃x;

• For x ∈ |X | −R− Σ, ΞD,x = Mat2(Ox)vx(det)=nx
, where nx is the coefficient of x in D.

Let ΞD =
∏
x∈|X| ΞD,x, then there is a projection map µ : ΞD → Mat2(O)div(det)=D+R. We have

h̃
Σ±
D = µ∗1ΞD . (6.11)

In fact, this can be checked place by place. The assertion is trivial when x /∈ R, and follows from
Lemma 2.4 when x ∈ R.

By (6.11), we may rewrite (6.10) as

J(γ, hΣ±
D , s1, s2) =

∫

(t,t′)
#
{
m ∈ ΞD|µ(m) = t′−1γ̃t

}
|α(t)α(t′)|s1 |α(t′)/α(t)|s2η(α(t))dtdt′

(6.12)

where the integral is again over (t, t′) ∈ ∆(Z(A))\(Ã(A)× Ã(A)).

Note that the integrand in (6.12) is invariant under translating t =
[
t1
t2

]
and t′ =

[ t′1
t′2

]

by O×√
R
, which also has volume 1. Therefore, we may turn J(γ, hΣ±

D , s1, s2) into a sum over

Div
√
R(X)4 modulo simultaneous translation by Div

√
R(X). We denote the images of t1, t2, t

′
1

and t′2 in Div
√
R(X) by E♮1, E

♮
2, E

′♮
1 and E′♮2 . One checks that the set {m ∈ ΞD|µ(m) = t′−1γ̃t}

is in natural bijection with the fiber of X̃D,γ̃ → Div
√
R(X)4 over (E♮1, E

♮
2, E

′♮
1 , E

′♮
2 ). Moreover,

we have

|α(t)| = |t1/t2| = q− deg(E1−E2), |α(t′)| = |t′1/t
′
2| = q− deg(E′

1−E′
2).

Combining these facts we get (6.9). �

6.2.4. Proof of Theorem 6.3 for u /∈ {0, 1,∞}. For u /∈ {0, 1,∞}, let γ̃(u) =
[
1 u
1 1

]
, which

represents the unique Ã(F ) double coset in GL2(F ) with invariant u. We define a map

λ : XD,γ̃(u) −→ Nd(k)

(E♮1, E
♮
2, E

′♮
1 , E

′♮
2 , ψR) 7−→ (L♮1,L

♮
2,L
′♮
1 ,L

′♮
2 , ϕ, ψR)

where L♮i (resp. L
′♮
i ) is the image of −E♮i (resp. −E

′♮
i ) under AJ

√
R(k) : Div

√
R(X)→ Pic

√
R

X (k);

the definition of ϕ is contained in the definition of X̃D,γ̃ . If Λ is in the image of λ, then

a := g♭d(Λ) ∈ A
♭
D(k) and invD(a) = u. In particular, if u is not in the image of invD, XD,γ̃(u) = ∅

hence J(u, h
Σ±
D , s1, s2) = 0 by Lemma 6.4.

Now we assume u = invD(a) for some (unique) a ∈ A♭D(k). Let Nd,a = g♭,−1d (a) and Nd,a =∐
d∈Qd

Nd,a. Then we can write

λ : XD,γ̃(u) −→ Nd,a(k).

Let us define an inverse to λ. Let (L♮1, . . . ,L
′♮
2 , ϕ, ψR) ∈ Nd,a(k). Since the (L

♮
1, . . . ,L

′♮
2 ) are up to

simultaneous tensoring with Pic
√
R

X (k), we may fix L′♮2 to be ȮX , the identity object in Pic
√
R

X (k).
Since invD(a) = u 6= 0,∞, the maps ϕij are all nonzero. Then ϕ21 : L1 → OX = L′2 allows us

to write L1 = OX(−E1) for an effective divisor E1. The lifting L♮1 of L1 gives a canonical lifting

E♮1 ∈ Div
√
R(X) of E1, so that AJ

√
R(k)(−E♮1)

∼= L
♮
1 canonically. Similarly, using ϕ22 we get

E♮2 ∈ Div
√
R(X) whose inverse represents L♮2. Using ϕ11 and E♮1, we further get E

′♮
1 ∈ Div

√
R(X)

whose inverse represents L′♮1 . Then (E♮1, E
♮
2, E

′♮
1 , 0, ψR) (0 denotes the identity in Div

√
R(X))

gives an element in XD,γ̃(u). It is easy to check that this assignment is inverse to λ, hence λ is
an isomorphism of groupoids.

Under λ, we have

− deg(E1 − E2 + E′1 − E
′
2) = d12 − d21 = 2d12 − d− ρ, (6.13)

− deg(−E1 + E2 + E′1 − E
′
2) = d11 − d22 = 2d11 − d− ρ, (6.14)

η(E♮1 − E
♮
2) = η(L♮11)η(L

♮
12) = η(L♮21)η(L

♮
22), (6.15)
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where L♮ij = L
♮,⊗−1
j ⊗ L′♮i and degLij = dij . Therefore we may rewrite (6.9) as

J(γ(u), hΣ±
D , s1, s2)

=
∑

Λ=(L♮
1,··· ,L

′♮
2 ,ϕ,ψR)∈Nd,a(k)

1

#Aut(Λ)
q(2d12−d−ρ)s1+(2d11−d−ρ)s2η(L♮11)η(L

♮
12).

By Prop. A.12, the trace function given by LPic is the character η on Pic
√
R

X (k). The formula
(6.8) then follows from the Lefschetz trace formula for Frobenius:

∑

Λ=(L♮
1,··· ,L

′♮
2 ,ϕ,ψR)∈Nd,a(k)

1

#Aut(Λ)
η(L♮11)η(L

♮
12) = Tr(Fra, (Rg

♭
d,!Ld)a).

6.2.5. Proof of Theorem 6.3 for u = 0. There are three A(F ) double cosets with invariant 0:

1 =

[
1 0
0 1

]
, n+ =

[
1 1
0 1

]
, n− =

[
1 0
1 1

]
.

We first consider the case when Σ− = ∅. Then a0 = (OX(D + R), 1, 0) ∈ A♭D(k) is the

unique point satisfying invD(a0) = 0 = u. Let Q̂d ⊂ Z4 be the set defined similarly as Qd
except we drop the condition that dij ≥ 0. For any d ∈ Q̂d, we define N̂d in the same way as
Nd except that we drop the condition (5) in Definition 6.1, but requiring at most one of ϕij is

zero. We still have a map ĝ♭d : N̂d → Ad → A♭d, and we denote the fiber over a0 by N̂d,a0 . Let

N̂d,a0 =
∐
d∈Q̂d

N̂d,a0 . We have a decomposition N̂d,a0 = N̂+
d,a0
⊔ N̂−d,a0 , where N̂

+
d,a0

consists of

those (L♮1, . . . ,L
′♮
2 , ϕ, ψR) such that ϕ21 = 0, ϕ12 6= 0; N̂−d,a0 consists of those (L♮1, . . . ,L

′♮
2 , ϕ, ψR)

such that ϕ12 = 0, ϕ21 6= 0.
The same argument as in §6.2.4 gives canonical isomorphisms of groupoids λ± : XD,n±

∼
→

N̂±d,a0(k). Using the isomorphism λ±, (6.13), (6.14) and (6.15), Lemma 6.4 implies

J(n+, h
Σ±
D , s1, s2) (6.16)

=
∑

Λ=(L♮
1,··· ,L

′♮
2 ,ϕ,ψR)∈N̂+

d,a0
(k)

1

#Aut(Λ)
q(2d12−d−ρ)s1+(2d11−d−ρ)s2η(L♮11)η(L

♮
12)

=
∑

d∈Q̂d

q(2d12−d−ρ)s1+(2d11−d−ρ)s2
∑

Λ=(L♮
1,··· ,L

′♮
2 ,ϕ,ψR)∈N̂+

d,a0
(k)

1

#Aut(Λ)
η(L♮11)η(L

♮
12)

Similarly,

J(n−, h
♮
D, s1, s2) (6.17)

=
∑

d∈Q̂d

q(2d12−d−ρ)s1+(2d11−d−ρ)s2
∑

Λ=(L♮
1,··· ,L

′♮
2 ,ϕ,ψR)∈N̂−

d,a0
(k)

1

#Aut(Λ)
η(L♮21)η(L

♮
22).

On the other hand, by the Lefschetz trace formula for Frobenius, we have

∑

d∈Qd

q(2d12−d−ρ)s1+(2d11−d−ρ)s2 Tr(Fra0 , (Rg
♭
d,!Ld)a0)

=
∑

d∈Qd

q(2d12−d−ρ)s1+(2d11−d−ρ)s2
∑

Λ=(L♮
1,··· )∈Nd,a0

(k)

1

#Aut(Λ)
η(L♮11)η(L

♮
12)

=
∑

d∈Qd

q(2d12−d−ρ)s1+(2d11−d−ρ)s2




∑

Λ∈N+
d,a0

(k)

1

#Aut(Λ)
η(L♮11)η(L

♮
12) +

∑

Λ∈N−
d,a0

(k)

1

#Aut(Λ)
η(L♮21)η(L

♮
22)


 .



SHTUKAS AND THE TAYLOR EXPANSION (II) 75

Here N±d,a0 is defined as N̂±d,a0 ∩Nd,a0 . By the condition (5) in Definition 6.1, we have N−d,a0 = ∅

if d12 < d21 −N ; N+
d,a0

= ∅ if d12 ≥ d21 −N . Therefore, the above formula equals

∑

d∈Qd,d12<d21−N
q(2d12−d−ρ)s1+(2d11−d−ρ)s2

∑

Λ∈N+
d,a0

(k)

1

#Aut(Λ)
η(L♮11)η(L

♮
12) (6.18)

+
∑

d∈Qd,d12≥d21−N
q(2d12−d−ρ)s1+(2d11−d−ρ)s2

∑

Λ∈N−
d,a0

(k)

1

#Aut(Λ)
η(L♮21)η(L

♮
22). (6.19)

Comparing the RHS of (6.16), (6.17) and (6.18), the only difference is the range of d in the
summation; however, many d’s do not contribute as the following lemma shows.

Lemma 6.5. Let d ∈ Q̂d.

(1) If d12 ≥ 2g − 1 + ρ then
∑

Λ=(L♮
1,··· ,L

′♮
2 ,ϕ,ψR)∈N̂+

d,a0
(k)

1

#Aut(Λ)
η(L♮11)η(L

♮
12) = 0.

(2) If d21 −N+ ≥ 2g − 1 + ρ then
∑

Λ=(L♮
1,··· ,L

′♮
2 ,ϕ,ψR)∈N̂−

d,a0
(k)

1

#Aut(Λ)
η(L♮21)η(L

♮
22) = 0.

(3) We have

J

([
1 0
0 1

]
, h

Σ±
D , s1, s2

)
= 0.

Proof. (1) Let (X
√
R

d11
×X

√
R

d22
)D+R be the fiber over D +R of the map

X
√
R

d11
×X

√
R

d22

add
√

R

−−−−→ X
√
R

d+ρ

ω
√

R
d+ρ
−−−→ Xd+ρ.

We have an isomorphism

N̂+
d,a0

∼
−→ (X

√
R

d11
×X

√
R

d22−N−
)D+R ×X

√
R

d12
(6.20)

by recording (L♮ij , ϕij , ψij,R) for (i, j) = (1, 1), (2, 2) and (1, 2) (then L♮21 is determined uniquely

and ϕ21 = 0). Using this isomorphism we can write
∑

Λ=(L♮
1,··· ,L

′♮
2 ,ϕ,ψR)∈N̂+

d,a0
(k)

1

#Aut(Λ)
η(L♮11)η(L

♮
12) (6.21)

=
∑

Λ′=(L♮
11,··· )∈(X

√
R

d11
×X

√
R

d22−N−
)D+R(k)

1

#Aut(Λ′)
η(L♮11)

∑

Λ′′=(L♮
12,··· )∈X

√
R

d12
(k)

1

#Aut(Λ′′)
η(L♮12).

Since d12 ≥ 2g − 1 + ρ, the fibers of the map AJ
√
R

d12
(k) : X

√
R

d12
(k)→ Pic

√
R,d12

X (k) have the same

cardinality. Since the character η is nontrivial on Pic
√
R,d12

X (k), the last sum in (6.21) vanishes.

The proof of (2) is similar to (1), using the isomorphism N̂−d,a0
∼
→ (X

√
R

d11
×X

√
R

d22−N−
)D+R ×

X
√
R

d21−N+
instead of (6.20).

(3) The restriction of the character (t, t′) 7→ |tt′|s1 |t′/t|s2η(t) on the stabilizer of 1 under
A(A)×A(A) (the diagonal A(A)) is nontrivial, therefore the integral vanishes. �

By Lemma 6.5(3), we have

J(0, hΣ±
D , s1, s2) = J(n+, h

Σ±
D , s1, s2) + J(n−, h

Σ±
D , s1, s2), (6.22)

which is calculated in (6.16) and (6.17). Using Lemma 6.5(1), we may restrict the summation

in the RHS of (6.16) to those d ∈ Q̂d such that 0 ≤ d12 ≤ 2g − 2 + ρ (d12 ≥ 0 for otherwise

N̂+
d,a0

= ∅). Since d ≥ 4g− 3+N + ρ, we have d12 + (d21 −N+) ≥ 2(2g− 2 + ρ) + 1. Therefore

we may alternatively restrict the summation in the RHS of (6.16) to those d ∈ Qd such that
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d12 < d21 − N+. Therefore, the RHS of (6.16) matches the first term in the RHS of (6.18).
Similarly, the RHS of (6.17) matches the second term in the RHS of (6.18). We thus get (6.8)
by combining (6.22), (6.16), (6.17) and (6.18).

Finally, we consider the case Σ− 6= ∅. Then u is not in the image of invD. In this case,

XD,n± = ∅, hence J(n±, h
Σ±
D , s1, s2) = 0 by Lemma 6.4. Together with Lemma 6.5(3), we get

J(0, hΣ±
D , s1, s2) = 0.

6.2.6. Proof of Theorem 6.3 for u =∞. There are three A(F ) double cosets with invariant ∞:

w0 =

[
0 1
1 0

]
, n+w0 =

[
1 1
1 0

]
, n−w0 =

[
0 1
1 1

]
.

The argument is the same as in the case u = 0, which we do not repeat.

7. Proof of the main theorem

7.1. Comparison of sheaves.

7.1.1. The perverse sheaf Kd. Let d ≥ 0 be an integer and consider the direct image complex

ν
√
R

d,! Qℓ under ν
√
R

d : X ′d → X
√
R

d defined in (A.5). Let X◦d ⊂ Xd be the open locus of multiplicity-

free divisors, and let X
√
R,◦

d (resp. X ′◦d ) be its preimage in X
√
R

d (resp. X ′d). Restricting ν
√
R

d

to X
√
R,◦

d we get a finite étale Galois cover X ′◦d → X
√
R,◦

d with Galois group Γd = (Z/2Z)d ⋊ Sd

(ν
√
R

d is still étale when the multiplicity-free divisor meets R, as X ′ → X
√
R

1 is étale). As in

[10, §8.1.1], for 0 ≤ i ≤ d, we consider the following representation ρd,i = IndΓd

Γd(i)
(χ̃i) of Γd,

where Γd(i) = (Z/2Z)d ⋊ (Si × Sd−i), χi is the character on (Z/2Z)d which is nontrivial on
the first i factors and trivial on the rest, and χ̃i is the extension of χi to Γd(i) which is trivial
on Si × Sd−i. As we noted towards the end of the proof of [10, Prop 8.2], there is a canonical
isomorphism of Γd-representations.

IndΓd

Sd
(1) ∼=

d⊕

i=0

ρd,i. (7.1)

Then ρi gives rise to a local system L(ρd,i) on X
√
R,◦

d (which is smooth over k). Let jd :

X
√
R,◦

d →֒ X̂
√
R

d be the inclusion. Let

Kd,i = jd,!∗(L(ρd,i)[d])[−d]

be the middle extension perverse sheaf on X̂
√
R

d .
We first study the direct image complex of fd :Md → Ad. By Prop. 5.5, for d ≥ 2g′− 1+N ,

dimMd = m = Ad.

Proposition 7.1. Let d ≥ 2g′ − 1 +N .

(1) The complex Rfd,!Qℓ[m] is a perverse sheaf on Ad, and it is the middle extension of its
restriction to any non-empty open subset of Ad.

(2) We have a canonical isomorphism

Rfd,!Qℓ ∼=

d+ρ−N−⊕

i=0

d+ρ−N+⊕

j=0

(Kd+ρ−N−,i ⊠Kd+ρ−N+,j)|Ad
. (7.2)

Here we are identifying Ad with an open substack of X̂
√
R

d+ρ−N−
×

Pic
√

R;
√

R,d+ρ
X

X̂
√
R

d+ρ−N+
using

(5.4).

Proof. (1) We observe that the base Ad is irreducible (because both maps νa and νb are vector
bundles when d ≥ 2g − 1 +N). By Prop. 5.5(1),Md is smooth and equidimensional. By Prop.
5.5(3)(4), fd is proper and small. Therefore, Rfd!Qℓ[m] is a middle extension perverse sheaf
from any non-empty open subset of Ad.

(2) In fact this part holds under a weaker condition d ≥ 3g−2+N . By Prop. 5.5(2), we have

Rfd!Qℓ ∼= (Rν̂
√
R

d+ρ−N−,!
Qℓ ⊠Rν̂

√
R

d+ρ−N+,!
Qℓ)|Ad

.
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Therefore it suffices to show that for d′ ≥ 2g′−g = 3g−2+ρ (note that d+ρ−N± ≥ 3g−2+ρ),

Rν̂
√
R

d′! Qℓ
∼=

d′⊕

i=0

Kd′,i.

We claim that ν̂
√
R

d′ : X̂ ′d′ → X̂
√
R

d′ is small when d′ ≥ 2g′−g. In fact, the only positive dimensional

fibers are over the zero section Pic
√
R,d′

X →֒ X̂
√
R

d′ , which has codimension d′ − g + 1 (provided

that d′ ≥ g−1). The restriction of ν̂
√
R

d′ over Pic
√
R,d′

X is the norm map Picd
′

X′ → Pic
√
R,d′

X , whose
fibers have dimension g′− g. Since d′ ≥ 2g′− g, we have d′− g+1 ≥ 2(g′− g)+ 1, which implies

that ν̂
√
R

d′ is small.

Since the source of ν̂
√
R

d′ is smooth and geometrically connected of dimension d′, and ν̂
√
R

d′ is

proper, Rν̂
√
R

d′! Qℓ[d] is a middle extension perverse sheaf from its restriction to X
√
R,◦

d′ . The rest
of the argument is the same as [10, Prop. 8.2], using (7.1). �

Recall from §5.1.5 that we have endomorphisms fd,![H
♦
+] and fd,![H

♦
−] of Rfd,!Qℓ.

Proposition 7.2. Suppose d ≥ 2g′ − 1 +N . Then the action of fd,![H
♦
+] (resp. fd,![H

♦
−] ) pre-

serves each direct summand in the decomposition (7.2), and acts on the summand (Kd+ρ−N−,i⊠

Kd+ρ−N+,j)|Ad
by the scalar d+ ρ−N+ − 2j (resp. d+ ρ−N− − 2i).

Proof. By Prop. 7.1(1), any endomorphism of the middle extension perverse sheaf Rfd!Qℓ (up
to a shift) is determined by its restriction to any non-empty open subset of Ad. Therefore it

suffices to prove the same statements over A♦d , over which H
♦
+ (resp. H♦−) is the pullback of the

incidence correspondence I ′d+ρ−N+
(resp. I ′d+ρ−N−), see §5.1.5. The rest of the argument is the

same as [10, Prop. 8.3]. �

Now we turn to the direct image complex of gd : Nd → Ad. By Prop. 6.2, when d ≥ 2g′−1+N
and Nd 6= ∅, dimNd = dimAd = m.

Proposition 7.3. Let d ≥ 2g′ − 1 +N and d ∈ Qd.

(1) The complex Rgd,!Ld[m] is a perverse sheaf on Ad, and it is the middle extension of its
restriction to any non-empty open subset of Ad.

(2) We have a canonical isomorphism

Rgd,!Ld ∼= (Kd+ρ−N−,d11 ⊠Kd+ρ−N+,d12)|Ad
. (7.3)

Proof. (1) As in the proof of [10, Prop. 8.5], gd is not small; however, by Prop. 6.2(2)(4), we

know that Rgd,!Ld[m] is Verdier self-dual. Since gd is finite over A♦d , Rgd,!Ld[m] is a middle

extension perverse sheaf on A♦d . To prove Rgd,!Ld[m] is a middle extension perverse sheaf on
the whole Ad, we only need to show that the restriction Rgd,!Ld[m]|∂Ad

lies in strictly negative

perverse degrees, where ∂Ad = Ad −A
♦
d .

We have Ad = Aa=0
d ⊔ Ab=0

d (see notation in the proof of Prop. 5.5(4)). Below we will show
that Rgd,!Ld[m]|Ab=0

d
lies in negative perverse degrees, and the argument for Aa=0

d is similar.

When d12 < d21 −N+, we have a Cartesian diagram

g−1d (Ab=0
d ) //

gd

��

(X
√
R

d11
×X

√
R

d22−N−
)×

Pic
√

R;
√

R,d+ρ
X

(X
√
R

d12
× Pic

√
R,d21−N+

X )

add
√

R
d11,d22−N−×h

��

Ab=0
d

// X
√
R

d+ρ−N−
×

Pic
√

R;
√

R,d+ρ
X

Pic
√
R,d+ρ−N+

X

where the map h is the composition

X
√
R

d12
× Pic

√
R,d21−N+

X

AJ
√

R
d12
×id

−−−−−−→ Pic
√
R,d12

X ×Pic
√
R,d21−N+

X
mult
−−−→ Pic

√
R,d+ρ−N+

X

We have

Rgd,!Ld|Ab=0
d

∼=
(
Radd

√
R

d11,d22−N−,!(Ld11 ⊠Qℓ)⊠Rh!(Ld12 ⊠Qℓ)
)
|Ab=0

d
.
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The first factor Radd
√
R

d11,d22−N−,!(Ld11 ⊠Qℓ) is concentrated in degree 0 since add
√
R

d11,d22−N− is fi-

nite. The second factor is the constant sheaf on Pic
√
R,d+ρ−N+

X with geometric stalk isomorphic to

H∗(X
√
R

d12
⊗ k, Ld12). By Lemma A.6, H∗(X

√
R

d12
⊗ k, Ld12) lies in degrees≤ dimH1

c(X
√
R

1 ⊗ k, L) =

dimH1
c((X −R)⊗ k, L) = 2g−2+ρ. Therefore, Rgd,!Ld|Ab=0

d
lies in degrees ≤ 2g−2+ρ. Since

codimAd
(Ab=0

d ) = d+ ρ−N+− g+1 (see the proof of Prop. 5.5(4)), which is ≥ (2g− 2+ ρ)+ 1
(for this we only need the weaker condition d ≥ 3g− 2+N+), we conclude that Rgd,!Ld[m]|Ab=0

d

lies in cohomological degrees strictly less than − dimAb=0
d , hence in strictly negative perverse

degrees.
When d12 ≥ d21 −N+, the argument is similar. The role of the map h is now played by

h′ : Pic
√
R,d12

X ×X
√
R

d21−N+

id×AJ
√

R
d21−N+

−−−−−−−−−→ Pic
√
R,d12

X ×Pic
√
R,d21−N+

X
mult
−−−→ Pic

√
R,d+ρ−N+

X .

Using the isomorphism

γ = (h′, pr2) : Pic
√
R,d12

X ×X
√
R

d21−N+

∼
−→ Pic

√
R,d+ρ−N+

X ×X
√
R

d21−N+

the map h′γ−1 becomes the projection to the first factor of Pic
√
R,d+ρ−N+

X ×X
√
R

d21−N+
. By Prop.

A.11, mult∗LPic
d+ρ−N+

∼= LPic
d12

⊠ LPic
d21−N+

. Therefore we have (γ−1)∗(Ld12 ⊠ Qℓ) ∼= LPic
d+ρ−N+

⊠

L−1d21−N+

∼= LPic
d+ρ−N+

⊠ Ld21−N+ , and hence

h′!(Ld12 ⊠Qℓ) ∼= LPic
d+ρ−N+

⊗H∗(X
√
R

d21−N+
⊗ k, Ld21−N+).

Then we use Lemma A.6 again to conclude that Rgd,!Ld[m]|Ab=0
d

lies in strictly negative perverse

degrees.
(2) By (1), we only need to check (7.3) over the open subset A♦d . By Prop. 6.2(3), the diagram

(6.4) is Cartesian over A♦d , we have

Rgd,!Ld|A♦
d

∼=
(
add

√
R

d11,d22−N−,!(Ld11 ⊠Qℓ)⊠ add
√
R

d12,d21−N+,!
(Ld12 ⊠Qℓ)

)
|A♦

d
.

Here add
√
R

i,j is the addition map (A.2). Therefore it suffices to show that for any i, j ≥ 0, there

is a canonical isomorphism over X
√
R

i+j

add
√
R

i,j,!(Li ⊠Qℓ) ∼= Ki+j,i|X
√

R
i+j

. (7.4)

Now both sides are middle extension perverse sheaves (because add
√
R

i,j is finite surjective with
smooth irreducible source). The isomorphism (7.4) then follows from the same isomorphism
between the restrictions of both sides to (X − R)◦i+j , and the latter was proved in [10, Prop.
8.5]. �

7.2. Comparison of traces. For µ, µ′ ∈ Tr,Σ, recall the definition of r± from (5.13). For
f ∈H Σ

G , with fΣ± defined in (2.30), let

Jµ,µ
′
(f) =

(
∂

∂s1

)r+ ( ∂

∂s2

)r− (
qN+s1+N−s2J(fΣ± , s1, s2)

) ∣∣∣
s1=s2=0

.

Theorem 7.4. Suppose D is an effective divisor on U of degree d ≥ max{2g′− 1+N, 2g}, then

(− log q)−rJµ,µ
′
(hD) = Iµ,µ

′
(hD). (7.5)

Proof. By Theorem 6.3, we have

qN+s1+N−s2J(hΣ±
D , s1, s2) =

∑

d∈Qd

q(2d12−d−ρ+N+)s1+(2d11−d−ρ+N−)s2

·
∑

a∈A♭
D(k)

Tr(Fra, (Rg
♭
d,!Ld)a)
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Using Rg♭d,!Ld = RΩ!Rgd,!Ld, we have

∑

a∈A♭
D(k)

Tr(Fra, (Rg
♭
d,!Ld)a) =

∑

ã∈AD(k)

1

#Aut(ã)
Tr(Frã, (Rgd,!Ld)ã).

Here AD ⊂ A is the preimage of A♭D. Using Prop. 7.3, we can rewrite the above as

∑

ã∈AD(k)

1

#Aut(ã)
Tr(Frã, (Kd+ρ−N−,d11 ⊠Kd+ρ−N+,d12)ã).

Therefore we get

qN+s1+N−s2J(hΣ±
D , s1, s2) =

d+ρ−N−∑

i=0

d+ρ−N+∑

j=0

q(2j−d−ρ+N+)s1+(2i−d−ρ+N−)s2

·
∑

ã∈AD(k)

1

#Aut(ã)
Tr(Frã, (Kd+ρ−N−,i ⊠Kd+ρ−N+,j)ã).

Taking derivatives, we get

(log q)−rJµ,µ
′
(hD) =

d+ρ−N−∑

i=0

d+ρ−N+∑

j=0

(2j − d− ρ+N+)
r+(2i− d− ρ+N−)

r−

·
∑

ã∈AD(k)

1

#Aut(ã)
Tr(Frã, (Kd+ρ−N−,i ⊠Kd+ρ−N+,j)ã). (7.6)

On the other hand, by Theorem 5.6 we have

Iµ,µ
′
(hD)

=
∑

a∈A♭
D(k)

Tr
(
(f ♭d,![H

♦
+])

r+
a ◦ (f

♭
d,![H

♦
−])

r−
a ◦ Fra, (Rf

♭
d,!Qℓ)a

)

=
∑

ã∈AD(k)

1

#Aut(ã)
Tr
(
(fd,![H

♦
+])

r+
ã ◦ (fd,![H

♦
−])

r−
ã ◦ Frã, (Rfd,!Qℓ)ã

)

By Prop. 7.1 and Prop. 7.2, for ã ∈ Ad(k) we have

Tr
(
(fd,![H

♦
+])

r+
ã ◦ (fd,![H

♦
−])

r−
ã ◦ Frã, (Rfd,!Qℓ)ã

)

=

d+ρ−N−∑

i=0

d+ρ−N+∑

j=0

(d+ ρ−N+ − 2j)r+(d+ ρ−N− − 2i)r−

· Tr
(
Frã, (Kd+ρ−N−,i ⊠Kd+ρ−N+,j)ã

)
.

Therefore

Iµ,µ
′
(hD) =

d+ρ−N−∑

i=0

d+ρ−N+∑

j=0

(d+ ρ−N+ − 2j)r+(d+ ρ−N− − 2i)r− (7.7)

·
∑

ã∈AD(k)

1

#Aut(ã)
Tr
(
Frã, (Kd+ρ−N−,i ⊠Kd+ρ−N+,j)ã

)
.

Comparing (7.6) and (7.7), we get (7.5). The extra sign (−1)r in (7.5) comes from the fact that
(d+ ρ−N+ − 2j)r+(d+ ρ−N− − 2i)r− = (−1)r(2j − d− ρ+N+)

r+(2i− d− ρ+N−)r− . �

7.2.1. Fix ξ ∈ S′∞(k). Let V ′(ξ) = H2r
c (Sht′rG(Σ; ξ)⊗ k,Qℓ)(r). By the discussion in §3.5.6, the

finiteness results proved in §3.5.5 for the cohomology of ShtrG(Σ;Σ∞) as a H Σ
G -module are also

valid for V ′, hence for its summand V ′(ξ).
Let

K =
∏

x/∈Σ
G(Ox)×

∏

x∈Σ
Iwx.
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Denote by A(K) the space of compactly supported, Q-valued functions on the double coset

G(F )\G(A)/K. The moduli stack Sht0G(Σ) is exactly the discrete groupoid G(F )\G(A)/K,
therefore, A(K)⊗Qℓ is identified with H0

c(Sht
0
G(Σ)⊗ k,Qℓ). Corollary 3.40 implies that the im-

age of the action map H Σ
G → End(A(K)) is a finitely generated Q-algebra with Krull dimension

one. Theorem 3.41 allows us to write

A(K)⊗Qℓ = A(K)Eis ⊗Qℓ ⊕ (⊕π∈ΠΣ(Qℓ)
A(K)π).

Here ΠΣ(Qℓ) is the set of cuspidal automorphic representations (with Qℓ-coefficients) of G(A)
with level K. Each π determines a character λπ : H Σ

G → Qℓ. By strong multiplicity one for G,

the character λπ determined π. Therefore we may identify ΠΣ(Qℓ) as a subset of SpecH Σ
G ⊗Qℓ.

Let

H̃
Σ
ℓ = Im(H Σ

G ⊗Qℓ −→ EndQℓ
(V ′(ξ))× EndQℓ

(A(K)⊗Qℓ)×Qℓ[PicX(k)]ιPic)

Then by Corollary 3.40, H̃ Σ
ℓ is again a finitely generated Qℓ-algebra with Krull dimension one.

Theorem 7.5. Let µ, µ′ ∈ {±1}r. Then for all f ∈H Σ
G , we have the identity

(− log q)−rJµ,µ
′
(f) = Iµ,µ

′
(f).

The proof is the same as that of [10, Theorem 9.2], using the finiteness property of H̃ Σ
ℓ and

[10, Lemma 9.1].

7.3. Conclusion of the proofs.

7.3.1. Proof of Theorem 1.2. Both Iµ,µ
′
(h) and Jµ,µ

′
(h) depend only on the image of h in H̃ Σ

ℓ .

Let Y = Spec H̃ Σ
ℓ . By Theorem 3.41, we have a decomposition

Yred = ZEis,Qℓ

∐
Y0

where Y0 is a finite set of closed points. Under this decomposition, we have a corresponding

decomposition of H̃ Σ
ℓ

H̃
Σ
ℓ = H̃

Σ
ℓ,Eis × H̃

Σ
ℓ,0 (7.8)

such that Spec H̃
Σ,red
ℓ,Eis = ZEis,Qℓ

and Spec H̃
Σ,red
ℓ,0 = Y0. We have a decomposition

V ′(ξ)⊗Qℓ = V ′(ξ)Eis ⊗Qℓ ⊕ (⊕
m∈Y0(Qℓ)

V ′(ξ)m)

where Supp(V ′(ξ)Eis) ⊂ ZEis,Qℓ
and V ′(ξ)m is the generalized eigenspace of V ′(ξ) ⊗ Qℓ under

the character m of H̃ Σ
ℓ . Under this decomposition, let Zµm(ξ) be the projection of Zµ(ξ) ∈ V ′(ξ)

(the cycle class of θ′µ∗ [Sht
µ

T (µ∞ · ξ)]) to the direct summand V ′(ξ)m.

Let h ∈ H̃ Σ
ℓ,0, viewed as (0, h) ∈ H̃ Σ

ℓ under the decomposition (7.8). Since the H Σ
G -action

on V ′(ξ) is self-adjoint with respect to the cup product pairing, we have

Iµ,µ
′
(h) =

∑

m∈Y0(Qℓ)

(Zµm(ξ), h ∗ Z
µ′
m (ξ)). (7.9)

On the other hand, we have

Jµ,µ
′
(h) =

∑

π∈ΠΣ(Qℓ)

λπ(h)

(
∂

∂s1

)r+ ( ∂

∂s2

)r− (
qN+s1+N−s2Jπ(h

Σ± , s1, s2)
) ∣∣∣
s1=s2=0

. (7.10)

By the discussion in §7.2.1, ΠΣ(Qℓ) can be viewed as a subset of Y0(Qℓ). Now let π be as

in the statement of Theorem 1.2. Let h = eπ be the idempotent in H̃ Σ
ℓ,0 ⊗Qℓ corresponding to

π ∈ ΠΣ(Qℓ) ⊂ Y0(Qℓ). In (7.9) and (7.10) we plug in h = eπ, we get

Iµ,µ
′
(eπ) = (Zµπ (ξ), Z

µ
π (ξ)).

Jµ,µ
′
(eπ) =

(
∂

∂s1

)r+ ( ∂

∂s2

)r− (
qN+s1+N−s2Jπ(h

Σ± , s1, s2)
) ∣∣∣
s1=s2=0

.
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Applying Theorem 7.5 to eπ,

(− log q)−r
(

∂

∂s1

)r+ ( ∂

∂s2

)r− (
qN+s1+N−s2Jπ(h

Σ± , s1, s2)
) ∣∣∣
s1=s2=0

= (Zµπ (ξ), Z
µ
π (ξ)).

By Prop. 2.10, the left side above is the left side of (1.7). The proof of Theorem 1.2 is complete.

7.3.2. Proof of Theorem 1.3. Make a change of variables t1 = s1 + s2, t2 = s1 − s2, we have
(
∂

∂t1

)r1 ( ∂

∂t2

)r−r1
=

1

2r

(
∂

∂s1
+

∂

∂s2

)r1 ( ∂

∂s1
−

∂

∂s2

)r−r1

=
1

2r

∑

I⊂{1,2,··· ,r}
(−1)#(I∩{r1+1,··· ,r})

(
∂

∂s1

)r−#I (
∂

∂s2

)#I

.

Therefore,

L
(r1)(π,

1

2
)L (r−r1)(π ⊗ η,

1

2
)

=

(
∂

∂t1

)r1 ( ∂

∂t2

)r−r1
(L (π, t1 +

1

2
)L (π ⊗ η, t2 +

1

2
))
∣∣∣
t1=t2=0

=
1

2r

∑

I⊂{1,2,··· ,r}
(−1)#(I∩{r1+1,··· ,r})

(
∂

∂s1

)r−#I (
∂

∂s2

)#I

LF ′/F (π, s1, s2)
∣∣∣
s1=s2=0

.

For I ⊂ {1, 2, . . . , r}, let σI ∈ {±1}r be the element which is −1 on the i-th coordinate if i ∈ I
and 1 elsewhere. We may view σI as an element in Ar,Σ. Let µ ∈ Tr,Σ. By Theorem 1.2
(

∂

∂s1

)r−#I (
∂

∂s2

)#I

LF ′/F (π, s1, s2)
∣∣∣
s1=s2=0

= (Zµπ (ξ), Z
σI ·µ
π (ξ)) = (Zµπ (ξ), σI · Z

µ
π (ξ)) .

where the second equality follows from Lemma 4.10. Therefore

L
(r1)(π,

1

2
)L (r−r1)(π ⊗ η,

1

2
)

=
1

2r

∑

I⊂{1,2,··· ,r}
(−1)#(I∩{r1+1,··· ,r}) (Zµπ (ξ), σI · Z

µ
π (ξ))

=


Zµπ (ξ),

1

2r

∑

I⊂{1,2,··· ,r}
(−1)#(I∩{r1+1,··· ,r})σI · Z

µ
π (ξ)




=


Zµπ (ξ),

r1∏

i=1

1 + σi
2

r∏

j=r1

1− σj
2
· Zµπ (ξ)


 = (Zµπ (ξ), εr1 · Z

µ
π (ξ)) .

Since εr1 is an idempotent in Q[(Z/2Z)r] which is self-adjoint with respect to the intersection
pairing on Sht′rG(Σ; ξ), we have (Zµπ (ξ), εr1 · Z

µ
π (ξ)) = (εr1 · Z

µ
π (ξ), εr1 · Z

µ
π (ξ)). The theorem is

proved.

Appendix A. Picard stack with ramifications

In this appendix we record some constructions in the geometric class field theory with ram-
ifications of order two, which will be used in the descriptions of the moduli spaces in §5 and
§6.

A.1. The Picard stack and Abel-Jacobi map with ramifications. LetR ⊂ X be a reduced
finite subscheme.

Definition A.1. Let Pic
√
R

X be the functor on k-schemes whose S-valued points is the groupoid
of triples L♮ = (L,KR, ι) where

• L is a line bundle over X × S;

• KR is a line bundle over R× S;

• ι : K⊗2R
∼
→ L|R×S is an isomorphism of line bundles over R× S.
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We have a decomposition Pic
√
R

X = ⊔d∈Z Pic
√
R,d

X , where Pic
√
R,d

X is the subfunctor defined by
imposing that deg(Ls) = d for each geometric point s ∈ S.

A.1.1. We present Pic
√
R

X as a quotient stack. Let PicX,R be the moduli stack classifying (L, γ)

where L is a line bundle over X and γ is a trivialization of LR. The Weil restriction ResRk Gm
acts on PicX,R by changing the trivialization γ, whose quotient is naturally isomorphic to PicX .

From the definition of Pic
√
R

X we see there is a natural isomorphism of stacks

Pic
√
R

X
∼= [PicX,R /[2]Res

R
k Gm]

Here the quotient is obtained by making ResRk Gm act on PicX,R via the square of the usual

action, and the notation /[2] is to emphasize the square action. When R = ∅, ResRk Gm = Spec k
by convention, and the above discussion is still valid.

The forgetful map (L,KR, ι) 7→ L gives a morphism of stacks

Pic
√
R

X −→ PicX

which is a ResRk µ2-gerbe.

A.1.2. Variant of Pic
√
R

X . We shall also need the following variant of Pic
√
R

X . Let Pic
√
R;
√
R

X be

the stack whose S-points consist of (L,KR, ι, αR), where (L,KR, ι) ∈ Pic
√
R

X (S) and αR is a
section of KR. Then we have

Pic
√
R;
√
R

X
∼= PicX,R

[2],ResRk Gm

× ResRk A1

Here the action of ResRk Gm on PicX,R is the square action and its action on ResRk A1 is by
dilation.

Definition A.2. For each integer d ≥ 0, let X̂
√
R

d be the k-stack whose S-points is the groupoid

of tuples (L♮, a, αR) where

• L♮ = (L,KR, ι) ∈ Pic
√
R,d

X (S); in particular, ι is an isomorphism K⊗2R
∼
→ LR.

• a is a global section of L;

• αR is a section of KR such that ι(α⊗2R ) = aR, where aR is the restriction of aR to R× S.

We let X
√
R

d ⊂ X̂
√
R

d be the open substack defined by requiring that a is nonzero along the
geometric fiber X × {s}, for all geometric points s ∈ S.

A.1.3. Forgetting the square roots (KR, ι, αR) we get a morphism to the stack X̂d defined in
[10, §3.2.1]

ω̂
√
R

d : X̂
√
R

d −→ X̂d.

Over a geometric point (L, a ∈ Γ(XK ,L)) ∈ X̂d(K), the fiber of ω̂
√
R

d is a product
∏
x∈R(K)Px,

where Px ∼= SpecK if a(x) 6= 0, and Px ∼= [SpecK/µ2,K ] if a(x) = 0. In particular, the

restriction of ω̂
√
R

d to X
√
R

d

ω
√
R

d : X
√
R

d −→ Xd.

realizes Xd as the coarse moduli scheme of X
√
R

d . When d = 1, X
√
R

1 is the DM curve with
coarse moduli space X and automorphic group µ2 along R.

Definition A.3. For an open subset U ⊂ X , we define U
√
R

d to be the subset of X
√
R

d which is

the preimage of Ud under the map ω
√
R

d .

We have another description of X̂
√
R

d as follows. Evaluating a section of a line bundle along
R gives a morphism

evRd : X̂d −→ [ResRk A1/ResRk Gm].
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From the construction of X̂
√
R

d we get a Cartesian diagram

X̂
√
R

d

ω̂
√

R
d

��

ev
√

R
d // [ResRk A1/ResRk Gm]

[2]

��

X̂d

evR
d // [ResRk A1/ResRk Gm]

(A.1)

Here the vertical map [2] is the square map on both ResRk A1 and ResRk Gm.

Lemma A.4. (1) The map evRd is smooth when restricted to Xd.

(2) X
√
R

d is a smooth DM stack over k.

Proof. (1) We may argue by base changing to k. We have [ResRk A1/ResRk Gm]k
∼=
∏
x∈R(k)[A

1/Gm],

and the map evR
d,k

: Xd,k →
∏
x∈R(k)[A

1/Gm] is the product of the evaluation maps evx for

x ∈ R(k). The following general statement follows from an easy calculation of tangent spaces.

Claim. Let Z be a smooth and irreducible k-scheme and fi : Z → [A1/Gm] be a collection
of morphisms, 1 ≤ i ≤ n. Assume the image of each fi does not lie entirely in [{0}/Gm],
so the scheme-theoretic preimage of [{0}/Gm] under fi is a divisor Di ⊂ Z. Let f : Z →∏n
i=1[A

1/Gm] ∼= [An/Gnm] be the fiber product of the fi’s. Then f is a smooth morphism if and
only if the divisors D1, . . . , Dn are smooth and intersect transversely.

We apply this claim to Z = Xd,k and the maps evx for x ∈ R(k). The divisor Dx in this
case is the locus in Xd,k classifying those degree d divisors D of X containing x. For a subset

I ⊂ R(k), the intersection DI = ∩x∈IDx is the locus classifying those degree d divisors D of X
containing all points in I. This is non-empty only if #I ≤ d. When this is the case, we have an
isomorphism Xd−#I ∼= DI given by D 7→ D +

∑
x∈I x (the fact that this is an isomorphism can

be checked by an étale local calculation, reducing to the case X is A1). In particular, DI ⊂ Xd,k

is smooth of codimension #I. This shows that the divisors {Dx}x∈R(k) intersect transversely.

By the Claim above, the map evR
d,k

is smooth when restricted to Xd,k.

(2) Since evRd |Xd
is smooth by part (1), so is ev

√
R

d |X
√

R
d

by the Cartesian diagram (A.1).

Therefore X
√
R

d is a smooth algebraic stack over k. Since the square map [ResRk A1/ResRk Gm]→

[ResRk A1/ResRk Gm] is relative DM and Xd is a scheme, we see that X
√
R

d is a DM stack again
from (A.1). �

A.1.4. The addition map. Suppose d1, d2 ∈ Z≥0, then we have a map

âdd

√
R

d1,d2 : X̂
√
R

d1
× X̂

√
R

d2
−→ X̂

√
R

d1+d2

sending (L♮1, a1, αR,1,L
♮
2, a2, αR,2) to (L♮1 ⊗ L

♮
2, a1 ⊗ a2, αR,1 ⊗ αR,2). It restricts to a map

add
√
R

d1,d2
: X
√
R

d1
×X

√
R

d2
−→ X

√
R

d1+d2
. (A.2)

In particular, applying this construction iteratively, we get a map (for d ≥ 0)

p
√
R

d : (X
√
R

1 )d −→ X
√
R

d . (A.3)

which is Sd-invariant with respect to the permutation action on the source.

A.1.5. The Abel-Jacobi map. Forgetting the sections a we get a morphism

ÂJ

√
R;
√
R

d : X̂
√
R

d −→ Pic
√
R;
√
R,d

X .

We also get a map

ÂJ

√
R

d : X̂
√
R

d −→ Pic
√
R,d

X

by further forgetting αR. Let AJ
√
R;
√
R

d and AJ
√
R

d be the restrictions of ÂJ

√
R;
√
R

d and ÂJ

√
R

d to

X
√
R

d . When R = ∅, AJ
√
R

d reduces to the usual Abel-Jacobi map.
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A.1.6. Presentation of Pic
√
R

X (k). For x ∈ R, let

O√x = Ox ×k(x) k(x), O×√
x
= O×x ×k(x)× k(x)

×

where the second projections k(x) → k(x) and k(x)× → k(x)× are the square maps. Let
O×√

R
=
∏
x∈RO

×√
x
×
∏
x∈|X−R|O

×
x . We have a homomorphismO×√

R
→ O× =

∏
x∈|X|O

×
x → A×F .

Lemma A.5. There is a canonical isomorphism of Picard groupoids

F×\A×F /O
×√
R

∼
−→ Pic

√
R

X (k) (A.4)

sending ̟−1x (where ̟x is a uniformizer at x ∈ |X −R|) to the point OX(x)♮ ∈ Pic
√
R

X (k) (the
canonical lift of OX(x)).

Proof. Consider the groupoid P̂ic

√
R

X (k) classifying (L, τη, {τx}x∈|X|,KR, ι, tR = {tx}x∈R), where

(L,KR, ι) ∈ Pic
√
R

X (k), τη : L|SpecF ∼= F is a trivialization of L at the generic point, and

τx : L|SpecOx
∼= Ox is a trivialization of L in the formal neighborhood of x, tx : Kx

∼
→ k(x) is a

trivialization of Kx for every x ∈ R, such that the following diagram is commutative

K⊗2x
ιx //

t⊗2
x

��

Lx

τx|x
��

k(x)⊗2 k(x)

Similarly, we define P̂icX(k) to classify part of the data (L, τη, {τx}x∈|X|) as above. The forgetful

map P̂ic

√
R

X (k)→ P̂icX(k) is an equivalence: the choices of the extra data (KR, ι, τR) are unique
up to a unique isomorphism.

We have an isomorphism P̂icX(k)
∼
→ A×F sending (L, τη, {τx}x∈|X|) to (τx ◦ τ−1η )x∈|X| ∈ A×.

Therefore we get a canonical isomorphism

α : A×F
∼
−→ P̂ic

√
R

X (k).

It is easy to see that for x ∈ |X −R|, α(̟−1x ) has image OX(x)♮ in Pic
√
R

X (k).

There is an action of F× on P̂ic

√
R

X (k) by changing τη. For x ∈ |X − R|, there is an action

of O×x on P̂ic

√
R

X (k) by changing τx. For x ∈ R, there is an action of O×√
x
= O×x ×k(x)× k(x)×

on P̂ic

√
R

X (k) by changing τx and tx compatibly. Therefore we get an action of F× × O×√
R

on P̂ic

√
R

X (k). The isomorphism α is equivariant with respect to these actions. The forgetful

map P̂ic

√
R

X (k) → Pic
√
R

X (k) is a torsor for the action of F× × O×√
R
. Therefore α induces the

equivalence (A.4). �

A.2. Ramified double cover. Let ν : X ′ → X be a double cover with ramification locus
R ⊂ X , where X ′ is also a smooth projective and geometrically connected curve over k. Let
σ : X ′ → X ′ be the nontrivial involution over X . Let R′ ⊂ X ′ be the reduced preimage of R,
then ν induces an isomorphism R′

∼
→ R.

A.2.1. The norm map on Picard. Let iR : R →֒ X be the inclusion. We consider the étale sheaf
Gm,R on R as an étale sheaf on X via iR,∗. There is a restriction map Gm,X → Gm,R. Consider
the following étale sheaf on X

G
√
R

m,X = Gm,X ×Gm,R,[2] Gm,R

where the map Gm,R → Gm,R is the square map. By construction, Pic
√
R

X is the moduli stack of

G
√
R

m,X-torsors over X .
We have the sheaf homomorphism induced by the norm map Nm : ν∗Gm,X′ → Gm,X and the

restriction map rR′ : ν∗Gm,X′ → ν∗Gm,R′ = Gm,R. Computing with local coordinates at R, we
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see that the composition ν∗Gm,X′
Nm
−−→ Gm,X

rR−−→ Gm,R (the latter rR is given by restriction) is
the square of the restriction map rR′ . Therefore (Nm, rR′ ) induces a sheaf homomorphism

Nm
√
R

X′/X : ν∗Gm,X′ −→ G
√
R

m,X

which is easily seen to be surjective by local calculation at R. The map Nm
√
R

X′/X on sheaves

induces a morphism of Picard stacks

Nm
√
R

X′/X : PicX′ −→ Pic
√
R

X

which lifts the usual norm map NmX′/X : PicX′ → PicX .

A.2.2. The norm map on symmetric powers. There is also a natural lifting of the norm map

ν̂d : X̂
′
d → X̂d

ν̂
√
R

d : X̂ ′d −→ X̂
√
R

d . (A.5)

In fact, for (L′, a′) ∈ X̂ ′d(S), where L
′ is a line bundle over X ′ × S and a′ a global section of L′,

L = Nm(L′) is a line bundle over X ×S, and a = Nm(a′) is a section of L. We have a canonical
isomorphism ι : (L′|R′×S)⊗2 ∼= (L′ ⊗ σ∗L′)|R′×S ∼= L|R×S . Under ι, a′|R′×S gives a square root

of the restriction a|R×S . We then send (L′, a′) to (L,L′|R′×S , ι, a, a′|R′×S) ∈ X̂
√
R

d (S).

A.2.3. Descent of line bundles. A local calculation shows that the image of 1 − σ : ν∗Gm,X′ →

ν∗Gm,X′ is equal to the kernel of Nm
√
R

X′/X . Therefore we have an exact sequence of étale sheaves

on X :

1 −→ Gm,X −→ ν∗Gm,X′
1−σ
−−−→ ν∗Gm,X′

Nm
√

R
X′/X

−−−−−→ G
√
R

m,X −→ 1.

Taking the corresponding Picard stacks we get an exact sequence of Picard stacks

1 −→ PicX
ν∗
−→ PicX′

1−σ
−−−→ PicX′

Nm
√

R
X′/X

−−−−−→ Pic
√
R

X −→ 1. (A.6)

A.3. Geometric class field theory. In this subsection, we fix L to be a rank one local system

on X
√
R

1 . Since X
√
R

1 is a smooth DM curve with coarse moduli space X and automorphic group
µ2 along R, such a local system is the same datum as a rank one local system on X − R with
monodromy of order at most 2 at the x ∈ R.

A.3.1. The local system Ld. Starting from L, we will give a canonical construction of local

systems Ld on X
√
R

d for d ≥ 0 and show that it descends to Pic
√
R,d

X . In the case R = ∅, such a
construction goes back to Deligne.

Consider the Sd-invariant map p
√
R

d in (A.3). The complex p
√
R

d,! L
⊠d is a middle extension

perverse sheaf on X
√
R

d (i.e., it is the middle extension of a local system from a dense open

subset of X
√
R

d ) because p
√
R

d is a finite map from a smooth and geometrically connected DM
stack. Therefore the Sd-invariant part

Ld := (p
√
R

d,! L
⊠d)Sd

is also a middle extension perverse sheaf on X
√
R

d .
From the construction of Ld we immediately get

Lemma A.6. Suppose the local system L is geometrically nontrivial. Then

Hi(X
√
R

d ⊗ k, Ld) =

{
∧d
(
H1
c(X

√
R

1 ⊗ k, L)
)

i = d,

0 i 6= d.

Lemma A.7. The perverse sheaf Ld is a local system of rank one on X
√
R

d .
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Proof. Since Ld is a middle extension perverse sheaf on X
√
R

d , to show it is a local system of

rank one, it suffices to check the stalks of Ld at any geometric point of X
√
R

d is one-dimensional.

Consider a geometric point (L♮, a, αR) ∈ X
√
R

d with div(a) = D. By factorizing the situation

according to the points in D, we reduce to show that for x ∈ R(k), Ld has one-dimensional stalk

at the geometric point dx ∈ X
√
R

d (k). The point dx has automorphism µ2, and the restriction

of p
√
R

d to the preimage of this orbifold point is

pdx : [pt/µ2]
d −→ [pt/µ2]

induced by the multiplication map m : µd2 → µ2. The restriction of L to x = [pt/µ2] ∈ X
√
R

1 is

given by the sign representation of µ2 on Qℓ. Therefore pdx,!L
⊠d
x is the Kd = ker(m : µd2 → µ2)-

coinvariants on L⊠d
x , which is L⊠d

x itself since Kd acts trivially on it. Therefore, the stalk of Ld
at dx is one-dimensional. �

Lemma A.8. For d1, d2 ≥ 0 there is a canonical isomorphism of local systems on X
√
R

d1
×X

√
R

d2

αd1,d2 : add
√
R,∗

d1,d2
Ld1+d2

∼= Ld1 ⊠ Ld2 .

which is commutative and associative in the obvious sense.

Proof. Let d = d1 + d2. Since both add
√
R,∗

d1,d2
Ld and Ld1 ⊠ Ld2 are local systems, it suffices to

give such an isomorphism over a dense open substack of X
√
R

d1
× X

√
R

d2
. Let U = X − R. Let

U◦d ⊂ X
√
R

d be the open subscheme consisting of multiplicity-free divisors on U . Let (Ud1 ×

Ud2)
◦ ⊂ X

√
R

d1
×X

√
R

d2
be the preimage of U◦d under add

√
R

d1,d2
.

The monodromy representation of the local system L|U is given by a homomorphism

χ : π1(U) −→ {±1}.

For any n ∈ Z≥0, there is a canonical homomorphism

ϕn : π1(U
◦
n) −→ π1(U)n ⋊ Sn

given by the branched Sn-cover U
n → Un.

The monodromy representation of the local system Ld1 ⊠ Ld2 |(Ud1
×Ud2

)◦ is given by

π1((Ud1 × Ud2)
◦)

(p1∗,p2∗)
−−−−−−→ π1(U

◦
d1)× π1(U

◦
d2)

ϕd1
×ϕd2−−−−−−→ (π1(U)d1 ⋊ Sd1)× (π1(U)d2 ⋊ Sd2)

= π1(U)d ⋊ (Sd1 × Sd2)
(χ,··· ,χ)×1
−−−−−−−→ {±1} (A.7)

The last map is χ on all the π1(U)-factors and trivial on Sd1 × Sd2 .
On the other hand, the local system add∗d1,d2Ld|U◦

d
is given by the character

π1((Ud1 × Ud2)
◦)

add∗−−−→ π1(U
◦
d )

ϕd−−→ π1(U)d ⋊ Sd
(χ,··· ,χ)×1
−−−−−−−→ {±1}. (A.8)

Observe that (A.7) and (A.8) are the same homomorphisms. This gives the desired isomorphism
αd1,d2 . We leave the verification of the commutativity and associativity properties of αd1,d2 as
an exercise. �

Lemma A.9. For d ≥ ρ+max{2g− 1, 1}, the local system Ld on X
√
R

d descends to Pic
√
R,d

X via

the map AJ
√
R

d .

Proof. The case R = ∅ is well-known; we treat only the case R 6= ∅.

When d ≥ 2g−1+ρ, by Riemann-Roch, AJ
√
R

d is a locally trivial fibration, therefore it suffices

to show that the restriction of Ld to geometric fibers of AJ
√
R

d are trivial.

Fix a geometric point L♮ = (L,KR, ι) ∈ Pic
√
R,d

X (K) for some algebraically closed field K. We

base change the situation from k to K without changing notation. The fiber of AJ
√
R

d over L♮ is

M = H0(X,L)◦ ×H0(R,LR) H
0(R,KR)

where H0(X,L)◦ = H0(X,L)◦ − {0}, and the map H0(R,KR) → H0(R,LR) is the square map
via ι. The torus Gm acts on M by weight 2 on H0(X,L) and weight 1 on H0(R,KR). Then the
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map M → X
√
R

d factors through the quotient [M/Gm]. The triviality of Ld|[M/Gm] follows from
the Claim below.

Claim. [M/Gm] is simply-connected.

It remains to prove the Claim. Choosing a basis for H0(R,LR) and extending it to H0(X,L),
we may identify M with a punctured affine space An − {0} and the action of Gm has weights 2
(on the first n− ρ coordinates) and 1 (on the last ρ coordinates). Since n = d− g + 1 ≥ ρ+ 1,
the weight 2 appears at least once.

Suppose Y → [M/Gm] is a finite étale map with Y connected. Consider the map π : Pn−1 →
[M/Gm] given by [x1, . . . , xn−ρ, y1, . . . , yρ] 7→ [x21, . . . , x

2
n−ρ, y1, . . . , yρ]. Then π is a branched

Galois cover with Galois group µn−ρ2 . Since Pn−1 is simply-connected, π lifts to π̃ : Pn−1 → Y .

Therefore the function field K(Y ) ⊂ K(Pn−1) corresponds to a subgroup Γ ⊂ µn−ρ2 so that Y
is the normalization of [M/Gm] in SpecK(Y ). We consider the open subset M◦ where the last
coordinate yρ 6= 0, then M◦/Gm ∼= An−1. Let Y ◦ be the preimage of M◦/Gm in Y , and let
(Pn−1)◦ ∼= An−1 be the preimage in Pn−1. Then Y ◦ is the GIT quotient of (Pn−1)◦ by Γ. If

Γ 6= µn−ρ2 , then there is a non-empty subset I ⊂ {1, . . . , n − ρ} such that Γ is contained in the

kernel of e∗I : µn−ρ2 → µ2 given by e∗I(εi) = εi if i ∈ I and 1 is i /∈ I. In this case, xI =
∏
i∈I xi

is fixed by Γ hence xI ∈ O(Y ◦). However, xI /∈ O(M◦/Gm) (only x2I ∈ O(M◦/Gm)). This
implies that Y ◦ →M◦/Gm is ramified along the divisor xI = 0 in Y ◦, contradiction. Therefore
Γ = µn−ρ2 and Y = [M/Gm]. �

A.3.2. Construction of LPic
d for all d ∈ Z. Let LPic

d be the descent of Ld to Pic
√
R,d

X when

d ≥ ρ+max{2g − 1, 1}. Next we extend the local systems {LPic
d } to all components of Pic

√
R

X .
Fix any integer d. For any divisor D =

∑
x∈|X−R| nx · x ∈ Div(X − R) of degree d′, we

have a canonical line LD = ⊗L⊗nx
x . Tensoring with OX(D)♮ (the canonical lift of OX(D) to

Pic
√
R

X ) defines an isomorphism tD : Pic
√
R,d

X → Pic
√
R,d+d′

X . If d′ + d ≥ max{2g − 1, 1} + ρ,

LPic
d+d′ is already defined, and we define LPic

d to be the local system t∗DL
Pic
d+d′ ⊗L

⊗−1
D on Pic

√
R,d

X .

We claim that LPic
d thus defined is canonically independent of the choice of D, as long as the

degreed′ of D satisfies d′ ≥ max{2g − 1, 1} + ρ − d. To show this, it suffices to show that for
any n, n′ ≥ max{2g− 1, 1}+ ρ (so that LPic

n and LPic
n′ are both defined as the descent of Ln and

Ln′) and any D ∈ Divn
′−n(X − R), there is a canonical isomorphism t∗DL

Pic
n′ ∼= LPic

n ⊗ LD as

local systems on Pic
√
R,n

X . It is easy to reduce to the case D effective. Since AJ
√
R

n has connected

geometric fibers, it is enough to give such an isomorphism after pulling back to X
√
R

n , i.e., we

need to give a canonical isomorphism of local systems on X
√
R

n

T ∗DLn′ ∼= Ln ⊗ LD (A.9)

where TD : X
√
R

n → X
√
R

n′ is the addition by D. Such an isomorphism is given by Lemma A.8

by taking restricting αn,n′−n to X
√
R

n × {D}.

We have therefore defined a canonical local system LPic
d on Pic

√
R

d for each d ∈ Z. Let LPic

be the local system on Pic
√
R

X whose restriction to Pic
√
R

d is LPic
d .

Lemma A.10. For d ≥ 0, we have a canonical isomorphism of local systems on X
√
R

d

AJ
√
R,∗

d LPic
d
∼= Ld.

Proof. Let D be a divisor on X−R of degree d′ ≥ max{2g−1, 1}+ρ−d. By construction we have

LPic
d = t∗DL

Pic
d+d′ ⊗L

⊗−1
D . Pulling back both sides to X

√
R

d , and noting AJ
√
R

d+d′ ◦TD = tD ◦AJ
√
R

d ,
we get

AJ
√
R∗

d LPic
d = AJ

√
R∗

d t∗DL
Pic
d+d′ ⊗ L

⊗−1
D = T ∗DAJ

√
R∗

d+d′L
Pic
d+d′ ⊗ L

⊗−1
D = T ∗DLd+d′ ⊗ L

⊗−1
D .

which is canonically isomorphic to Ld by (A.9). �

Proposition A.11. The local system LPic is a character sheaf on Pic
√
R

X . More precisely, this
means the following
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(1) There is a canonical trivialization ι : LPic|e ∼= Qℓ, where e is the origin of Pic
√
R

X .

(2) There is a canonical isomorphism of local systems on Pic
√
R

X ×Pic
√
R

X

µ : mult∗LPic ∼= LPic
⊠ LPic

where mult : Pic
√
R

X ×Pic
√
R

X → Pic
√
R

X is the multiplication map.

(3) The isomorphism µ is commutative and associative in the obvious sense, and its restrictions

to {e} × Pic
√
R

X and Pic
√
R

X ×{e} are the identity maps on LPic (after using ι to trivialize
LPic|e).

Proof. By construction, LPic|e ∼= LPic
d |O(D)♮ ⊗ L

⊗−1
D

∼= Ld|D ⊗ L
⊗−1
D for any effective divisor

D ∈ Div(X −R) of large degree d (we are viewing D as a k-point of (X −R)d ⊂ X
√
R

d , so Ld|D
means the stalk of Ld at this k-point D). If we write D =

∑
x∈|X−R| nx ·x, then by construction

we have a canonical isomorphism Ld|D ∼= ⊗x∈|X−R|L⊗nx
x = LD, which gives a trivialization

ιD : LPic|e ∼= Qℓ. We leave it as an exercise to check that ιD is independent of the choice of D.
Now we construct the isomorphism µ, i.e., a system of isomorphisms

µd1,d2 : mult∗d1,d2L
Pic
d1+d2

∼= LPic
d1 ⊠ LPic

d2

for all d1, d2 ∈ Z. When d1, d2 ≥ ρ+max{2g− 1, 1}, LPic
di

and LPic
d1+d2

come by descent from Ldi

and Ld1+d2 . Since AJ
√
R

d1+d2
has connected geometric fibers, it suffices to give µd1,d2 after pulling

back both sides to X
√
R

d1+d2
, in which case the desired isomorphism is given by αd1,d2 constructed

in Lemma A.8.
For general d1, d2, let D1, D2 ∈ Div(X − R) with degrees degDi = ni such that ni + di ≥

ρ+max{2g − 1, 1} for i = 1, 2. Then by construction,

LPic
d1 ⊠ LPic

d2
∼= (t∗D1

LPic
d1+n1

⊠ t∗D2
LPic
d2+n2

)⊗ (L⊗−1D1
⊗ L⊗−1D2

). (A.10)

On the other hand, LPic
d1+d2

∼= t∗D1+D2
Ld1+d2+n1+n2 ⊗ L

⊗−1
D1+D2

, hence

mult∗d1,d2L
Pic
d1+d2

∼= mult∗d1,d2t
∗
D1+D2

Ld1+d2+n1+n2 ⊗ L
⊗−1
D1+D2

(A.11)

∼= ((tD1 × tD2)
∗mult∗d1+n1,d2+n2

Ld1+d2+n1+n2)⊗ (L⊗−1D1
⊗ L⊗−1D2

).

Comparing the RHS of (A.10) and (A.11), the desired isomorphism µd1,d2 is induced from the
already-constructed µd1+n1,d2+n2 . Again we leave it as an exercise to check that µd1,d2 is inde-
pendent of the choices of D1, D2, and it satisfies commutativity, associativity, and compatibility
with ι. �

A.3.3. The function corresponding to LPic. The local system L|X−R arises from a double cover
of X − R, which corresponds to a quadratic extension F ′/F unramified away from R. By class
field theory, F ′/F gives rise to an idèle class character

ηF ′/F : F×\A×F /O
×√
R
−→ {±1}.

For the notation O×√
R
, see §A.1.6.

Proposition A.12. Under the sheaf-to-function correspondence, the function on Pic
√
R

X (k) given
by LPic is the idèle class character ηF ′/F under the isomorphism (A.4).

Proof. Let fL : Pic
√
R

X (k)→ Q×ℓ be the function attached to LPic. By Prop. A.11, fL is a group
homomorphism. We know that ηF ′/F is characterized by the property that for a uniformizer ̟x

at x ∈ |X −R|,

ηF ′/F (̟
−1
x ) =

{
1, if x is split in F ′;

−1, if x is inert in F ′.

Now x is split (resp. inert) in F ′ if and only if Tr(Frx, Lx) = 1 (resp. Tr(Frx, Lx) = −1).
Therefore

ηF ′/F (̟
−1
x ) = Tr(Frx, Lx).
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We only need to check that fL enjoys the same property as ηF ′/F . Since ̟−1x corresponds to

O(x)♮ ∈ Pic
√
R,dx

X (k) under (A.4), we need to show

Tr(FrO(x)♮ , L
Pic|O(x)♮) = Tr(Frx, Lx), ∀x ∈ |X −R|.

Let d = dx. By Lemma A.10, LPic
d pulls back to Ld on X

√
R

d ; viewing x as a divisor of degree d

on X − R (and denoted [x]), it maps to O(x)♮ via AJ
√
R

d , hence the left side above is equal to
Tr(Frk, Ld|[x]). Therefore it suffices to show

Tr(Frk, Ld|[x]) = Tr(Frx, Lx). (A.12)

By the construction of Ld, there is an isomorphism Ld|[x] ∼= L⊗dx such that the Frk-action on

Ld|[x] corresponds to the automorphism ℓ1⊗ ℓ2⊗ · · · ⊗ ℓd 7→ ℓ2⊗ · · · ⊗ ℓd⊗Frx(ℓ1) on L
⊗d
x . This

shows (A.12) and finishes the proof of the lemma. �
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