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SYNTHESIS OF A FINITE TWO-TERMINAL NETWORK

WHOSE PHASE ANGLE IS A PRESCRIBED

FUNCTION OF FREQUENCY

With Application to the Design of

Symmetrical Networks

ABSTRACT

The incressed use of modern "exact" procedures
In the field of electrical network design has revealed
the need for research in the problem of synthesizing net-
works with prescribed phase angle characteristics. This
thesis sesks to provide the general solution to the phase
synthesis problem in the case of a two~-terminal passive
ne twork.

In order to avoid the transcendental relation-
ships sssoclated with phase angles, attention is centersd
on the tangent cf the angle rather than the angle itself.
This point of view leads naturally to simple algebralc
relationships. It is shown that there exists a network
solution if, and only if, the prescribed tangent function
1s an 0dd rational function of frequency. Moreover,
general synthesis methods for obtaining the networks are
worked out.,

Although the discuassion 1s carried on mainly

from the standpoint of network theory with emphasis on



e

oexistence theorems, the needs of the engineer who must
design the networks are not overiooked. Detalled design
procedures are developed and are i1llustrated with a
variety of numerical examples.

The kernel of the argument 13 the fact that the
imaginary axis of the complex frequency plane 18 a
sorting boundary for roots of the expression formed by
adding numerator and denominator of the tangent functlon.
When properly scorted these roots are recombined to form
the i1mpedance function. Huch of the discussion revolves
about the proof of this statsment, roots missing due to
cancellstion, and the correct allocation of roots on the
imaginary axis,

As an application of phase synthesis a design
method for symmetricel filter networks 1s presented. It
is shown that the usual computational labor can often be
materially reduced by the exploitation of a network par-
titioning theorem which relates the desired transfer im-
pedance to the phase angle of half of the network. The
method is extended to cover certain non-symmetrical net-
worka. Examples of these applications are given.

The methods used 1n obtaining the results cannot
be said to follow any particular pattern other than a
general search for relationships which might be sultable

for synthesis. The search was conducted by starting with



the general positive real drivineg-point impedance expression,
forming Crom 1t the expresasion for the tengent of the phase
angle, and noting the results of the latter operation to

see 1f 1t coulé be worked in reverse. In the discovery of
the root-sorting process, which 1s fundamentael, 1t is

probable that no small part was played by luck.
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Part I

INTRODUCTION

The problem of phase synthesis is 1ntroduced and,
several applications are described. The structure of the

ensuing argument is presented.

1, DESCRIPTION OF THE PROBLEM

Among the variety of characteristics which are
frequently found useful in describing or specifying the
dynamic behavior of a two-terminal electrical network, an
important role is played by the concept of the phase angle
of the network impedance,

Implied in the definition of this concept 1is
first, the convention that the driving excitation 13 to
vary sinusoidally with time, and second, the well-known
result of linearity that the network response also varles
sinusoidally with time and at the same frequency. Since
the most general passive two-terminal network can be com-
pletely characterized by the relationship that exists between
the voltage and the current at its terminals, it is suf-
ficlent for the study of the network imredance to assign,

for exsmple, a driving force consisting of a sinusoldal



current source of unit amplitude, and then to examine the
amplitude and phase displacement of the voltage epprearing
across the terminals as the driving frequency is varled.

The physical situation is shown in Fig. I-1] and the usual

vector representation in the complex plane in Fig. I-2.

| ——

CURRENT
SOURCE d\,} e t NETWORK

i(t)
e(t)

1SIN wt
E (@) SIN(wt -8(w))

FIG.1-I FIG.1-2

In this thesis, we are par4icularly concerned
with the phase displacement, 6(w), and with the possi-
bility and methods of constructing two-terminal networks
whose impedances have phase displacements which are pre-
scribed functions of frequency.

Necessary and sufficient conditions on the pre-
scribed functions are presented, and, in addition, workable
synthesis techniques are developed. It turns out that
from the phase function alone we can determine the whole

impedance. From this the network can then be synthesized.



2. APPLICATIONS

A useful application of phase synthesis lies in
the design of feedback amplirier nsatworks. Design methods
currently in use involve the synthesis}of a transfer net-
work with a prescribed phase angle characteristic. We can
resdily obtain such a network by inserting a properly
designed driving-point impedance in the plate circult of
a vacuum. tube. In order to apply this procedure, howsever,
we must have available a synthesls technique for the
driving-point impedance, which permits accurate and
raliable control of the phase angle tolerances over .the fre-
quency spectrum, Our method seeks to provide such a tech-
nique, and it achieves its goal within the usual limitations
of practical network components and economic considerations
of size and complexity.

Feedback networks are ordinarily designed from
an amplitude vs. frequency curve which is first cslculated
from the desired phase vs. frequency curve. In practice
this amplitude curve must be approximated bv an algebrailc
expression before synthesls can proceed. Herein lies the
difficulty in maintaining an allowable phase tolerasance.

It turns out that the relation 1s very obscure between the
degrees of approximation to the two associated curves, and
hence some uncertainty enters into the accuracy of the
resulting phase when its tolerancg is indirectly controlled

by the amplitude tolerance.

1



On the other hand, the use of phase synthesis
permits direct control by allowing the aprroximation to be
made at once to the phase curve 8o that deviations are
known at the start.

Another sprlication of phase synthesis 1s pre-
sented in a later vortion of this paper, where it 1s shown
that the computational labor in the design of symmetrical

filter networks can be very materially reduced.

3e PLAN OF THE DISCUSSION

In Part II we collect sufficient background
material to promote continuity of the argument.

Part III deals with the existence of solutions,
We show that there exisﬁszaphysumllyrealizable ne twork
for any phase function 6 (w) whose tangent is an odd
rational function of W with real cosfficlients.

In Part IV we develop synthesis procedures which
enable the designer to construct the impedance function and
hence the network corresponding to any realizable phase
function.

In Part V we present a network theorem which
relates the tragnsfer impedance of a suitgble network to
the impedances of its parts. We combine this theorem with
the results of the phase synthesis discussion to develop a
simple method for obtaining the design of symmetrical fil-

ter networks.,

14



In the Appendix we present formulas for the
determination of certain roots assoclated with odd
Tchebycheff polynomials for use in fillter design.

In addition, we demonstrate a curious result

involving alternation of these roots,

1l-5



Part II

BACKGROUND MATERIAL

Since much of the discussion which follows 1is
based upon a mathematical treatment which uses a varlety
of concepts, theorems, and definitions, some of which do
not appear in the literature, it seems desirable to
summarize at the outset certain background material in
order to preserve continuity of the argument. We present
this material briefly and without formal proof but with

references where possible.

1. THE CONCEPT OF COMPLEX FREQUENCY

Expressed in its usual form as a function of
real impressed frequency W, the impedance of a lumped
constant network turns out to be & rational algebraic
function of the pure imaginary variable ;w. On a pursly
formal basis, we can generalize the impedance function by
replacing jw with the complex variable A= T+ jw,
This i&8 equivalent to adopting the viewpoint that for resal
frequencies we are desgling with a restricted set of values

of A, namely those on the imaginary axis.



We make no attempt to sscribe a physical
meaning to a complex value of frequency, but we justify-
the generalization by the fact that it enables us to
apply all the power of function theory to study the pro-
perties and peculliarities of impedance functions that are
associated with physical networks.

An excellent discussion of the meaning and use
of the complex frequency concept has been presentsd by

Bode’ (Chapter II).

2., IMPEDANCE DEFINITIONS

The complex impedance function with the indepen-

dent variable A 1is expressed variously as

z0) = G457 > (2-1)

or
Cm ) ()

A= ve-)
with

P(A) = mid) £ (A}, (2-3)
and

Q(A) = m,(A) ¢t n (Q) (2-4)

1 For footnote references see bibliography.



Both P(R) and Q(A) are polynomials in 2,
while the m’s and N’s are respectively the even and odd
parts of these polynomials. For example, m, consists of
all terms of P(A) involving even powers of A. We note

that

u

P(-d) m’(A) - ",(M . (2-5)

QEA) = m(A) - h,(Q)

(2-6)

All of the polynomials have real cosfficients.
The above notation follows that given in the

M.I.T. Staff Text? on Circuit Analysis (Chapter VI, Art. 26).

3s ZEROS OF THE POLYNOMIALS

For brevity we discuss P(2) with the understanding
that the following remarks apply with appropriate modifica-
tions to Q(A).

P(A) 1s a Hurwitz polynomial, that 1s, none of
its zeros 1lie in the right half of the complex plane; they
are restricted to the left half-plane or the imaginary axis.

The zeros of mllh) and ﬂ,(;\) 1ie only on the
imaginary axis. Furthermore, the zeros of m (A)
alternate with those of h {A) along this axis.

When Z(A) is in its lowest terms, any zeros of

P(A) which lie on the imaginary axis must be simple.




An explanation of the reasons for these require-

nents 1s contained in the Staff Text® (Chapter VI, Art. 25).

4, POSITIVENESS OF THE REAL PART OF Z(RA)

If Z2(A) is not a pure reactance function, its
real part will not be identlcally zero for all real fre-
quencies. Where the real part differs from zero it must
be positive.

when Z(A) 1s rationalized 1t turns out that its
real part can bs expressed as

m - hn

- _mm, T
R L20W)] = 2o o)

2 2 .
A:Ju)

Gewertz5 has shown that this expression yields a criterion
for the required poaitiveness of Re[z(jw)] in the
form of a requirement that the even polynomial "%"5"ﬁnz’
when expressed as a polynomial in \2, must not have

'h2-zaros of odd multiplicity on the negative real axis.

5o POSITIVE REAL FUNCTIONS

By definition, a positive real function i1s 5Sne
which has the following properties:
a) Tt takes on reasl values when the independent

variable is real, and

2=4




b) 1Its real part is positive when the resal
part of the independent variable is
positive.

Brune4 has shown that if there is to exist a
physically realizable network corresponding to an arbi-
trary impedance function, it is both necessary and suf-
ficient that the function be positive real.

There are various equivalent methods for demon-
strating the positive real character of an arbitrary
function. For our purposes, it is sufficient to show that:

a) P()) ana Q(Q) are Hurwitz polynomials,

b) Re[Z(jw)] >0 for all w, and -

¢) All poles of Z() on the imaginary axis

are simple and have positive real residues.

8¢ RELATION BETWEEN TRANSFER AND DRIVING-POINT IMPEDANCE

Darllngton5 has shown that any positive real
driving-poin§ impedance function can be synthesized in the
form of a lossless two terminal-palr network terminated in
a one ohm resistance.

The transfer impedance of such a network has
been shown by Guillemin® to be related to the drivinae-point
impedance by the following relationship.

2
/Z,L/J. = fe[2(jw)] (oo

w




We use as notation for the lossless network
with the one ohm termination removed from the outrut
,;:: ~ the open-circuit - vinec-point impedance
at the input end,
fzz - the open-circult driving-point impedance
at the output end, and
3/2 - the open~circult transfer impedance of

the network.




Part 1II
EXISTENCE OF SOLUTIONS

In order to investigate the interrelationship
that exists between a phase angle function and 1its
associated impedance function, we start with a general
impedance expression and examine the resulting phase.

This procedure yields the necessary conditions for physil-
cal realizabllity. We show that these are also sufficlent
and thus lay the groundwork for the attack on the synthesls

problem.

1. THE TANGENT FUNCTION 7 (A)

Because of the transcendental nature of the
relationship between an 1mpodanée and 1ts phase angle, it
1s difficult to correlate their behavior,

For this reason it is found convenient to deal
not with the phase angle directly, but instead with its
tangent. This procedure allows the mathematical discussion
to proceed on a purely algebraic basis with consequent
simplicity. In addition it turns out that the tangent
function appears explicitly in a rather elegant manner
in the customary expression for the loss function of a
symmetrical filter network. The multi-valued character

3-1




of the inverse tangent need not cause any ambiguity in
synthesis because the phase angles conslidered lie only
in the region -%é 6 < _7_r_— in order to apply to realizable
driving=-point impedanceaj/ In this domaln the phase angle
anc. 1ts tangent have a one=to-one relationship.

In order to form the tangent function we first
rationalize the impedance (in its lowest terma) in the
usual manner to obtain a separation of its real ané ima-

ginary parts.

m, +hn
Z(d) = 17 h)i-
ma"’ ' m ”2
2 2' 2
2 Mmy-ha, mon - mn, (3-1)
m2-n? ” 2 :
2 2 ,"J. —h22

For imaginary values of ) (1i.e. A= JW) the
first term on the right is fe[2 (j w)] and the second 1is
JIm[Z(jw)]. To emphasize this, Eq. (3-1) is rewritten

. Mm -nn { -mn
Z(jw) = —5—5= ¢ j Slmyn -,
m<-n 2 2
* 2 ' m," -, ‘ (3-2)
A= jw A= jw ,
from which we obtain
i
ten 8 = T(mln/_man)
T mm hn ' (3-3)
12 1 2

2= jw

3=2




That this expression 1s real, as 1t necessarily
must be for & to be a real angle, 1s evident from the odd
functional character of the numerator, which allows a can-
cellation of the‘j when the function 1s evaluated at
A2gw .

In order to foresatall any confusion arising from
repeated manipulation of the j in the ensuing discussion,
ws define the following function, which we call the tangent

function:

T(A) = My N, — M,
m, m, - N n,

’ (3-4)

and we allow A to range over the complex plane, keeping in
mind that whenever A lies on the j-axis, 7(jw) 1is equal
to jtan @ .,

The numerator and denominator on the right are
necessarily simple polynomlals with real coefficlents
because the positive real character of the original impedance
requires this property for the m's and n's. In addition
T (\) 1is seen to be an odd function.

2. THE FUNCTION TO BE SYNTHESIZED

In general the synthesis problem starts with the
examination of an arbitrary function of the real frequency
variable w , which purports to be the tangent of the phase

3-3



angle of an impedsnce. Reference to Eq. (3-4) shows that
the only allowable functions are necessarily in the form
of rational algebraic fractions. This fact may be expreased

as

tan 6

B () (3-5)

where A and B are polynomials.

To convert the expression on the right into a
form more suitable for synthesis operations, it 1s readily
changed to 7(A) by substituting -;A 1in place of w and

multiplying the whole expression by ; . This yields

. AN g
T oo b((A) : (3-6)

A comparison of Eq. (3-6) with Eq. (3-4) reveals
that a necessary condition for realizability requires a
and & to be simple polynomials with rsal coefficlents, and
their ratio to be odd in A,

3. THE CANCELLATION PROBLEM

Further than the above conclusions it is 4iffi-
cult to generalize at present for the following reason.
The given fraction 7£ of Eq. (3-6) is, of

course, in its lowest terms because one would not ordinarily

S=4




specify a function which has common factors in its numera-
tor and denominator. At any rate, the value of the ratio
1s not changed if common factors are cancelled, and we
define d and O as the resulting polynomials after the can-
cellation of any accidental common factors.

On the other hand, the expression

m). nl = m, M

m, m, - o0, (3-7)
from Eq. (3-4), which is obtained by forming T () from
Z(A) , may not be in its lowest terms., Hence there 1s no
assurance that @ 1s equal to ™™~ -m,n, nor that b 1s
equal to m, m, -/nn, separately.

It 1s shown presently that the synthesis procedure
requires a knowledge of the full expression for each of the
polynomials m,n, -m,n, and mMmm,-nn, . It 1is
necessary, therefore, to investigate fully at this time the
conditions under which cancellation can occur, the types of
factors which can be cancelled, and, most important, a
technique for examining %/ to find out if cancellation
has occurred; so that the cancelled factors can be restored.

It turns out that concealed in the polynomial
5(7«) there 1s unmistakable evidence as to whether or not

cancellation haes occurred and further, that a simple operation

5-5



regalns all of the cancelied factorse

In explaining how this comes about, it 1s con-
venient to distinguish two separate casses; where cancel-
lation has not occurred end where it has. It is found
that the synthesis procedure requires additional opera-
tiona in the second case.

Because the results to be obtained are quite
simple and useful, it is felt desirable to provide the
remainder of the discussion with sufficient rigor to insure
full generality in spite of the somewhat lengthy mathema-

ticel argument.

4, THE SUM FUNCTION S(})

In order to study the conditions of cancellation,
we introduce a new function S(2) defined as the sum of
the numerator end denominator of 7 (4) in its uncancelled
forme.

5(1) = (m,m,_-n.n‘) + (m._n.-m,n;), (5-8)

All factors which cancel in 7 (A) are factors of S .,
Since

T Q) - A (even polynomial)
(even polynomial)

(3-9)

3=6



cancellable factors containing A are restricted to be
either a single X or such factors as are peculiar to even
polynomials. Obviocusly we can also cancel a constaunt.

Pinally we note that () can be factored into

S(A) = On,* n,) (’n&"nx), (3-10)

in which the first factor contains no zeros in the right
half plane and the second none in the left half plane.

Either or both may contain zeros on the imaginary axis.

5¢ CLASSIFICATION OF ROOT FACTORS

There 1s no restriction on the cancellation of
the single factor A . This occurs when the constart term
is absent in m m_ -n.n, .

In order to investigata the even polynomial
factors of S(A), i1t should be recalled that any poly-
nomiel P~(2) of degree n may be expressed in factored form
as the product of n root-factors as follows:

P =+ ¢ (X-X)(A-r) ... (2-1a), (3-11)

where c 1s a constant, and the A, are the zeros of P(A),

that is, the roots of the equation P(d) =0 .,

S=17




Further if P(1) has real coefficients, any
garos which are not raal ococur in conjugate pairs and, hence,
each associated root-factor (A-%,) 1s accompanied by

another root-factor (?&‘7\.) » where T, is the conjugate of
A

ve

1f, in addition, P(i) is an even polynomiail, it
may be regarded as a reduced polynomial A (1), in the
variable X . 1In this case the zeros of ~(i) are restricted
to certain configurations in the A-plane which determine
whether cancellation 1s possible in T (1) . The A -roots
of p(X): 0 may be classifisd as follows.

(a) Positive Real A--Roots

Such a root leads to a palr of A -roots of P():0,
one positive real and the other negative real of equal
magnitude. If mm, -n,n. and m, na, - m n, have such a
common A~-root factor, the previous discussion shows that
one of the roots belongs to ™,+n, and the other to m -n, .
But -thia siltuation cannot exist, for then m,+n, and m,+n,
would have a common factor, which contrau.d:lcta the hypothesis
that Z(A) was in its lowest terms. Hence it may be stated
that in the formation of 7 (A) from Z (}) there can be no
cancellation of root-factors involving non-=zero real

A -roots.

3-8




X
(b) Pairs of Conjugate Complex _A -Roots

Such a palr leads to a symmetrical quadruplet of
roots in the A -plane. In this case again ™m,+n, and
m, +n. have a common factor, and by the previous argument
cancellation of these root-factors is impossible in T&O) .,
(¢) A -Roots at the Origin

This leads to a pair of A-roots at the origin;
again a situation where cancellation is impossible for the
following reason. If one of these roots belongs to m,+n,
and one to m,-n, , there i1s a contradiction as before;
while 1if both roots belong to either one of the polynomials
m,+n, oOr m, -n, , that polynomial would have a double
zero on the j-axis, a situation which is not allowed by the
positive real requirement on Z (3 ,

(d) Negative Real A'=Roots

Such a root leads to a palr of conjugate pure
imaginary A-roots. Both of these roots together must be
factors either of mM,+n, or of m,-n_ because the coef-
flcients of these polynomials must be real. Hence in this
case there appears to be no restriction on cancellation.

The classification is summarized in Pig. 3-1.

3-9



NOILVOId4ISSVID 40 AHMVAWNS I-¢€914

3181SS0d | 371815504 INON INON INON | 37818504 [ NOILVITIONYD
% ol O
$ lnio ||o o6 I S100¥ —X
'lll]. pre———
® ® ) S100d INA
HOLOV4 NI9 IO r
LNVLSNOD STVINONATOd N3A3 1V HOLOY4 4
v IHL OL NOWWOD SHOLOV4

-X 319NIS




6. SOLUTION OF THE CANCELLATION PROBLEM

We now see that the only possible factors common
to m,n,-mn, and mm, -n.n, (other than a constant)
can be a single root-factor at the origin or pairs of con-
jugate imaginary root-factors. The forms of these sre X
and A' +w,* , respectively. For brevity both types are
called j-axis factors. We note that a j-axis factor of
m,-n, 1is also a j-axis factor of m,+n, .,

It is now apparent that in the formation of the
tangent function ~F (A) from the impedance function Z(A) ,
a necessary condition on cancelled root-factors is that
they be j-axis root-factors of ™M,* N, or m,+n, ,

Because m, +n, and m, +n, are Hurwitsz
polynomials, it 13 not necessary to make a classification
of their factors in order to discuss common factors of the
m's and the n's., It is aasily shown by an argument
similar to the above thst any j-axls factor of m,rn,
is also a factor of ™M, and 1, separately.

When the function SQA) is examined term by term,
it 18 found that m, or n, appears in every term. Hencse,
a J-axls root-factor of m,+n, will surely cancel in

T@®) , and likewise for m,+n. .

3-10



We summarize these results as follows:

In the formation of the tangent function

my ny, = M, N,

T (A) = ’

m; m]_ = nl n'L

from the positive real impedance function

Z()) 2 _,:7_’...:..&
My, +~ Ny

(a) the necessary and sufficlent condition that m,n -m.n_
and ™M my-n,n, have common factors 1s that Z (3) have
zeros or poles on the imaginary axis, and
(b) the highest common factor is the product of the
aggregate of root-factors corresponding to all such zeros
and poles.

We designate this product as f (1) and note that
1f %/, turns out to be a realizable tangent function,

a#: mln‘-mgnll
and

bF s m,ml-/‘LnL *

7. THE NECESSARY FORM OF THE FUNCTION TO BE SYNTHESIZED

From the preceding results we may now estgblish
additional restrictions on the form of %/ as follows.

One of the collateral results of the Hurwitsz
requirement on M,+n, and m, +n_ requires that all the

zeroa of m,, n, , m,, and n, 11e on the j-axis., As a
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congsequence 1t may easily be shown that the cancellation of
conjugate Jj~axlis factors in T (A) does not disturb the oddness
nor the evenness of m,h - m n end m, =5, n, , respec-
tively. The cancellation of a asingle j-axls factor at the
origin interchanges the oddness and evenness of the two
polynomials. Hence, it may be deduced that a necessary con-
dition that /4 be the tangent function of a physical

impedance 1s that it be of the form

0dd even
cvehn or odd

It 18 interesting to note that this result could
alternatively be obtained directly as a consequence of the
necessary oddness of 7(A), as the following considerations
show.

An arbitrary function can always be expressed as
the sum of an even and an 0dd part. A requirement that the
function be odd can be set up mathematically by equating
the even part to zero. In the case of a rational function

in 1ts lowest terms,

m(a) + N (d)
Ml(h)1-AQ(h\

F(a) =

the oddness requirement becomes

4£[F) + F(=2)] = 0,

3=12



t 0
’5*'%. ‘"z“”' 7

from which
- =0
M M, AGAG )

which is satisfied for a function whose numerator and denomi-

nator exist if, and only if, elther /= N‘z 20 or Mz’:'N, =0.

8. EVIDENCE OF CANCELLATION

As a result of the requirement that a physical
impedance have a non-negative real part at all frequencles,
we know that the equation m /m, - A", =0 must not have nega-
tive real A2%-roots of odd multiplicity. This, of course,
requires that such roots be present at least twice.

on the other hand, Mm,n -~ MmN, cannot contain these
root-factors more than once; for if it did, S(A) would con-
tain them at least twice, and we would then be confronted
either with the contradiction that Z(2) was not in 1its
lowest terms or with the untenable conclusion that Z(A) had
a double zero or pole at a real frequency.

Hence cancellation of a negative real AZ-root
factor always changes the even multiplicity of that factor
in mm, - nnh, into odd multiplicity in b,

This is the cancellation criterion we are seeking.

From it we are able to deduce that the common root-factors

(whose product is ¥ ) missing from a eand b by cancellation

3-13




are precisely those required to restore even multiplicity
to all of the j-axls zeros of b including the possible
zero at the origin.

Now that we are able to restore the cancelled
factors, we can investigate the final necessary realizability
condition on the function to be synthesized. This condition
comes from the additional requirement that m M, -7 N2 must
be shown to be definitely positive at some frequency which
we can select. For later convenience we choose infinite
frequency. As a result 1t is necessary that after resto-
ration of the missing factors A >0 at -a'r oo,

If this condition 18 not fulfilled by the given
function, we can obviously regard the constant -1 as a
cancelled "actor and we can obtain fulfillment by changing
signs in numerator and d¢ ominator. Hence it turns out

that this requirement offers no additional restrictions.

9. SUFFICIENT CONDITIONS FOR REALIZABILITY

At this point we are in possession of a number
of necessary conditions on the form of ‘9@ « Further re-
flection on the nature of these conditions and on the possi-
bility of satisfying some'of them by restoring cancelled
factors reveals that they are all equivalent to the single
necessary condition that d/b must be a real odd rational
function of A . (A "real® function of A takes on real

values for real values of A ,) We ﬁow show that this
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condition 1s also sufficlent to guarantee that %/, 1is

the tangent function of a realizable impedance. This we
do by reversing our original procedure; and starting with
an expression “/b which conforma to the necessary condi-
tion, we derive a positive real function whose tangent
function is equal to %% .

We consider first the case where cancellation
is absent. This, of course, is indicated by the fact that
b 1ia even, it has no negative real A*ezeros of odd
multiplicity, and 1t remains > O as -\*—» o0 . Evidently
the impedance we are seeking is to have no j-axis zerosa
or poles, Furthermore, its component portions are related

to @ and b as follows:

£ = 1,
a(a) = ™n.- man, ,
b(a) = mm - nn,
7(a) = &

J(A) = a+b.

If we agaln consider the factored form of

S ()

(m,+n,) (M, -n,),

it bscomes apparent that the imaglinary axis may be used as
a boundary to sort out the zeros of m,+n, from those
of m,-n, . Thus, if we set

a.-rb:o,

3=-15




those roots which lie in the left half-plane can be
assigned to the polynomial M * h  and those in the right
to m - n, . There will be none on the axis because can-
calletion is absent. We can convert m, - 7, into the
Hurwitz polynomial lnz*'nz by reversing the signs of its
odd terms.

If we now form the impedance

Z () Cm'””
= ——— )
Inzf-hl

where C is an arbitrary positive constant, it is evident
from the following considerations that Z(R) is positive real.
(a) Both m + n and m, + ", are Hurwltz polynomials with
real coefficlents because of their method of formation.
(b) RelZ(sw) 2 0 vecause m,m,=nn, = 0 by the necessary
conditions.
(¢) Z(A) has no j-axis poles.

The case where «/4 1is in a reduced form due to
cancellation is indicated by the presence of negative real
A 2-zeros of odd multiplicity in b or by the possibility
that b 1is odd or both. In any instance we use our knowledge
of the cancelled factors to make the necessary realizarility

correction on the sign of m m, - n hz at -7 2 . oo

3=-16




Here the relationships ars

af = mznl "mlnz ’

b¥f = mm,-nn, .,
T(A):=4£ . &,

éF b
s5(A)= Flar b)

In this case again

S(a) = (h%’”%) (”E—q?)o

but this time the 1maginar€/é;1a cannct be used as a
sorting boundary for all the roots because those con-
tained in ¥ are "on the fence,” and there 1s no way as
yet to determine with which half-plane they are assoclated.
That is, we do not know whether they are to belong to the
numerator or to the denominator of Z(A).

We resolve this difficulty presently by an appeal
to the requirement that the residues of Z(A) at its j-axis
poles must be real and positive. In the masantime we note

that the roots of the equation

S(a) =0

are the roots of
o,

at+b
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and

F() =0

The first of thess equations 1s still valid as a
means of sorting out the zeros of M * /1, and m,-hn

that do not lie on the imaginary axis.

10 RESIDUE DETERMINATION

In attempting to determine the residues of Z(Q)
at 1ts poles, we find a fresh difficulty. We muat assume
an arbitrary allocation of root-factors of f(A) to the
numeraior and denominator of Z(A) before we can proceed
to evaluate any residuss. If f(A) contains a large num-
ber of root-factors, the number of possible combinations
can cause this procedure to become a tedious task.

We obviate such computational work by recognizing
that we do not need to know the magnitude of the residue;
our purposes will be served 1f we know its argument. The
latter we find readily by the use of certain principles
taken from function theory.

It 18- well known that when a function Z(Q) has
simple poles, h‘, hz, cee » hh, the value of the residue
kR, at any pole can be determined from

. Jlim Sa)za) .
k= e

[ 4
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Since we are dealing with simple poles;
ko= /rm ((\-(\V)(mlrnl)

Y (\—’AV }”2*”2 )

Ratlonalizing gives

ﬁv - /im (R-AV)(MQ. nl’ mlnl) lim (l\’ay)(’”/mz-ncnz)

A=A 2 2 tA2A 2 2
v h’z - n, v mz -n,

The two limits are the real and imaginary parts respectively

of /?V « We note that these limits exist and %that
ﬁe [Ry] # 0 J

while
I”'[A’V] = 0)

since the factor A - hr is contained twice in rnz2 - nzz,
once in m,n = m‘n)_, and at least twice in m, m2 - h “z .
Hence the residue exists and i1s real.

For A # 0, M, end h both contain A -, as
a simple factor, and in addition they contein its con jugate
A+ AY (also simple). Let

M = ___’:,&..—3
Ty
and
hz
N, ® Yoz
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p o= lim  (A-X,)(myn - mn,)
N L T LYok

)

/r'm / !y
= .z x lom — L 1/ m,n -mn
A2, M- 4, A2A, (ard)? X ,\—;") z)'_a =,
14 v

- -3
= c, x ¢ x 35 (mzn,-m,nz.)/

R:A )

v
where C, 13 a positive constant since ”22 - N,* 13 the
square of an absolute magnitude, and (_‘2 1s a negative
constant.

For hv = 0, m, and h, both contain A as a

simple factor. Let

_ h,
My®
and
- m?.
N = x
Then

R = )/i)mo h(manl-h),ﬂz)

0 (%Z_MZZ) RZ

47 (mn- m’”z)],t=a ’

where CJ i1s a negative constant.
It 1s now apparent that the correct allocation of

each j-axis factor to the numerator or denominator of Z ()
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can be made from the sign of the derivative of m,n -Mmh,
evaluated at the point in question. If this derivative
is negative, the factor is assigned to m, * 7, ; other-
wise it 1s assigned to m, * h

If we invert the impedance obtained by this rule
and evaluate the residues at the j-axis zeros of /M r /N, |
it 13 seen that they turn out to have the proper positive
sign, for now the sign-determining function is j% (-mnrmn,).

We remark at this time that the synthesis dis-
cussion presently reveals the interesting and useful result
that the signs of the residues of 7 () at its simple j-axis
poles yield the same information. It turns out that 7 (4)
and Z(A) have precisely the same set of simple j-axis
poles with positive real residues.

If we now set

A,
zZ(Q) = € —t——,

1t 1s apparent that Z(A) 1s positive real, since we have
satlsfled the same requirements as in the previous case,
and in addition the residues at the j-axis poles are real

and positive. This completes the proof of sufficiency.

11, CONDITIONS FOR EXISTENCE OF NETWORKS

From the preceding results we are now in a position
to formulate an existence theorem for networks whosse

impedances are to have prescribed phase angles vs, frequency.



We state that given 6 (w), the necessary and
sufficient condition that there exists a finite two-
terminal network with driving-point impedance Z such
that

arg Z(Jw) = G(w),

1s that tan O be a real o0dd rational function of W e
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PART IV
SYNTHESIS PROCEDURES

We exploit the mathematical results of Part III
In the development of a set of workable synthesis procedures.,
It turns out that the chief difficulty in application is
the root-finding process, which is an annoying feature
common to several recent "exact" methods. We 1llustrate

the procedures with several examples,

l. THE APPROXIMATION PROBLEM

The first step in design 1s the development of
the tangent of the phase angle expressed as

Alw)

Tan @ = Blw)

bJ

with the realizability conditions satisfied,

Frequantly the requirements of a physical problem
are specified as a curve of 6 vs. «w. Evidently, we can
obtain the proper form by first replotting to get a curvs
of tan O vs. w and then approximating the latter curve with
an appropriate algebralc expression. We might, for example,
select a set of 27t/ points with ordinates U, on the

tangent curve at corresponding frequencies w, e+ To



satisfy the required conditionas we write

+ J anv/
cl QJV cj wy f..."cznf’ UV

v
C,+C w, ? 2h
[] 2 v | fc.'n UV

from which we obtain 2n +/ s8imultaneous linear equations

in the seme number of unknown coefficients ¢ The

v
solution of this set enables us to form A/B. If the

values of 6 from this result are plotted over the original
curve, the Jdeviations in phase angle resulting from the
approximation are apparent at sight.,

It should be noted that cancellation is absent
if —%< 6 < 2}, that 1s, 1f tan 6 1s finite at real
frequencies. In this case, it 1s seen that B has no zeros
at real frequencies and we are not later required to check
further into its roots. The resulting network will be
minimum reactive and minimum susceptive (except possibly at
infinity).

At each real frequency where 6 approaches closely
to I it 1s seen that the tangent curve has a large peak.
To obtain a good approximation to such a curve, we find 1t
neceassary to use a large number of points 'tv. Various
schemes can be used to reduce the computational labor. For

example, B might be set up initially to contain the factor



2 2,2
(w”- w, )+ e where the smellness of ¢ 1s a measurs
of the closeness of O to t%at the frequency «,. Folnts

of zero phase angle « 6 can be set up in a similar manner

v
as factors w?’- uyz of A.

In the case where the impedance is required to be
a pure reactance at a specified frequency wv, we vut
wz - wvl as a factor in B. Actually the only require-
ment to keep in mind in the formatlon of A/B 1is that one
polynomial must be odd and the other one even.

Assuming now that we have tan O expressed as

A/B either from giraphical analysis or from other known

requirements, we make the tranaformation to T(a) by forming

Al-d A) ) al()
B(-y A) b(A)

T)= J

2. DETERMINATION OF £(A)

The second step is the determination of the can-
celled factors ‘Hl). These are the factors required to
restore even multiplicity to every j-axis factor of b(l).

A j-axis factor exiats at the origin if b 1s odd in which
case f contains the factor A. The other j-axis factor:
are the negative real hz-ractors of b“). We can learn
of the existence of such factors by replacing A with x to

obtain the reduced polynomial bl(X) and by using Sturms
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Theorem to study the negative real roots of b (¥) - 0,
In addition, since we must have bf > 0 as A* 5 - oo, we
assign the factor -1 to ¥, if necessary in order to mest

this requirement.

3. PARTITIONING OF $(A)

The function f(A) 1s, of course, composed of
factors such as A and A - h: all of single multipli-
city with each hv a pure imaginary quantity. We separate
these factors into two groups, f, (2) and ‘fz(h), according
to the following rule. For each hv we determine the

sign of

2
The factor Az- RV (or A) 1s assigned to ?z ir
’?(a,) <0 (or Rlo) < 0) ; otherwise the factor is
assigned to f, .

That the expression for R(AV) is consistent with
d m
ES— - n
o (m,n - mn)
=2,

of Part III is evident when we evaluate the latter.

- = d = at ' = af’ ’
]'di m,n, m'nZ]MRV dm(a.F) a¥f+a ]2=A a .

v
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since 'F(?\V) =0,

1 the speclal case, which is the usual one in
practice, where the negative real A2-zeros of m m, = hn,
have double multiplicity, we can obtain a more useful al-
ternate form of the sign-determining function.

First we show that in this case

2
A ()] <o
A=

v
Factoring out the double root factor (A - RV) yields
2
mm, = nhy = g(a)(a Av) .
Since on the j-axis

(a-3,)* € 0,

and

while
y(?ly) £ 0,

we see that

e(a,) < 0

If we evaluate the second derivative at ?\V weé obtain
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-ﬁ%[g(h)(ﬂ'lv)i]p X,

:[J}f}‘{?’(A'A;)-f-?ll(h'av)‘z/aza - .?j(ar) < 0.

On the other hand we galso have

mm, - nn, = b(A) £(1),
where each factor on the right contains a single {& - Ry).

if we evaluate the second derivative of this expression,

we obtain

a2 = [s57, 2b'F' +b"F =26'f']
“‘(m],nav [b PabFetf -y

and hence

§°(a)F'(a,) £ 0.
If we divide this expression into the sign-determining

function, we obtain

/

which 18 equally valid for determining the allocation of



root factors except that we reverse the sign rule., But

the expression
a(k,)
b'(R,)

i1s the residue of 7 (A) at 1ts simple pole Kv., as may

be seen from an application of L'H6pital's rule to

fim o (A-2,) a()
A EY

Hence we obtain the interesting result that
T () and Z(A) nhave in common all of their simple j-axis

polea with positive real residues.

4, FORMATION OF Z{A)
In the next step we obtain the polynomial p(a)
representing the aggregate of the left-half plane root-

factors of
arb = 0.

The number of such roots cen be obtained with
the help of Routh's stability criterion#, Their location
unfortunately requires considerable computation. We may
use Graffe's root-squaring method# or various other

approximation procedures or mechanical root-finders#. In

4=



this connection it is helpful to note that we are not

required to find individual left half-plane roots; if by

any means we can factor out large portions of a + b

containing only left half-plane zeros, our labor is reduced.
We next obtain by simple division the polynomial

9’23} which contains all of the right half-plane zeros

of a t+ &, Thus

+ b
gCA): T

D |8

and we set

SH

z(dy=c¢ P P
f,g @
where ¢ 18 an arbitrary positive constant,
Z(a) can now be developed as a two-terminal
network by any one of several methods such as that of Brune

or Darlington,

5. SUMMARY OF PROCEDURE

We group the rules as follows:

. Alw)
(a) Obtain tan 8 = B—_(w) .

A-id) _ a(d)

(b) Transform to T(A) = J m = m

(¢) Form F(A) as the minimum factor required

to secure even multiplicity of j-axis
factors of F(R) b(RA) ,
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(d) Partition f () tnto f () ana f,(R)

a()
bl A

using sign of a(A,) f'(a,) (or

)

v
in special cases) to determine

assignment.
(e) Obtain p(A) as the product of left half-

plane root-faotors of a + b,

(£) oObtatin g(-A) = a’;b -
f(A) P(A)
Set Z(A)= / .
(8] Set AN

(h) Synthesaize network from Z(/\)

6. EXAMPLES OF PHASE SYNTHESIS

The following examples 1llustrate the mechanics
of the processes described in Parts III gnd IV,

The first threé exemples are quite elementary,
but they serve to clarify first principles. They are
shown in pairs to 1llustrate the effect of changing signs.
It 13, of course, obvious that changing the sign of the
tangent function should reciprocate the impedance function,
and the examples demonstrate this result.

The fourth example shows the effect of a cancelled
pole &t the origin and also a cancelled zero. It 1llus-
trates the rule that T (A) and Z( A) share each other's
simple poles with positive real residues.

Example S5 18 included as a further illustration
of the method of forming Z(A) from S(A), and also the



use of the arbitrary constant to produce a network with
a one ohm termination.

Example 6 shows the method of obtaining the net-
work when there 1s cancellation of a pole or zero at a
real frequency.

In BExample 7 we illustrate the replacement of
two cancelled poles and also show the interestine result,
not previously mentioned, that when 'T(h) 1s 1tself posi-
tive real, then Z(A) = / +T(QA).

We present Example 8 as an interesting case
where .Z(A) has both a pole and a zero at real frequencies.
It is seen that again the imaginary axis sorts out for
numerator and denominstor of Z(A) those zeros not on the
axis; whila the residue rule sorts out those on the axis,

Example 9 1llustrates the method when the pre-
scribed phase angle is expressed as a Tcheby cheff poly-

nomial multiplied by an arbitrary constant.

tan § = EV, (W)

The resulting network 1s to be used in Part V as an example
of the use of phase synthesis in filter design. It 1is
there shown that we merely need connect two of these net-
works "back to back" in order to obtain the transfer

impedance.



2 [ S
Z ‘/+£2vn’*(w)

1L

The apparently difficult root-solvinc process
would not ordinarily be carried out as shown in the
example. In the appendix we show how the nolynomials

can be obtained by means of a simple direct calculation.



Example 1
(a)

tan 0 = W
T(M) = A
S(X) =

(1.e. f)
(1.e. %)
N+ 1) 1

tanfl = w3
T(A) = -2 3
S(A\) =

- (224 2)(2 -0)

(v)

tan L-ﬁ -

T(\) =
S(\) =

-\
T

1 (1 -2)

s

Z(\) = X’%‘i‘

O—v

oO—

—

1< 1

2 (b)

tan 8

T()\)
S(r)

w3
23
1 423

A+ 1) 02 -x 4 1)

X




——

(a)

tane- ws
T(A) = A°

S(\) = 2?2 4.1

-(X3+
X

1.61832 4+ 1.618 A + 1) ()% - 1.618\ + 1)

‘A3 4 1.618)3° 4 1.618\ 4 1

Z(\) =

- O—B00

1.618 —

2 4+ 1.618\ 4+ 1

.618

/1

3 (b)

tanf =« -w
T™(A) = -A°2
S(A) = 1- A°

= (AQ + 1,618\ + 1) (-A3 + 1.618)\°- 1.618\4+ 1)

X

X
Z(\) =

A2 4+1.618)+ 1

x3+1 .

618 ):é-c-l L6184+ 1

T

—re

1618

618 4~ 1




Example 4

(a) (v)
tan § = % tan 8 = -_%,-
1 1
T(\) = 3 T()\) -
a(h) +b{(x) = 1 +X a(A) +b(A) = 1 -A
£f(\) = -\ £(A) = X
s(A) = =M1 4+X) S(A) & Aa(1 -2)
A+ 1 A
z(\) = z(\) = oo
14
o— O— .
L 1 S
O- (o}
Example 5

tan § = w3 - 3w
T(A) = -4\ -3

S(A) = -4 -3+l
= (A~ .298) (432 4+ 1.192 A + 3.358)
20) - o A2 +1.92) 4 3.358
A+ .208
) .355)2 to 106\ + .298
A+ .298

355
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Example 6
(a)

tan 8 = —-“-’—2—

a(k)-q-b()\) = X +A+1
£(A) = X

zZ(\) = Apths+l

(b)
tan 8 = —9————-

™(A) = —"r-
a(h) + b(A) = -2 $r-1

£(A) = - (A% 4+ 1)

Z(\) ,T,E_-Qi__




Example 7

can 0 w(2 -wz)
arl -
(1 -02) (3 -w?)
2
TX) - A(A® 4+ 2) ]
( A4 1) W24 3)
t(A) = (A%4+1) 024 3)
a(d) +b(A) = MrA24+2) + 02 4+1) A% 4 3)
AA2 4 2) + (02, 1) (’\é + 3)
Z(A) = .
2+ 1) (A2 4 3)
AN 4 2)
= 1
s ¥ (A% + 1) A%+ 3)
(lé?}k : 5221 g
(A +1) + 3)
2 3/2
“000) (000)
0—-—- |
H L

{




Z(\)

Let ¢

8

3!5

+ Bw? - 5w

(1 -w?) (4 -w®)

z -

8x3 - 5\

(A + 1)(X + 4)

(A2

+1) (A% 4 4)

A2 +1

A

24y

[(32° - 833 - 50 + (A2 4 1) 02+ n] (02002,

[(3x3 F 2 e 3n+ 4) 0% ans 1)] [(x"’ +1) 024

1/16

62 4 8)(3\3 + 24 3 b) -

(A% + 1) (2% 4 24 1)

A=1"



Example 9
Tan§ =  .331 V.(w) = .331 (64w T - 112w? 4 56w - Tw)

T0) - -.331h (642 & 4 m12at 456X 2 4 )
"S(A\) = 1 - .331X (64X 6 + 112)"‘ + 56)«2 +7)

OF 4 59503 + 1.33232 4 .519% o .261) (-A3 + .59 2 - .T69\ -

4 59503 4 1.3320°2 + .519 A4 .261

Z(\) =c¢ 3 5
A" + .594\° + .T69\ + .18
o2t e 59503 41,3390 4 .510M 4 .26
1,450 + .8630° 4 1.118\4 .261
2y, = i N Aty 1.;32x2+ .261
no, 1.45A~ 4+ 1.118)\
69 - 126 A
o—BO0 1000 —
2.58 ;E 1.69 1~ 1
Gf
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Part )

APPLICATION TO SYMMETRICAL FILTERS

In this section we present a theorem which 1is
useful in expressing the transfer impedance of a rReneral
passive network in terms of the impedances of simpler
portions of the network. We explelt this theorem bv par-
titioning several common networks to show how certaln well-
known relations may be more easily demonstrated, and, in
addition, we derive some new relationships.

One of these relationships Intimately associates
the transfer impedance of a symmetrical network with the
phase angle of the driving-point impedance seen from the
center of the network. We use this result to formulate

& new process for desiening certain symmetrical networks,

1. A PARTITIONING THEOREM

Consider the network shown in Fig, ?ﬂl.

I

ol | i
N o 152 znz“fg

Oo— ——0 [

FIG.5-
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If we partition this network into two smaller networks
through any section which is traversed by two condnctine

paths, we obtain the structure shown in Firg. 5-2.

I :
o ; O
N | N
a “'Zol Z"b-" b fEa
O— 1 v'e)
|
FIG.5-2

In order to establish relationshins among the
varlous impedances, we first apply Thevenin'a Theorem to
replace the left-hand network N, by a voltags source £,,

in series with an impedance ZJ, Flg., 5-3,

I
-
Z —0
Eoc Ny Ezf
o= —0
FIG.5-3

In this application, it 1s noted that I' 18 & current
source and hence is left on open-circuit in determining

the series impedance. We obtain, Fig, 5-4,

cil———a—
N.° - Zg f‘}Eoc
] G ‘o
) FIG.5-4



oc¢ 12@ (5=1)
and 7
. < 8
s 4 (5-2)
Hencs
I = Eoc ’
Zszb
= led Il ,
but
Z = ‘%.L )
12b (5-4)
which gllows us to write
EL - Z/za Z/26
- e
I, Z,+2Z,
or
/72 Za fzb (5‘5)

Hence we may state that if a two terminal-pair
network is partitioned into two separate two terminal-pair
networks in cascade, the transfer impedance of the original
network 1is equal to the product of the transfer impredances
of the separate parts divided by the impedance around the

center loop.
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2. RESULTS OF THE PARTITIONING THEOREM

a) Output Loading

As a first example we consider the case of

a lossless two terminal-pair network terminated in =

+—O
R i;ﬂlgz
FIG.5-5 ’

Denoting the input, output, and transfer impedances of

resistance, Fig. 5-5.

[ —

o—!

o,

Z

the lossless network alone by j” ’ }za, and j/,_, res-
pectively, we find at once that when the network is par-

titioned as shown

£ =2, - 72 (5-6)
I /
/ l?szz

a well-known result.

b) Loading at Input and Qutput

If we partition a network having resistance
loading at both ends of a lossless network as shown in

Fig. 5-6, we obtain

IQ§
o

m|+ﬂ'

2b: Tpvne

:

{ -

LOSSLE
N R 1 Es

ﬂ

- - -

FIG.5-6



Z

= __2z3b
A

from which we easily derive the insertion loss formulas

N

J
hylf-nlfmzf n)_

used in syntheslzing this type of network,

2
‘/Z Z ;/ =
12w

and

/V/Z : /- /zz/zllz

Y(mm, -hn,)

2 2
("’, #m)" - (n #n,)

2
(m,-m,)*- (n,-1,)

¢) Symmetrical Networks

In the case of a network which can be par-
tltioned into two separate identical halves symmetric

about the partition line, we obtaln several interesting

resu1t8, Figo 5=7,

Il—.

o3

" g

LOSSLESS
N

-
(m rmz)"—(n,rn‘)

!

N
o

$

I

o--—i-- — — g —
.

T
ﬂ

LOSSLESS
N

(5-7)

(5-9)

o

O

-

=0



The partitioning theorem here yields

22 ) (5-10)

or

AN

) 2
= QCos 6 (5-11)
where 6 1is the phase angle of Z,. But
2, /
Cos 0= T ran?0 * (5-12)
hence
2E |2 /
2 - ___—-—-—-—2—'6' .
T, T/t lan (5-13)

Since tan € 13 an o0dd rational function of A

as shown in Part II7, we deduce that a necessary condition

2E, /2
on the expression /.Z' “/ corresponding to the tragnafer
'
impedance of s symmetrical network 1s that it be of the

form

26]% /
/ / T/ t(odd rational ‘Funef'fon)z (5-14)

5=6



O0f more importance to the synthesis problem is the
conclusion that this condition is also sufficlent, a state-
ment that follows frcm our demonstration in Part III that
we can obtain a driving-point impedance (Z, in this case)
corresponding to any odd rational function which is rre-

scribed as the tancent of a phase angle.

Se SYNTHESIS OF SYMMETRICAL NETHORKS

From the discussion above it is apparent that wa
can obtaln the design for a symmetrical network merely by
l1dentifyings the odd rational portiocn of the expression for

2E
2

2
/—T—'/ with the tangent of the phase angle of one-

!

half of the network; then synthesizing the network half by
means of the procedure set up in Part IV; and finally con-
necting two of these network halves "back to back." The
synthesis of the network half must, of course, be made on
the Basis of a lossless network terminated in a one ohm re-
sistance in order to satisfy the requirement/Z,u/z: ﬁ’e[Z‘],
which is one of the essential steps in the reasoning. That
this configuration is always possible is well-known, More-
over our abllity to select at will the arbltrary multiplier
C rfor 2(Q) (see Example 5, Part IV) eliminates the possible
need for an ideal transformer to obtain the one ohm termination.
Meny of the common filter networks are representgd
in the form of Equation 5-14, and for most of these the
above procedure can be used to sffact a larze saving in com-

putational labor.
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It should be noted, however, that one of the
most common types of symmetrical filters, which 1s usually
represented in the form

- = w(w?- I‘)...(wz-u,,l
I /1 Z;o “ ] (5-15)

! (/_wlz.wz).”(/_wnzwz)

does not enjoy the advantage of reduced computational
labor and, in general, leads to networks which have suner-
fluous elements., This situation arises because each
)-z-root in the denominator i1s present as a factor of odd
multiplicity, and this we recognize as evidence of cancel-
lation. The restoration of these missing factors ceauses
the degree of the impedance expression to increase. In
physical terms we can explain the situation by noting that
the given transfer impedance has single order zeros at

the resl frequencies.

In a ladder development, each of these zeros
would ordinarily be obtained by a shunt branch exhibiting
series resonance. In filters developed by the phase
angle process just described, each half would have its
own shunt branch, thus giving the network the apnearance
of presenting double instead of single zeros. How this
apparent anomaly is ;esolved 1s seen when the transfer

impedance 1is computed from the element values. These
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values group into factors which cancel and leave the
required single zeros.

On the other hand, symmetrical filters havine
all of the zeros of their transfer impedance at infinity
are particularly amengble to phase synthesls, A common
type of filter having this property is characterlzed by
Tchebycheff behavior in the pass band ancd monotonic
behavior in the attenuation band. The design of such a
filter 1s carried out in Example 1 below, using one of
the examples already worked out for the network half.

It should be ncted that when any of the networks
shown in the examples of Part LV are connected symmetri-
cally in cascade, the over=-all transfer impedance becomes
related to /(A) by

2
.- / — :'uJ,
)ZZ”_t Ty -TE A=

4, EXTENSION TO NON-SYMMETKRICAL NETWORKS

With a slight generalization we can increase the
usefulness of our results by extending them to include non-
symmetrical networks. This extension is obtained without
any increase in the root-finding computation, and it covers,
without the use of 1deal transformers, the case where the

input and output loading differ.



Let us consider the effect on the transfser im-
pedance if, instead of connecting the two i1dentical net-
works together as described, we employ the arbitrary con-
stant C to modify the termination of the right-hand
network from unity to R ohms, while leaving the termination
on the input side at one ohm. It 1s obvious that this
change does not affect Z; or Z,,,; while it changes Z,
and Z/&b only by constant multipliers. Hence Z/z is
changed only by a constant.

As a result of this reasoning we see that even
when the input and output loading are different, the design
can still proceed on the basis of the phase angle of half
of a symmetricel network. After the impedance function Z(})
i1s found, 1t is synthesized differently for the left and
right halves to accomodate the proper loading conditions.

The resulting network is, of course, not symmetrical.

S5 EXAMPLES SHOWING THE USS OF PHASE SYNTHESIS IN FILTER

DESIGN
Example 1
The design of a prototype low-pass filter with
resistance loading at both ends 1s desired. The filter
1s to have Tchebycheff behavior in the pass band with
voltage ripple not in excess of five per cent, In the

stop band the behavior is to be monotonic and at least

5=10



40 db of attenuation is to be reached at the point w = /3.

Usipg the relation

2 l
22 ‘ = 4 5=
I il /fsznl(td) (5-16)

as a basis for design we note that a symmetrical filter
will result when h 1s odd. By applying the specifica-
tions to Equation 5-16, we obtain

E = .33
h=- 7.

We next obtaln a two terminal network with the

phass angle

tan 6 = 33/ V'; (td)’ (5-17)

in the form of a lossless network terminated in a one ohm
resistance. This network is synthesized in Examples 9,
Part IV, The solution to the design problem results from

the connection of a palr of these networks as shown in

Fig . 5"8 3

n (169 [2.58 |2.58 Tu.ee a
- -®
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Ws note that Equation 5-17 could as well be

written

tan 6 = -. 331 V7 (w) (5-17a)

because of the sjuare in Equation 5-16. As a result, the
half-network driving-point impedance would be inverted

vielding the alternate sclution shown in Fig. 5-9.

.69 2.58 2.58 .69

Example 2
In this example we modify the symmetrical result
of Example 1 to handle an output loading of 10 ohms. This
is done by raising the impedance level of the right-hand

half,.

1.26 7.59 12.6

— 1 TO0 g~ T4~ 0004 — o
. 1 1 1 L %
| .69 [2.58 [.258 [.69 S0
® —& » 3 2 -
FIG. 5-10
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AFPENDIX

1. ROOTS OF TCHEBYCHEFF POLYNOMIALS FOR PHASE SYNTHESIS

In order to apply the method of synthesis presen-
ted in this thesis, we must determine the grouping of left

and right heslf-plane roots of
S(A) = 0. (6-1)

This computation can be materially reduced in

thu common case where the tungent function 18 of the form

tan 6 = £V (w), (6-2)

as In Example 9 of Part IV. V (w) 1s the n'th order odd
Tchebycheff polynomial cos(n cos "/ ) and ¢ 13 a posi-
tive real constant.

In this case Equation 6-1 becomes, after the
manipulation to form 7(A) and the adding of numerator

and denominator,

Ny = d
Vn(-“ A) = & (6=3)

The left half-plane roots of Equation 6-3, which

combina to make p(A), are readily shown to be

o _.ovn e VIR
(\V- wth 7n Sinh ¢Z r\, Cos n Cdfh ¢2’

n or
(V: L, 5 9 .. n-oz ), (6-4)
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where
Cosh ¢z

oz L
simh ¢, § =7 [(Vie] +'é)"—‘f(f’7é’z*é)"
2

(6-5)

while the right half-plane roots, which combine to make

?(’h)) are

o | .
A z Sin -;I—;; Sihh bz - J Cos W}' coabﬁ )
Y

(V = 37 ... :-o;), (6-6)

2. ALTERNATION OF ROOTS

It 1s interesting to compare the results just
obtained with the insertion loss method of designing a
symmetrical filter such as the one illustrated in Example

l, Part V. The latter procedure would requirs solving for

the roots of

Vn(w) =

Here the presence of the T sign ylelds values

for the left half-plane 2 -roots

A

4

(v

- 3in ym Sin ’ J Cos —7% Cosh ¢,_ )

"

/’3 g: h)

4

(6-7)



A comparison of the signs and the runningz sub-
script of this formula with those of Equations 6-4 and
6-6 reveals that the root distribution in the two cases
is that shown in Fig. 6-1,

(o) PHASE SYNTHESIS (b) INSERTION LOSS
ROOTS ROOTS

FIG.6-I

We substantiate from this distribution the
valldity of a mothod of design obtained heuristically
by Professor E. A. Guillemin., He pointed out that there
was some evidence to indicate that the impedance function

Z(A) for half of a symmetrical network could be obtained

G=3



by selecting glternate roots from the distribution of
Fig. 6-1(b) for the numerator of Z(A) and the inter-
vening roots for the denominator. Our analvsis shows
why his method zave correct results in every case which
he checked.

In conclusion, it may be of interest to the
readsr to learn that this modest result, which is quite
overshadowed by the general solution to the phase synthesis
problem, was the original goal of this thesis. At the
start, it was not suspected that this deceptively simple

problem was intimately assoclated with phase synthesis,
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