
MIT Open Access Articles

A distributed algorithm for throughput
optimal routing in overlay networks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Rai, Anurag, Rahul Singh and Eytan Modiano. “A distributed algorithm for throughput
optimal routing in overlay networks.” 2019 IFIP Networking Conference (IFIP Networking),
Warsaw, Poland, 20-22 May 2019, IEEE © 2019 The Author(s)

As Published: 10.23919/IFIPNetworking.2019.8816834

Publisher: IEEE

Persistent URL: https://hdl.handle.net/1721.1/126219

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/126219
http://creativecommons.org/licenses/by-nc-sa/4.0/

A Distributed Algorithm for Throughput Optimal
Routing in Overlay Networks

Anurag Rai, Rahul Singh, Eytan Modiano
Laboratory for Information and Decision Systems, MIT, USA

{rai,rsingh12,modiano}@mit.edu

Abstract—We address the problem of optimal routing in
overlay networks. An overlay network is constructed by adding
new overlay nodes on top of a legacy network. The overlay
nodes are capable of implementing any dynamic routing policy,
however, the legacy underlay has a fixed, single path routing
scheme and uses a simple work-conserving forwarding policy.
Moreover, the underlay routes are pre-determined and unknown
to the overlay network. The overlay network can increase the
achievable throughput of the legacy network by using multiple
routes, which consist of direct routes and indirect routes through
other overlay nodes. We develop an optimal dynamic routing
algorithm for such overlay networks called the Optimal Overlay
Routing Policy (OORP).

OORP is derived using the classical dual subgradient descent
method, and it can be implemented in a distributed manner. We
show that the queue-lengths can be used as a substitute for the
dual variables in the algorithm. However, the underlay queue-
lengths are unknown to the overlay, so we propose two regression
based schemes that learn simplified models of the backlog in
the underlay using historical data and use them to estimate the
queue-lengths in real time. Simulation results show that near-
optimal performance can be achieved without any knowledge of
the underlay.

I. INTRODUCTION

Throughput optimal routing algorithms1 have received a
significant amount of attention in the literature (e.g. [1], [2],
[11], [12]), however, they have had limited success in terms of
implementations. One of the main reasons behind the lack of
traction is that these policies require additional functionalities
that are not supported by the legacy devices. For example,
most of these algorithms need the network to be composed
of homogeneous nodes that possess the ability to implement
a dynamic routing policy. In contrast, many legacy networks
use a single path routing scheme with a work-conserving
forwarding policy such as FIFO, and hence can support only a
fraction of the achievable throughput. Thus, an implementation
of a throughput optimal scheme usually requires a complete
overhaul of the network. An overlay architecture for a gradual
move towards optimal routing was proposed in [6]. This ar-
chitecture integrates overlay nodes capable of dynamic routing
into an underlay network of legacy devices (see Figure 1 for

This work was supported by NSF grant CNS-1524317, and by DARPA I2O
and Raytheon BBN Technologies under Contract No. HROO l l-l 5-C-0097.

1A routing algorithm is throughput optimal if it can stabilize any traffic that
can be stabilized by some routing algorithm. In this paper, when we simply
say optimality, we will be referring to throughput optimality.

C

DA

B

C

D

A

B Overlay Network

Physical Network

Possible routes

Underlay path

(Tunnel)

Underlay node

Overlay node

Overlay link

Fig. 1: Overlay network architecture. If the overlay node A has traffic
for node D, it can either route it directly using the tunnel from A to
D or relay it through other overlay node B or C.

an example). In this paper, we develop a throughput optimal
dynamic routing algorithm for such overlay networks.

Overlay networks have been used to improve the perfor-
mance and capabilities of computer networks for a long time.
The Internet itself started as a data network built on top of
the telephone network. An overlay architecture to improve
the robustness of the Internet was proposed in [3], where
alternate overlay paths are used to overcome path loss in the
underlay network. Placement for the overlay node to improve
path diversity was studied in [4]. Architectures for designing
overlay networks that improve different quality of service
metrics have been proposed in [17]. Currently overlay is being
for many applications in the internet such as caching for
faster content delivery and improving resilience against DDoS
attacks [18].

In [6], the authors study the problem of placing the min-
imum number of overlay nodes into an existing underlay
in order to maximize network throughput. In particular, the
authors show that with just a few overlay nodes, maximum
network throughput can be achieved. However, [6] also shows
that the backpressure routing algorithm of [1], which is known
to be optimal in a wide range of scenarios, leads to a loss in
throughput when used in an overlay network. Then the authors
of [6] proposes a heuristic for optimal routing called the
Overlay Backpressure Policy (OBP). An optimal backpressure
like routing algorithm for a special case, where the underlay
paths do not overlap with each other, was given in [7]. This
paper also proposes a threshold based heuristic for general
overlay networks. The schemes presented in [6] and [7] areISBN 978-3-903176-16-4 c© 2019 IFIP

very similar and were conjectured to be throughput optimal.
In this paper, we provide a counterexample to show that

OBP is in fact not throughput optimal and develop a new
optimal routing policy. To derive the policy, we notice that
the suboptimality of backpressure arises from its failure to
accurately account for congestion in the underlay paths. Tra-
ditional backpressure doesn’t keep track of the packets in
the underlay which can lead the overlay nodes to send too
many packets into the underlay creating instability of underlay
queues. In contrast, our solution uses the underlay queue-
length information to keep track of the congestion. This policy
implicitly favors underlay paths that are less congested and
preserves stability of all the queues.

Our algorithm requires the underlay queue backlog informa-
tion, but we do not expect such feedback from the underlay
nodes. Hence, we propose schemes to infer the sum of the
underlay queue-lengths in each path. First, we explain why
simple schemes that use the delay experienced by a packet in
a path as a measure of backlog in the path can produce bad
estimates. This kind of scheme has been used successfully in
various versions of TCP such as FAST [20] and Vegas [19],
however we will show that this scheme can generate arbitrarily
large errors and fail to preserve optimality in OORP. Hence,
we propose a new method that trains a linear or a piece-wise
linear model of the backlog using historical data, and then use
it to predict the backlog information in real time.

This paper is organized as follows. We describe our model in
the next section. In section III, we provide a counterexample to
the OBP routing policy. In section IV, we develop our optimal
routing policy based on the classical dual subgradient descent
method which requires the underlay queue-lengths as feed-
back. In section V, we design different schemes for underlay
backlog estimation. Finally, we verify the performance of our
algorithm with simulations in Section VI.

II. MODEL

We model the network as a graph (N,E) where N is the
set of nodes and E is the set of directed links. The links are
capacitated and the capacity of a link (i, j) ∈ E is given by
cij . The nodes can be of two types: underlay or overlay. We
represent the set of all underlay nodes by U and the set of
all overlay nodes by O = N\U . The network supports a set
of commodities, K, where each commodity k ∈ K is defined
by a source-destination pair. The time is slotted and indexed
by t. We remove the time index for notational simplicity if
removing it doesn’t create ambiguity.

A. Overlay

The overlay network consists of the controllable nodes
O which are capable of implementing a dynamic routing
algorithm. The links between two overlay nodes can either
be a direct edge or a path through the underlay referred to
as a tunnel. A tunnel l is a sequence of nodes l1, l2, . . . , l|l|
where |l| is the length of the tunnel. We represent the set of
all the tunnels in the network by L.

Since a tunnel connects two overlay nodes, l1 and l|l| are
overlay nodes, and l|2|, ..., l|l|−1 are underlay nodes. When a
packet is sent into a tunnel l, node l1 encapsulates it into a
packet destined to node l|l| and forwards it onto the underlay
node l2. The route taken by the tunnel is dictated by the path
from l2 to l|l| which is assigned by the underlay. When the
packet reaches l|l|, it is decapsulated and enqueued at the node.
An example of the different type of links in an overlay network
is given in Figure 2. This overlay network consists of one
direct link (1,4) and three tunnels (1,3,4), (2,3,4) and (2,3,5).

Node 1

Node 2
Node 3

(Underlay)

Node 4

Node 5

𝑄1
1

𝑄34
𝑄35

𝑄2
2

𝑄2
3

ത𝐹134
1 + ത𝐹234

2𝐹134
1

𝐹14
1

𝐹234
2 + 𝐹235

3
ത𝐹235
3

𝐴2
2 + 𝐴2

3

𝐴1
1

Fig. 2: Example of overlay and underlay queues in the physical
network. The variables labelling the edges represent the number of
packets transmitted for each commodity on each tunnel. The network
consists of three different commodities which are represented by
different colors.

Each overlay node i maintains a queue for each commodity
k and the backlog is represented by Qk

i . The number of
external commodity k packets that arrive at node i represented
by Ak

i . Let F k
l represents the amount of packets injected into

the tunnel l, and F̄ k
l represents the number of packets that exit

tunnel l. The quantities are different because a packet sent into
the tunnel might not exit the tunnel for several time-steps.
Let F k

ij represent the number of commodity k packets that
are transmitted on an overlay to overlay link (i, j). Figure 2
illustrates the meaning of these variables on a simple network.
The backlog of commodity k packets at overlay node i evolves
as follows:

Qk
i (t+ 1) =

Qk
i (t)−

∑
j∈O

F k
ij(t)−

∑
l∈L:l1=i

F k
l (t)+

∑
j∈O

F k
ji(t) +

∑
l∈L:l|l|=i

F̄ k
l (t) +Ak

i (t)

+

Here, {l ∈ L : l1 = i} are all the tunnels that start at node
i, {l ∈ L : l|l| = i} are the tunnels that end at node i, and
[.]+ = max(., 0). Packets are removed at the destination node,
hence the backlog of a commodity at its destination is zero.

We assume that all the traffic arrivals Ak
i are i.i.d. with a

mean of λki . We also assume that the arrival rate vector λ is
in the interior of the throughput region of the overlay network
Λ [6]. We will be designing a dynamic routing policy that
controls F k

l and F k
ij at each time-step so that both the overlay

and the underlay queues stabilize.

B. Underlay
The underlay network consists of the uncontrollable nodes

U . These nodes have a static routing policy which assigns a

fixed path between each pair of nodes in the underlay. The
paths are assumed to be acyclic and unique, which ensures
that all the tunnels are acyclic and that they take a fixed route
through the underlay.

An underlay node maintains a queue per outgoing link.
The backlog on the queue associated with the link (a, b) is
represented by Qab. The queues have infinite buffer space
hence packets are not dropped. When a packet arrives at an
underlay node, the node looks up the link assigned to it based
on its destination and enqueues it on the corresponding link.
Since several tunnels of the overlay network can pass through
the same underlay link the underlay queues accumulates
packets from several different tunnels and commodities. An
example of an underlay queue that is shared by several tunnels
is presented in Figure 2. Packets from both the tunnels (1,3,4)
and (2,3,4) are queued on the link (3,4).

The underlay employs a work-conserving forwarding
scheme that is “universally stable” as defined in [5]. This
assumption ensures that if the number of packets injected into
the underlay at each time-slot satisfies the capacity constraints
of the tunnels, then the underlay queues are deterministically
bounded. Specifically, under a universally stable forwarding
policy, an underlay queue corresponding to link (a, b) is
always deterministically bounded if∑

l∈L:(a,b)∈l

∑
k

F k
l (t) < cab∀t. (1)

Here {l ∈ L : (a, b) ∈ l} is the set of tunnels that pass
through the link (a, b). We refer to such constraints as the
tunnel capacity constraints. Several work-conserving policies
that are universally stable are given in [5].

III. BACKGROUND

The problem of optimal routing in an overlay network was
first studied in [6], where it was shown that backpressure
routing, which is known to be throughput optimal in a range of
scenarios, is not optimal for overlay networks, and proposed a
heuristic called the Overlay Backpressure Policy (OBP). The
OBP heuristic was conjectured to be throughput optimal.

For each tunnel l and commodity k OBP keeps track of
the packets in flight Hk

l , which is the number of packets that
have been transmitted into the tunnel by node l1 but haven’t
reached node l|l|. The weight for each commodity over the
tunnel W k

l (t) is computed as follows

W k
l (t) = Qk

l1(t)−Hk
l (t)−Qk

l|l|
(t).

A link (i, j) that connects two overlay nodes can be thought
of as a tunnel l = (i, j) with no underlay node, hence the
weight is computed as

W k
l (t) = Qk

l1(t)−Qk
l|l|

(t).

Then, the commodity with the highest weight sends its packets
into the tunnel provided that the weight is positive. A precise
description of the OBP is given in Algorithm 1.

This policy makes sense intuitively because it encourages
utilizing the tunnels that have less packets in them. When

Algorithm 1 Overlay Backpressure Policy (OPB):

For each tunnel l at each time-step t:
1) Compute the commodity k∗ that maximizes the weight

W k
l (t),

k∗ ∈ arg max
k

W k
l (t).

Ties are broken arbitrarily.
2) Transmit µ packets into the tunnel where

µ =

{
cl1l2 if W k∗

l (t) > 0
0, otherwise,

where cl1l2 is the capacity of the first link of tunnel l.

a tunnel is congested, the number of packets in flight is
high, which encourages the overlay nodes to use alternate
routes and send packets into the tunnel only when the backlog
in the overlay is extremely high. This behavior is common
to backpressure-based optimal routing algorithms. Moreover,
OBP reduces to backpressure routing when all the nodes are
overlay nodes.

We present the following counterexample to show that the
OBP is not throughput optimal. Consider a network topology
given in Figure 3a where all the links are unit capacity.
There are three commodities with source si and destination di,
i = 1, 2, 3. The source and the destination are overlay nodes,
whereas the nodes 1, 2 and 3 (in gray) are underlay nodes.
The underlay nodes use the FIFO queuing discipline2. Each
commodity in this network has two tunnels to the destination,
e.g. (s1, 1, 2, d1) and (s1, 3, 1, 2, d1). Note that the shorter
tunnels do not share any links between them, and if the shorter
tunnel is chosen by each commodity, this network can support
an arrival rate vector of [1, 1, 1].

3 1

2

d1

d2 d3
s1

s2s3

(a) Topology (b) Total backlog in the network for arrival rate
vector of [0.8, 0.8, 0.8]

Fig. 3: Counterexample for throughput optimality of the Over-
lay Backpressure Policy of [6].

Let us consider Poisson arrivals with the rate of
[0.8, 0.8, 0.8], which is clearly supportable in this network. To
support this rate OBP has to send most of its traffic through

2From [9] we know that FIFO is throughput optimal for a ring which is
the underlay topology in this example.

the shorter tunnels. However, as we show below, congestion
can lead traffic to use longer tunnels, which leads to instability.
A simulation result showing this instability is given in Figure
3b.

This instability is caused by the inability of the algorithm to
prioritize the shorter tunnels. The only situation in which the
longer tunnel is not used is when there are too many packets in
flight inside it. Consider the situation where there number of
packets in flight is large for tunnel (s1, 3, 1, 2, d1). This means
that the link (3,1) is being used by commodity 1 packets, which
creates congestion for commodity 3. Now even higher number
of packets in flight is required for tunnel (s3, 2, 3, 1, d3) so
that it is not used by commodity 3. This problem continues
for the tunnels used by commodity 2, which in turn create
congestion for the tunnels of commodity 1. This cyclical nature
of increased congestion makes all the commodities unstable.

IV. OPTIMAL OVERLAY ROUTING POLICY

We begin by modeling the routing problem as a fluid opti-
mization problem. Such models have been successfully used
to design and analyze policies for communication networks
in papers such as [10], [12]. Our optimization problem will
have a zero objective function because we are only concerened
with obtaining a routing algorithm and a feasible solution is
sufficient for this purpose. We note that the technique from
[10], [12] can be used for utility maximization and rate control.

Let fkij be the flow assigned to commodity k on the link
(i, j) ∈ E, and fkl be the flow assigned to commodity k on
the tunnel l ∈ L. Let f denote the vector containing all the
flow variables. The arrival rate of commodity k at overlay
node i is represented by λki , and we assume that the vector
of arrival rates λ is in the interior of the stability region. For
simplicity, we will assume λ to be a constant, however, if
it is time-variying, we note that the technical results hold as
long as the arrival rate is bounded at each time-step and the
expected value E[λ(t)] exists. The problem of stabilizing the
network queues can be formulated as a linear program that
finds a feasible flow allocation on all the links and tunnels,

max 0 (2)

s.t.
∑

l:(i,j)∈l

∑
k

fkl ≤ cij ,∀(i, j) : i ∈ U, j ∈ N (3)

∑
l:(i,j)∈l

∑
k

fkl ≤ cij ,∀(i, j) : i ∈ O, j ∈ U (4)

∑
j

fkij +
∑
l:l1=i

fkl −
∑
j

fkji−∑
l:l|l|=i

fkl − λki ≥ 0,∀i ∈ O, k (5)

∑
k

fkij ≤ cij ,∀i, j ∈ O (6)

fkij , f
k
l ≥ 0, (7)

Here, the inequalities (3) are the tunnel capacity constraints
which are the fluid version of (1). Each one of these constraints
correspond to an uncontrollable link, i.e. a link between two

underlay nodes or a link that goes from underlay to an
overlay node. Inequalities (4) are the link capacity constraints
corresponding to the first link in the tunnel, i.e. the links that
go from an overlay node to an underlay node. This link is
responsible for controlling the rate received by the underlay
links. Inequalities (5) are the flow conservation constraints
on the overlay network. Note that the flow conservation
constraints are not required for the underlay since each tunnel
l is assigned a single route and the flows coming into the
underlay are feasible because of (3), i.e. for a tunnel l, when
f is a feasible solution, fkl = fkl1,l2 = ... = fkl|l|−1,l|l|

.
Constraints (6) are the capacity constraints for the overlay
links.

A. Dual problem

We now formulate the dual problem so that it can be solved
with the subgradient descent method [10], [15]. Let qij and
qki denote the dual variables for the tunnel constraints (3)
and the flow conservation constraints (5) respectively, and let
q represent the vector containing all the dual variables. We
can obtain the Lagrangian function and rearrange the terms to
obtain the Lagrangian in the following form:

L(f, q) =
∑
l

∑
k

fkl

qkl1 − ∑
(i,j)∈l:i∈U

qij − qkl|l|

+

∑
(i,j)

∑
k

fkij(q
k
i − qkj) +

∑
(i,j):i∈U

qijcij −
∑

i∈O,k

qki λ
k
i .

(8)

Let X be a set such that any f ∈ X satisfies the constraints
(4), (6) and (7). Note that these constraints can be enforced
locally by an overlay node using only locally available infor-
mation. This property will be essential in designing the decen-
tralized algorithm. The dual objective function corresponding
to the problem (2) is

D(q) = max
f∈X

L(f, q).

The dual problem is given by,

min
q

D(q) (9)

s.t. q ≥ 0.

Since the primal problem (3) is a linear program, the duality
gap is zero (Slater’s condition [15]). Hence, solution of the
dual (9) yields a feasible flow allocation.

B. Distributed solution

The subgradient method works by initializing the dual vari-
ables with a value q(0) ≥ 0, and then iterating on them until
it converges to optimal q?. Each iteration involves computing
a subgradient g of D at the current value of the dual variables,
then updating the dual variables as follows:

q(t+ 1) = [q(t)− α(t)g(t)]
+
. (10)

Here α(t) is positive scalar step-size. The dual variables are
known to converge to the optimal q? if the step-sizes α(t)

are chosen appropriately. However, if α(t) ≡ α, then the
iterates (10) converge to a bounded neighbourhood of q? [15].

Let fkl
∗ and fkij

∗ be the values of flow variables which
maximize the Lagrangian L(f, q) over f ∈ X for a fixed q,
i.e. D(q) = L(f∗, q). From [15] we know that a subgradient
of D(q) is given by a vector g with entries as,

gij = cij −
∑

l:(i,j)∈l

∑
k

fkl
∗
, and (11)

gki =
∑
j

fkij
∗

+
∑
l:l1=i

fkl
∗ −

∑
j

fkji
∗ −

∑
l:l|l|=i

fkl
∗ − λki .

(12)

Now we can use the recursive equation (10) to update the dual
variables.

The only necessary step that we haven’t covered so far is
the computation of fkl

∗ and fkij
∗. A careful observation of

equation (8) and the set X shows that this is a simple opti-
mization problem that can be solved in a decentralized fashion.
The objective is a weighted sum of the flow variables, and
the constraints that form X are the link capacity constraints.
At a high level, for each overlay link, the solution chooses
the maximum value of the flow variable that corresponds to
the commodity with the highest positive weight. A complete
algorithm to compute the optimal flow variables and update
the dual variables is given in Algorithm 2.

C. Queue-lengths as dual variables

The subgradient descent algorithm presented in the Al-
gorithm 2 requires the network to explicitly keep track of
the dual variables. In order to implement the algorithm in a
decentralized fashion, each underlay node i needs to maintain
a dual variable qij for each link (i, j), and each overlay node
i needs to maintain a dual variable qki for each commodity
k. This is a reasonable assumption for the overlay nodes, but
not justified for the uncontrollable underlay. To get around
similar problems of not having a dual variable, works such
as [13], [12], etc. have proposed approximating them with
the corresponding queue lengths. The argument behind this
procedure is that the subgradients are proportional to the
change in queue-lengths, so that the queue-lengths will move
in the same direction as the dual variables. Next, we give an
example in which this proportionality does not hold. In spite
of this issue, we show that the queue-lengths can provide a
good approximation for the dual variables.

We first observe that the dual variable update equations (14)
and (15) are the same as the queue update equations when the
flows sent into the tunnels fkl are feasible for the underlay, i.e.
when no queues buildup in the underlay. But when the flows
do not satisfy the tunnel capacity constraints, the underlay
queues build up, and the flows get reduced from their initial
value as they pass through the bottleneck links. This decrease
in the flow size is not captured in these dual variable update
equations (14), (15). Consider the simple network shown in
Figure 4. There is one commodity, k = 1, with source node
1 and destination node 4, and a single tunnel l = (1, 2, 3, 4).

Algorithm 2 Optimal Overlay Routing Policy (OORP)

At each time-step t, overlay node i does the following:
Optimal flow variables computation (used to obtain the
subgradients):
An overlay to overlay link (i, j) computes the flow variables
fkij
∗:
• Let kopt ∈ arg maxk q

k
i − qkj , ties are broken arbitrarily.

The weight of commodity kopt in this link is
W opt

ij = qk
opt

i − qkopt

j .
• For k = kopt,

fkij
∗

=

{
cij if W opt

ij > 0

0, otherwise

• For all k 6= kopt, fkij
∗

= 0.
Each overlay to underlay link (i, j) computes the flow
variable fkl for all l : (l1, l2) = (i, j):
• Let

(lopt, kopt) ∈ arg max
l:(l1,l2)=(i,j),k

qkl1 −
∑

(a,b)∈l:a∈U

qab − qkl|l| .

(13)
Ties are broken arbitrarily. Let the weight of commodity
kopt in the tunnel be

W opt
l = qk

opt

lopt1
−

∑
(a,b)∈l∗:a∈U

qab − qk
opt

lopt|lopt|
.

• For (l, k) = (lopt, kopt),

fkl
∗

= cij if W opt
l > 0, and 0 otherwise

• For all (l, k) : l 6= lopt or k 6= kopt, fkl
∗

= 0.
Data transmission:
Transmit fkij

∗ amount of commodity k traffic into each
overlay to overlay link (i, j) and fkl

∗ amount of commodity
k traffic into each tunnel l.

Dual variables update:
Performed by an overlay node i:

qki (t+ 1) =

q(t)− α(t)

∑
j

fkij
∗

+
∑
l:l1=i

fkl
∗

−
∑

j:(j,i)∈E

fkji
∗ −

∑
l:l|l|=i

fkl
∗ − λki

+

(14)

Performed by an underlay node i:

qij(t+ 1) =

q(t)− α(t)

cij − ∑
l:(i,j)∈l

∑
k

fkl
∗

+

(15)

Suppose that at a certain iteration, q11 > q14 , hence fkl
∗

= 3.
This flow into the tunnel gets bottlenecked at link (2, 3) so
node 3 only receives a flow of 1. In this situation, equation (15)
predicts that the queue-length for q34 would increase because

a flow of size 3 was sent into the tunnel and the capacity of
the link is 2, however this queue can only decrease or stay
unchanged at 0.

1 2 3 4
3 1 2

Fig. 4: Link (3, 4) never builds a queue as the flow gets bottlenecked
by (2,3).

To capture this reduction of the flow sizes in the tunnel, we
model the queuing in the network as follows:

q̂ki (t+ 1) =

q̂(t)− α(t)

∑
j

fkij
∗

+
∑
l:l1=i

fkl
∗

−
∑

j:(j,i)∈E

fkji
∗ −

∑
l:l|l|=i

εkl (i)fkl
∗ − λki

+

(16)

q̂ij(t+ 1) =

q̂(t)− α(t)

cij − ∑
l:(i,j)∈l

∑
k

εkl (i, j)fkl
∗

+

(17)

where εkl (i), εkl (i, j) ∈ [0, 1] represent the reduction suffered
by the corresponding flows before arriving at node i. These
quantities are implicitly determined by the network at each
time-step depending on the scheduling policy in the underlay.
In the example presented above, for any work conserving
scheme, εkl (3, 4) = 1/3. We will show that for any value of ε
in the set [0, 1] the queue-lengths will converge to the optimal
dual variables. Let g be the true subgradient of D at q, and
ĝ be the approximate subgradient after the reduction, then we
can represent the queuing equation as

q̂(t+ 1) = [q̂(t)− α(t)ĝ(t)]
+
,

and ĝ ≥ g.
Before we prove the convergence, we state the following

preliminary lemma.

Lemma 1. The vector q∗ = 0 is an optimal solution to the
dual problem (9).

Proof. Since the objective of the primal problem is 0, a
feasible solution to the primal is given by any feasible flow
allocation fkij . Since q = 0 is a feasible dual solution, and
any feasible fkij together with q = 0 satisfy the comple-
mentary slackness condition (Theorem 4.5 in [14]), the proof
follows.

This shows that the optimal solution corresponds to queue
lengths equal to zero, which makes sense intuitively because
any feasible flow allocation in the fluid domain doesn’t require
queuing.

Let G be a constant such that it bounds the Euclidean norm
of the subgradients of the dual function D(q) for all possible
values of q, i.e. G > ‖g‖. From equations (11)-(12), we

can see that the subgradients are bounded because the flow
variables are bounded by link capacities and arrival rates are
bounded by assumption. So G is finite. For simplicity we fix
α(t) = 1 and present the following convergence result.

Theorem 1. Let us approximate the dual variables q with the
queue-lengths q̂ that evolve according to equations (16)-(17).
Using the dual subgradient descent algorithm with α(t) = 1,
the queue lengths converge to a bounded set.

Proof. We will show that ||q̂(t + 1) − q∗||2 < ||q̂(t) − q∗||2
when q(t) is outside the set S. Because q∗ = 0 from Lemma
1, it suffices to show that ||q̂(t+ 1)||2 < ||q̂(t)||2.

We have,

||q̂(t+ 1)||2 = ‖q̂(t)− ĝ‖2

Since ĝ ≥ g,

||q̂(t+ 1)||2 ≤ ‖q̂(t)− g‖2

= ‖q̂(t)‖2 − 2q̂(t)T g + ‖g‖2

Our algorithm chooses g to be a subgradient of D(.) at q̂(t).
So,

D(x) ≥ D(q̂(t)) + (x− q̂(t))T g,∀x ∈ Rm,

wehre m is the dimension of q̂. Taking x = 0,

D(q̂(t)) ≤ q̂(t)T g(f(t)∗)

So, ||q̂(t+1)||2 ≤ ||q̂(t)||2−2D(q̂(t))+G2. Hence when, the
q̂ is far away from the optimal, specifically when D(q̂(t)) >
1
2G

2, it moves towards the optimum in the next time-step.

Hence, we will use queue-lengths instead of the dual
variables in the implementation of OORP. This will allow us
to use the policy presented in Algorithm 2 without having to
perform the dual variables update.

V. ESTIMATION OF UNDERLAY QUEUES-LENGTHS

In the previous section we showed that the dual subgradient
descent algorithm can be used to compute a feasible rate for
each commodity on each link. We also showed that the queue
lengths can be used to approximate the subgradient. However,
typically legacy devices are not be able to send queue-lengths
to the sources, hence we explore methods to estimate them
from only the data that is available at the overlay. To make
the problem simpler, we consider networks where the control
packets have a high priority and consume negligible capacity,
hence, the feedback between the overlay nodes is immediate.

From equation (13) we can see that in order to compute
the subgradients we only need the total backlog in the tunnel,
i.e. we don’t need the length of individual queues. Hence, the
goal of the estimation approaches is to approximate the tunnel
backlog

bl(t) =
∑

(a,b)∈l:a∈U

qab(t).

A. Delay based estimation

A natural approach to estimate the total backlog in a tunnel
is by using the time it takes for a packet to traverse it. Similar
approach has been used by many versions of TCP, such as
Vegas [19] and FAST [20], to estimate the congestion along
a path. Although this approach is simple and does not require
cooperation from the underlay, the queue-length estimates
obtained by this method can be arbitrarily bad.

Consider a FIFO queue that is empty at time zero. As shown
in Figure 5(a), it has an incoming rate of 2 and outgoing
capacity of 1. We want to estimate the queue-length at time t
by using packet delays. To see the problem with this approach,
let us consider a situation when 2 packets arrive at the queue
at every time-slot for the first τ time-slots, and no arrivals
happen after that. In this situation, the actual queue length
grows at the rate of 1 for the first τ time-slots, and then it
decreases at the rate of 1 packet per time-slot until the queue
is empty. On the other hand, the delay increases at the rate of
1
2 , and the last packet (that arrives at the τ th time-slot) sees a
delay of 100 because there are 99 packets in the queue at that
time. So at time 2τ when the queue is emptied, the packet
received will have suffered a delay of τ time-slots giving a
queue-length estimate of τ , whereas the actual queue-length
at that time is zero. Furthermore, the estimate stays bad until
another arrival happens. This problem is illustrated in Figure
5(b). These arbitrarily bad estimates lead to sub-optimality of
OORP which we will observe in the simulations.

A simple way to improve the estimate is to send empty
probe packets when real packets are not available for some
time period T . A similar approach has been shown to achieve
throughput optimality in some special network settings in [21].
This approach quickly identifies when a queue becomes empty
in the absence of new data packets, and the control algorithm
can react accordingly. Although this approach corrects the
estimate within P time-slots, it can still suffers from the
arbitrarily bad estimation errors. As shown in Figure 5(c), at
time 2τ the estimate is τ whereas the actual queue-length is
zero.

B. Learning based estimation

In order to motivate a simple model for tunnel backlog,
we first observe that the packets in flight, i.e. the number
of packets that has entered tunnel l but hasn’t exited it,
hl(t), has information about the backlog in the underlay. For
example, when tunnel l does not intersect with other tunnels
hl(t) = bl(t). However, when two or more tunnels intersect,
each tunnel can have a fraction of packets from another tunnel
along with its own packets, so bl(t) can be larger than hl(t).
Moreover, when hl(t) is large, a large number of packets are
accumulated at a few bottleneck links. So we model tunnel
backlog as a function of the packet in flight:

bl(t) = f(h(t)),

where h(t) is a vector of the packet in flight in all the tunnels in
the network. Note that hl(t) is readily available to the overlay
network at each time-slot.

Estimate

τ

…
2 1

τ packets

Time

B
acklog

2τ

 τ

τ

Time

B
acklog

2τ

 τ

2τ +

(a) FIFO Queue after τ timeslots

(b) Without probes (c) With probes

Actual Actual

Estimate

Fig. 5: The actual queue-length of a single FIFO queue and
its estimate calculated using delay. The arrivals happen at the
rate of 2 packets per time-slot for the first τ time-slots, and
there are no arrivals after that. Service rate is fixed at 1 packet
per time-slot.

However, in order to train this model, we also need the
data on the dependent variable bl(t) which might not be
available to the overlay. For such a situation, we make a second
observation: the delay experienced by a packet that exits a
tunnel at time t gives a good estimate of the backlog in the
tunnel at the time when the packet entered the tunnel, i.e. at
time t−x where x is the delay experienced by the packet in the
tunnel. So, bl(t− x) ≈ cx where c is the bottleneck capacity
of the tunnel. For example, in Figure 5 we can see that the
delay experienced by the packet that entered at time τ (which
is the packet exiting at time 2τ) gives a good estimate of the
backlog in the tunnel at time τ . Hence, we can use the delay
of a packet entering at time t − x to approximate the tunnel
backlog at that time. Note that we cannot use this quantity in
real time because the delay experienced by the packet entering
a tunnel at time t − τ is not available until the packet exits
the tunnel at time t. Also note that, we have already shown in
the previous subsection that using the (delayed) delay estimate
can lead to instability.

1) Linear model using least squares regression: We de-
velop a simple linear model of the form

bl(t) = αT
l h(t), (18)

were h is the vector of the packets in flight in all the tunnels,
αl is a vector of model parameters, and (.)T represents the
transpose of the vector.

Let H be the matrix of historical packets in flights and Bl

be the vector of historical backlogs in tunnel l (either actual
or estimated through delay). Row i of H is the packets in
flights in all the tunnels at a certain time-slot t, and the ith
entry in Bl is the backlog in tunnel l at the same time-slot.
It is well known that the vector of parameters αl that fits the
linear model and minimizes the Euclidian norm of the error
for the samples is given by [22],

αl = (HTH)−1HTBl.

Note that this model is not a special case of the piece-
wise linear model that is generated by the MARS algorithm
described below because MARS is a greedy algorithm and it
is not guaranteed to minimize the error.

2) Piecewise linear model using the MARS algorithm: Mul-
tiple Adaptive Regression Splines (MARS) described in [23]
is a popular algorithm to fit a piecewise linear function to data.
MARS builds the piecewise linear model by taking a linear
combination of “hinge” functions of the form max(hi−xi, 0)
or max(xi − hi, 0). Here hi is an independent variable such
as the packets in flight, and xi is a constant that represents
the location where the two lines (pieces) connect, known as
the “knot”. The set of possible basis function B comprises
of all the hinge functions with a knot at each value of each
input variable. With a single variable h1 and p samples (of
h1) given by x1, ..., xp, the set of basis functions is given by
B = {max(h1 − xi, 0),max(xi − h1, 0)}i∈{1,2,...,p}.

The model produced by MARS has the form

bl = f(h) =

K∑
i=1

(αl)iBi,

where Bi ∈ B is the ith basis function, αl is the vector of
weights which determines the slope of the lines and (αl)i is
its ith element, and K is the number of basis functions in the
model.

The MARS algorithm is a greedy iterative algorithm that
operates in two phases. In the first phase, the algorithm adds
one basis function per iteration until the maximum number
of basis functions allowed, a parameter to the algorithm, is
reached. At each iteration, all the basis functions are tested
one at a time by choosing the slope using the least squares
regression method. Then the basis function that gives the
largest decrease in error is added to the model. This usually
causes the model to over-fit. Thus, in the second phase MARS
removes one basis function at a time. Again, the removal
is done greedily such that the basis function that adds the
least error is removed in each iteration. The removal of the
basis function continues until a generalized cross validation
condition is satisfied.

VI. SIMULATION RESULTS

We consider the network given in Figure 6 to study the
effect of estimating the backlog in the tunnels. In this network,
all the links are bidirectional, composed of two unidirectional
links. The links between an overlay and an underlay node have
capacity 2 in each direction. All other links have unit capacity
in both directions. We will simulate the network with two
commodities. The first commodity is defined by the source-
destination pair (1,3) and the second is defined by (2,4). For
these commodities the network supports a max-flow vector of
λmax = [2, 2]. The simulation is performed at various load
levels and the arrivals are Poisson distributed. The underlay
uses shortest path routing.

The source nodes 1 and 2 are connected to two underlay
nodes, hence, they have two tunnels to every other overlay

nodes. Notice that in order to achieve a throughput close
to λmax node 1 must send its traffic through node 2 and
have it forward it to node 3, and similarly node 2 must send
some of its traffic through node 1. Also, we can see that
sending packets in the wrong tunnel can cause the network
to become congested and lose throughput. This make this
network particularly challenging to stabilize under high load.

For the purpose of training our learning models, we obtained
the delay and packets in flight data by using the delay based
method for 105 time-slots at 80%. To generate the piecewise
linear model, we used an open-source Matlab implementation
of the MARS algorithm called ARESLab from [24] with
default parameters.

7

1

9

10

126

13

2

3

45

14

8 11

2 2

2
2 2

2

s1

d1

d2

s2

Fig. 6: Physical network topology with overlay (blue) and
underlay (white) nodes. The underlay network uses shortest
path routing creating a total of eighteen tunnels between the
overlay nodes. The dotted lines show the tunnels from node 1
to nodes 2 and 3.

0.5 0.6 0.7 0.8 0.9 1

Load

0

100

200

300

400

500

600

A
v

er
ag

e
B

ac
k

lo
g

 i
n

 t
h

e
N

et
w

o
rk

Fig. 7: Performance comparison of OORP under various
tunnel-backlog estimation schemes. The estimation methods
(solid lines) perform very well without any knowledge of the
underlay network.

The results of the simulation are given in Figure 7. We plot
the average queue-lengths of all the queues in the network
(both underlay and overlay) at various load levels. Average
backlog is a good measure of performance as it can show
instability in the network as well as the average delay ex-

perienced by packets since average delay is proportional to
average backlog.

The dotted lines show the performance of the OORP algo-
rithm when the exact queue-lengths are known to the overlay.
This simulates the situation when the underlay is cooperative
and sends the backlog information to the sources at certain
time intervals. As expected the best performance is obtained
when the true backlog is known at every time-slot. We can
also see that the performance of OORP degrades gradually as
the true backlog is obtained less frequently, i.e. every 10 time-
slots. This shows that if the underlay nodes are designed to
send the backlog information to the overlay, it can make the
optimal implementation of OORP very simple.

We can see that the delay-probe method of estimating the
tunnel backlog results in the sub-optimality of OORP. This
method uses delay experienced by a packet exiting a tunnel
at time t as an estimate of the backlog in the tunnel at
time t. When there is no new packets to send for T (10 for
this experiment) time-slots, this scheme sends empty probe
packets in order to probe the delay. In the simulation, these
probe packets did not consume any capacity. Intuitively, this
scheme gives a delayed estimate of the congestion in the
tunnels, where the delay in the estimate is proportional to
the congestion. Thus, when the network is heavily loaded the
estimates are highly inaccurate leading the network to become
unstable under OORP.

We also can see that the regression based estimation meth-
ods achieve stability and good performance. The linear model
obtains very good performance for loads as high as 95%. The
piecewise linear model generated using the MARS algorithm
performs even better. At most load levels, this method achieves
a better performance than even the scheme that allows the
underlay to send the true backlog every 10 time-slots. This
shows that we can use OORP with this estimation scheme
to achieve good performance in an overlay network setting
without the cooperation from the underlay network. We refer
the readers to [8] for more simulation results.

VII. CONCLUSION

We showed that the existing algorithms for routing traf-
fic in an overlay network are suboptimal, and developed a
throughput optimal policy called the Optimal Overlay Routing
Policy (OORP). This policy is distributed and works without
the knowledge of the underlay topology. Our algorithm re-
quires the total backlog in each underlay tunnel as feedback,
which might not be available to the overlay nodes. Hence
we proposed different approaches to estimating underlay con-
gestion. Simulations results show that estimating congestion
using probing mechanism is effective but suboptimal, and the
regression based approaches maintain throughput optimal of
OORP and perform very close to the case with the true values
of the tunnel backlog are known.

REFERENCES

[1] L. Tassiulas and A. Ephremides. “Stability properties of constrained
queueing systems and scheduling for maximum throughput in multihop
radio networks.” IEEE Transactions on Automatic Control, Dec. 1992.

[2] B. Awerbuch and T. Leighton. “A Simple Local-Control Approximation
Algorithm for Multicommodity Flow.” Proceedings 34th IEEE Confer-
ence on Foundations of Computer Science, Oct. 1993.

[3] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. “Resilient
overlay networks.” In Proceedings of ACM SOSP, October 2001.

[4] J. Han, D. Watson, and F. Jahanian. “Topology aware overlay networks.”
In Proceedings IEEE INFOCOM, March 2005.

[5] M. Andrews, B. Awerbuch, A. Fernández, T. Leighton, Z. Liu, and
J. Kleinberg. “Universal-stability results and performance bounds for
greedy contention-resolution protocols.” Journal of the ACM 48, 1
(January 2001), 39-69.

[6] N. M. Jones, G. S. Paschos, B. Shrader and E. Modiano, “An Overlay
Architecture for Throughput Optimal Multipath Routing,” in IEEE/ACM
Transactions on Networking, vol. 25, no. 5, pp. 2615-2628, Oct. 2017.

[7] G. S. Paschos and E. Modiano. “Throughput optimal routing in overlay
networks.” In Proceedings of the Allerton Conference, 2014.

[8] A. Rai. “Towards practical policies for network control.“ Doctoral
dissertation, http://hdl.handle.net/1721.1/120417, 2018.

[9] L. Tassiulas and L. Georgiadis. “Any work-conserving policy stabilizes
the ring with spatial re-use.” Networking, IEEE/ACM Transactions on
4.2 (1996): 205-208.

[10] S. H. Low, and D. E. Lapsley. “Optimization flow control—I: basic
algorithm and convergence.” IEEE/ACM Transactions on Networking,
1999.

[11] M. J. Neely, E. Modiano, and C. Li. “Fairness and Optimal Stochastic
Control for Heterogeneous Networks.” In Proceedings of IEEE INFO-
COM, March 2005.

[12] X. Lin, N. B. Shroff and R. Srikant. “A tutorial on cross-layer op-
timization in wireless networks.” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1452-1463, Aug. 2006.

[13] S. H. Low, L. L. Peterson, and L. Wang. 2002. “Understanding TCP
Vegas: a duality model.” Journal of the ACM 49, 2 (March 2002).

[14] D. Bertsimas and J. Tsitsiklis. “Introduction to Linear Optimization.”
Athena Scientific, 1997.

[15] D. Bertsekas, A. Nedic, and A. E. Ozdaglar. “Convex Analysis and
Optimization.” Athena Scientific, 2003.

[16] L. Georgiadis, M. J. Neely, and L. Tassiulas. “Resource Allocation and
Cross-Layer Control in Wireless Networks.” Foundations and Trends in
Networking, 2006.

[17] Z. Li, and P. Mohapatra. “QRON: QoS-aware routing in overlay
networks.” IEEE Journal on Selected Areas in Communications 22.1
(2004): 29-40.

[18] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain. “Overlay
Networks: An Akamai Perspective.” John Wiley & Sons, 2014.

[19] L.S. Brakmo and L.L. Peterson, “TCP Vegas: end to end congestion
avoidance on a global Internet,” IEEE Journal on Selected Areas in
Communications, Oct 1995.

[20] Wei, D. X., Jin, C., Low, S. H., Hegde, S. “FAST TCP: motivation,
architecture, algorithms, performance. IEEE/ACM transactions on Net-
working,” 14(6), 1246-1259, 2006.

[21] G. Paschos, M. Leconte, and A. Destounis. “Routing with Blinkers:
Online Throughput Maximization without Queue Length Information.”
In Proceedings of the International Symposium on Information Theory,
2016.

[22] Bertsekas, Dimitri P., and John N. Tsitsiklis. Introduction to probability.
Vol. 1. Belmont, MA: Athena Scientific, 2002.

[23] Friedman, Jerome H. “Multivariate adaptive regression splines.” The
annals of statistics (1991): 1-67.

[24] Gints Jekabsons, “ARESLab: Adaptive Regression Splines toolbox,”
http://www.cs.rtu.lv/jekabsons/regression.html, ver. 1.13.0, retrieved July
2, 2017.

