
MIT Open Access Articles

Optimal Network Control in Partially-Controllable Networks

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Liang, Qingkai and Eytan Modiano. “Optimal Network Control in Partially-Controllable
Networks.” Paper presented at IEEE INFOCOM 2019, Paris, France, April 29-May 2, 2019 © 2019
The Author(s)

As Published: 10.1109/INFOCOM.2019.8737528

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/126298

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/126298
http://creativecommons.org/licenses/by-nc-sa/4.0/

Optimal Network Control in Partially-Controllable
Networks

Qingkai Liang and Eytan Modiano
LIDS, MIT

Abstract—The effectiveness of many optimal network control
algorithms (e.g., BackPressure) relies on the premise that all
of the nodes are fully controllable. However, these algorithms
may yield poor performance in a partially-controllable network
where a subset of nodes are uncontrollable and use some
unknown policy. Such a partially-controllable model is of
increasing importance in real-world networked systems such
as overlay-underlay networks. In this paper, we design optimal
network control algorithms that can stabilize a partially-
controllable network. We first study the scenario where uncon-
trollable nodes use a queue-agnostic policy, and propose a low-
complexity throughput-optimal algorithm, called Tracking-
MaxWeight (TMW), which enhances the original MaxWeight
algorithm with an explicit learning of the policy used by
uncontrollable nodes. Next, we investigate the scenario where
uncontrollable nodes use a queue-dependent policy and the
problem is formulated as an MDP with unknown queueing
dynamics. We propose a new reinforcement learning algorithm,
called Truncated Upper Confidence Reinforcement Learning
(TUCRL), and prove that TUCRL achieves tunable three-way
tradeoffs between throughput, delay and convergence rate.

I. INTRODUCTION

Optimal network control has been an active area of re-
search for more than thirty years, and many efficient routing
algorithms have been developed over the past few decades,
such as the well-known throughput-optimal BackPressure
routing algorithm [26]. The effectiveness of these algorithms
usually relies on the premise that all of the nodes in a
network are fully controllable. Unfortunately, an increasing
number of real-world networked systems are only partially
controllable, where a subset of nodes are not managed by the
network operator and use some unknown network control
policy, such as overlay-underlay networks.

An overlay-underlay network consists of overlay nodes
and underlay nodes [3], [16], [19]. The overlay nodes can
implement state-of-the-art algorithms while the underlay
nodes are uncontrollable and use some unknown protocols
(e.g., legacy protocols). Figure 1 shows an overlay-underlay
network where the communications among overlay nodes
rely on the uncontrollable underlay nodes. Overlay networks
have been used to improve the capabilities of computer
networks for a long time (e.g., content delivery [21]).

Due to the unknown behavior of uncontrollable nodes, the
existing routing algorithms may yield poor performance in a
partially-controllable network. For example, Figure 2 shows

This work was supported by NSF Grant CNS-1524317 and by DARPA
I2O and Raytheon BBN Technologies under Contract No. HROO l l-l 5-
C-0097.

Overlay
Nodes

Underlay
Nodes

Overlay
Topology

Physical
Topology

Fig. 1. An example of overlay-underlay networks.

an example where the well-known Backpressure routing
algorithm [26] fails to deliver the maximum throughput
when some nodes are uncontrollable. In particular, uncon-
trollable node 3 adopts a policy that does not preserve the
flow conservation law such that its backlog builds up, but
uncontrollable node 2 hides this backlog information from
node 1. As a result, if node 1 uses Backpressure routing, it
always transmits packets to node 2, although these packets
will never be delivered. A smarter algorithm should be able
to learn the behavior of the uncontrollable nodes such that
node 1 only sends packets along route 1→ 5→ 4.

As a result, it is important to develop new network control
algorithms that achieve consistently good performance in a
partially-controllable environment. In this paper, we study
efficient network control algorithms that can stabilize a
partially-controllable network whenever possible. In partic-
ular, we consider two scenarios.

First, we investigate the scenario where uncontrollable
nodes use a queue-agnostic policy, which captures a wide
range of practical network protocols, such as shortest path
routing (e.g., OSPF, RIP), multi-path routing (e.g., ECMP)
and randomized routing algorithms. In this scenario, we
propose a low-complexity throughput-optimal algorithm,
called Tracking-MaxWeight (TMW), which enhances the
original MaxWeight algorithm [26] with an explicit learning
of the policy used by uncontrollable nodes.

Second, we study the scenario where uncontrollable nodes
use a queue-dependent policy, i.e., the action taken by
uncontrollable nodes relies on the observed queue length
vector (e.g., Backpressure routing). In this scenario, we
show that the queueing dynamics become unknown and no
longer follow the classic Lindley recursion [7], which makes
the problem fundamentally different from the traditional
network optimization framework: we not only need to know

how to perform optimal network control but also need
to learn the queueing dynamics in an efficient way. We
formulate the problem as a Markov Decision Process (MDP)
with unknown dynamics, and propose a new reinforcement
learning algorithm, called Truncated Upper Confidence Re-
inforcement Learning (TUCRL), that is shown to achieve
network stability under mild conditions.

1 2 3

45

40 40

10

20

20

Fig. 2. Counterexample where the well-known Backpressure routing al-
gorithm fails to deliver the maximum throughput in a partially-controllable
network. The number next to each link is its capacity. Each node can
transmit only to one of its neighbors in each time slot. There is only one
flow: 1 → 4 (at rate 20). Black nodes are uncontrollable nodes. Node 2
transmits any packet it received to node 3 at full rate, so that its queue
length is always zero; node 3 adopts a non-work-conserving policy that
holds any packet it received. When node 1 uses Backpressure routing, it
always transmits packets to node 2 since its queue length is always zero,
which hides the fact that backlog builds up at node 3.

A. Related Work

Most of the existing works on network optimization in
a partially-controllable environment are in the context of
overlay-underlay networks where the underlay nodes are not
controllable and may adopt arbitrary (unknown) policies.
The objective is to find efficient control policies for the
controllable overlay nodes in order to optimize certain
performance metrics (e.g., throughput). In [3], the authors
showed that the well-known BackPressure algorithm [26],
which was shown to be throughput-optimal in a wide range
of scenarios, may lead to a loss in throughput when used in
an overlay-underlay setting, and proposed a heuristic routing
algorithm for overlay nodes called Overlay Backpressure
Policy (OBP). An optimal backpressure-type routing al-
gorithm for a special case, where the underlay paths do
not overlap with each other, was given in [16]. Recently,
[19] showed that the overlay routing algorithms proposed
in [3] [16] are not throughput-optimal in general, and
developed the Optimal Overlay Routing Policy (OORP) for
overlay nodes. However, all of the existing overlay routing
algorithms [3], [16], [19] impose very stringent assump-
tions about the behavior of underlay nodes. In particular,
the underlay nodes are required to use fixed-path routing
(e.g., shortest-path routing) and maintain stability whenever
possible, which fails to account for many important underlay
policies (e.g., underlay nodes may use multi-path routing).

In terms of technical tools, our work leverages techniques
from reinforcement learning, since a partially-controllable
network with queue-dependent uncontrollable policy can be
formulated as an MDP with unknown dynamics. Over the
past few decades, many reinforcement learning algorithms
have been developed, such as Q-learning [22], actor critic
[4] and policy gradient [27]. Recently, the successful appli-
cations of deep neural networks in reinforcement learning

algorithms have produced many deep reinforcement learning
algorithms such as DQN [9], DDPG [6] and TRPO [20].
However, most of these methods are heuristic-based and do
not have any performance guarantees. Among the existing
reinforcement learning algorithms there are a few that do
provide good performance bounds, such as model-based
reinforcement learning algorithms UCRL [1], [2] and PSRL
[13], [15]. Unfortunately, these algorithms require that the
size of the state space be relatively small, which cannot be
directly applied in our context since the state space (i.e.,
queue length) contains countably-infinite states.

B. Our Contributions

In this paper, we investigate optimal network control for a
partially-controllable network. Whereas existing works (e.g.,
[3], [16], [19]) imposed very stringent assumptions about the
behavior of uncontrollable nodes for analytical tractability,
this is the first work that establishes stability results under
the generalized partially-controllable network model. In par-
ticular, we develop two network control algorithms.

First, we develop a low-complexity Tracking-MaxWeight
(TMW) algorithm that is guaranteed to achieve network sta-
bility if uncontrollable nodes adopt queue-agnostic policies.
The Tracking-MaxWeight algorithm enhances the original
MaxWeight algorithm [26] with an explict learning of the
policy used by uncontrollable nodes.

Next, we propose a new reinforcement learning algorithm
(i.e., the TUCRL algorithm) in the more challenging sce-
nario where uncontrollable nodes may use queue-dependent
policies. It combines the state-of-art model-based UCRL
algorithm [1], [2] with a queue truncation technique to
overcome the problem with countably-infinite queue length
space. We prove that TUCRL achieves network stability by
dropping a negligible fraction of packets. We also show
that the TUCRL algorithm maintains a three-way tradeoff
between delay, throughput and convergence rate.

II. SYSTEM MODEL

Consider a networked system with N nodes (the set of all
nodes is denoted by N). There are K flows in the network
and each node i maintains a queue for buffering undelivered
packets for each flow k. As a result, there are NK queues
in the network, and we denote by Q(t) the queue length
vector at the beginning of time slot t, where its element
Qik(t) represents the queue length for flow k at node i.

Let ωt be the network event that occurs in slot t, which
includes information about the current network parameters,
such as a vector of channel conditions for each link and a
vector of exogenous arrivals to each queue. We assume that
the sequence of network events {ωt}t≥0 follow a stationary
stochastic process. In particular, the vector of exogenous
packet arrivals is denoted by a(ωt) = {aik(t)}i,k, where
aik(t) is the number of exogenous arrivals to queue (i, k)
in slot t. Denote by λik = E[aik(t)] the expected exogenous
packet arrival rate to queue (i, k) in steady state.

At the beginning of each time slot t, after observing the
current network event ωt and the current queue length vector

Q(t), each node i needs to make a routing decision fijk(t)
indicating the offered transmission rate for flow k over link
i→ j. The corresponding network routing vector is denoted
by f(t) = {fijk(t)}i,j,k.

There are two types of nodes in the network: con-
trollable nodes (the set of controllable nodes is denoted
by C) and uncontrollable nodes (the set of uncontrollable
nodes is denoted by U). The network operator can only
control the routing behavior for controllable nodes while
the routing actions taken by uncontrollable nodes cannot
be regulated and are only observable at the end of each
time slot. In this case, the network routing vector f(t)
can be decomposed into two parts: f(t) = (f c(t), fu(t)).
Here, f c(t) = {fijk(t)}i∈C represents the routing decisions
made by controllable nodes (referred to as the controllable
action) and fu(t) = {fijk(t)}i∈U corresponds to the routing
decisions made by uncontrollable nodes (referred to as the
uncontrollable action). The routing vectors f c(t) and fu(t)
are constrained within some action spaces Fcωt

and Fuωt
,

respectively, that may depend on the current network event
ωt, respectively. The action space for all nodes is denoted
by Fωt

= Fcωt
∪ Fuωt

. The action space can be used to
specify routing constraints (e.g., the total transmission rate
over each link should not exceed its capacity) or describe
scheduling constraints (e.g., each node can only transmit to
one of its neighbors in each time slot).

Note that when there is not enough backlog to transmit,
the actual number of transmitted packets may be less than
the offered transmission rate. In particular, we denote by
f̃ijk(Qik(t)) (or simply f̃ijk(t) if the context is clear) the
actual number of transmitted packets in flow k over link
i → j in slot t under the current queue length Qik(t).
Clearly, we have f̃ijk(Qik(t)) ≤ min{fijk(t), Qik(t)}. We
further assume that the routing decision can always be
chosen to respect the backlog constraints (but the actual
actions may not necessarily be queue-respecting). This can
be done simply by never attempting to transmit more data
than we have. Under such notations, the queuing dynamics
are given by

Qik(t+ 1)

=Qik(t) + aik(t) +
∑
j∈N

f̃jik(t)−
∑
j∈N

f̃ijk(t)

≤
[
Qik(t) + aik(t) +

∑
j∈N

fjik(t)−
∑
j∈N

fijk(t)
]+
,

where [z]+ = max{z, 0}. We also make the following
boundedness assumption: the amount of exogenous arrivals
and the offered transmission rate in each time slot are
bounded by some constant D, i.e.,

0 ≤ aik(t) ≤ D, 0 ≤ fijk(t) ≤ D, ∀i, j, k.

A network control policy π is a mapping from the
observed network event ω and queue length vector Q to
a feasible routing action. In particular, denote by πc :
(ω,Q) 7→ f c a controllable policy and πu : (ω,Q) 7→ fu

an uncontrollable policy. In this paper, we assume that
the uncontrollable policy πu remains fixed over time but
is unknown to the network operator. Our objective is to find
a controllable policy πc such that network stability can be
achieved, as is defined as follows.

Definition 1. A network is rate stable if

lim
t→∞

E[Qik(t)]

t
= 0, ∀i, k.

Rate stability means that the average arrival rate to each
queue equals the average departure rate from that queue.

III. QUEUE-AGNOSTIC UNCONTROLLABLE POLICY

In this section, we consider the scenario where the un-
controllable policy is queue-agnostic, which simply observes
the current network event ωt and makes a routing decision
fu(t) ∈ Fuωt

as a stationary function only of ωt, i.e.,
πu : ωt 7→ fu(t). In the stochastic network optimization
literature, such a policy is also referred to as an ω-only
policy [11]. Despite their simple form, ω-only policies
can capture a wide range of network control protocols
in practice, such as shortest-path routing protocols (e.g.,
OSPF, RIP) , multi-path routing protocols (e.g., ECMP) and
randomized routing protocols.

Unfortunately, even under simple ω-only uncontrollable
policies, existing routing algorithms may fail to stabilize
the network. For example, as is illustrated in Figure 2, the
well-known Backpressure routing algorithm achieves low
throughput when uncontrollable node uses queue-agnostic
policies. In this example, the failure is due to the fact that
some uncontrollable node uses a non-stabilizing policy that
does not preserve flow conservation but the Backpressure
algorithm is not aware of this non-stabilizing behavior.

In this section, we propose a low-complexity algorithm
that learns the behavior of uncontrollable nodes and achieves
network stability under any ω-only uncontrollable policy.

A. Tracking-MaxWeight Algorithm

Now we introduce an algorithm that achieves network
stability whenever uncontrollable nodes use an ω-only pol-
icy. The algorithm is called Tracking-MaxWeight (TMW),
which enhances the original MaxWeight algorithm [26] with
an explicit learning of the policy used by uncontrollable
nodes. Throughout this section, we let {fu(t)}t≥0 be the
sequence of routing actions that are actually executed by
uncontrollable nodes.

The details of the TMW algorithm are presented in
Algorithm 1. In each slot t, the TMW algorithm generates
the routing actions gc(t) = {gijk(t)}i∈C for controllable
nodes and also produces an “imagined” routing action
gu(t) = {gijk(t)}i∈U for uncontrollable nodes, by solving
the optimization problem (2). With these calculated actions,
the TMW algorithm then updates two virtual queues. The
first virtual queue X(t) tries to emulate the physical queue
Q(t) but assumes that the imagined uncontrollable action
gu(t) is applied (while the physical queue is updated using
the true uncontrollable action fu(t)). The second virtual

queue Y(t) tracks the cumulative difference between the
imagined uncontrollable actions {gu(t)}t≥0 and the actual
uncontrollable actions {fu(t)}t≥0. In particular, we use
∆ijk(t) to measure the difference between the imagined
routing action gijk(t) and the true routing action fijk(t)
taken by uncontrollable node i ∈ U , which is given by

∆ijk(t) = gijk(t)− f̃ijk(t), ∀i ∈ U , (1)

where f̃ijk(t) is the actual number of transmitted packets
under the true routing action fijk(t) given the current queue
backlog Q(t). Note that for each controllable node i ∈ C,
we simply set ∆ijk(t) = 0.

The optimization problem (2) aims at maximizing a
weighted sum of flow variables, which is similar to the
optimization problem solved in the original MaxWeight
algorithm [26] except for the setting of weights. In the
original MaxWeight algorithm, the weight is Wijk(t) =
Qik(t)−Qjk(t) corresponding to the physical queue backlog
differential, while in the Tracking-MaxWeight algorithm the
weight Wijk(t) = Xik(t) − Xjk(t) − Yijk(t) accounts for
both the backlog differential for virtual queue X(t) and the
backlog of virtual queue Y(t). The derivation of (2) is based
on the minimization of quadratic Lyapunov drift terms for
the two virtual queues:

min
g(t)∈Fωt

∑
i,k

Xik(t)
[
aik(t) +

∑
j

gjik(t)−
∑
j

gijk(t)
]

+
∑
i,j,k

Yijk(t)
(
gijk(t)− f̃ijk(t)

)
,

where the first term corresponds to the Lyapunov drift of vir-
tual queue X(t) and the second term is the Lyapunov drift of
virtual queue Y(t). Note that the minimization is done over
controllable actions gc(t) and “imagined” uncontrollable
actions gu(t). Cleaning up irrelevant constants, i.e., aik(t)
and f̃ijk(t), and rearranging terms yield the optimization
problem (2).

Next we show that Tracking-MaxWeight achieves stability
whenever uncontrollable nodes use an ω-only policy and
the network is within the stability region, i.e., there exists a
sequence of feasible routing vectors {f c(t)}t≥0 for control-
lable nodes such that

λik +
∑
j∈N

f̃jik −
∑
j∈N

f̃ijk ≤ 0, ∀i, k, (3)

where

f̃ijk = lim
T→∞

1

T

T−1∑
t=0

E[f̃ijk(Q∗ik(t))]

is the long-term average actual flow transmission rate under
{f c(t), fu(t)}t≥0 and {Q∗(t)}t≥0 is the corresponding opti-
mal queue length trajectory. In other words, (3) requires that
flow conservation should be preserved for every queue under
the optimal controllable policy, otherwise no algorithm can
stabilize the network. It is important to note that in (3)
the flow conservation law is with respect to the actual
transmissions since an uncontrollable node may not preserve
flow conservation in terms of its offered transmissions (e.g.,

Algorithm 1 Tracking-MaxWeight (TMW)
1: In each slot t, observe the current network event ωt and

solve the following optimization problem to obtain the
controllable action gc(t) and the imagined uncontrol-
lable action gu(t):

max
g(t)∈Fωt

∑
(i,j)

∑
k

gijk(t)Wijk(t), (2)

where

Wijk(t) = Xik(t)−Xjk(t)− Yijk(t).

2: Controllable nodes execute the routing decision gc(t).
3: Observe the true routing action fu(t) taken by uncon-

trollable nodes and update virtual queues:

Xik(t+ 1) =
[
Xik(t) + aik(t) +

∑
j∈N

gjik(t)−
∑
j∈N

gijk(t)
]+

Yijk(t+ 1) = Yijk(t) + ∆ijk(t)

where ∆ijk(t) is defined in (1).

in Figure 2, the offered incoming rate to node 3 is 40 while
the offered outgoing rate from node 3 is 0). The only way
to stabilize these nodes is by limiting the amount of backlog
such that the actual endogenous arrivals to these nodes are
smaller. The performance of Tracking-MaxWeight is given
in the following theorem.

Theorem 1. When uncontrollable nodes use an ω-only pol-
icy and the network is within the stability region, Tracking-
MaxWeight achieves rate stability.

Proof: The proof first shows that the two virtual queues
X(t) and Y(t) are stable under the TMW algorithm using
the Lyapunov drift analysis. Then we prove that whenever
the two virtual queues are stable, the physical queue Q(t)
is also stable. See technical report [5] for details.

IV. QUEUE-DEPENDENT UNCONTROLLABLE POLICY

The previous section investigated the scenario where
uncontrollable nodes use a queue-agnostic policy (i.e., ω-
only policy). In this section, we study a more general case
where the uncontrollable policy may be queue-dependent,
which can be used to describe many state-of-the-art optimal
network control protocols. For example, the well-known
Backpressure algorithm makes routing decisions based on
the currently observed queue length vector. In this scenario,
the uncontrollable policy is a fixed mapping from the
observed network event ωt and the observed queue length
vector Q(t) to a routing vector fu(t) for uncontrollable
nodes, i.e., πu :

(
ωt,Q(t)

)
7→ fu(t).

Note that the queueing dynamics are

Qik(t+ 1) ≤
[
Qik(t) + aik(t) +

∑
j∈C

fjik(t)

+
∑
j∈U

fjik(t)−
∑
j∈N

fijk(t)
]+
, ∀i, k.

Since for each j ∈ U , its routing variable fjik(t) is an
arbitrary (unknown) function of Q(t), the above queueing
dynamics could depend on Q(t) in an arbitrary (unknown)
way that is not in the simple piecewise-linear form as in
the classic Lindley recursion. As a result, we rewrite the
queueing dynamics as

Q(t+ 1) = β(f c(t),Q(t), ωt), (4)

where β(·) is some unknown function that depends on our
controllable routing action f c(t), the current queue length
vector Q(t) and the observed network event ωt.

Due to the unknown queueing dynamics, many analytical
tools for optimal network control break down. For exam-
ple, the previous Tracking-MaxWeight algorithm utilizes
the Lyapunov drift analysis which is not applicable if the
queueing dynamics do not follow the Lindley recursion. As
a result, optimal network control becomes very challenging
and fundamentally different from the traditional stochastic
network optimization framework. In the following, we first
formulate the problem a Markov Decision Process (MDP)
with unknown dynamics and then propose a new reinforce-
ment learning algorithm that can achieve network stability
under mild conditions.

Before moving on to the technical details, we first in-
troduce some notations and assumptions that will be used
throughout this section. For convenience, we define action
αt , f c(t) and simply write “controllable routing action
f c(t)” as “action αt”, since the uncontrollable routing
action fu(t) has been implicitly treated as a part of the
environment (see queueing dynamics (4)). For the same
reason, “controllable policy πc” and “policy π” are also
used interchangeably. The action space for αt is denoted
by A which is assumed to be fixed and finite. We also
make the following assumption regarding the optimal system
performance.

Assumption 1. There exists a policy π∗ such that∑
i,kQ

∗
ik(t) < ∞ with probability 1 for any t ≥ 0, where

Q∗(t) is the queue length vector in slot t under policy π∗.

In other words, it is required that the total queue length
should remain bounded under an optimal policy π∗ other-
wise there is no hope for stabilizing the network. In essence,
Assumption 1 requires that the network be stabilizable by
some controllable policy π∗.

A. MDP Formulation

We formulate the problem of achieving network stability
as an MDP M = (A,S, θ, P). Here A is the routing
action space for controllable nodes, and S is the state space
that corresponds to the queue length vector space Q. The
cost function θ(αt,Q(t)) under action αt and state Q(t) is
given by θ(αt,Q(t)) =

∑
i,kQik(t), which corresponds to

the sum of queue lengths in slot t. In addition, P is the
state transition matrix, where P (Q′|Q, α) is the probability
that the next state is Q′ when action α is taken under
the current state Q. Note that the transition matrix P is

generated according to the queueing dynamics (4), and that
the influence of network event and uncontrollable routing
action has been implicitly incorporated into the probabilistic
transition matrix P . Note also that the queueing dynamics
β(·) are unknown, so this is an MDP with unknown dynam-
ics, which is also referred to as a Reinforcement Learning
(RL) problem [23].

Let Jπ
(
M,Q(0)

)
be the time-average expected total

queue length when policy π is applied in MDP M and the
initial queue length vector is Q(0), i.e.,

Jπ
(
M,Q(0)

)
= lim
T→∞

1

T

T−1∑
t=0

Eπ,M
[∑
i,k

Qik(t)
∣∣∣Q(0)

]
,

where the expectation Eπ,M [·] is with respect to the ran-
domness of the queue length trajectory {Q(t)}t≥0 when
policy π is applied in MDP M . Also let J∗

(
M,Q(0)

)
=

minπ J
π
(
M,Q(0)

)
be the minimum time-average expected

queue length under an optimal policy π∗. Our objective is
to find an optimal policy that solves the MDP and achieves
the minimum average queue length.

B. Challenges to Solving the MDP

The MDP has an unknown transition structure, which
gives rise to an “exploration-exploitation” tradeoff. On one
hand, we need to exploit the existing knowledge to make the
best (myopic) decision; on the other hand, it is necessary to
explore new states in order to learn which states may lead
to lower costs in the future. Moreover, there might be some
“trapping” sub-optimal states that take a long time (or is
even impossible) for any policy to escape. Any algorithm
that has zero knowledge about system dynamics at the
beginning is likely to get trapped in these states during the
exploration phase. Therefore, we need to impose restrictions
on the transition structure in the MDP model. In particular,
we restrict our consideration to weakly communicating
MDPs with finite communication time, defined as follows.

Assumption 2. For any two queue length vectors Q and Q′

(except for those which are transient under every policy),
there exists a policy π that can move from Q to Q′ within
L||Q′ − Q||1 time slots (in expectation), where L is a
constant.

In other words, it is assumed that there is no “trapping” state
in the system otherwise no reinforcement learning algorithm
can be guranteed to avoid the traps and optimally solve
the MDP. Note that in a weakly communicating MDP, the
optimal average cost does not depend on the initial state (cf.
[18], Section 8.3.3). Thus we drop the dependence on the
initial state Q(0), and write the optimal average cost (queue
length) as J∗(M).

Another challenge is that the MDP has a countably-
infinite state space (i.e., queue length vector space). Existing
reinforcement learning methods that can handle such an
infinite state space are mostly heuristic-based (e.g., [9] [6]
[20]), and do not have any performance guarantees. On

the other hand, there are a few reinforcement learning
algorithms that do have good performance guarantees, but
these algorithms require that the size of the state space be
relatively small. Even if we consider a finite time horizon
T , the size of the queue length vector space could be up
to O(TN) (assuming bounded arrivals in each slot), which
could lead to weak performance bounds. For example, in
the UCRL algorithm [1], [2], the regret bound is O(S

√
T),

where S is the size of the state space. If UCRL is applied in
our context, the resulting regret bound would be O(TN+0.5)
which is a trivial super-linear regret bound.

C. TUCRL Algorithm

In this section, we develop an algorithm that achieves
network stability under Assumptions 1 and 2. We call
our algorithm Truncated Upper Confidence Reinforcement
Learning (TUCRL), as it combines the model-based UCRL
algorithm [1], [2] with a queue truncation technique that
resolves the infinite state space problem.

Specifically, consider a truncated system where new ex-
ogenous packet arrivals are dropped when the total queue
length

∑
i,kQik(t) reaches V −1 for some threshold V ≥ 1.

In such a truncated system, the state space is the truncated
queue length vector space QV which contains all queue
length vectors where the length of each queue does not
exceed V − 1. In order for packet dropping to be feasible,
we assume that there is an admission control action that can
shed new exogenous packets as needed.

Our TUCRL algorithm applies the model-based UCRL
algorithm [1], [2] in the truncated system, which maintains
an estimation for the unknown queueing dynamics and then
computes the optimal policy under the estimated dynamics.
It applies the “optimistic principle” for exploration, where
under-explored state-action pairs are assumed to be able
to result in lower costs, which implicitly encourages the
exploration of novel state-action pairs.

The detailed description of TUCRL is presented in Algo-
rithm 2, which is similar to the standard UCRL algorithm
except that queue truncation is applied when appropriate.
Specifically, the TUCRL algorithm proceeds in episodes,
and the length of each episode is dynamically determined. In
episode `, the TUCRL algorithm first constructs an empirical
estimation P̂ for the transition matrix based on historical
observations (step 1). In particular, the estimated transition
probability from state Q to Q′ under action α is

P̂ (Q′|Q, α) =
n`(Q, α,Q

′)

n`(Q, α)
, (5)

where n`(Q, α) is the cumulative number of visits to state-
action pair (Q, α) up until the beginning of episode `
and n`(Q, α,Q

′) is the number of times that transition
(Q, α)→ Q′ happens up to the beginning of episode `. Note
that if n`(Q, α) = 0, the estimated transition probability is
set to be zero.

Then the TUCRL algorithm constructs an upper con-
fidence set M` for all plausible MDP models based on
the empirical estimation P̂ (step 2). The upper confidence

set is constructed in a way such that it contains the true
MDP model with high probability. Specifically, the upper
confidence set M` contains all the MDPs with truncated
queue length space QV and transition matrix P ∈ P` where

P` =
{
P :

∣∣∣∣∣∣P (·|Q, α)−P̂ (·|Q, α)

∣∣∣∣∣∣
1
≤

√
C log(2|A|t`V)

max{1, n`(Q, α)}

}
.

(6)
Here, V is the queue truncation threshold, t` is the starting
time of episode ` and C , 2(2ND + 1)N is a constant.

Next, the TUCRL algorithm selects an “optimistic MDP”
M` that yields the minimum average queue length among all
the plausible MDPs in the confidence setM`, and computes
a nearly-optimal policy π` under MDP M` (step 3). The joint
selection of the optimistic MDP and the calculation of the
nearly-optimal policy are referred to an optimistic planning
[10]. There are many efficient methods for performing
optimistic planning, such as Extended Value Iteration [2]
and OP-MDP [24]. We provide a description of Extended
Value Iteration in technical report [5].

Finally, the computed policy π` is executed until the
stopping condition of episode ` is triggered. An episode ends
when the number of visits to some state-action pair doubles,
i.e., when we encounter a state-action pair (Q(t), αt) such
that its visiting frequency in episode ` (v`(Q(t), αt)) equals
its cumulative visiting frequency up to the beginning of
episode ` (n`(Q(t), αt)). We will show that this stopping
condition guarantees that the total number of episodes up
to time T is O(V N log T) (see technical report [5]). Note
that during the execution of policy π`, new packet arrivals
may be dropped if the total queue length exceeds V − 1.
Here, the dropped packets could be any new arrivals to any
queue. We will prove that the fraction of dropped packets
is negligible if the threshold V is properly selected.

D. Performance of TUCRL Algorithm

The following theorem characterizes the performance of
the TUCRL algorithm regarding its queue length, packet
dropping rate and convergence rate.

Theorem 2. Under Assumptions 1 and 2, the performance
of the TUCRL algorithm is as follows.

• (Queue Length) The time-average expected queue
length converges to a bounded value:

lim
T→∞

1

T

T−1∑
t=0

∑
i,k

E[Qik(t)] ≤ Θ(1)−Θ
(1

V

)
.

• (Packet Dropping Rate) The long-term expected frac-
tion of dropped packets is

lim
T→∞

E[ηT] ≤ Θ
(1

V

)
,

where ηT is the fraction of dropped packets within T slots.
• (Convergence Rate) The time-average expected queue

length after T slots is within a Õ
(
poly(V)√

T

)
-neighborhood

of the steady-state expected queue length, where poly(V)

Algorithm 2 Truncated Upper Confidence Reinforcement
Learning (TUCRL)
Input: queue truncation threshold V

Set t = 0
for episode ` = 1, 2, · · · do

1. Initialize episode `:
• Set the start of episode `: t` = t
• Initialize state-action count for episode `:

v`(Q, α) = 0
• Update accumulative state-action count n`(Q, α)

and transition count n`(Q, α,Q′) up to episode `
• Estimate transition probability P̂ (Q′|Q, α) accord-

ing to (5) for any Q,Q′ ∈ QV and α ∈ A

2. Construct upper confidence set:
Construct a confidence set M` that contains all the

MDPs with truncated queue space QV and transition
matrix P ∈ P` as shown in (6)

3. Optimistic planning:
Compute the optimistic MDP model M` (that yields

the minimum average total queue length) in the con-
fidence set M` and a nearly-optimal policy π` under
M` (up to accuracy 1√

t`
)

4. Execute policy (with packet dropping):
repeat
• Observe current queue length vector Q(t) and new
exogenous arrivals a(t)

• Arbitrarily drop
[∑

i,k

(
Qik(t)+aik(t)

)
−V+1

]+
newly arrived packets from the network
• Take action αt = π`(Q(t))
• Update v`(Q(t), αt) = v`(Q(t), αt) + 1
• t = t+ 1

until v`(Q(t), αt) = max{1, n`(Q(t), αt)}
end for

is some polynomial in V and Õ is the big-O notation that
ignores any logarithmic term.

Proof: We first find an upper bound on the total
queue length under TUCRL in the truncated system. We
further analyze the fraction of time when queue truncation is
triggered by using concentration inequalities. See technical
report [5] for details.

There are several important observations regarding The-
orem 2. First, the TUCRL algorithm achieves bounded
queue length by dropping a negligible fraction of packets
under a suitably large value of V . Second, there is a
three-way tradeoff between total queue length (delay),
packet dropping rate (throughput) and convergence rate. For
example, by increasing the value of V , the packet dropping
rate becomes smaller (i.e., throughput becomes higher) but
the total queue length (delay) increases and the convergence
becomes slower. Similar three-way tradeoffs between utility,

delay and convergence rate are discussed in [8].

Complexity of TUCRL. The time complexity of TUCRL
is dominated by the complexity of the optimistic planning
module (step 3) which is implementation-dependent. For ex-
ample, if a naive Extended Value Iteration (see technical re-
port [5]) is used, the time complexity of each value iteration
step is exponential in the number of queues and thus cannot
scale to large-scale problems. One way to scale the optimisic
planning module is by using approximate dynamic program-
ming that employs various approximation techniques in the
planning procedure, such as using linear functions or neural
networks to approximate the value function (see [17] for
a comprehensive introduction). Recent deep reinforcement
learning techniques may also be leveraged to efficiently
perform value iterations in large-scale problems, such as
Randomized Least-Squares Value Iteration (RLSVI) [14],
Value Iteration Networks (VIN) [25] and Value Prediction
Networks (VPN) [12].. Such approximations will not lead
to significant changes in the performance of TUCRL since
we only require an approximate solution in step 3.

V. SIMULATION RESULTS

A. Scenario 1: Queue-Agnostic Uncontrollable Policy

We first study the partially-controllable network shown
in Figure 3. There are two flows: 1 → 4 and 6 → 4. Each
node in the network needs to make a routing and scheduling
decision in every time slot. The constraint is that each node
can transmit to only one of its neighbors in each time
slot and the transmission rate over each link cannot exceed
its capacity. Node 2 and node 3 are uncontrollable nodes
that use randomized queue-agnostic policies. Specifically,
uncontrollable node 2 uses a randomized routing algorithm
that transmits any packets it received to either node 3 or node
5 with an equal probability in each time slot. Uncontrollable
node 3 uses a randomized scheduling policy that serves flow
1→ 4 or flow 6→ 4 with an equal probability in each time
slot. The arrival rate of flow 6→ 4 is 5. In this case, it can
be shown that the maximum supportable arrival rate for flow
1 → 4 is 25 given the routing constraints and the behavior
of uncontrollable nodes.

1 2 3

45

40 40

10

20

20 40

6
5

Fig. 3. Network topology used in simulation scenario 1. The number
next to each link is its capacity. Each node can only transmit to one of
its neighbors in each slot. Black nodes are uncontrollable nodes that use
randomized queue-agnostic policies.

We have shown in Section III that the Tracking-
MaxWeight (TMW) algorithm achieves the optimal through-
put in this scenario. In Figure 4(a), we compare Tracking-
MaxWeight with the well-known MaxWeight algorithm (i.e.,
BackPressure routing), in terms of the supportable rate for

0.0 0.2 0.4 0.6 0.8 1.0
Load

0

250

500

750

1000

1250

1500

1750

Ph
ys

ica
l Q

ue
ue

 L
en

gt
h

Tracking-MaxWeight
MaxWeight

(a) Throughput performance of MaxWeight and
Tracking-MaxWeight.

0 1000 2000 3000 4000 5000
Time

0

100

200

300

400

500

600

Qu
eu

e
Le

ng
th

Physical Queue Q
Virtual Queue X
Virtual Queue |Y|

(b) Queue length under the TMW algorithm
(load = 0.99).

0 1000 2000 3000 4000 5000
Time

0.0

0.1

0.2

0.3

0.4

0.5

Se
rv

ice
 P

ro
ba

bi
lit

y

Imagined uncontrollable action by TMW
Actual uncontrollable action

(c) The TMW algorithm quickly learns that
node 3 serves flow 1→ 4 with probability 0.5.

Fig. 4. Performance of the Tracking-MaxWeight (TMW) algorithm in Scenario 1.

flow 1→ 4. Specifically, Figure 4(a) shows the total queue
length achieved by MaxWeight and Tracking-MaxWeight
under different system loads (if the load is ρ, then the arrival
rate of flow 1 → 4 is 25ρ while the arrival rate of flow
6 → 4 is fixed to 5). It is observed that MaxWeight can
only support around 40% arrivals (the queue length under
MaxWeight blows up at load ≈ 0.4). By comparison, our
Tracking-MaxWeight achieves the optimal throughput.

We further examine the behavior of the Tracking-
MaxWeight algorithm in Figure 4(b) and Figure 4(c). Specif-
ically, Figure 4(b) shows the queue length trajectory for the
physical queue Q(t) and the two virtual queues X(t),Y(t).
As our theory predicts, both the physical queue Q(t) and
the two virtual queues X(t),Y(t) are stable under the TMW
algorithm. Figure 4(c) shows the learning curve of the TMW
algorithm for the uncontrollable policy used by node 3. In
particular, node 3 uses randomized scheduling that serves
flow 1 → 4 and flow 6 → 4 with an equal probability 0.5.
It is observed in Figure 4(c) that the TMW algorithm quickly
learns the service probability for flow 1→ 4 at node 3 (i.e.,
the “imagined uncontrollable action” in TMW approaches
the true uncontrollable action).

B. Scenario 2: Queue-Dependent Uncontrollable Policy

Next we study a more challenging scenario where the
action taken by uncontrollable nodes is queue-dependent. In
particular, consider the network topology shown in Figure 5
where node 2 and node 3 are uncontrollable. There is only
one flow 1 → 4 and the constraint is that each node can
transmit to only one of its neighbours in each time slot. The
policy used by the two uncontrollable nodes is as follows.
Let µ24(t) and µ34(t) be the transmission rate that node 2
and node 3 allocates to the flow in slot t, respectively. Then

(µ24(t), µ34(t)) =

(0.5, 0) Q3(t) ≤ 10

(0, 1) Q2(t) ≤ 10 and Q3(t) > 10

(0.25, 0.25) Q2(t) > 10 and Q3(t) > 10

As a result, the maximum throughput of 1 can be supported
only if Q2(t) is small (Q2(t) ≤ 10) and Q3(t) is large
(Q3(t) > 10). Although this is an artificial example, it
sheds light on the challenges when uncontrollable nodes use
queue-dependent policies: any throughput-optimal algorithm

should be able to efficiently learn which queue length region
can support the maximum throughput and keep the queue
length within this region.

1

2 3

4

1

1 1

1

Fig. 5. Network topology used in simulation scenario 2 The number
next to each link is its capacity. Each node can only transmit to one of its
neighbors in each slot. There is only one flow 1 → 4. Black nodes are
uncontrollable nodes that use queue-dependent policies.

We first compare the throughput performance of TUCRL
with MaxWeight and Tracking-MaxWeight. Note that the
TUCRL algorithm occasionally drops packets. In order
to make a fair comparison, the throughput performance
is measured with respect to the number of packets that
have been delivered. It is observed in Figure 6 that TU-
CRL achieves the optimal throughput while MaxWeight or
Tracking-MaxWeight only deliver a throughput of 0.5 in
this scenario. It should be noted that the TUCRL algorithm
takes longer time to learn and converge than MaxWeight or
Tracking-MaxWeight.

Next we investigate the performance of the TUCRL
algorithm under different values of the truncation threshold
V . As we proved in Theorem 2, the value of V determines
a three-way tradeoff between queue length, packet dropping
rate and convergence rate. As is illustrated in Figure 7 and
Figure 8, a larger value of V leads to a larger queue length
and the convergence becomes slower, but the fraction of
dropped packets becomes smaller. Note that when V = 20
and V = 30, the fraction of dropped packets becomes
very small as time goes by. In contrast, when V = 5, the
fraction of dropped packets remains non-negligible (∼ 60%)
since the TUCRL algorithm cannot explore the “throughput-
optimal region” where Q2(t) ≤ 10 and Q3(t) > 10 with a
queue truncation threshold V = 5.

0 25000 50000 75000 100000 125000 150000 175000 200000
Time

0.0

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut

MaxWeight
Tracking-MaxWeight
TUCRL (V=30)
Optimal Throughput

Fig. 6. Throughput comparison among
MaxWeight, Tracking MaxWeight and TUCRL in
Scenario 2 (load = 0.95).

0 25000 50000 75000 100000 125000 150000 175000 200000
Time

0

5

10

15

20

25

Qu
eu

e
Le

ng
th

V=5
V=20
V=30

Fig. 7. Queue length under the TUCRL algo-
rithm with different queue truncation threshold V
(load = 0.95).

0 25000 50000 75000 100000 125000 150000 175000 200000
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
ac

tio
n

of
 D

ro
pp

ed
 P

ac
ke

ts

V=5
V=20
V=30

Fig. 8. Fraction of dropped packets under the
TUCRL algorithm with different queue trunca-
tion thresholds V (load = 0.95).

REFERENCES

[1] Peter Auer and Ronald Ortner. Logarithmic online regret bounds
for undiscounted reinforcement learning. In Advances in Neural
Information Processing Systems, pages 49–56, 2007.

[2] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret
bounds for reinforcement learning. Journal of Machine Learning
Research, 11(Apr):1563–1600, 2010.

[3] Nathaniel M Jones, Georgios S Paschos, Brooke Shrader, and Eytan
Modiano. An overlay architecture for throughput optimal multipath
routing. IEEE/ACM Transactions on Networking, 2017.

[4] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In
Advances in neural information processing systems, pages 1008–
1014, 2000.

[5] Qingkai Liang and Eytan Modiano. Optimal network control in
partially-controllable networks. arXiv preprint arXiv:1901.01517,
2019.

[6] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[7] David V Lindley. The theory of queues with a single server. In
Mathematical Proceedings of the Cambridge Philosophical Society,
volume 48, pages 277–289. Cambridge University Press, 1952.

[8] Jia Liu, Atilla Eryilmaz, Ness B Shroff, and Elizabeth S Bentley.
Heavy-ball: A new approach to tame delay and convergence in
wireless network optimization. In INFOCOM 2016-The 35th Annual
IEEE International Conference on Computer Communications, IEEE,
pages 1–9. IEEE, 2016.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[10] Rémi Munos et al. From bandits to monte-carlo tree search: The op-
timistic principle applied to optimization and planning. Foundations
and Trends R© in Machine Learning, 7(1):1–129, 2014.

[11] Michael J Neely. Stochastic network optimization with application
to communication and queueing systems. Synthesis Lectures on
Communication Networks, 3(1):1–211, 2010.

[12] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction
network. In Advances in Neural Information Processing Systems,
pages 6120–6130, 2017.

[13] Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient
reinforcement learning via posterior sampling. In Advances in Neural
Information Processing Systems, pages 3003–3011, 2013.

[14] Ian Osband, Daniel Russo, Zheng Wen, and Benjamin Van Roy.
Deep exploration via randomized value functions. arXiv preprint
arXiv:1703.07608, 2017.

[15] Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain.
Learning unknown markov decision processes: A thompson sampling
approach. In Advances in Neural Information Processing Systems,
pages 1333–1342, 2017.

[16] Georgios S Paschos and Eytan Modiano. Throughput optimal routing
in overlay networks. In Communication, Control, and Computing
(Allerton), 2014 52nd Annual Allerton Conference on, pages 401–
408. IEEE, 2014.

[17] Warren B Powell. Approximate Dynamic Programming: Solving the
curses of dimensionality, volume 703. John Wiley & Sons, 2007.

[18] Martin L Puterman. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

[19] Anurag Rai, Rahul Singh, and Eytan Modiano. A distributed al-
gorithm for throughput optimal routing in overlay networks. arXiv
preprint arXiv:1612.05537, 2016.

[20] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. Trust region policy optimization. In International
Conference on Machine Learning, pages 1889–1897, 2015.

[21] Ramesh K Sitaraman, Mangesh Kasbekar, Woody Lichtenstein, and
Manish Jain. Overlay networks: An akamai perspective. Advanced
Content Delivery, Streaming, and Cloud Services, 51(4):305–328,
2014.

[22] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

[23] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

[24] Balázs Szörényi, Gunnar Kedenburg, and Remi Munos. Optimistic
planning in markov decision processes using a generative model. In
Advances in Neural Information Processing Systems, pages 1035–
1043, 2014.

[25] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter
Abbeel. Value iteration networks. In Advances in Neural Information
Processing Systems, pages 2154–2162, 2016.

[26] Leandros Tassiulas and Anthony Ephremides. Stability properties of
constrained queueing systems and scheduling policies for maximum
throughput in multihop radio networks. IEEE transactions on auto-
matic control, 37(12):1936–1948, 1992.

[27] Ronald J Williams. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. In Reinforcement Learning,
pages 5–32. Springer, 1992.

