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Abstract

Background: Human-likeliness of robot movements is a key component to enable a safe and effective human-robot
interaction, since it contributes to increase acceptance and motion predictability of robots that have to closely interact
with people, e.g. for assistance and rehabilitation purposes. Several parameters have been used to quantify howmuch
a robot behaves like a human, which encompass aspects related to both the robot appearance and motion. The latter
point is fundamental to allow the operator to interpret robotic actions, and plan a meaningful reactions. While
different approaches have been presented in literature, which aim at devising bio-aware control guidelines, a direct
implementation of human actions for robot planning is not straightforward, still representing an open issue in robotics.

Methods: We propose to embed a synergistic representation of human movements for robot motion generation. To
do this, we recorded human upper-limb motions during daily living activities. We used functional Principal
Component Analysis (fPCA) to extract principal motion patterns. We then formulated the planning problem by
optimizing the weights of a reduced set of these components. For free-motions, our planning method results into a
closed form solution which uses only one principal component. In case of obstacles, a numerical routine is proposed,
incrementally enrolling principal components until the problem is solved with a suitable precision.

Results: Results of fPCA show that more than 80% of the observed variance can be explained by only three
functional components. The application of our method to different meaningful movements, with and without
obstacles, show that our approach is able to generate complex motions with a very reduced number of functional
components. We show that the first synergy alone accounts for the 96% of cost reduction and that three components
are able to achieve a satisfactory motion reconstruction in all the considered cases.

Conclusions: In this work we moved from the analysis of human movements via fPCA characterization to the design
of a novel human-like motion generation algorithm able to generate, efficiently and with a reduced set of basis
elements, several complex movements in free space, both in free motion and in case of obstacle avoidance tasks.
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Introduction
There are many examples in literature that have high-
lighted the importance of human-likeness (HL) to ensure
a safe and effective Human-Robot Interaction (HRI) [1, 2].
This aspect has gained increasing attention, since it could
open interesting perspectives for the control of artificial
systems that closely interact with humans, as is the case
of assistive, companion and rehabilitative robots. For the
latter category, for example, human-inspired movement
profiles - which are characterized by i) low jerk values
at the Cartesian or joint level and ii) bell-shaped velocity
profiles (see [3–5]) - could be used as reference trajecto-
ries for rehabilitation exoskeletons ([6–9], see also [10, 11]
for review), as an alternative to, and/or in association with,
classic rehabilitation procedures [12–14].
Indeed, the motion of a robot that shares its environ-

ment with humans can be more easily predicted, and
hence accepted, by the user, if its movements are designed
taking inspiration from actual human movements [1, 15],
leading to a general enhancement in terms of system
usability and effectiveness, especially in assistive robotics
applications [16–18]. However, the design of control laws,
which effectively ensure human-like behavior in robotic
systems, is not straightforward, representing an impor-
tant topic within the general framework of robot motion
planning.
Usually, HL is achieved leveraging on a vast neurosci-

entific literature to devise cost functions (see [3]), whose
optimization introduces HL characteristics in the motion.
For example, in [26] human-like artificial motions were
generated through jerk minimization, while in [33] the
Authors exploited the minimization of joint torques, and
in [27] the Virtual Spring-Damper Hypothesis was pro-
posed. Neural Networks have also been used for human-
like character animation [29–31]. However, optimization-
based methods usually come with hypotheses on motion
generation that may limit the variability of the planned
movement and, sometimes also lack experimental sup-
port [34]. On the other hand, learning methods typically
require a large dataset whose dimensionality dramatically
increases with task complexity.
To the best of authors’ knowledge, a direct exploitation

of human observations for robotic arm motion genera-
tion has not been applied yet. This approach would come
with several advantages, since human-likeness would be
intrinsically guaranteed. However, a mere copy-cutting
from nature would be unfeasible, and clearly a daunting
task. What we propose instead is to use neuromechanis-
tic data, intended here in terms of time-modulation of
joint angular values, and model them with a mathematical
language, which can be easily understood and effectively
implemented in an artificial body. A notable example of
this approach is represented by the concept of hand postu-
ral synergies, which was mathematically modelled in [35],

and then successfully exploited for the design and control
of robotic end-effectors and for grasp planning [36–38].
In this work, we propose to directly embed human

upper limb principal motion modes for the planning of
anthropomorphic manipulators. To this end, we recorded
and organized the joint trajectories of the arm of human
subjects performing a set of Daily Living Activities (ADLs)
to build a comprehensive dataset.We then applied statisti-
cal analysis [39] (namely functional Principal Component
Analysis, fPCA) to extract a reduced number of basis
functions, or functional Principal Components, which
explain, for each joint, most of the trajectory variability.
As reported later, our results show that a weighted sum
of only three functional components takes into account
more than 80% of the total variance at joint level.
Capitalizing on these results, we then formulate the

planning problem - for a given anthropomorphic manip-
ulator - as an optimization problem. More specifically,
the final motion of the manipulator is obtained by solv-
ing an optimization problem in a latent space defined by
the weights of the functional Principal Components. The
core idea of the proposed approach is to use the functional
Principal Components extracted from the observations of
human movements as basis elements, whose combination
is used to optimize the generation of any point-to-point
trajectory of the arm in a dummy human. For free-
motions, our method results into a closed form solution,
which uses only one functional Principal Component.
This methodology comes with a significant perspective

shift: from the search for optimal paths to the identifica-
tion of a reduced number of scalars weighting the func-
tional components. This could enable to rapidly achieve a
solution for the planner, which is intrinsically human-like.
To further increase the cost-effectiveness of our method,
we propose an incremental enrollment of the functional
components, as suggested in [40]. In this manner, the
number of functional Principal Components needed to
perform the task is tailored on task complexity, avoiding
the useless inclusion of higher order functional Principal
Components.
We demonstrate in simulations that our techniques can

generate human-like motion using a reduced number of
functional components. The human-likeliness of the gen-
erated movements is evaluated according to the indexes
reported in [3, Appendix] observing the velocity profiles
and jerk values [4, 41].
To conclude, this paper contributes with: i) an extensive

study on human upper limb functional Principal Compo-
nents, which we have pursued by applying our functional
analysis approach reported in [39] to a dataset obtained
by enrolling a substantially increased number of partic-
ipants (33) in the experiments; ii) a new methodology
for human-like motion generation, which we have applied
to the case of point-to-point motions with and without
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obstacle avoidance, which intrinsically embeds the princi-
pal modes of human upper limb motions; iii) simulation
results, that show the effectiveness of our method.

Methods
Functional principal components of upper limb
In a previous work, we presented a functional charac-
terization of upper-limb movements during Activities of
Daily Living (ADLs) organized in a dataset that comprised
seven subjects. We showed that a reduced-dimensionality
set of functional Principal Components (fPCs) accounts
for a large part of upper-limbmovement variability at joint
level [39].
To expand and confirm the validity of our analysis,

in this work we built a completely new and extended
dataset of ADLs, which includes movements recorded
from 33 healthy subjects (17 women, 26.6 y.o. on aver-
age). The experimental protocol consisted of 30 activi-
ties of daily living as in [39]. Each activity was repeated
three times for a grand total of 90 tasks per person.

All experimental procedures were approved by the local
Ethical Committee of the University of Pisa. The move-
ments were grouped into three categories, characterized
by a different kind of interaction with external objects:
Intransitive, i.e. gestures; Transitive, i.e. movements that
involve the interaction with one object; Tool-Mediated,
i.e. movements in which one object is used to inter-
act with another one. Please refer to the Appendix of
this paper for a textual description of the tasks, and to
Fig. 1 for their graphical representation. Note that each
subject was instructed about the task to accomplish but
not on the specific motion to perform for achieving the
task goal.

Motion identification
Movements were recorded using a 3D motion tracking
system with active markers (Phase Space). Ten stereo-
cameras working at 100Hz tracked the 3D position of
active markers, which were placed on rigid supports and
attached to upper limb links (see Fig. 2).

Fig. 1 From top to bottom, and from left to right, pictures of the tasks considered in this study. Verbal description of the tasks is reported in Table 5
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Fig. 2 Schematics of the experimental setup. In Subfigure A we show a picture of a subject wearing markers on the upper limb. Subfigures B and C
detail the experimental setup. Arm and forearm are tracked using six markers each, while the hand is tracked using four markers. Four additional
markers are placed on the subject’s chest to track the reference. Markers are redundant and fastened on rigid supports. 10 stereo-cameras are
placed around the scene to minimize marker occlusion

To map the recorded movements on an analytic kine-
matic model, we developed a two-phase procedure, which
consisted of a preliminary calibration of the model, fol-
lowed by a Kalman-based identification. In this work we
used the same kinematic model discussed in [39], i.e. a
serial manipulator with three rigid links connected by
seven revolute joints (see Fig. 3). This model can be com-
pletely defined using 14 parameters: 2 parameters for
bone length and 12 parameters to identify the position
of the markers with respect to the kinematic chain (more
technical details can be found in [39]). This set of param-
eters (pG) was calibrated, for each subject, by solving the
following optimization problem:

(q∗, p∗
G) = arg min

qk∈Dq ,pG∈Dp

1
2

Np∑

k=1
rTk rk , (1)

where rk is the residual function:

rk(qk , pG) = yk − f (qk , pG) (2)

at time frame k, calculated as the difference between the
measured position of markers yk and their estimation via
Forward Kinematics (FK) f (qk , pG). The FK is function of
qk , i.e. the current estimation of joint angles, and pG, i.e.
the parameters of the kinematic model. The optimization

problem is constrained by Dq, i.e. the range of motion of
the joints, and Dp, i.e. the maximum variation of parame-
ters with respect to a preliminary manual estimation. Np
refers to the number of samples used for the calibration –
10 equally time-spaced samples in our case, as in [39, 42].
Given the calibrated vector pG for the specific subject, the
upper limb pose is completely described by 7 joints angles
[ q1, . . . , q7]T .
The calibrated model was then used as a component for

a Kalman-based identification procedure. More specifi-
cally, if we consider, at time frame k, the joints angle vector
qk as the state of a stochastic process with wk and vk
process and observation zero mean Gaussian noises, with
covarianceQk and Rk respectively, we have that the system
can be written as

{
qk = qk−1 + wk
yk = f (qk) + vk

(3)

Recursively, the state qk can be estimated from qk−1
with the following implementation of a Kalman filter [43]:
Prediction of the future state q̂k|k−1 = q̂k−1;Update of the
state estimation as q̂k|k = q̂k|k−1 + Kkr̃k . The prediction
correction is the product between the residual values vec-
tor r̃k = yk−f (q̂k|k−1) and the Kalman GainKk , defined as
product between the covariance matrix estimation of the

Fig. 3 Kinematic parametrization, the labels DoF 1, . . . , DoF 7 refer to the joint angles of the model
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predicted state Pk|k−1, the Jacobian matrix Hk = ∂(f (q))
∂q

and the inverse of the residual covariance.
Finally, to effectively and jointly process different acqui-

sitions with different temporal lengths, a time nor-
malization is required. To this end, we used Dynamic
Time Warping. More specifically, given a reference signal
extracted from the dataset qref (t), all the trajectories were
normalized in time with respect to (w.r.t.) the reference
one, by solving the following minimization problem

(Si,Ti) = arg min
Si>0,Ti

(||qref (t) − qi(Sit − Ti)||), (4)

where Si and Ti are the time-stretch and the translation
parameter respectively.

Functional analysis
In the following, we will briefly summarize the main
theoretical concepts behind functional Principal Compo-
nent Analysis (fPCA), and discuss their application to the
investigation of human upper limb motions. Let us con-
sider a generic upper-limb movement q(t) : R → R

7,
where t ∈[ 0, tfin] is the time variable, and 7 is the num-
ber of the upper limb degrees of freedom (DoFs) of the
kinematic model we considered for our analyses. The goal
of fPCA targets the identification of a suitable reduced
functional representation, which can closely approximate
q(t) (joint trajectories). For these reasons, fPCA can
be regarded as a functional extension in the temporal
domain of Principal Component Analysis (PCA). Indeed,
as Principal Components identify inter-joint couplings
that account for most kinematic pose variability, func-
tional PCs (fPCs) are functions that allow to describemost
of the movement variability over time, at joint level. Using
the fPCA framework, a generic upper limb motion q(t)
can be described as a weighted sum of a set of base func-
tions Si(t), or functional Principal Components, that is:

q(t) � q̄ + S0(t) +
smax∑

i=1
αi ◦ Si(t) , (5)

where αi ∈ R
n is a vector of weights. n is the dimension

of q(t), in our case equal to 7. Si(t) ∈ R
n is the ith basis

element and smax is the number of basis elements. The
operator ◦ is the Hadamard product, i.e. the element-wise
product [44]. q̄ ∈ R

7 is the average posture of q evaluated
as

q̄ =
∫ tfin

0
q(τ )dτ , (6)

while S0 : R → R
7 is the zero-order synergy, i.e.

the average trajectory across all the trajectories q in the
dataset, for all the tasks and subjects.
fPCA is used to identify a basis of functions

{S1, . . . , Ssmax} that maximizes the explained variance of
the movements in the collected dataset. The first fPC
S1(t) is the function that solves the following problem

min
S1

R∑

j=1

(∫
S1(t)qj(t)dt

)2

subject to ||S1(t)||22 =
∫ tfin

0
S21(t)dt = 1 ,

(7)

where R is the number of trajectories that compose our
dataset. The other fPCs Si(t) are the functions that solve
the following constrained optimization problems

min
Si

R∑

j=1

(∫
S1(t)qj(t)dt

)2

subject to ||Si(t)||22 = 1
∫ tfin

0
Si(t)Sk(t)dt = 0 , ∀k ∈ {1, . . . , i − 1} .

(8)

This results in an ordered set of functions that - given a
number of basis elements smax - maximizes the explained
variability of the joint trajectories of the dataset. This
opens the possibility to use these functions as a smart
basis to generate HL movements in a latent space. In
the remaining of this work, we present an algorithm that

Table 1 Initial (q0) and final (qfin) configurations for the four tasks considered

Task dof 1 dof 2 dof 3 dof 4 dof 5 dof 6 dof 7

T.1 q0 −0.31 −0.58 −0.8 0.47 −1.23 0.22 0.65

qfin −0.33 0.34 −0.39 0.44 −0.69 0.36 0.15

T.2 q0 0.09 −0.79 −0.62 0.65 −1.50 0.06 0.76

qfin 0.65 −0.40 0.07 0.79 −1.32 0.87 0.63

T.3 q0 −0.48 −0.07 −0.71 0.03 −0.86 0.52 0.47

qfin −1.67 −0.68 −0.33 −0.21 −0.09 −0.26 0.52

T.4 q0 −0.28 −0.86 −0.92 0.86 −1.52 −0.12 0.77

qfin 0.65 −0.78 −0.12 2.18 −1.52 0.57 0.59

Angles are expressed in radians
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exploits functional Principal Components extracted from
the analysis of human upper limb movements for the gen-
eration of point-to-point robotic/artificial motions, with
and without the presence of obstacles along the trajectory.
These movements naturally embed HL characteristics,
(see next section for the proposed method).
To test the effectiveness of this approach, we performed

simulations of both free-motion and obstacle-avoidance
cases. We used a robotic arm simulator with the same
kinematic description we used during the experiments
with human subjects. Hereinafter we refer to this simula-
tor as dummy human. We considered four motions that
are representative of the upper limbmovement workspace
(see the Results section): T.1) accounts for right-to-left
side motions of the trunk, which typically sub-serve the
execution of actions for maneuvering objects on a table;
T.2) is representative of movements towards a position in
front of the subject. T.3) relates to arm elevation towards
a position upon the subject’s head; T.4) deals with reach-
ing movements toward the subject’s own face, which are
usually executed for self-care tasks, e.g. self-feeding etc.
Numerical values of the 7 joint angles in the initial and
desired final conditions, q0 and qfin, respectively, for each
of the four tasks are reported in Table 1.
In our simulations, we considered three scenarios for

each task: no obstacle (i.e. free motion), one obstacle, and
two obstacles. In the latter two scenarios, we decided to
place the obstacles along the optimal trajectories com-
puted for the free-motion case. In this manner, we forced
the algorithm to modify the initial guess. Details on the
obstacle location – with respect to the Inertial System of
Reference placed as in Fig. 3 – and dimension (expressed
in terms of the center and radius of a sphere surrounding
the obstacle, respectively) are reported in Table 2.

Table 2 Details on the obstacle location Position – with respect
to the Inertial System of Reference placed as in Fig. 3 – and
dimension Radius (expressed in terms of the center and the radius
of a sphere surrounding the obstacle, respectively) considered
during the simulations, for the one obstacle (1 Obs) and two
obstacle (2 Obs) case, for the different tasks (T.1, T.2, T.3, T.4)

1 Obs 2 Obs

Position Radius Position Radius

T.1 [-167 200 323] 90 [-167 200 323] 40

[ -89 96 436] 40

T.2 [0 220 350] 50 [0 220 350] 50

[70 170 135] 75

T.3 [313 480 321] 70 [313 480 321] 70

[-2 311 353] 70

T.4 [-35 202 310] 40 [-35 202 310] 40

[-168 158 322] 40

These quantities are expressed in [mm]

Motion generation via functional principal
components
As discussed in the Introduction, typical approaches used
in literature to achieve human likeness [26] in robotic
motions rely on the strong assumption that human move-
ments are generated by optimizing a known cost function
Jhl(q) : C1

7[ 0, t′fin) → R
+, where C1

7[ 0, t′fin) is the space of
smooth functions going from [ 0, t′fin) to the joint spaceR7,
and t′fin is the final time, which in general will be different
from tfin as defined in the previous section. The function
Jhl is used to produce artificial natural motions by solving
the problem

min
q∈C1

7[0,t
′
fin)

Jhl(q) . (9)

How to choose Jhl is not obvious, and it is indeed a
very debated topic in literature. However only achieving
human likeness is meaningless without specifying also a
task to be accomplished.
For this reason also a model of the task should be added

to (9). We formulate the latter point in terms of the min-
imization of an additional cost function Jtask : C1

7 → R
+.

As soon as the need for minimizing Jtask is introduced, (9)
becomes a multi-objective optimization, which is of very
difficult formulation and solution, except for very simple
cases [26].
In this work, we propose an approach that allows to

by-pass this issue. Instead of using data to guess a rea-
sonable Jhl(·), and then explicitly optimize it, we propose
to directly embed human likeness in the choice of the
functional subspace where the optimization occurs. More
specifically, we move from the infinite dimensional func-
tional space C1

7[ 0, t′fin), to its finite dimensional subspace

Fig. 4 Average variance explained by each fPC (blue bars) ± standard
deviation (in red). The blue line on top reports the incremental sum of
mean values
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Fig. 5 From figure A to D, mean trajectory (in black) and the contribution (signed) of each functional Principal Component, from fPC1 to fPC4
respectively. Components ordering follows the indexing of Fig. 3

containing all the functions so constructed:

q(t) = q̄ + S0(t′(t)) +
M∑

i=1
αi ◦ Si(t′(t)) (10)

with q̄, Si,αi defined as in the previous section and t′ is
a linear warping w.r.t. the definition of time used in the

previous section, i.e. t′(t) = t′fin
tfin t. In this way the principal

components can be used to generate motions happening
within any time horizon [ 0, t′fin).
M ≤ smax is the number of functional Principal Com-

ponents considered in the optimization (with smax as in
(5)). According to the results preliminary presented in

Fig. 6 From top to bottom, the reconstruction for task 1 is reported for the free motion case, the single obstacle avoidance and the double obstacle
avoidance case respectively. For each row, motion execution is intended from left to right and time-frames are evenly spaced. Reference system at
wrist level is finally plotted along the whole trajectory
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Fig. 7 From top to bottom, the reconstruction for task 2 is reported for the free motion case, the single obstacle avoidance and the double obstacle
avoidance case respectively. For each row, motion execution is intended from left to right and time-frames are evenly spaced. Reference system at
wrist level is finally plotted along the whole trajectory

[39] and further extended and confirmed in this paper,
it is plausible to expect that a low number of functional
Principal Components should be sufficient to implement
most of the human-like motions at the joint level. There-
fore the multi-object and unconstrained optimization can
be formulated as the following constrained optimization
problem:

min
q̄,α1,...,αM

Jtask(q)

subject to q(t′) = q̄ + S0(t′) +
M∑

i=1
αi ◦ Si(t′) .

(11)

In this manner, we can narrow the search space, with the
twofold purpose of ensuring human likeness, and strongly
simplifying the control problem (indeed, the search space
is now of dimension M + 1). In the following subsec-
tions we present the application of this approach, tailoring
Jtask on the generation of simple point-to-point free move-
ments, as well as more complex motions with obstacle
avoidance.

Point-to-Point free motions
We propose here to generate a human-like point-to-point
motion by solving the following optimization problem,
instance of the more general formulation (11)

min
q̄,α1,...,αM

||q(0) − q0||22 + ||q(t′fin) − qfin||22

subject to q(t′) = q̄ + S0(t′) +
M∑

i=1
αi ◦ Si(t′) ,

(12)

where q(0) and q(t′fin) are the initial and final poses of
the calculated trajectory, while q0 and qfin are the desired
initial and final poses respectively. In this simple case, a
single functional Principal Component (i.e. M = 1) is
already sufficient to solve (12) with zero error.
We start by imposing the zero error conditions q0 =

q(0) , qfin = q(t′fin), which can be rewritten by using (10)

q0 = q̄ + S0(0) + α1 ◦ S1(0)
qfin = q̄ + S0(t′fin) + α1 ◦ S1(t′fin) .

(13)

We subtract the second equation from the first, and
exploit the associativeness of Hadamard product, to
obtain

qfin − q0 = S0(t′fin) − S0(0) + α1 ◦ (S1(t′fin) − S1(0)),
(14)

which implies

α1 =[ (qfin− q0) − (S0(t′fin) − S0(0))] ◦(S1(t′fin) − S1(0))◦−1

(15)
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where ◦−1 is the Hadamard inverse, as defined in [44].
Substituting (15) back into (13) yields

q̄ = q0 − α1 ◦ S1(0)
= q0−[ [ (qfin − q0) − (S0(t′fin) − S0(0))]

◦ (S1(t′fin) − S1(0))◦−1] ◦S1(0) ,
(16)

which fully specifies the trajectory that performs the point
to point motion while being human-like.

Obstacle avoidance
Let us consider the case in which we also need to avoid
one or more obstacles, while performing the point-to-
-point motion. We can generalize the generation of the
human-like trajectory as

min
q̄,α1,...,αM

∣∣∣∣

∣∣∣∣

[
q(0) − q0
q(t′fin) − qfin

]∣∣∣∣

∣∣∣∣
2

2
+ ρP(q,PO)

subject to q(t′) = q̄ + S0(t′) +
M∑

i=1
αi ◦ Si(t′) .

(17)

Two terms can be distinguished in this cost function. The
first contribution guarantees that the desired initial and
final poses are achieved, as for the free motion case (12).
The second term takes into account the distance w.r.t.
obstacles. For the sake of conciseness, and without any
loss of generality, we assume here NO spherical obsta-
cles. We call PO = {PO1 , . . . ,PONO

} the set containing the
Cartesian coordinates of all the centers of these obstacles.
P(q,PO) is a potential-based function [45] that sums

up, for each obstacle, a term inversely proportional to the
minimum distance between the obstacle and the closest

joint trajectory, i.e.

P(q,PO) =
NO∑

i=1

1
mi(q([ 0, t′fin

] ),POi)
2 (18)

where mi is the distance between the arm and the i − th
obstacle, defined as

mi(q([ 0, t′fin] ),POi) = min
k

{d(hk(q([ 0, t′fin] )),POi)} .

The distance between the k − th point of contact with
forward kinematics hk , and the i − th sphere is

d(hk(q([ 0, t′fin] )),POi ) = max
{

min
x∈hk (q([0,t′fin]))

||POi − x||2,ROi

}
,

(19)

with ROi radius of the sphere.

Incremental optimization procedure
The problem of motion generation with obstacle avoid-
ance does not have a closed-form solution, hence the opti-
mal trajectory is calculated via numerical optimization.
To do this, we took inspiration by the ordering of fPCs
basis, according to a descending amount of the associ-
ated explained variance, and implemented an incremental
procedure reported in Algorithm 1.
The proposed approach calculates for each step the

optimal trajectory that minimizes the error in starting
and final position while maximizing the distance from
the obstacles. We consider as initial condition the one
specified by (15) and (16). If the corresponding solution
is sufficiently far from the obstacles, this choice already
defines the globally optimal solution. If the obstacles are

Fig. 8 From top to bottom, the reconstruction for task 3 is reported for the free motion case, the single obstacle avoidance and the double obstacle
avoidance case respectively. For each row, motion execution is intended from left to right and time-frames are evenly spaced. Reference system at
wrist level is finally plotted along the whole trajectory
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Algorithm 1 Procedure of Motion Generation
1: procedure INITIALIZATION
2: Load fPCs basis set;
3: Load Obstacles set;
4: Set initial and final pose;
5: M ← 1;
6: r0 ← ∞;
7: i ← 0;
8: Initialize αin as in (15);
9: Initialize q̄in as in (16);

10: procedureOPTIMIZATION
11: i ← i + 1;
12: [αopt, q̄opt]← InteriorPoint(αin, q̄in);
13: Calculate residual cost ri via Eq. (17);
14: if ri − ri−1 ≤ Rtol orM = Smax then
15: Break;
16: else
17: αin ← αopt;
18: q̄in ← q̄opt;
19: M ← M + 1;
20: Go to Step 10;

end
end

not very close to the aforementioned trajectory, then solv-
ing (17) with M = 1 would fine tune the initial guess,
achieving good results.
In case of obstacles very close to or even intercepting

the free-motion trajectory, at least one more fPC should
be enrolled to suitably solve the problem. The more are
the basis elements enrolled, the more complex are the

final trajectories that can be implemented. However, a
higher cardinality of enrolled elements usually comes with
a larger computational cost and dramatically increases the
number of local minima, thus boosting the complexity of
the problem.

Results
Functional principal components of upper limbmotion
In Fig. 4, we report, for each joint, the functional Principal
Components over the time. As shown in Fig. 5, the first
four fPCs together (i.e. a weighted sum of them) account
for around the 85% of the total variance of the dataset.
What is also noticeable is that lower order func-

tional Principal Components (i.e. fPC1 and fPC2) intro-
duce low-frequency contributions to the mean function,
while higher order functional Principal Components add
higher-frequency terms to the signal. In other terms, this
behavior suggests that lower order functional Principal
Components are mainly devoted to a gross definition of
the whole trajectory, while higher order components deal
with the fine tuning of the specific movement. Note that
these findings are totally coherent and, hence, further
confirm the outcomes of [39].

Human-Like motion generation: validation
Figures 6, 7, 8, and 9 present graphical representations
of the human-like trajectories generated by the proposed
method, from T.1 to T.4. The first row of each figure
depicts the free motion case, the second row the one-
-obstacle case, and the third the two-obstacle one. In all
the considered cases the result is a smooth trajectory
connecting the two postures without interacting with the

Fig. 9 From top to bottom, the reconstruction for task 4 is reported for the free motion case, the single obstacle avoidance and the double obstacle
avoidance case respectively. For each row, motion execution is intended from left to right and time-frames are evenly spaced. Reference system at
wrist level is finally plotted along the whole trajectory
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Fig. 10 From top to bottom, the reconstruction for task 1 and 2 are reported in case of obstacles on the elbow. For each row, motion execution is
intended from left to right and time-frames are evenly spaced. Reference system at wrist level is finally plotted along the whole trajectory

obstacles. This is also evident from Fig. 10, where we
present the profiles of angles and angular velocities over
time.
Table 3 reports, for each task and each environment, the

number of functional Principal Components retrieved by
Algorithm 1. As expected, in the zero-obstacle case, all
tasks can be executed using only one fPC. When obsta-
cles are introduced, the number M of functional Princi-
pal Components increases. However, the complex actions
that we can observe in Figs. 6, 7, 8, and 9 can be per-
formed with a maximum of three functional Principal
Components. Numerical values of the minimum distance
(expressed as Euclidean norm) between the manipulator
and the obstacles in the simulations, considering both the
free motion case and the Obstacle Avoidance part, are
reported in Table 4.
It is worth noticing that, considering our optimization

routine with the Obstacle Avoidance (OA) part, the min-
imum distance between the dummy manipulator and the
obstacle is always greater than the radius of the obsta-
cles (whose dimensions and position with respect to the
Inertial System of Reference – see Fig. 3 – are reported
in Table 2). This does not apply when the OA part is not
implemented (i.e. free motion case).
In the considered simulations, the first fPC alone

accounts for the 96% of the cost reduction, while - with
only the first three functional Principal Components -
100% reduction of the cost is achieved. This is coherent

Table 3 # of functional Principal Components (M) enrolled by
Algorithm 1

Number of

Obstacles Task 1 Task 2 Task 3 Task 4

0 1 1 1 1

1 2 2 2 2

2 3 2 2 2

with the results in Table 3, and confirms the effective-
ness of the proposed strategies for selecting the number
of functional Principal Components to be used. Addi-
tional experiments have been performed to show how the
algorithm works in case of obstacles close to the elbow
trajectory. We reported in Fig. 11 results for tasks 1 and
2. The interested reader is invited to refer to the attached
video from different points of view 1.

Human-Likeliness of trajectories
The method proposed in this work embeds human-like
profiles for upper-limbmovements without explicitly con-
straint this behavior in the optimization problem. As
discussed previously, it has been observed that human
movements are typically characterized by i) bell-shapes of
velocity profiles [3, 4]; ii) minimization of jerk values [3].
For this reason, in this work we rely on this observation
to verify the human-likeliness of the trajectories generated
though our method.
Regarding the velocity profiles, in Fig. 10, we report the

angular profiles and the corresponding velocities, for all
the considered simulations. The bell-shaped distributions
are effectively embedded in the considered evolutions, not
only in the case of point-to-point free motion but also

Table 4 Minimum distance (in [mm]) between the manipulator
and the obstacles with (With OA) and without (Without OA) the
Obstacle Avoidance (OA) part, for 1 Obs and 2 Obs case and the
different tasks T.1, T.2, T.3, T.4

1 Obs 2 Obs

Without OA With OA Without OA With OA

T.1 9.5 164 (9.5, 129.5) (164, 147)

T.2 18 86.5 (18, 75) (170, 92)

T.3 33.5 157 (33.5, 121) (117.5, 107.5)

T.4 48 88.5 (48, 119.5) (88.5, 122.5)

1https://youtu.be/Grg4L4fljdg

https://youtu.be/Grg4L4fljdg
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while avoiding contact with one or more obstacles. More-
over, the norm of the trajectories jerk is always lower
than 5 10−7rad (7.92 10−8 ± 8.53 10−8rad), in line
with the observations of [5]. Finally, all the evolutions of
angular velocity present a marked bell-shaped profile, as
observed in [4]. Few exceptions can be evidenced mostly
for the elbow joint (dof 4), which however can be seen
as a sequence of two bell shaped trajectories, one for the
opening and one for the closing.

Discussions
In this paper, we presented a novel method to endow
robotic manipulators with human-like movements by
directly using human principal motion modes identified
through functional analysis. In this way, human-likeness is
intrinsically guaranteed.
This leaves room to optimize other aspects related to

motion generation, such as obstacle avoidance - as done

in this work - energetic consumption, joint torques, time
efficiency and so on. It is worth noticing that the aim of
our work is not to solve planning problems but instead
to propose a new method for intrinsically embedding
human-likeness in motion generation. Future work will
encompass the evaluation with sophisticated planning
problems and state of the art planning benchmarks.
In the general case, the resulting optimization problem

deals with a non-linear cost function which may present
local minima. The current implementation relies on the
MATLAB optimization routine fmincon, which imple-
ments a gradient-based local optimization. This does
not necessarily guarantee the convergence to the global
optimum, for which the use of global optimization algo-
rithms would be needed and will be considered as future
work. Moreover, any comparison with other existing algo-
rithms in terms of execution time is beyond the scope of
this work. Nevertheless, we do believe that the proposed

Fig. 11 Angular positions and velocities for a set of simulations performed on movements T.1, T.2, T.3 and T.4 with different obstacles. In Subfigure
A, we report the angular positions for the seven DoFs, arranged following the order of Fig. 4, while in Subfigure B we show the corresponding
angular velocities
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Table 5 List of Movements

# # Cut Class Description

1 Int Ok gesture (lifting hand from the table)

2 Int Thumb down (lifting hand from the table)

3 Int Exultation (extending the arm up in the air with closed fist)

4 Int Hitchhiking (extending the arm along the frontal plane, laterally, parallel to the floor, with extended elbow,
closed fist, extended thumb)

5 Int Block out sun from own face (touching the face with the palm and covering the eyes)

6 Int Greet (with open hand, moving wrist) (3 times)

7 Int Military salute (with lifted elbow)

8 Int Stop gesture (extending the arm along the sagittal plane, parallel to the floor, open palm)

9 Int Pointing (with index finger) of something straight ahead (with outstretched arm)

10 Int Silence gesture (bringing the index finger, with the remainder of the hand closed, on the lips)

11 2 Tr Reach and grasp a small suitcase from the handle, lift it and place it on the floor (close to own chair, along
own sagittal plane)

12 3 Tr Reach and grasp a glass, drink for 3 seconds and place it in the initial position

13 4 Tr Reach and grasp a phone receiver, carry it to own ear for 3 seconds and place it in the initial position

14 6 Tr Reach and grasp a book (placed overhead on a shelf), put in on the table and open it (from right side to left
side)

15 8 Tr Reach and grasp a small cup from the handle (2 fingers + thumb), drink for 3 seconds and place it in the
initial position

16 11 Tr Reach and grasp an apple, mimic biting and put it in the initial position

17 12,13 Tr Reach and grasp a hat from its top and place it on own head

18 12 Tr Reach and grasp a cup from its top, lift it and put it on the left side of the table

19 15 Tr Receive a tray (straight ahead, with open hand) and put it in the middle of the table

20 16 Tr Reach and grasp a key in a lock (vertical axis), extract it from the lock and put it on the left side of the table

21 1 T-M Reach and grasp a bottle, pour water into a glass and put the bottle in the initial position

22 2,3,4 T-M Reach and grasp a tennis racket (placed along own frontal plane) and play a forehand (the subject is still
seated)

23 5 T-M Reach and grasp a toothbrush, brush teeth (horizontal axis, one time left-right) and put it inside a holder (on
the right side of the table)

24 6 T-M Reach and grasp a laptop, open it (without changing its position) (4 fingers + thumb)

25 7,8,9 T-M Reach and grasp a pen (placed on the right side of the table) and draw a vertical line on the table (from the
top to the bottom)

26 7 T-M Reach and grasp a pencil (placed along own frontal plane) (3 fingers + thumb) and put it inside a squared
pencil holder (placed on the left side of the table)

27 9 T-M Reach and grasp a tea bag in a cup (1 finger + thumb), remove it from the cup and place it on the table on
the right side of the table

28 10 T-M Reach and grasp a doorknob, turn it clockwise and counterclockwise and open the door

29 13 T-M Reach and grasp a tennis ball (with fingertips) and place it in a basket on the floor (right)

30 14 T-M Reach and grasp a cap (2 fingers + thumb) of a bottle (held by left hand), unscrew it and place it overhead
on a shelf

method could also enable a strong reduction of the com-
putational costs w.r.t. state of the art algorithms, since
the optimization space is constrained to a reduced set of
parameters (i.e. the principal function weights) instead of
the whole evolution of the robot pose. Future work will
focus on more efficient implementation of the proposed
algorithm.

Note that the method is specifically tailored on sys-
tems having the same kinematic structure of the human
upper limb i.e the kinematic model used to describe
human upper limb. The major limitation of this specific
implementation is that the direct generalization to other
kinematics is not straightforward and would require to
solve a mapping problem. A solution could be to select
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a mapping policy as done in [46]. An approach based on
Impedance Control [47] could also be used to define a
framework for which the trajectories generated with our
approach can be used as a reference for the controller of a
generic anthropomorphic manipulator (see [48].)

Conclusions
The methodology presented in this paper is designed to
easily and uniquely generate human-like trajectories. We
do believe that this work may have a major impact for
the control of active devices during the interaction with
humans. This is particularly relevant for the applications
in which the robot is used as an instrument for human
assistance or rehabilitation. Indeed, human-like robotic
platforms that interact with humans, for example for self-
feeding or elderly care, could increase their effectiveness,
relying on the acceptability and predictability of the gen-
erated movements. The potential translational impact of
our method in the field of companion robots could be
also extremely significant. Indeed, the implementation
of human-inspired point-to-point trajectories fully meets
one of the three main envisioned requirements that com-
panion robots are expected to fulfil in the future, which
is related to the need for smooth robotic motion patterns
(see [49] for further details).
Applications for rehabilitation devices are finally

envisioned. Indeed, our strategy could be used to
suggest preferred movements for the rehabilitation
exoskeletons, in conjunction with an analogous mod-
ulation of the robot impedance. In our future work
we will investigate the extension of this approach
to the modulation of the impedance parameters.
We believe that this could provide more therapeu-
tic opportunities and enable novel approaches in
rehabilitation.

List of actions
Table 5 lists the 30 actions considered in the protocol
of this study. For each row, the first element counts the
task number, the second links to the grasp taxonomy pro-
pose by Cutkosky in [50], the third indicates the class
of movement, and the fourth reports a brief description
of the task. The considered actions are also pictured in
Fig. 1. These movements are clustered in three classes,
depending on the interaction with the external environ-
ment: intransitive, which collects gestures and actions that
do not require the use of an object; transitive, in which
an object is used to complete the task; tool-mediated,
in which the actions require an object to interact with
another object.
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