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Abstract: Deep neural networks (DNNs) are efficient solvers for ill-posed problems and have
been shown to outperform classical optimization techniques in several computational imaging
problems. In supervised mode, DNNs are trained by minimizing a measure of the difference
between their actual output and their desired output; the choice of measure, referred to as “loss
function,” severely impacts performance and generalization ability. In a recent paper [A. Goy et
al., Phys. Rev. Lett. 121(24), 243902 (2018)], we showed that DNNs trained with the negative
Pearson correlation coefficient (NPCC) as the loss function are particularly fit for photon-starved
phase-retrieval problems, though the reconstructions are manifestly deficient at high spatial
frequencies. In this paper, we show that reconstructions by DNNs trained with default feature loss
(defined at VGG layer ReLU-22) contain more fine details; however, grid-like artifacts appear
and are enhanced as photon counts become very low. Two additional key findings related to these
artifacts are presented here. First, the frequency signature of the artifacts depends on the VGG’s
inner layer that perceptual loss is defined upon, halving with each MaxPooling2D layer deeper
in the VGG. Second, VGG ReLU-12 outperforms all other layers as the defining layer for the
perceptual loss.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In the last few years, the importance of deep learning in the field of computational imaging
has been rapidly growing [1]. Deep neural networks (DNNs) [2] are used in a variety of
tasks such as denoising [3], super-resolution imaging [4–7], imaging through scattering media
[8],and optical and X-ray tomography [9–13]. The success of DNNs comes from their versatility
and execution speed once they have been trained. They have proven particularly suitable for
underdetermined and ill-posed problems, which earlier had been classically solved using iterative
optimization methods involving a regularization scheme in the functional. In classical methods,
the regularizer’s role is to incorporate prior knowledge about the class of objects expected to
appear in the particular scenario under consideration. The regularizer has to be designed to
favor solutions that match properties of the object known to be true: for example, smoothness
at continuous surfaces, sharpness at edges, positivity, real-valuedness, geometrical support,
etc. The task of designing the optimal regularizer is difficult for two reasons: first, one may
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not know exactly which object features really matter for the problem under consideration; and
second, even if these features were known, designing the proper regularization operator that
favors them might not always be trivial. Alternatively, the regularizer can be learnt in the form of
dictionaries [14,15] that exploit known examples to generate a set of basis functions where sparse
representations of valid objects are favored. DNNs offer a similar advantage as dictionaries in
that they learn the prior from the data, while also being open to discover priors different than
sparsity.

One computational imaging problem of significant importance, also chosen as testing ground
for this paper, is phase retrieval. Generally, the problem is stated as retrieving a complex function
from the modulus of its Fourier or Fresnel transform. A popular variation is to assume the
unknown function to be pure phase, i.e. the object to be absorption-free, because this assumption
is often valid for biological cells. Traditionally, various approaches have been applied to phase
retrieval, including interferometric/holographic [16,17], iterative [18–21] , ptychographic [22,23],
and transport-based [24,25]. Recently, phase retrieval was among the first computational imaging
problems where DNNs were successfully used [26–31]. The original method in [26] was
dubbed “Phase Extraction Neural Network” (PhENN) and it is the backbone of the architecture
investigated here as well.

As in any other imaging problem, phase retrieval becomes increasingly difficult to solve as the
photon budget available for the measurement is reduced. In a recent paper [32], we demonstrated
a method for phase retrieval in extremely low light conditions that combines a DNN with a
physics-inspired preprocessing step based on the Gerchberg-Saxton algorithm [18] on the Fresnel
propagated field. The preprocessing step projects the measurement back to the object plane so
as to obtain a first guess of the object, hereafter called the “Approximant.” Note that an exact
projection is not possible, neither is convexity guaranteed [20,33]. In any case, since the intensity
input is very noisy, the quality of the Approximant reconstruction is very poor. The role of the
subsequent DNN is to both denoise the Approximant and to correct the distortion left over by the
approximate projection. For the noisiest raw inputs, this Approximant scheme is proven to be
much more effective than the "End-to-End" scheme [26], where the intensity images are input
directly to the DNN, thereby not taking advantage of known physics—in other words, in the
End-to-End scheme the DNN carries the double burden of learning the prior and the physical
model.

In both End-to-End and Approximant schemes, reconstructions display uneven fidelity across
spatial frequency bands: the low frequency band tends to be reliable, while the high frequencies
are suppressed, resulting in an over-smoothening effect [8,26,32]. In [34], Li et al attributed
this uneven fidelity to the uneven treatment of spatial frequencies during DNN training. High
spatial frequencies are under-represented in the training examples and therefore less likely to
survive the nonlinearity of the training process. The authors proposed to mitigate this by ad hoc
spectral pre-filtering to artificially amplify the high spatial frequencies in the training examples.
Though spatial resolution was improved significantly, spectral pre-filtering violated the true
prior of the training examples and thus artifacts and distortions emerged. Subsequently, we
proposed the Learning to Synthesize by DNN (LS-DNN) scheme [35], which takes the more
principled approach of splitting and processing low and high frequencies separately by two DNNs,
followed by a synthesizing DNN trained specifically to recombine the two bands reliably into a
reconstruction with even performance across the entire spectrum. We also found the LS-DNN
method to be resilient to noise [35], yielding reconstructions with much finer detail than [32].
In this work, we take an altogether different approach to attack the uneven spatial frequency

problem. We use what is essentially a cognitive metric, the perceptual loss function [7], to train
PhENN. In perceptual loss training, as we describe in detail in the next Section 2, PhENN is
trained based on the distance of internal representations (feature maps) from a pre-trained natural
image classification network, e.g. VGG [36]. The intuitive argument for this approach is as



Research Article Vol. 28, No. 2 / 20 January 2020 / Optics Express 2513

follows: in the primate visual system, the hierarchy of classification circuits is concordant with
the power-spectral density of natural images [37,38]; that is, low and high spatial frequencies
are all given their fair share of processing. It is not clear whether something similar occurs in
artificial image classification, e.g. VGG, even though the present paper presents some evidence
corroborating in favor of this hypothesis. Arguably, by forcing the reconstructions produced
by PhENN to match the feature maps of the classification network VGG, we are causing the
distribution of spatial frequencies in PhENN’s reconstructions to match that of the original
natural objects. Thus, we restore the balance in the treatment of high and low frequencies. Our
results, Section 3, show that this hypothesis is true, albeit also producing certain periodic artifacts,
whose nature and mitigation we address in Section 4. The key outcome is that probing the VGG
at ReLU-12, shallower than ReLU-22 recommended in [7], seems to offer the best compromise
between noise-resilient and artifact-free reconstructions.

2. Training for inverse problems with VGG based perceptual loss

In [32], PhENN was trained by minimizing the negative Pearson correlation coefficient (NPCC)
between the ground truth and the DNN output. The NPCC was earlier proven to work better than
the pixel-wise loss functions, e.g. Mean Square Error (MSE), Mean Absolute Error (MAE), as
well as the frequently used similarity metric SSIM [39,40] in retrieving fine features [8,41] of
the objects. This is because pixel-wise losses (e.g. MSE, MAE) generally encourage finding
pixel-wise averages of plausible solutions which tend to be oversmooth [39,40,42].
Perceptual loss, based instead on high-level image feature representations extracted from

CNNs pre-trained for image-classification tasks, can be used as the loss function to generate
images with good visual quality. It was first applied to various image processing tasks, including
feature inversion [43], feature visualization [44,45], and texture synthesis and style transfer [46].
Later, in [7], Johnson et al first combined the advantages of the feed-forward neural networks
and perceptual loss for style transfer and super-resolution. Subsequently, perceptual loss has
been applied to many image-formation applications, including [47,48], etc. However, to our
knowledge, perceptual loss has not yet been successfully applied to phase retrieval, neither has it
been applied to inverse problems under extremely low light condition in general, as this paper is
concerned.
The VGG network [36], whose versions include VGG16 and VGG19, is a class of deep

convolutional neural networks (CNN) that has been highly successful with classification tasks
on ImageNet [49]. As in Figs. 1(a) and 1(b), respectively, VGG16 and VGG19 each consists
of 5 Convolutional Blocks (CBs), followed by 3 Dense layers. In each CB, there are a few
2D convolutional layers, with Rectified Linear Units (ReLU) as the nonlinearity, followed by
a MaxPooling2D with factor 2. Each CB, by its MaxPooling2D layer specifically, reduces the
size of each feature map by 2 × 2. Each subsequent CB doubles the depth of feature maps (the
number of feature maps) and within each CB, the number of feature maps remains constant.
Each convolutional layer has kernel size 3 × 3. Subsequent to the CBs, three Dense layers with
ReLU as the nonlinear activations, sequentially map the feature maps to the final output, which is
compared with the ground truth labels for classification.

As the signals from input objects propagate through the VGG network layers, features relevant
for classification become progressively identified as components in sparse representations of the
objects. Therefore, given an inverse problem on ImageNet [49] (or objects similar to natural
images), if the DNN is trained not by the conventional pixel-wise loss between the reconstructions
and their corresponding ground truth examples, but instead by the loss of their corresponding
feature maps at a certain layer, then it would generally encourage the reconstructions generated to
be ones that are more likely to be correctly classified by the VGG. If we assume that human visual
perception is fine tuned for recognition and classification tasks, then we can expect that a DNN
trained with the perceptual loss function will produce images that are of a better visual quality as
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(a) VGG16 architecture.

(b) VGG 19 architecture.

Fig. 1. VGG network architecture [36].

perceived by a human observer. In fact, a recent study [50] discovered that similarity in deep
features, including those generated from VGG networks, corresponds well to perceptual similarity
and outperforms any known low-level quantitative metrics (e.g. PSNR, SSIM, etc.) These
arguments justify the popularity of VGG-based perceptual loss methods for inverse problems. In
a representative work [7], Johnson et al demonstrated that, in general, the distance on low-level
(shallower) feature maps of VGG network corresponds well to disparity of content fidelity between
input examples, while that on high-level (deeper) feature maps corresponds to style disparity.
Stated differently, cognitive prior information learned from classifying pre-trained examples
is transferred into the image transformation and image inversion problems, compensating for
ill-posedness.
Loss based on VGG feature maps has been used both on its own [7], i.e. formed on the

feature maps extracted at a particular layer of VGG network; and with the image-domain loss
to form a mixed loss [51]. In the former case, hereafter referred to as the Feature Loss, layer
ReLU-22 was commonly believed as the ideal choice, as it seemed to best compromise between
visual quality and image-content accuracy. In the latter case, hereafter referred to as the Mixed
Loss, with image-domain loss governing image-content fidelity, feature maps at deeper layers of
pre-trained classification networks were believed to be ideal, as they supposedly compensate for
style information that pixel-wise loss was incapable of reconstructing.
Let nfeat denote the number of feature maps and Nx × Ny the size of each feature map at the

respective layer of the VGG network [36]. Let also ReLU-i j denote the j th convolutional layer in
the ith CB. Then the Feature Loss between the ground truth f and the reconstruction f̂ at layer
ReLU-i j is

L (i, j)
feat ( f , f̂ ) = 1

nfeatNxNy

nfeat∑
k=1

������VGG(i, j)k
( f ) − VGG(i, j)

k
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2
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where ‖.‖2 denotes the L2 norm, and VGG(i, j)
k
( f ) denotes the k th feature map generated when

passing image f up to layer ReLU-i j of VGG.
For theMixed Loss scheme, left αfeat denote the parameter controlling relative strength between
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respective layer of the VGG network [36]. Let also ReLU-ij denote the jth convolutional layer in
the ith CB. Then the Feature Loss between the ground truth f and the reconstruction f̂ at layer
ReLU-ij is

L (i,j)
feat (f , f̂ ) =
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nfeatNxNy
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where ‖.‖2 denotes the L2 norm, and VGG(i,j)k (f ) denotes the kth feature map generated when
passing image f up to layer ReLU-ij of VGG.
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For theMixed Loss scheme, left αfeat denote the parameter controlling relative strength between
image-domain loss and feature loss. DNN training minimizes

L (i,j)
mixed(f , f̂ ) = Limage(f , f̂ ) + αfeatL (i,j)

feat (f , f̂ )

=
����f − f̂ ����22 + αfeat 1

nfeatNxNy

nfeat∑
k=1

������VGG(i,j)k (f ) − VGG
(i,j)
k (f̂ )

������2
2
,

(2)

Figures 2(a) and 2(b) show how VGG-based loss can be used to, either on its own or in
collaboration with image-domain loss, train the image-transformation DNNs. The pre-processing
step, which will be discussed in more detail in Section 3.1, is optional but can enable significantly
better reconstructions in the most ill-posed cases [32].

Fig. 2. VGG-based feature loss as the training loss.

In both cases, to cope with the dynamic range of the pre-trained VGG network, images need to
be normalized to [-1,1] before entering into the pre-trained VGG network. Also, a histogram
matching step as post-processing is necessary to calibrate the scale of the reconstructions. We
will discuss this later in Section 3.4.

Despite its advantages in terms of fidelity to spatial details in the reconstructions, the perceptual
loss method has a significant defect. In [7], Johnson et al already noticed a “cross-hatch pattern”
that appeared in Feature Loss based reconstructions. They attributed the reconstructions’
inferiority in quantitative metrics, e.g. PSNR and SSIM, to these artifacts. Neither an
interpretation nor a strategy to remove these artifacts has yet been provided, to our knowledge.
One possible reason is that when no noise is present, as in [7], such artifacts are perceptible only
under magnification, so it is tempting to ignore them.
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When strong noise is present, as in our present investigation, the artifacts become much
more pronounced. The artifacts display clear spatial periodicity, offsetting the visual quality
advantage brought upon by the perceptual loss. Therefore, some effort into removing the artifacts
is warranted. We now proceed with formulating the phase retrieval problem using perceptual
loss, followed by investigation of the frequency signature (power spectral density) of the artifacts
as function of the VGG ReLU-ij feature map used for training. The latter leads to a mitigation
strategy for the artifacts.

3. PhENN implementation using perceptual loss

3.1. Phase retrieval as an inverse problem and computation of the approximant

Let
ψobj(x, y) = t(x, y)eif (x,y)

be the complex transmittance of an optically thin object, with modulus response t(x, y) and
phase response f (x, y). Here, we are only interested in weakly absorbing objects, i.e. t(x, y) ≈ 1.
Moreover, let ψinc(x, y) be the coherent incident illumination of wavelength λ on the object plane.
Subject to the scalar and paraxial approximations, the noiseless intensity measurement on the
detector plane located at distance z away, g0(x, y) can be written as:

g0(x, y) =
�� Fz

[
ψinc(x, y)ψobj(x, y)

] ��2 ≡ H0f (x, y), (3)

where Fz[·] is the Fresnel propagation operator for distance z, and H0(·) is the noiseless overall
nonlinear forward operator. In this paper, we shall limit the choice of illumination to a normally
incident plane wave, so that ψinc(x, y) = 1. Therefore,

g0(x, y) = |Fz[exp {if (x, y)}]|2 = H0f (x, y), (4)

The measurement is subject to a mixture of shot noise and readout noise, following Poisson
and Gaussian statistics, respectively. Thus, to a good approximation, the measurement g(x, y)
captured on the detector is

g(x, y) =P

{
p
H0f (x, y)
〈H0f 〉

}
+N ≡ Hf (x, y), (5)

where P{θ} denotes the Poisson random variable with mean θ, N the zero-mean Gaussian
random variable with variance σ2, and H the noisy forward operator. The term 〈H0f 〉 is the
mean of noiseless measurement, and is necessary to normalize the measurement so that p carries
the physical meaning of average photon count per pixel.
In this work, we are particularly interested in phase retrieval under extremely low light

conditions, i.e. very small values of p. This amounts to "inverting" the extremely ill-posed H to
find the best f̂ from g, so that (6) approximately holds. One way to achieve this is by minimizing
a regularized functional as

f̂ = argmin
f
{D (H0f , g) + βΦ(f )} . (6)

Here, Φ(f ) is the regularizer penalizing reconstructions that do not match the class of objects of
interest, D(H0f , g) is the data-fidelity term that matches the measurement to the forward operator
for the assumed object, and β is the parameter expressing our belief on the relative importance of
the measurement fitness versus the prior knowledge.
DNNs are desirable solvers of inverse problems such as Eq. (6) because they learn the

prior from the training data leaving no need for sparsity notions to specify the applicable Φ(f ).
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Moreover, DNNs solve Eq. (6) fast, whereas proximal gradient methods used traditionally to
minimize Eq. (6) are iterative and, thus, time consuming. The original End-to-End PhENN
scheme [26] suffered the double burden of learning the prior and the forward operator, yet it
proved to be adequate for the low-noise case. For noisy intensity data, Goy et al proposed the
Approximant scheme [32], where the first iterate of the Gerchberg-Saxton algorithm [18]

f̃ = arg
{
F−1

(√
g arg {F (uinc)}

)}
, (7)

is computed first, and is then used as input to the DNN to produce the final estimate

f̂ = DNN
(
f̃
)
. (8)

In Eq. (7), f̃ is referred to as the Approximant, and ‘arg’ denotes the argument (phase) of the
complex field. A comparative study [52] showed that using more iterations of Gerchberg-Saxton
to produce better Approximants f̂ does not necessarily create a better estimate for the DNN
reconstruction but does make the overall computation slower. Thus, the single iterate of Eq. (7)
followed by Eq. (8) seems to be the best compromise.

3.2. Training PhENN with perceptual loss

Our use of PhENN [26,32] in this work was necessary for a fair comparison between our results
and those in [32]. However, the approach described here is applicable to other architectures with
the appropriate modifications. PhENN is essentially a deep U-net with residual connections [53].
Its input is the phase approximant f̃ (or the raw data f in the End-to-End scheme) and it generates
the phase estimate f̂ as its output.

In the perceptual training scheme, f̂ is passed into the pre-trained VGG16 or VGG19 network
up to a particular layer. The layer is either a ReLU-ij (see Section 2) or an i-Pooling, the
MaxPooling2D layer in the ith layer’s convolutional block. In our initial effort, Section 3.5, we
used ReLU-22 as recommended by [7]; we subsequently expanded the investigation to other
layers and we describe the results in Section 4. The feature maps are compared with those
generated from the ground truth examples f at the same layer, either on its own (Feature Loss
scheme, Fig. 2(a)), or collaborating with the image-domain loss (Mixed Loss scheme, Fig. 2(b)).
Minimizing this loss optimizes the weights in the perceptual loss trained PhENN (PLT-PhENN).
For testing, the phase estimate f̂ is retrieved directly from the output of PLT-PhENN, so the VGG
is not necessary; however, we still observe the feature maps of test objects through the VGG for
analysis purposes.
Numerical computations are carried out on a Nvidia GTX1080 GPU using the open source

Tensorflow platform [54], which allows us to reuse the pre-trained VGG network. The Adam
optimizer [55] is used to train the neural network for 20 epochs, which takes approximately 2
hours. During the test stage, inference of the input (the Approximant in this case) corresponding
to the test set is carried out on the trained neural network, taking only a few seconds.

3.3. Experimental apparatus and data acquisition

The examples used for training are extracted from the benchmark ImageNet [49] database. A
set of 10,000 examples are randomly chosen and split into a training set of 9,500 examples, a
validation set of 450 examples, and a test set of 50 examples. The latter is used to display the
results and quantify performance.

The experimental apparatus, identical to that in [32], is depicted in Fig. 3 to which the optical
components abbreviations refer. We use a coherent light source (continuous wave He-Ne laser
at 632.8nm), which is first passed through a calibrated variable neutral density filter (VND).
The light is then spatially filtered and collimated into a beam with a diameter of 18mm that
serves as input illumination to the imaging setup. The incident illumination is sent through a
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transmissive spatial light modulator (SLM) with 256 × 256 36 × 36µm pixels. Phase objects are
displayed on the SLM and imaged by a telescope (4F system) consisting of lenses L1 (focal length
230mm) and L2 (100mm). The 2.3× reduction factor in the 4F system is designed to match the
size of the image with that of the camera. The image is spatially filtered in the Fourier plane
in order to suppress higher diffraction orders by the SLM. The camera (Q-Imaging EM-CCD
with 1004 × 1002 8×8µm pixels) is placed z = 400mm away from the image plane in order to
introduce defocus—a necessary step for phase retrieval from pure phase objects. Subsequently,
the raw images are fed to the computational pipeline described in Section 3.2.

Fig. 3. Experimental Apparatus.

As in [32], the photon flux is quantified as the number of photons p incident on each detector
pixel on average for an unmodulated beam, i.e. with no phase modulation displayed on the SLM.
During an initial calibration procedure, for different positions of the VND filter, the photon
level is measured using a calibrated silicon photodetector placed at the position of the camera.
The quoted photon count p is also corrected for the quantum efficiency of the CCD (60% at
λ = 632.8nm). We refer to the number of photons actually detected and not the incident number
of photons.

Here, we report results primarily for p = 1.1± 5% (quoted as “1” photon/pixel), as it represents
the extremely low light conditions that we are most interested in. Some results under higher
photon levels, including p = 10, 100, 1000 are also presented for comparison.

3.4. Calibration of reconstructions

The reconstruction by the perceptual loss trained neural networks is generally a nonlinear function
of the corresponding ideal object. For phase retrieval, we aim to produce a quantitatively accurate
estimate of the phase. To that end, we perform a polynomial fit between the raw reconstructions
and the ground truths from the validation set and use the optimized polynomial to calibrate
reconstructions of the test objects. We empirically tested polynomials with degrees ranging from
1 to 10 and found that polynomials with degree 6 were the best for this fit, as any degree beyond
6 would not further reduce the validation error, only to increase the computational burden. We
present results from this calibration step later in Section 3.5 and 4.

3.5. PLT-PhENN reconstructions with feature loss from ReLU-22

In Fig. 4, we show comparisons of phase retrieval results for p = 1 and p = 10, respectively, where
PhENN is trained with the default feature loss at VGG16 ReLU-22, against those produced by the
negative Pearson Correlation Coefficients (NPCC) trained PhENN, as in [32]. The feature-loss
reconstructions display sharper details in general and, as can be seen in the scaled up images
in Fig. 4, show particular details such as the vertical posts in the scene, that are completely
blurred out in the NPCC reconstruction at 1-photon level. This observation is consistent with our
intuition that the fine details (features) are necessary to semantically improve the accuracy of
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classification and, hence, are imposed upon PhENN by the perceptual loss training scheme. In
Fig. 10, we show a similar comparison at four different photon levels (p = 1, 10, 100, 1000) and
find the improvement in richness of recognizable details that the feature-loss introduces is most
significant in the noisiest case p = 1.

Fig. 4. Comparison of reconstructions from PhENN trained with perceptual loss vs. NPCC
for 1 and 10-photon levels. The scaled up images show that some details are not rendered by
the NPCC-trained PhENN whereas they become clearly identifiable with the perceptual loss
function.

Also in Fig. 4, at low photon levels, the grid-like artifacts pointed out earlier as resulting from
perceptual loss training (Section 2) become noticeable, both before and after the calibration step
of Section 3.4. In ReLU-22 reconstructions, the artifacts are always centered at the same spatial
frequency corresponding to a spatial period of 4 pixels, which we will refer to as the fundamental
frequency νf.
In Fig. 5(a), we show an example severely affected by the artifact. Figure 5(b) shows the

log-scale magnitude of same reconstruction’s 2D Fourier transform, where the artifact is clearly
visible at frequencies (νx, νy) = (±νf,±νf). In Fig. 5(c), we also compare the cross sections of the
log-scale magnitude of the 2D Fourier Transform of the ground truth, the NPCC reconstruction,
and the perceptual loss (feature loss) reconstruction, respectively, clearly indicating the same
artifact at νf. In Fig. 6(a), we show the 2D power spectral density (PSD) of the entire set of test
reconstructions and find this same frequency signature pronounced horizontally, vertically and
diagonally.
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Fig. 5. (a) Reconstruction by the VGG16ReLU-22 feature-loss trainedDNN for the 1-photon
level. (b) Log-scale magnitude of the 2D Fourier Transform of the reconstruction shown in
(a). The artifact contributes in the modes indicated by the arrows. (c) Cross sections of the
log-scale magnitude of the Fourier Transform of the perceptual loss reconstruction (blue),
corresponding to image (b), ground truth (black) and the NPCC-trained DNN reconstruction
(red).

Fig. 6. (a) Log-magnitude of the power spectral density of the test set of reconstructions f̂
clearly showing the signature of the artifact, which is perceived in the reconstructions as a
prominent network of horizontal and vertical strips, e.g. Figs. 4 and 5. (b) Horizontal profile
of (a). (c) Vertical profile of (a). (d) Diagonal profile of (a).

Figures 4–6 substantiate the increasing prevalence of that artifact at spatial frequency νf
as the noise level worsens. Perhaps this is why earlier literature, concerning itself primarily
with low-noise cases, paid only scarce attention to this issue. More auxiliary investigations in
VGG16’s (up to layer ReLU-22) particular behavior at the fundamental frequency νf can be found
in Appendices B and C. We now turn to demonstrating that the artifact frequency depends on the
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VGG layer where the feature maps are drawn from, and to using this discovery to mitigate the
problem.

4. Probing shallower or deeper: finding an optimal ReLU for artifact-free, high-
quality reconstructions

4.1. Frequency signature of the artifacts at different layers

The artifacts, at first glance, may be thought of as either content disparity or style disparity
between the reconstructions and the ground truth. Such disparities are supposed to be handled
by perceptual loss, but evidently the recipe malfunctions in this case. This motivated us to
investigate whether the depth of the perceptual probe might influence image reconstruction
quality. Alternatively, this strategy essentially alters the semantic depth of the content used to
force PhENN to create realistic reconstructions: to the degree that the VGG bears any similarity
to the primate visual cortex, shallow depths in VGG would correspond to low-level features such
as elemental orientations and textures, whereas deeper layers would process concepts. Might
finding just the right depth for perceptual probing be the key to PhENN’s preserving fine detail
without artifacts?

To test this hypothesis, we trained PhENN with perceptual loss drawn not from the standard
ReLU-22 layer recommended by previous works, but from shallower and deeper layers. Repre-
sentative results are shown in Figs. 7–9. First, we discuss the behavior of the grid-like artifacts
as function of perceptual probing depth. We observe that the fundamental frequency of the
artifacts in the reconstructions halves with each encounter with the MaxPooling2D layer going
deeper into the network; however, the fundamental frequency of the artifacts remains constant
until encountering the next MaxPooling2D layer, even though the artifacts could intensify as the
defining layer progresses deeper. This is starkly illustrated in Fig. 9, where all PSDs in each of
row (ii) to row(v) have a common fundamental frequency and this fundamental frequency is half
of that from the previous row.
Next, we discuss overall reconstruction quality. We observe that going deeper does not pay

off—PhENN’s function is too low level for VGG concepts to have any use. (This reinforces the
notion that networks like PhENN do not themselves perform any “hidden” classification or other
cognitive processing; rather, they reconstruct the images based on physical and geometrical priors
learnt from the examples.) On the other hand, using shallower layers, ReLU-12 in particular,
seems to perform well, recovering the high-frequency features in our sample. At the same time,
the grid-like artifacts are strongly suppressed because their spatial frequency has been pushed to
the edge of the Nyquist window at this layer depth (see Fig. 9).
Going even shallower does not pay off either—the ReLU-11-trained reconstructions are too

blurry. This is perhaps because this VGG layer only processes very coarse features. Therefore,
ReLU-12 is found to be the optimal VGG layer for PhENN’s perceptual loss training.

4.2. Quantitative assessment of reconstructions by PLT-PhENN

We assessed reconstruction accuracy quantitatively according to several commonly used metrics:
Peak Signal to Noise Ratio (PSNR) [42], Structural Similarity Index Metric (SSIM) [39,40], and
Pearson Correlation Coefficient (PCC), which is defined as the NPCC [8,32] without the minus
sign. From Table 1 and visual inspection of the samples in Figs. 7–8, we see that performance in
the quantitative metrics and better observed visual quality are monotonic (this is not generally the
case.) Reconstructions from ReLU-12 trained PhENN also achieve the best quantitative accuracy
according to all three quantitative and overperform the NPCC-trained PhENN [32].
We also investigated reconstructions produced by PhENN trained with feature loss based on

VGG19. The results, including PSDs of the test set, are in Appendix D and the quantitative
assessment is contained in Table 2. As VGG19 is fundamentally similar to VGG16, we decided
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Fig. 7. Reconstructions with feature loss defined at various layers of VGG16 for p = 1.
Row (i): Approximant and ground truth from a representative sample; rows (ii) to (v) each
contain layers before 1-Pooling, after 1-Pooling, 2-Pooling and 3-Pooling, respectively.



Research Article Vol. 28, No. 2 / 20 January 2020 / Optics Express 2523

Fig. 8. Scaled-up reconstructions; the region is indicated by the red square in the ground
truth image of Fig. 7, row (i). The rows correspond to those in Fig. 7.
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Fig. 9. Log-scale of PSDs of reconstructions, based on the entire test set of 50 randomly
drawn samples. The rows correspond to those in Fig. 7.
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that investigation of feature loss based on layers after the third convolutional blockwas unnecessary.
Similar to VGG16, ReLU-12 in VGG19 produced reconstructions with both best quantitative
metrics and visual quality. Compared to their counterparts in VGG16, the VGG19 ReLU-12
reconstructions have similar visual quality but slightly worse quantitative performance.

Table 1. Quantitative assessment of reconstructions by feature loss PLT-PhENN defined at various
VGG16 layers. Each entry takes the form of average ± standard deviation.

Average PSNR Average PCC Average SSIM

± std. dev (dB) ± std. dev ± std. dev

image-MSE 11.523 ± 2.639 0.577 ± 0.237 0.687 ± 0.184

image-NPCC 16.207 ± 2.466 0.808 ± 0.099 0.875 ± 0.071

ReLU-11 15.943 ± 2.622 0.765 ± 0.109 0.866 ± 0.059

ReLU-12 16.719 ± 2.045 0.822 ± 0.094 0.891 ± 0.064

1-Pooling 14.569 ± 1.729 0.736 ± 0.131 0.837 ± 0.087

ReLU-21 12.853 ± 2.449 0.636 ± 0.149 0.755 ± 0.102

ReLU-22 13.589 ± 2.561 0.703 ± 0.129 0.800 ± 0.081

2-Pooling 12.610 ± 2.918 0.633 ± 0.142 0.742 ± 0.100

ReLU-31 12.236 ± 2.652 0.583 ± 0.178 0.713 ± 0.120

ReLU-32 11.578 ± 2.789 0.476 ± 0.203 0.636 ± 0.125

ReLU-33 11.867 ± 2.418 0.526 ± 0.162 0.684 ± 0.116

3-Pooling 10.823 ± 2.413 0.300± 0.141 0.553 ± 0.091

ReLU-41 11.874 ± 2.839 0.496 ± 0.210 0.668 ± 0.119

ReLU-42 12.441 ± 2.984 0.572 ± 0.203 0.714 ± 0.122

ReLU-43 12.890 ± 2.199 0.596 ± 0.142 0.755 ± 0.077

4-Pooling 11.429 ± 2.250 0.410 ± 0.169 0.635 ± 0.108

Table 2. Quantitative assessment of reconstructions by feature loss PLT-PhENN defined at various
VGG19 layers. Each entry takes the form of average ± standard deviation.

Average PSNR Average PCC Average SSIM

± std. dev (dB) ± std. dev ± std. dev

image-MSE 11.523 ± 2.639 0.577 ± 0.237 0.687 ± 0.184

image-NPCC 16.207 ± 2.466 0.808 ± 0.099 0.875 ± 0.071

ReLU-11 16.627 ± 2.524 0.814 ± 0.087 0.883 ± 0.051

ReLU-12 16.663 ± 2.256 0.821 ± 0.107 0.886 ± 0.066

1-Pooling 15.687 ± 2.645 0.776 ± 0.125 0.857 ± 0.079

ReLU-21 13.690 ± 2.626 0.688 ± 0.124 0.800 ± 0.073

ReLU-22 12.461 ± 2.619 0.608 ± 0.153 0.732 ± 0.122

2-Pooling 10.514 ± 2.401 0.176 ± 0.121 0.489 ± 0.074

ReLU-31 12.847 ± 2.628 0.631 ± 0.166 0.752 ± 0.109

ReLU-32 12.595 ± 2.580 0.597 ± 0.172 0.736 ± 0.106

ReLU-33 12.027 ± 2.915 0.531 ± 0.209 0.678 ± 0.118

ReLU-34 12.336 ± 2.631 0.572 ± 0.188 0.714 ± 0.115

The discussion so far concerned using VGG-based loss as Feature Loss, see Section 2. We
have also investigated the Mixed-loss scheme at various layers of VGG19, but we did not find it
to be promising. The results are available in Appendix E.
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5. Conclusions and future work

The main emphasis of this work has been on highly noisy raw intensity images and the value of
using cognitive information, in the form of perceptual loss, to train a neural network to reconstruct
phase images of high quality despite the noise. A standard image classification network, such as
VGG16 or VGG19 is used to provide the cognitive information, and the image reconstruction
neural network PhENN is trained to match the perceptual representations within the VGG. We
discovered that the effectiveness of this strategy depends on the depth where VGG is probed for
perceptual loss—equivalently, the degree of abstraction in the VGG’s internal representations.
The optimal layer for perceptual probing was found to be ReLU-12, shallower than earlier

recommendations. The new optimum proffers two advantages: recovery of fine-detail features
and effective suppression of grid-like artifacts that had been observed earlier as well. Both
aspects are adversely affected by noise, but the strategy we propose here is immune, down to the
level of a single photon per pixel.
Another discovery reported in this paper is that the frequency of the artifacts depends on the

MaxPooling2D layer within the VGG where the perceptual loss is drawn from. We also verified
that increasing the level of (Poisson) noise in the input results in stronger artifacts. However, the
actual origin of the artifacts remains unclear, inviting further investigation.
We expect the conclusions and intuition drawn here to apply to a great variety of inverse

problems. However, it is important to note that exact quantitative guidelines, such as the ReLU
depth for optimal perceptual loss, may turn out to be slightly different for inverse problems other
than phase retrieval. This topic also warrants more extensive study.

Appendix A: Reconstructions produced by ReLU-22 trained PhENN at various
photon levels

In Fig. 10, we compare reconstructions by Feature Loss-trained PhENN and NPCC-trained
PhENN, at photon incidence levels of p = 1, 10, 100, 1000. From the comparison, we see that
certain spatial details are well rendered by the Feature Loss-trained PhENN, but are not rendered
by the NPCC-trained PhENN.
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Fig. 10. comparison of reconstructions from PhENN trained with feature loss vs. NPCC
for 1, 10, 100 and 1000-photon levels. In some areas, as shown by the scaled up images,
some details are only visible in the feature loss reconstruction.
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Appendix B: VGG16’s effect on the fundamental frequency

To investigate the formation of grid-like artifacts and whether the pre-trained VGG treats the
fundamental frequency any differently from others, we conduct the following test: for each ground
truth image fn in the test set, we generate a noisy version of it by adding noise at a particular
spatial frequency (νx0, νy0)with amplitude A, empirically pre-defined to be 0.1. Thus, the strength
of the artifacts in the noisy images are visually comparable with those in the reconstructions at 1
photon.
We define the noise signal as

ξ(A, x, y, νx0, νy0) = AF−1{eiaδ(νx − νx0, νy − νy0) + e−iaδ(νx + νx0, νy + νy0)
+eibδ(νx + νx0, νy − νy0) + e−ibδ(νx − νx0, νy + νy0)},

(9)

where F is the Fourier transform, δ the Dirac impulse, and a and b two random real numbers
uniformly distributed in [−π, π]. The noisy and clean images satisfy:

fnoisy,n(A, x, y, νx0, νy0) = fn + ξ(A, x, y, νx0, νy0) (10)

We then submit the clean set F = {fn, n = 1, . . . ,Ntest} and the corresponding noisy set,
Fnoisy(A, νx0, νy0) = {fnoisy,n(A, νx0, νy0), n = 1, . . . ,Ntest}, into the pre-trained VGG16 up to layer
ReLU-22 and compute the sum of the losses for all examples n:

L (f , fnoisy) = 1
Ntest

Ntest∑
n=1

L (fn, fnoisy,n) (11)

The loss, L (f , fnoisy) characterizes how the pre-trained VGG16 (up to ReLU-22) reacts to
disparity at frequency (νx0, νy0). We scan the whole Fourier plane and compute a loss according
to each frequency to understand responses of pre-trained VGG16 to disparities at all possible
frequencies.
Here, we only show frequency scans along three representative directions, i.e. horizontal,

vertical and diagonal (Fig. 11(a)). In Figs. 11(b)-(e), we show the corresponding profiles, for
five randomly picked examples. We see that in all three scanning directions, for the majority
of examples, there is a periodic artifact at frequency 0.25pixel−1. The horizontal and vertical
profiles display significantly different shapes (and magnitudes of the non-smooth artifacts), which
indicates that the convolution filters in the pretrained VGG are not symmetric. This can be
expected from the fact that, in the classification task for which VGG was trained, invariance
to image orientation is important. In Fig. 11, we circled the portion of the loss curves where
strong non-smoothness occurs. The magnitude and sign (i.e., whether it is a positive of negative
fluctuation) of the artifact vary from example to example. Therefore, we consider the mean
absolute derivative of the loss function as a suitable metric to detect the non-smoothness
(Fig. 11(e)).
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Fig. 11. Dependence of VGG16 loss on the frequency of the noise. (a) Diagram showing
the scanning scheme in the Fourier domain. The noise n is added on at a single frequency
and made Hermitian, i.e. n(νx, νy) = n(−νx,−νy)∗. (b) Loss as a function of frequency for
the horizontal scan and five examples from the test set, for a noise amplitude of A = 0.1. (c)
Loss as a function of frequency for the vertical scan for the same five examples. (d) Loss
as a function of frequency for the diagonal scan for the same five examples. (e) Absolute
value of the derivative of the loss with respect to frequency. The values are averaged over
the 50 examples of the test set and plotted for the horizontal, vertical and diagonal scans.
The ellipses in (c) and (d) indicate where strong non-smoothness can be observed in the loss
curves. The position of the spikes correspond to artifact features observed in the spectrum
of the average reconstruction.While we would not expect a perfect match between the
reconstruction spectrum of Figs. 6(b)-(d) and the VGG frequency response in Figs. 11(b)-(d),
we still expect that VGG displays a particular behavior at the fundamental frequency and
that is, indeed, what we observe. Knowing that, in what follows, we investigate more deeply
below in Appendix C the mechanism of why the perceptual loss based training leads to the
survival of the artifact at the fundamental frequency.
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Appendix C: Minimization of the perceptual loss

The results in the previous section suggest that the VGG network is primarily responsible for
the appearance of the artifact. A common way to investigate the internal mechanism of a neural
network is to compute so-called maximally activated patterns (MAPs) [56]. The idea is to find,
through optimization, the input to the network that would maximize some metric defined on a
given layer within the network. MAPs are thus functions of the particular layer on which they are
defined. For the layer of interest, the MAP represents what the layer is most sensitive to. In a
classification network, such as VGG, MAPs suggest what patterns may contribute most to the
success of the classification. In the default feature loss training, we consider layer ReLU-22 and
we are thus interested in the MAP defined for that particular layer.

Formally, we use the following definition of the MAP, based on the norm of the feature maps
at layer ReLU-22:

MAP = argmax
η
{‖VGG(η)‖} such that ηp ∈ [0, 1] (12)

where VGG stands for the mapping from an image to the VGG ReLU-22 layer, and ηp the pixels
of η.

MAPs provide a methodology to study the response of DNNs to their inputs, and can suggest
what input patterns may get amplified or suppressed through the network. Because of the possibly
strong nonlinearity of the network, we suggest to consider the response of the ReLU-22 not with
respect to the whole input itself (which would be the MAP defined in Eq. (12)), but rather with
respect to perturbations added on top of input images from the ImageNet dataset. We propose to
find out what perturbations are left over after a minimization of the perceptual loss L defined in
Eq. (11). We expect that the artifact typically observed in the perceptual loss trained PhENN
reconstructions lie in the set of perturbations only weakly affected by the minimization of the
perceptual loss.

To that end, we perform numerical tests by initializing the minimization algorithm with a noisy
version fnoisy(νx0, νy0) of the ground truth on which noise at a particular spatial frequency (as
defined in Eq. (10)) has been added. That is:

f̂ = argmin
η
{L (η, f )} . (13)

This minimization problem, because it is initialized with fnoisy(νx0, νy0), implicitly defines an
operator from the noise ξ(νx0, νy0) to f̂ , which we can write as:

f̂ (νx0, νy0) = Gf [ξ(νx0, νy0)]. (14)

One may think that problem Eq. (13) necessarily converges to the ground truth (i.e. f̂ (νx0, νy0) = f
for all (νx0, νy0)); however, due to the non-linearity in VGG16, it is not expected to be convex and
may converge instead to a local minimum that depends on (νx0, νy0). We are interested in the
following: at what frequency (νx0, νy0) does the noise get most reduced by minimizing VGG loss?
In Fig. 12, we show of this test. Consistent with the observations in Section 5, the noise at the
fundamental frequency undergoes the strongest suppression, which indicates that the disparity at
the fundamental frequency would give rise to higher VGG loss than its neighbors.
The numerical experiments we conducted on VGG show that its frequency response share

commonalities with the spectrum of the artifact, notably by the fact that non-smoothness is
observed in the VGG spectrum at νf, 12 νf and

3
2 νf. Moreover, we showed that minimization of the

perceptual loss per se has uneven effect on the different frequencies of an image and that the
typical artifact observed in the feature loss reconstruction survives the minimization process.
Therefore, when PhENN is trained to minimize the VGG-based feature loss, the training

implicitly tends to match the reconstructions and the ground truth examples at the fundamental
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Fig. 12. Change in the frequency components of an image through the minimization
operation of Eq. (13). The frequency ν refers to position (νx, νy) = (ν, ν) in the Fourier
domain (diagonal scan). The value plotted is the difference of the modulus of the spectrum
of the noisy image f̃ (defined in Eq. (10)) and the spectrum of f̂ , the result of optimization
Eq. (13) starting from f̃ .

frequency more than its neighbors. Other frequencies may not need to be perfectly matched
to achieve a low VGG loss, thus the training stagnates at some local minimum. At such local
minimum, the fundamental frequency stands out due to deficiencies of its neighboring frequencies,
manifesting as the artifacts centered at the fundamental frequency.

Appendix D: More constructions by VGG19 based feature loss

In this Appendix, we present reconstructions produced by VGG19-based feature loss, defined at
various layers. From Fig. 13, we see although each MaxPooling2D layer does not reduce the

Fig. 13. Reconstructions by VGG19 feature loss trained PhENN
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fundamental frequency of the artifacts exactly by half, as is the case in VGG16, the general trend
that the deeper the defining layer is, the smaller the frequency is, still holds. From the PSDs and
the reconstructions themselves, ReLU-12 produces reconstructions with highest visual quality,
consistent with the quantitative superiority of ReLU-12 reconstructions in Table 2.

Appendix E: Reconstructions from the mixed loss scheme

As mentioned in Section 2, an alternative strategy is to use the weighted sum of the image-domain
loss and VGG based loss. The success of such a method can be attributed to the addition of style
information that the VGG loss, especially based on deeper layers, implants to the reconstruction, to
the favor of the image-domain loss. Sometimes, a second neural network, called the discriminator,
can be introduced and trained in turn with the image-transformation neural networks, forming
the Generative Adversarial Networks (GANs) [57,58]. In GANs. the discriminator is trained
to progressively better discriminate between the reconstructions that the generator produces,
and the ground truth; the generator is subsequently trained to make the job of the discriminator
increasingly more difficult, thereby improving the quality of reconstructions. GANs are proven
efficient in producing high quality reconstructions [4,59], however, in some cases, it could also
backfire, as its convergence highly depends on the network’s hyper-parameters. In this severely
ill-posed case, we anticipate that the advantage it brings is likely outweighed by its difficulty to
converge. As such, we limit the scope of this paper by using mixed loss as defined in (2) and
leaving the use of discriminator for future investigations.

Using the mixed loss strategy, we face the dilemma of choosing the parameter αfeat. Intuitively,
αfeat being too small will lead the training to be indistinguishable from training with MSE,

Fig. 14. Reconstructions and PSDs produced by mixed loss defined at various layers of
VGG19
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whereas, it being too large, the training would approach training with feature loss discussed earlier,
hence losing potential advantage of the mixed-loss scheme. In fact, the rule of thumb for choosing
αfeat is to make the two loss components in (2), the image domain loss and the VGG-based loss,
be at the same order of magnitude during the training. However, finding the optimal αfeat in
principle requires an impractically exhaustive scanning of the range of feasible αfeat, i.e. the
ones that keeps the two components of loss in the same order of magnitude. Therefore, in what
follows, for each layer, we sample a few representative values of such feasible αfeat’s and only
report results with the best quantitative metrics and/or visual quality.
Here, anticipating the artifacts due to severe noise could affect the ideal choice of defining

layer in the mixed loss setup, we expanded our investigation into mixed loss defined at the last
ReLU layer of each CB. Representative results are presented in Fig. 14 and Table 3. We find that,
although reconstructions from the mixed loss defined at ReLU-34, ReLU-44 and ReLU-54, have
superior quantitative performances over the feature loss at ReLU-12, they are visually worse –
either from oversmooth images with attenuated artifacts (e.g. ReLU-54) or from appearance of
severe artifacts (e.g. ReLU-22,ReLU-34 and ReLU-54). In noiseless inverse problems, another
common variant of mixed-loss is a composite loss using the five layers[50,60] of VGG19, i.e.
ReLU-12, ReLU-22, ReLU-34, ReLU-44, ReLU-54. Anticipating facing a similar dilemma to
the mixed-loss strategy just discussed, we decided that this strategy is not advisable in extremely
noisy settings.

Table 3. Quantitative assessment of reconstructions by mixed-loss PLT-PhENN defined at various
VGG19 layers. Each entry takes the form of average ± standard deviation.

Average PSNR Average PCC Average SSIM

± std. dev (dB) ± std. dev ± std. dev

image-MSE 11.523 ± 2.639 0.577 ± 0.237 0.687 ± 0.184

image-NPCC 16.207 ± 2.466 0.808 ± 0.099 0.875 ± 0.071

ReLU-12, αfeat = 0.0025 15.562 ± 2.253 0.762 ± 0.121 0.856 ± 0.069

ReLU-22,αfeat = 0.0025 17.090 ± 2.521 0.819 ± 0.096 0.890 ± 0.056

ReLU-34,αfeat = 0.0025 17.404 ± 2.700 0.828 ± 0.095 0.901 ± 0.050

ReLU-44,αfeat = 0.04 17.396 ± 2.595 0.828 ± 0.092 0.903 ± 0.050

ReLU-54, αfeat = 0.3 17.891 ± 2.692 0.846 ± 0.086 0.910 ± 0.048
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