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Risk-Sensitive Optimal Control of Queues

Rahul Singh, Xueying Guo, and Eytan Modiano

Abstract— We consider the problem of designing risk-
sensitive optimal control policies for scheduling packet
transmissions in a stochastic wireless network. A single
client is connected to an access point (AP) through a
wireless channel. Packet transmission incurs a cost C,
while packet delivery yields a reward of R units. The client
maintains a finite buffer of size B, and a penalty of L units
is imposed upon packet loss which occurs due to finite
queueing buffer.

We show that the risk-sensitive optimal control policy
for such a simple set-up is of threshold type, i.e., it is
optimal to carry out packet transmissions only when Q(t),
i.e., the queue length at time t exceeds a certain threshold
τ . It is also shown that the value of threshold τ increases
upon increasing the cost per unit packet transmission C.
Furthermore, it is also shown that a threshold policy with
threshold equal to τ is optimal for a set of problems in
which cost C lies within an interval [Cl, Cu]. Equations
that need to be solved in order to obtain Cl, Cu are also
provided.

I. INTRODUCTION

In this work we consider the risk-sensitive optimal
control of a one-hop stochastic wireless network that
comprises of a single client. Networked control systems
are becoming increasingly susceptible to attacks [1], and
tools such as risk-sensitive and robust control can play
an important role in securing these systems. Employe-
ment of a risk-sensitive control policy can serve as a
mechanism to protect the network against attacks such
as denial-of-service attacks.

Consider a denial-of-service attack carried out by a
stochastic adversary that expends power in order to jam
the communication channel between the client and the
AP. Utilizing a risk-sensitive network control policy will
make the closed-loop system more robust to the errors
in the modelling assumptions made on the adversarial
attack. The risk-sensitive optimal control policy hedges
against the uncertainty by placing a greater emphasis
on system trajectories that incur higher operation costs.
If c(t), t = 1, 2, . . . , T denotes the instantaneous cost
incurred during time t, then the risk-sensitive cost with
risk-sensitivity parameter γ > 0 incurred during time
period T is given by

Eeγ
∑T

t=1 c(t),
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where expectation is taken with respect to the arrival
process, the control policy used for scheduling packets,
and the departure process. In the large-risk limit, i.e.,
γ → ∞, the risk sensitive cost approaches the minimax
cost objective, see [2]. Since the minimax objective seeks
to minimize the system cost for the worst case scenario,
a risk sensitive controller designed with risk parameter γ
set to a large value, has a good performance in case the
system dynamics are “adversarial” in nature. The frame-
work provides flexibity by allowing the network operator
to choose between the two competing objectives of
having low risk-neutral cost, and that of making the
system safe against attacks by tuning the risk-sensitivity
parameter γ. Risk-sensitive control theory builds upon
the ideas of Dynamic games and robust control [3]–
[6] and allows the system operator to generate control
actions that reflect his confidence about the uncertainty
in the model of the attack. It also generlizes the risk
neutral approach towards dynamic optimization [7].
Risk-sensitive control approach provides a link between
the stochastic and deterministic approaches to model
system uncertainty [8], [9].

Risk-sensitive optimization places emphasis on higher
order moments of the system cost [10], and thus risk-
sensitive optimal control reduces undesirable stochastic
variations in the system performance. This is highly
desirable for network control systems in which the
control loop is closed over stochastic communication
networks [11]–[17]. Risk sensitive system cost takes into
account higher order moments of the (random) cost as
well, as opposed to the risk neutral cost objective which
only inlcudes the mean cost. Since risk sensitive cost
objective penalizes higher order moments, it allows for
designing a finer controller for the cost of interest.

We discuss past works dealing with results on risk-
sensitive control, and their applications in security of
network control systems in Section II. The set-up in-
volving single client being served by an access point
is introduced in Section III. We derive the structure of
the optimal policy for single client scheduling problem
in Section IV. Section V derives the set of transmission
costs for which threshold policy with threshold equal to
τ is optimal. Section VI discusses directions for future
research, and also summarizes the key results of this
paper.

II. PAST WORKS

The work [18] is one of the first to consider the prob-
lem of dynamic optimization of risk-sensitive cost within
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Fig. 1. A single client uses the stochastic wireles channel for carrying
out packet transmissions. Size of the queueing buffer is equal to B
packets, and if a packet arrives at a time t when the queue length
Q(t) = B, then it is lost.

the Markov Decison Process (MDP) framework. For
linear systems driven by Gaussian noise and quadratic
one-step cost, [4] shows that the risk-sensitive controller
depends upon the variance of noise, which is unlike the
case of risk-sensitive LQG control. For a detailed treat-
ment of risk-sensitive control of LQG systems, see [19].
Results concerned with risk-sensitive control of finite-
state discrete-time controlled Markov chains can be
found in [2], while [7] provides an overview of key
results in risk-sensitive control.

In recent years, the problem of desgning protocols
and control policies for networked systems and crucial
infrastructure such as sensor networks, electric power
grids etc. has gained much attention [20], [21]. [22]
considers the design of risk sensitive controller for a
networked control system that is susceptible to denial-
of-service attacks. The dynamical system of interest is as-
sumed to be linear. [23] studies risk-sensitive control in
the context of denial of service attacks in network. [24]
derives scheduling policies that perform a mean versus
variance trade-off with respect to packet interdelivery
times.

Existing literature on stochastic control of queueing
networks has mainly focused on risk-neutral cost objec-
tive. Works such as [25]–[30] have derived optimal con-
trol policy and its structure under various assumptions
regarding the stochastic queueing network. However
there seems to be a gap with regards to the design
of risk-sensitive control in the context of queueing net-
works.

III. SINGLE CLIENT SCHEDULING PROBLEM

We begin by describing the risk-sensitive queue con-
trol problem involving a single client being served by an

unreliable channel.

Continuous Time Model The system begins operation
at time t = 0, and the packet arrivals to the client are
governed by a Poisson process with rate λ. Let Q(t), t ≥ 0
denote the queue length of the buffer at time t. If the
client decides to carry out packet transmission at time
t, then the time taken to complete packet transmission
is exponentially distriibuted with mean 1/µ. During the
time of packet transmission, cost is incurred at the rate
of C units per unit time. The cost C models the amount
of power utilized for packet transmission through the
wireless medium. A reward of R units is generated
upon a successful packet transmission, or equivalently
the delivered packet is counted towards the network
throughput [31]. The client maintains a queueing buffer
of size B packets. A packet loss occurs at time t if a
packet arrives and Q(t) = B, i.e. the queue buffer is
full. The system is penalized L units upon a packet loss.

Equivalent Discrete-Time Model The continuous-time
discrete space Markov process described above can be
converted into an equivalent discrete-time Markov chain
by sampling the embedded Markov chain at time epochs
when a packet arrival or departure occurs. Such tech-
nique is commonly utilized in the analysis of queueing
systems, see [25] or Ch:10 of [32] for a detailed
discussion. We now describe the discrete-time system in
detail.

Let Q(t) denote the queue length of the buffer at
time t. The queue length Q(t) of the client evolves
over discrete time-slots t = 1, 2, . . .. At each time t =
1, 2, . . ., the client can choose to either attempt packet
transmission, i.e., U(t) = 1, or stay idle U(t) = 0. If
Q(t) > 0 and the client attempts a packet transmission
at time t, then the queue length at time t+1 is equal to
Q(t)−1 with a probability p, while it is equal to (Q(t)+
1) ∧ B with a probability 1− p. The quantity p is equal
to the probability with which the packet transmission
completes before a new packet arrives in the original
continuous-time model and is equal to µ/(λ + µ). The
client is charged C > 0 units for attempting to transmit
packet, and is provided a reward of R > 0 units upon
successful packet delivery.

If at time t either the client decides to not carry out
packet transmission, or if Q(t) = 0, then the queue
length Q(t+1) is equal to (Q(t)+1)∨B with probability
1. If an arriving packet at time t finds the queueing
buffer full, i.e., Q(t) = B, then the packet is lost and
the system is penalized L > 0 units. Figure 1 depicts
the wireless network of interest. A history dependent
scheduling policy π, for each time t = 1, 2, . . . maps the
history of the system until time t to an action U(t) ∈
{0, 1}. A Markov policy π maps the queue length Q(t)
at time t to a decision U(t) ∈ {0, 1}. The infinite-horizon



risk-sensitive cost incurred by the system is equal to

min lim sup
T→∞

1

γT
logE

{
exp γ

(
T∑
t=1

CU(t)−R(t) + L(t)

)}
,

(1)

where the random process R(t) assumes the value R
if a packet is deliverd at time t, while is 0 otherwise,
and the process L(t) assumes the value L if a packet is
lost at time t, and is 0 otherwise. The parameter γ > 0
controls the sensitivity of the client towards the risk,
and is called risk-sensitivity parameter [10], [19]. If for
any Markov policy π, the process Q(t) is irreducible
and aperiodic, the lim sup in the above definition can
be replaced by lim [33]. We briefly discuss the existing
results on infinite horizon risk-sensitive control for finite-
state Markov chains.

Results on Infinite Horizon Risk-Sensitive Control Let
us denote by π? the policy that is optimal for the risk-
sensitive MDP (1). It can be shown that ( [7], [33],
[34]) there exists a value function V : [0, B] 7→ R, and
a scalar α, such that

αV (i) = min
u∈{0,1}

∑
j∈[0,B]

eCo(i,j,u)p(j|i, u)V (j), i ∈ [0, B]

(2)

where p(j|i, u) is the transition probability associated
with state i to state j under the application of control
action u, and Co(i, j, u) is the one-step cost associated
with the state-action pair (i, a) and transition to state
j. π?(i) corresponds to the action u that minimizes the
r.h.s. in the above equation for evaluation of V (i).

Relative Value Iteration Algorithm The fixed point
equation (2) can be solved by carrying out the following
fixed point iterations. Denote the estimate of the value
function at iteration k by Vk. Then, the value function
is updated according to

Ṽk+1(i) = min
u∈{0,1}

∑
j∈[0,B]

eC(i,j,u)p(j|i, u)Vk(j), i ∈ [0, B].

(3)

Thereafter normalize the iterates so that,

Vk+1(i) =
Ṽk+1(i)

Ṽk+1(0)
,∀i ∈ [0, B]. (4)

The policy generated at iteration k by the RVI algorithm
applies the action that minimizes the r.h.s. of (3). It can
be shown that for the RVI iterations, we have that Vk →
V , thereby yielding optimal policy [33]. Throughout, for
m ≤ n, we denote by [m,n] the set {m,m+ 1, . . . , n}.

IV. STRUCTURE OF THE OPTIMAL POLICY

We will show that the optimal policy for the single
client scheduling problem is of threshold-type, i.e. it is
optimal to carry out packet transmissions only when the
queue length Q(t) exceeds a certain threshold τ . The

value of threshold τ depends on the system parame-
ters p, and transmission cost C. We also show that τ
increases with C.

Definition 1: A threshold policy with threshold τ , de-
noted as πτ schedules packet transmissions at time t =
1, 2, . . . only if the queue length Q(t) ≥ τ .
The Relative Value Iteration (RVI) algorithm discussed
in the previous section converges, thus yielding optimal
policy π?. We will show that at each iteration of the
RVI algorithm, the produced policy is of threshold policy.
This will prove that the optimal policy is of threshold-
type.

Let Vk denote the value function at iteration k of
the RVI algorithm. Thus, Vk(n) denotes the relative
cost associated with system state being in state n. Let
Jk+1(n, 1), Jk+1(n, 0) denote the costs associated with
applying the actions U(k + 1) = 1 and U(k + 1) = 0
respecively when the system is in state n at stage k + 1
of the RVI algorithm, i.e.,

Jk+1(n, 0) =

{
Vk(n+ 1), n ∈ [0, B − 1]

eγLVk(n), if n = B,
(5)

Jk+1(n, 1) =



eγCVk(n+ 1), if n = 0,

peγ(C−R)Vk(n− 1) + (1− p)eγCVk(n+ 1),

if n ∈ [1, B − 1],

peγ(C−R)Vk(n− 1) + (1− p)eγ(C+L)Vk(n),

if n = B.

(6)

Let ∂Jk+1(n) := Jk+1(n, 0) − Jk+1(n, 1) denote the
differential between the costs associated with taking the
actions 0 and 1 if the queue length Q(k+1) at iteration
k + 1 is equal to n. The differential ∂Jk+1 is given as,

∂Jk+1(n) =



(1− eγC)Vk(n+ 1) if n = 0,

Vk(n+ 1)
[
1− (1− p)eγC

]
−peγ(C−R)Vk(n− 1), if n ∈ [1, B − 1],

Vk(n)
[
1− (1− p)eγC

]
eγL

− peγ(C−R)Vk(n− 1) if n = B.

(7)

We clearly have,
Lemma 1: If the differential ∂Jk+1(n), n ∈ [0, B] is a

non-decreasing function of n, then the optimal policy
produced at iteration k + 1 by the RVI algorithm (3)-
(4) is of threshold type.
Let us assume that ∂Jk+1 is non-decreasing in n, and
try to prove that the function ∂Jk+2 is non-decreasing
in n. This result will then imply that the optimal policy
produced at iteration k + 2 is also of threshold type.

Lemma 2: Let the optimal policy produced by the RVI
algorithm at iteration k + 1 be of threshold-type, with
threshold value equal to τ . Then the differential ∂Jk+1



satisfies

∂Jk+1(n) ≤ 0, n ∈ [0, τ − 1], and (8)

∂Jk+1(n) ≥ 0, n ∈ [τ,B]. (9)

The unscaled value function Ṽk+1 produced at iteration
k + 1 is given by,

Ṽk+1(n) =



Vk(n+ 1), if n ∈ [0, τ − 1] ,

peγ(C−R)Vk(n− 1) + (1− p)eγCVk(n+ 1),

if n ∈ [τ,B − 1] ,

peγ(C−R)Vk(n− 1) + (1− p)eγ(C+L)Vk(n),

if n = B.

(10)
We now show that if the differential ∂Jk+1 is non-
decreasing, then ∂Jk+2 is also non-decreasing. Since un-
der this assumption, the optimal policy at iteration k+1
is of threshold type, we can substitute the value of Vk+1

derived in Lemma 2 into the relation for differential (7)
in order to obtain

∂Jk+2(n) =



[
1− eγC

]
Vk(n+ 2), n = 0[

1− eγC(1− p)
]
Vk(n+ 2)

−peγ(C−R)Vk(n), n ∈ [1, τ − 2],[
peγ(C−R)Vk(n) + eγC(1− p)Vk(n+ 2)

][
1− eγC(1− p)

]
− peγ(C−R)Vk(n),

n = τ, τ − 1(
Vk(n)

[
1− (1− p)eγC

]
−peγ(C−R)Vk(n− 2)

)
peγ(C−R)

+
[[
1− (1− p)eγC

]
Vk(n+ 2)

−peγ(C−R)Vk(n)
]
×

(1− p)eγC , n ∈ [τ + 1, B − 2][
peγ(C−R)Vk(n) + (1− p)eγ(C+L)Vk(n+ 1)

]
×
[
1− (1− p)eγC

]
−peγ(C−R)

[
peγ(C−R)Vk(n− 2)

+(1− p)eγCVk(n)
]
, n = B − 1.

(11)

The expression for n = B is presented in the lemma be-
low. The above relations can be written more compactly
as follows.

Lemma 3: Assume that the optimal policy at iteration
k + 1 is of threshold type. Then, the differential ∂Jk+2

is given by

∂Jk+2(n) =



[
1− eγC(1− p)

]
Vk(n+ 2)− peγ(C)Vk(n),

if n = 0[
1− eγC(1− p)

]
Vt(n+ 2)− peγ(C−R)Vk(n),

n ∈ [1, τ − 2],

(1− p)eγC∂Jk+1(n+ 1), for n = τ − 1, τ

∂Jk+1(n− 1)peγ(C−R)

+∂Jk+1(n+ 1)(1− p)eγC , n ∈ [τ + 1, B − 1]

if n = B.

(12)

while for n = B,

∂Jk+2(n)

= [1− (1− p)eγC ]eγL
[
peγ(C−R)Vk(n− 1)

+(1− p)eγ(C+L)Vk(n)
]

− peγ(C−R)
[
peγ(C−R)Vk(n− 2) + (1− p)eγCVk(n)

]
,

(13)

We can now use the expression of ∂Jk+2 derived in
Lemma 3 in order to show that it is non-decreasing
function of n.

Lemma 4: Assume that the differential ∂Jk+1 at iter-
ation k + 1 is non-decreasing function of n. Then, the
differential ∂Jk+2 at iteration k+2 is also non-decreasing
in n.

Proof: It follows from Lemma 3 that for n ∈ [τ +
1, B − 1], the function ∂Jk+2(n) is a linear combination
of the functions ∂Jk+1(n − 1) and ∂Jk+1(n + 1), both
of which are assumed to be non-decreasing functions of
n. Thus, the claim is true for n ∈ [τ + 1, B − 1]. Similar
reasoning proves the claim for n ∈ [1, τ − 2].

We now verify whether the following two inequalities
are true,

∂Jk+2(τ + 1) ≥ ∂Jk+2(τ) and ∂Jk+2(τ) ≥ ∂Jk+2(τ − 1).

We note that,

∂Jk+2(τ + 1) = ∂Jk+1(τ)pe
γ(C−R)

+ ∂Jk+1(τ + 2)(1− p)eγC

≥ ∂Jk+1(τ + 2)(1− p)eγC

≥ ∂Jk+1(τ + 1)(1− p)eγC

= ∂Jk+2(τ),

where the first inequality follows since the optimal
policy at iteration k + 1 is of threshold type, and from
Lemma 2 we have that ∂Jk+1(τ) ≥ 0. The second
inequality follows from our assumption that ∂Jk+1 is
non-decreasing in n, i.e., ∂Jk+1(τ + 2) ≥ ∂Jk+1(τ + 1).

Next, we have,

∂Jk+2(τ) = (1− p)eγC∂Jk+1(τ + 1)

≥ (1− p)eγC∂Jk+1(τ)

= ∂Jk+2(τ − 1),

where the inequality follows from our assumption that
∂Jk+1(τ) is non-decreasing.

We now prove ∂Jk+2(0) ≤ ∂Jk+2(1). We substitute
the values of ∂Jk+2(0), ∂Jk+2(1) from Lemma 3, so that
for n = 0 we have,

∂Jk+2(n) =
[
1− eγC(1− p)

]
Vk(n+ 2)− peγ(C)Vk(n)

≤
[
1− eγC(1− p)

]
Vk(n+ 2)− peγ(C−R)Vk(n)

≤
[
1− eγC(1− p)

]
Vk((n+ 1) + 2)

− peγ(C−R)Vk(n+ 1)

= ∂Jk+2(n+ 1),



where the first inequality follows since R > 0, and the
second inequality follows since ∂Jk+1 is assumed to be
non-decreasing in n.

Finally, we prove ∂Jk+2(B) ≥ ∂Jk+2(B − 1). Substi-
tuting the values of ∂Jk+2(B) from Lemma 3, and the
vale of ∂Jk+2(B−1) from (7), the condition ∂Jk+2(B) ≥
∂Jk+2(B − 1) reduces to,

Vk+1(B)[1− (1− p)eγC ]eγL − peγ(C−R)Vk+1(B − 1)

≥ Vk+1(B)
[
1− (1− p)eγC

]
− peγ(C−R)Vk+1(B − 2),

or equivalently

Vk+1(B)
[
1− (1− p)eγC

] [
eγL − 1

]
≥ peγ(C−R) [Vk+1(B − 1)− Vk+1(B − 2)]

This concludes the proof.

Theorem 1 (Optimality of Threshold Policy): For the
single client risk-sensitive scheduling problem of
minimizing the infinite-horizon cost (1), a threshold
policy is optimal.

Proof: We will use induction on the iteration
number k of the RVI algorithm in order to prove the
theorem. For the RVI algorithm, let us initialize the
V0(n) = 1,∀n ∈ [0, B]. It then follows that,

∂J1(n) =


(1− eγC) if n = 0,[
1− (1− p)eγC

]
− peγ(C−R), if n ∈ [1, B − 1],[

1− (1− p)eγC
]
eγL − peγ(C−R) if n = B.

(14)

It is easily verified that ∂J1 is non-decreasing in n. Thus,
it now follows from Lemma 4, that at each iteration k
of the RVI algorithm, the function ∂Jk is non-decreasing
in n. Thus, from Lemma 1 we have that the policy
produced by the RVI algorithm at each iteration k is
of threshold type. Since the RVI algorithm converges to
the optimal policy, the optimal policy is also of threshold
type.
Next, we show that for the optimal policy π?, the thresh-
old denoted as τ? increases with the transmission cost
C. The following condition ensures that the threshold of
the policy produced by the RVI algorithm at stage k+1
is an increasing function of transmission cost C.

Condition 1 (Monotonicity): If C1, C2 > 0 are such
that C1 > C2, then ∂JC1

k+1(m) ≤ ∂JC2

k+1(m) for each
m ∈ [0, B].

Lemma 5: Assume that the Condition 1 is true for
the RVI algorithm at iteration k. Then, the Condition 1
also holds true at iteration k + 1 of the RVI algorithm,
and hence for the policy produced at iteration k + 1,
the threshold value is an increasing function of the
transmission cost C.

Proof: In the ensuing discussion, we let Vk,1 denote
the value function associated with k-th iteration of RVI
applied to the risk-sensitive control problem (1) with
transmission cost set at C1, while ∂JC1

k will denote the
corresponding cost differential. Similarly for Vk,2, ∂JC2

k .

In order to prove the claim, we need to show that
∂JCk+2(n) is increasing function of C for each n ∈ [0, B].
For an n ∈ [τ + 1, B − 1], and C1 > C2 > 0 we have,

∂JC1

k+2(n)

= (1− p)eγC1∂JC1

k+1(n+ 1) + peγ(C1−R)∂JC1

k+1(n− 1)

≤ (1− p)eγC2∂JC2

k+1(n+ 1) + peγ(C2−R)∂JC2

k+1(n− 1)

= JC2

k+2(n),

where the equalities follow from the relation (12) and
the inequality follows from our assumption that the
Condition 1 is satisfied at iteration k + 1 of the RVI
algorithm.

Next, we prove the claim for n ∈ [1, τ − 1]. For C1 >
C2 > 0 and n ∈ [1, τ − 2] we have

∂JC1

k+2(n)

=
[
1− eγC1(1− p)

]
Vk,1(n+ 2)− peγ(C1−R)Vk,1(n)

= ∂JC1

k (n+ 1)

≤ ∂JC2

k (n+ 1)

= ∂JC2

k+2(n),

where the inequality results from Condition 1.
Now we prove the desired condition for n = 0. It

follows from (7) that the condition ∂JC1

k+2(0) ≤ ∂J
C2

k+2(0)
reduces to (1−eγC)Vk+1,1(1) ≤ (1−eγC2)Vk+1,2(1). Since
C1, C2 > 0 the condition is equivalent to Vk+1,1(1) ≥
Vk+1,2(1). Fix a time horizon T > 0, and a scheduling
policy π, and consider the operation of two systems
under the application of the policy π. The transition
probabilities of the two controlled Markovian systems
are taken to be the same, but their transmission costs
are set at C1 and C2. Construct their sample paths
on the same probability space. It now follows from
stochastic coupling [35], that the sample path cost∑T
t=1 CU(t) − R(t) + L(t), or equivalently the cost

eγ
∑T

t=1 CU(t)−R(t)+L(t) incurred by the system with cost
set at C1 is greater than or equal to the system with cost
equal to C2. Hence it follows that Vk+1,1(1) ≥ Vk+1,2(1).

For n = τ, τ − 1, the differential ∂JC1

k+2(n) yields us

∂JC1

k+2(n)

= (1− p)eγC1∂JC1

k+1(n+ 1)

≤ (1− p)eγC1∂JC2

k+1(n+ 1)

= ∂JC2

k+2(n),

where the equality follows from the relation (12), and
the inequality results from Condition 1.

Theorem 2: Consider the problem of designing a
scheduling policy that makes decisions regarding packet
transmissions in order to minimize the infinite horizon
risk-sensitive cost (1). For C1 > C2 > 0, let τC1

and τC2

denote the threshold values of the optimal policies when
transmission costs are set at C1 and C2 respectively. We
then have τC1 ≥ τC2 .



Proof: Consider the optimal risk-sensitive control
problem (1) with transmission cost set at C, and initial-
ize V0(n) = 1,∀n ∈ [0, B]. We then have

∂J1(n) =


(1− eγC) if n = 0,[
1− (1− p)eγC

]
− peγ(C−R), if n ∈ [1, B − 1],[

1− (1− p)eγC
]
eγL − peγ(C−R) if n = B.

(15)

It is easily verified that ∂J1(n) is non-increasing function
of C, and hence Condition 1 holds true at iteration k = 1
of the RVI algorithm.

The result now follows by using induction on iteration
number k in conjunction with Lemma 5.

V. COMPUTING THE OPTIMAL POLICY

Having derived the structure of the optimal policy, we
would like to compute the value of threshold τ corre-
sponding to the optimal policy. In view of Theorem 2,
we will derive the set of values of transmission cost C
such that the policy πτ is optimal when the transmission
cost is set at C.

It follows from the optimality conditions (2) that the
following set of B + 1 equations need to be solved in
order to derive the performance of πτ .

αV (0) = V (1), (16)

αV (i) = V (i+ 1) ∀i ∈ [1, τ − 1] , (17)

αV (i) = exp(γC) (p exp(−γR)V (i− 1)

+(1− p)V (i+ 1)) , i ∈ [τ,B − 1]
(18)

αV (B) = exp(γC) (p exp(−γR)V (B − 1)

+(1− p)eγLV (B)
)

(19)

where α is the exponential of the infinite horizon risk-
sensitive cost, and V (i) is the relative cost associated
with the system starting in state i. We now solve the set
of equations (16)-(19). Clearly,

V (i) = αi, i ∈ [0, τ ] . (20)

The characteristic equation corresponding to recursive
relations (18) is given by,

(1− p)λ2 − αe−γCλ+ pe−γR = 0,

whose solutions are given by,

λ1, λ2 =
αe−γC+,−

√
(αe−γC)2 − 4p(1− p)e−γR

2(1− p)
.

Thus, for i ∈ [0, B − τ ], we have,

V (τ + i) = K1λ
i+1
1 +K2λ

i+1
2 , i = 1, 2, . . . , B − τ, (21)

The initial conditions for the recursions (18) are deter-
mined by the evaluation of w(τ − 1) and w(τ), i.e.,

K1 +K2 = V (τ − 1) = ατ−1,

K1λ1 +K2λ2 = V (τ) = ατ .

Solving for K1,K2 in terms of w(τ − 1), w(τ) we get,

K1 =
ατ−1(α− λ2)(1− p)

δ
, (22)

K2 =
ατ−1(λ1 − α)(1− p)

δ
. (23)

The average cost α can be obtained by utilizing the
boundary condition at i = B, i.e, the equation (19),[

α− (1− p)eγ(C+L)
] (
K1λ

B−τ+1
1 +K2λ

B−τ+1
2

)
= eγCpe−γR

(
K1λ

B−τ
1 +K2λ

B−τ
2

)
(24)

We now find the values of transmission cost C, for which
πτ is optimal for the risk-sensitive scheduling problem
with cost set at C.

Let ∂J(n) denote the limit value of ∂Jk obtained
upon convergence of the RVI algorithm. It follows from
Lemma 5 and the analysis of Theorem 2 that ∂J(n) is a
non-increasing function of the cost C for each value of
the system state n. Hence, the necessary and sufficient
condition for πτ to be optimal are

∂J(τ − 1) ≤ 0, and , (25)

∂J(τ) ≥ 0, (26)

Since the function ∂J(n) was shown to be non-
increasing in C for each n, it follows that the set of costs
C which satisfy the inequality (25) is of the form [Cl,∞),
while the solution set of inequality (26) is of the form
[0, Cu], for some suitable values of Cl, Cu ≥ 0. Since for
a fixed cost C, the function ∂J(n) is non-decreasing in
n, it follows that Cu ≥ Cl, and hence πτ is optimal when
C ∈ [Cl, Cu].

Theorem 3: Consider the class comprising of optimal
risk-sensitive control problems parametrized by trans-
mission cost C, in which for each individual risk-
sensitive MDP the cost incurred is given by (1). Then,
the threshold policy πτ is optimal for risk-sensitive MDPs
for which the cost C ∈ [Cl, Cu], where Cl, Cu can be
obtained by solving the equations (25), (26).
Let us now re-write the equation (25), (26) in terms
of parameters λ1, λ2, p, γ. The quantities Cl, Cu can be
obtained by substituting the values of ∂J into the above
conditions.

Similar to the relations (7), the steady-state differen-
tials ∂J(n) are calculated as,

∂J(n) =



w(n+ 1)− eγC [pV (n) + (1− p)V (n+ 1)] ,

if n = 0,

w(n+ 1)
[
1− (1− p)eγC

]
− peγ(C−R)V (n− 1),

if n ∈ [1, B − 1],

V (n)− eγC
[
pe−γRV (n− 1) + (1− p)eγLV (n)

]
,

if n = B.

(27)

The value function V can be substituted from (20)
and (21) into the above relation, and thereafter the



resulting ∂J can be substituted into the inequali-
ties (25), (26) in order to yield the desired equations.
In summary, the solution of two equations (25), (26)
solves a set of risk-sensitive optimal control problems
parameterized by the transmission cost C.

VI. CONCLUSION AND FUTURE WORKS

We have derived the optimal risk-sensitive schedul-
ing policy for a single client being served by a wire-
less channel. The otimal policy was shown to have a
threshold structure, and hence is easily implementable.
Furthermore we showed that the threshold increases
with packet transmission cost, and hence the policy with
threshold set at τ is optimal when the transmission cost
lies within the interval [Cl, Cu]. The quantities Cl, Cu
can be derived by solving two equations. We plan to
extend the analysis to the case where multiple clients
share a single wireless channel, and the AP has to
prioritize the clients for packet transmissions, based on
their queue lengths. We would also like to consider the
scenario where the transmitter can choose to transmit
from amongst various power levels, where a transmis-
sion involving higher power having a higher service rate.
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