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Is single-mode lasing possible in an infinite periodic system?
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In this Letter, we present a rigorous method to study the stability of periodic lasing systems. In a linear
model, the presence of a continuum of modes (with arbitrarily close lasing thresholds) gives the impression
that stable single-mode lasing cannot be maintained in the limit of an infinite system. However, we show that
nonlinear effects of the Maxwell–Bloch equations can lead to stable systems near threshold given a simple
stability condition on the sign of the laser detuning compared to the band curvature. We examine band-
edge (1d) and bound-in-continuum (2d) lasing modes and validate our stability results against time-domain
simulations.

Many lasers rely on resonances in periodic sys-
tems, ranging from band-edge modes of grated
distributed-feedback (DFB) waveguides1,2 or photonic-
crystal surface-emitting laser (PCSELS)3–9 to more ex-
otic bound-in-continuum (BiC) states.10,11 In this Letter,
we address a fundamental question for periodic lasers:
does stable single-mode lasing exist in an infinite periodic
structure, or does it inherently require the boundaries of
a finite structure to stabilize? A number of theoretical
works have studied lasing with periodic boundary con-
ditions as in Fig. 1(left) and found lasing modes,12–17

but neglected a key concern: even if the structure and
the lasing mode are periodic, stable lasing requires that
arbitrary aperiodic electromagnetic perturbations [as in
Fig. 1(right)] must decay rather than grow.18–20 At first
glance, such stability may seem unlikely: any resonance
in a periodic system is part of a continuum of reso-
nances at different Bloch wavevectors with arbitrarily
close lasing thresholds, and this seems to violate typical
assumptions for stable lasing.21–23 A finite-size structure
discretizes the resonance spectrum and hence may sup-
press this problem, but instabilities have been observed
in large enough finite periodic lasers where the reso-
nances become very closely spaced.24 Analogous trans-
verse instabilities are known to occur in translation-
invariant (period → 0) lasers such as VCSELs,25 for
which stability analysis has been performed with var-
ious assumptions.26,27 In fact, however, we show that
single-mode lasing is possible even in infinite periodic
structures for range of powers above threshold, by ap-
plying a Bloch adaptation of linear-stability analysis to
the full Maxwell–Bloch equations.19,20 (Instabilities can
still arise if our criteria are violated, or from effects such
as disorder not considered in this work.) We consider
examples for both 1d DFB-like lasers and 2d BiC-based
lasing,10,11,28 and validate our result against brute-force
time-domain simulations.29,30 Using perturbation theory
(in the supplementary material), we also obtain a sim-
ple condition for stability near threshold of low-loss res-
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FIG. 1. We study the stability of a single Bloch-periodic las-
ing mode under aperiodic perturbations. The stability eigen-
problem can be solved using Bloch theorem by writing pertur-
bations as a general Bloch wave. The lasing mode is stable
when real parts of the eigenvalues σ(q) are negative for all
wavevectors q.

onances and confirm it numerically: the sign of the laser
detuning from the gain frequency should match the sign
of the band curvature at threshold.

We consider lasing systems described by the semi-
classical Maxwell–Bloch equations (with the rotating-
wave approximation), which fully include nonlin-
ear mode-competitition effects (such as spatial hole-
burning):31

−∇×∇×E+ = P̈+ + εcË
+ + σcĖ

+

iṖ+ = (ωa − iγ⊥)P+ + γ⊥E
+D (1)

Ḋ/γ‖ = D0 −D + Im(E+∗ ·P+),

where E+ is the positive-frequency component of the
electric field (the physical field being given by 2Re[E+]),
P+ is the positive-frequency polarization describing the
transition between two atomic energy levels (with fre-
quency ωa and linewidth γ⊥), D is the population inver-
sion (with relaxation rate γ‖), D0 is the pump strength,
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εc is the cold-cavity real permittivity, and σc is a cold-
cavity conductivity loss. Here, we are assuming that the
orientation of the atomic transition is parallel to the elec-
tric field, and have written all three fields in their natural
units.19

A steady-state solution of these equations can be ob-
tained via steady-state ab-initio lasing theory (SALT),
which is exact for single-mode lasing and approximate
for multi-mode lasing with well-separated modes.21–23

For a periodic system, we consider a Bloch-mode steady-
state solution E+ = Eke

i(k·x−ωt) satisfying the station-
ary (Ḋ = 0) SALT equation:

ΘkEk = ω2
k

[
εc + i

σc
ωk

+ Γ(ωk)Dk

]
Ek, (2)

where Γ(ω) = γ⊥/ (ω − ωa + iγ⊥), Pk = Γ(ωk)DkEk,
Dk = D0/

(
1 + |Γ(ωk)Ek|2

)
and Θk = e−ik·x∇ × ∇ ×

eik·x is a periodic operator.
Given this steady-state solution, one can then apply

linear-stability analysis to the full Maxwell–Bloch equa-
tions, linearizing arbitrary aperiodic perturbations X =
Xk + δX, for X ∈ {E,P, D}, to determine whether per-
turbations δX exponentially grow (unstable) or shrink
(stable).18–20 Here, our key point is that, because the lin-
earized equations for the perturbations δX are periodic
(for a Bloch-mode steady state), we can apply Bloch’s
theorem32 to decompose the perturbations themselves
into Bloch-wave modes δEq, solving a separate linear-
stability eigenproblem for each wavevector q.

The well-known linear-stability analysis19 of the
Maxwell–Bloch equations (1) proceeds as follows. Lin-
earization of (1) in δX gives:

0 = ΘkδE + d2ω(εcδE + δP) + dωσcδE

iδṖ = (ωa − ω − iγ⊥)δP + γ⊥(DkδE + EkδD)

δḊ/γ‖ = −δD + Im(Pk · δE∗ + E∗k · δP),

(3)

where dω =
(
d
dt − iω

)
. Splitting complex variables

into real and imaginary parts yields a set of linear

equations
(
C d2

dt2 +B d
dt +A

)
u(x, t) = 0,19 where u =

(Re(δE), Im(δE),Re(δP), Im(δP), δD) and A, B and C
are operator matrices readily obtained from (3). Stabil-
ity analysis consists of looking for solutions of the form
u = Re(Ueσt), which leads to a quadratic eigenproblem:

(
A+Bσ + Cσ2

)
U = 0. (4)

The sign of Re(σ) determines the stability of the single-
mode solution.19

Since the operators A, B and C are periodic in our
case, however, we can use Bloch’s theorem to further
simplify the problem: the eigenfunctions can be chosen
in the Bloch form U = Uqe

iq·x where Uq is periodic.
The eigenvalues σ(q, D0) then determine the stability: If
there exists a wavevector q so that Re(σ(q, D0)) > 0,
then the single-mode solution is unstable at the pump
rate D0, with exponential growth at the wavevector k±
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FIG. 2. The cold cavity is 1D photonic crystal with uniform
conductivity loss σc = 0.001ωa. The two-level gain medium
is characterized by ωaa/2πc = 0.31 and γ⊥a/2πc = 0.008.
The frequency (dots) and pump (dashed lines) at the lasing
threshold are computed for modes of the first band. The
minimum pump at threshold is obtained at the band edge
ka = π. In absence of gain, the decay rate for the band-edge
mode is equal to κ ≈ 5.8× 10−5(2πc/a).

q. Since (A,B,C) are real, we also have σ(q, D0) =
σ(−q, D0)∗, so we need only consider one side of q within
the Brillouin zone.

We can now use this method to study a simplified
model for a DFB laser formed by a 1D photonic crys-
tal with alternating layers of equal thickness and dielec-
tric constants equal to 1 and 3 (Figure 2). We assume a
uniform conductivity loss σc = 0.001ωa and a two-level
gain medium with ωaa/2πc = 0.31 and γ⊥a/2πc = 0.008.
Figure 2 shows part of the band diagram, with ωa cho-
sen near the first band edge. For every wavevector k of
the first band, we compute the pump threshold Dt, de-
fined as the lowest pump rate D0 that compensates the
loss and leads to a real eigenfrequency ωk in (2). As
expected, the smallest Dt is obtained at the band edge
k = π/a of the first band, which we therefore take to be
the first lasing mode. However, as discussed earlier, Dt

varies continuously with k and other modes are expected
to reach threshold for arbitrary close values of the pump
in the linear model.

In order to study the stability of the lasing band-edge
mode, we first solve the steady-state nonlinear equa-
tion (2) at higher pump values with a Newton-Raphson
solver as described in Ref. 23. We then use the ob-
tained steady-state solution to solve the stability eigen-
problem (4) for different pump values. Results are sum-
marized in Fig. 3. First, note that the single mode so-
lution is stable close to threshold, unlike a linear model
(Fig. 2). This can be attributed to the nonlinear gain
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FIG. 3. (a) Stability region obtained from Maxwell–Bloch stability eigenproblem as a function of γ‖ and pump strength D0.
Inset shows the pump threshold of the second lasing mode using multimode SALT (assuming one first mode at ka = π is
lasing). This represents the limit γ‖ → 0 of the stability eigenproblem. (b) Detailed stability map for γ‖a/2πc = 10−4 as a
function of q. We compare results to FDTD simulations using a finite supercell with periodic boundary conditions (unstable in
shaded regions), initialized with the SALT solution plus ∼ 1% noise and checking stability after ∼ 105 optical periods. Stars
show the allowed q due to the finite supercell (2π`/aNcells). (c) Modal intensity of lasing modes with FDTD (Ncells = 50) and
multimode SALT (assuming second lasing mode at q = 4π/50a).

saturation, which prevents arbitrary close modes from
reaching threshold. In general, the stability of the laser
depends on the relationship between the decay rates of
the three fields, γ⊥ for P, γ‖ for D, and κ for E, the

decay rate of the cavity in the absence of gain.33 When
two (or more) of these decay rates become similar, we
notice a sharp reduction of D0 for the onset of instability
(in this case, γ‖ ∼ κ).

Stability can also be studied using a multimode SALT
by including the first lasing mode in the gain saturation
and computing the pump threshold for a second lasing
mode as a function of k (inset of Fig. 3(a)). In partic-
ular, this coincides with the results from the stability
eigenproblem in the limit γ‖ → 0. Solving (3) for γ‖ → 0
is indeed equivalent to having δD → 0 and δX being
a solution to SALT equation. As can be seen in the
inset of Fig. 3(a), the nonlinear gain saturation pushes
the threshold of the arbitrary close modes (q → 0) to a
higher pump value compared to what is expected from
a linear model. However, this multimode SALT predicts
a second lasing mode that is arbitrary close to the first
lasing mode, which is outside the domain of validity of
SALT. Furthermore, the instability onset depends rather
strongly on γ‖, emphasizing the need for a full Maxwell–
Bloch stability analysis.

In order to check the stability of the lasing mode close
to threshold for a general system, we use perturbation
theory to compute σ(q,D0) near (0, Dt). Analytical de-
tails are shown in the supplementary material, using
methods similar to those developed in Ref. 20. In the
case of small loss, we obtain a simple approximate con-
dition for stability near threshold: the band curvature

Re
(
d2ω
dk2

)
and the laser detuning (ωt − ωa) should have

the same sign at threshold. When lasing at the band

edge, this is equivalent to requiring ωa to lie inside the
band gap.
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FIG. 4. Inset shows a 2d array of cylindrical rods with di-
ameter = 0.7a, εc = 2.58, σc = 0.001ωa and a separation
L = 1.078a to a perfect mirror. Gain inside the rods is char-
acterized by ωaa/2πc = 0.625 and γ⊥a/2πc = 0.01. Three
BiCs are shown at ka = 0, 0.4π, 0.8π. The minimum pump
at threshold Dt is obtained at ka = 0.4π which is the first
lasing mode. In absence of gain, the decay rate for this mode
is equal to κ ≈ 8 × 10−5(2πc/a). Top inset shows a positive
band curvature at threshold.
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We now validate the results of stability analysis against
FDTD simulations29,30 with a finite supercell and peri-
odic boundary conditions. We initialize the simulation
fields with the SALT solution plus additional noise, and
analyze whether the system remains in the same steady-
state at later times. Note that for a supercell with
Ncells periods, only a finite set of values for q is allowed
(= 2π`/aNcells for ` = 0, . . . , Ncells − 1). Figure 3(b)
shows a perfect match between the two computations.
In particular, the instability onset for the FDTD simula-
tions corresponds to the value of the pump D0 for which
at least one allowed q reaches the instability region ob-
tained from the stability eigenproblem (4). Once instabil-
ity is reached, a second lasing mode starts. This second
lasing mode corresponds to the first q that hits the in-
stability region. However, the new lasing solution is not
accurately described by two-mode SALT (Figure 3(c))
because the small frequency difference violates the SALT
assumptions (exact in the limit γ‖ → 0). In particu-
lar, the inset of Fig. 3(a) shows that the threshold of
the multimode SALT (for q = 4π/50a) does not match
the actual threshold for the stability eigenproblem. As
Ncells increases, the second lasing frequency becomes ar-
bitrary close to the first mode, requiring an ever-smaller
γ‖ for the multimode SALT approach to be viable. On
the other hand, for a fixed Ncells, the multimode SALT
approach becomes increasingly accurate for smaller γ‖.
The two-mode regime here also exhibits a chaotic be-
haviour, typical in certain classes of lasers.33

We next consider a 2d (Ez-polarized) example to study
the stability of a BiC lasing mode. The structure is
a periodic line of surface rods placed at a distance L
from a perfect-metal boundary (Figure 4 inset), which is
known to have multiple BiCs.28 BiCs are characterized
by a quality factor Q→∞ in absence of external pump
and absorption loss, as seen in the inset. As in the previ-
ous 1d example, we compute the pump threshold Dt at
different wavevectors k and find the lasing mode corre-
sponding to the smallest Dt. In this example, the first
lasing mode corresponds to the BiC at ka = 0.4π, with
Dt ≈ 7 × 10−3 and a lasing frequency ωta/2πc ≈ 0.65.
The results of the stability analysis are shown in Fig. 5(a)
for γ‖a/2πc = 5 × 10−3. We first note that the lasing
mode is stable near threshold and that instability oc-
curs at a higher pump value D0 [Fig. 5(b-left)]. This
matches our condition for stability near threshold (pos-
itive band curvature and laser detuning). As clear from
the corresponding q and eigenfrequencies, instabilities at
higher pump correspond to modes that become active at
ka = 0.8π (BiC) and ka = π (guided mode). A compari-
son between our stability results and FDTD simulations
is shown in Fig. 5(a-inset), where we plot the Fourier
transform of the electric field at a given point outside
a rod for different pump values. The number and fre-
quencies of lasing modes match our stability computa-
tions. Finally, in order to confirm our simple stability
condition, we study the same system with a larger ωa
corresponding to a negative laser detuning. As shown in
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FIG. 5. (a) Result from stability eigenproblem. Shaded region
indicates instability. Inset shows FDTD results using a super-
cell with 20 unit cells and periodic boundary conditions. Plots
show the Fourier transform of the electric field at a point near
a rod. Small insets show the eigenvectors obtained from (4)
along with their frequencies ωa/2πc. They do match modes
obtained in the linear regime (below threshold) at ka = 0.8π
and ka = π. (b) Re(σ) as a function of q and D0/Dt for dif-
ferent transition frequencies ωaa/2πc (= 0.625, 0.675). The
threshold lasing frequency ωta/2πc is maintained at ≈ 0.65.
The system is unstable near threshold when the laser detun-
ing (ωt − ωa) has opposite sign to the band curvature. Black
solid line corresponds to Re (σ) = 0.

Fig. 5(b-right), the lasing system is indeed not stable for
any value of pump above threshold. Such instabilities
may arise in very large systems (small q).

The method presented in this Letter gives a rigorous
answer to the fundamental question of stable lasing in
infinite periodic systems, and provides practical guid-
ance in the form of theoretical criterion for stability. If
these criteria are satisfied, the main theoretical challenges
for future work are to analyze the effects of boundaries
(which we expect are negligible for sufficiently large sys-
tems) and manufacturing disorder (which must eventu-
ally limit single-mode lasing).
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See the supplementary material for analytical details
of perturbation theory.
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In the main text, we showed how to apply numerical stability analysis to evaluate the stability of any lasing mode
for any given system. In this supplementary material, we obtain general analytical results for the specific question of
stability near lasing threshold.

In particular, we use perturbation theory to compute the stability eigenvalues σ(q = q0 + δk, d) for small δk, where
D0 = Dt(1 + d2) with Dt being the pump at threshold, for points q0 where σ(q0, 0) = 0. We validate our semi-
analytical results against brute-force stability eigenvalues computed as in the main text, showing excellent agreement.
The perturbation theory is particularly subtle due to eigenvalue crossings that result in “critical lines” where σ changes
form, and these are also reproduced in the numerical validation. The final result is a formula that determines stability
near threshold in terms of simple integrals of the threshold lasing mode. In the limit of low-loss resonances, this result
further simplifies to a criterion relating band curvature to gain detuning as mentioned in the main text.

I. PERTURBATION ANALYSIS

In all systems, we have by definition σ(0, 0) = 0. For reciprocal systems, the mode at −k also reaches threshold
at Dt so that σ(±2k, 0) = 0 [1]. Note that this last case does not have to considered when k and −k are separated
with lattice vectors, as for example when lasing at a band edge or at the center of the Brillouin zone. We first give a
detailed derivation in the case q0 = 0, and then present the results for q0 = ±2k.

The stability eigenproblem is given by
(
Aq +Bσ + Cσ2

)
Uq = 0, where:

Aq =




∆r
k,q −∆i

k,q ω2 0 0
∆i
k,q ∆r

k,q 0 ω2 0
γ⊥D 0 ωa − ω γ⊥ γ⊥Er

0 γ⊥D −γ⊥ ωa − ω γ⊥Ei

−γ‖Pi γ‖Pr γ‖Ei −γ‖Er γ‖



, B =




−σc −2εcω 0 −2ω 0
2εcω −σc 2ω 0 0

0 0 0 1 0
0 0 −1 0 0
0 0 0 0 1


 , C =




−εc 0 −1 0 0
0 −εc 0 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




(S1)

with ∆r
k,q = −e−iqxRe(Θk)eiqx + εcω

2, ∆i
k,q = −e−iqxIm(Θk)eiqx + σcω, Er = Re(E) and Ei = Im(E). For brevity of

notation, we removed the subscript k from ωk, Ek, Pk, Dk, but vectors still refer to the periodic part of Bloch terms.
The SALT mode can be expanded in d, as for example done in Ref. 1. In particular, we have:

ω ≈ ωt + ω2d
2, E ≈ daE+

Γt
, |a|2 =

GD + ω2H

I
, ω2 = −Im

(
GD
I

)
/Im

(
H

I

)
(S2)

where E+ (resp. E−) is a solution to the linear SALT equation at threshold with Bloch vector k (resp. −k). GD, I
and H are given by:

GC =

∫
dx(εc+iσcωt) E−·E+, GD =

∫
dxDt E−·E+, I =

∫
dxDt|E+|2E−·E+, H =

1

ω2
tΓt

∂

∂ωt

[
ω2
t (GC +GDΓt)

]
.

(S3)
Note that there is an arbitrary choice for the phase of a. To simplify some computations, we take aΓ∗t to be real.

Operators Aq, B and C can then be expanded in (δk = q − q0, d):

Aq ≈ A00 +A01d+A02d
2 +A10δk +A20δk

2, B ≈ B0 +B2d
2, C = C0. (S4)

As a result, eigenvalues and eigenvectors can be expanded in the same way:

Uq ≈
∑

i,j≤2
Uijδk

idj , σ ≈
∑

i,j≤2
σijδk

idj . (S5)
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A crucial point that we confirm later, is that σ is not necessarily analytical at (q0, 0) since there is a degeneracy.
So equation (S5) is not valid inside a ball around (δk, d) = (0, 0). Instead, we have different expansion coefficients
depending on the path (δk, d).

We first consider q0 = 0. The zeroth-order stability problem is equivalent to the threshold SALT equation at k.
Because real and imaginary parts of the field are split, we have two degenerate eigenvectors vp corresponding to
σ00 = 0, where:

vp =
(
Re
(
e+p
)
, Im

(
e+p
)
, DtRe

(
Γte

+
p

)
, DtIm

(
Γte

+
p

)
, 0
)
, (S6)

for e+1,2 = E+, iE+. We also need solutions wp to the transverse problem wtpA00 = 0 given by:

wp =

(
Re
(
e−p
)
, −Im

(
e−p
)
,
ω2
t

γ⊥
Re
(
Γte
−
p

)
, −ω

2
t

γ⊥
Im
(
Γte
−
p

)
, 0

)
, (S7)

where e−1,2 = E−, iE−.
We now have U00 = b1v1 + b2v2, where bp are to be determined by degenerate perturbation theory. As we will

see later, the coefficients bp depend on the path (δk, d). To simplify notations, we note M̄ =
[
wtjMvp

]
jp

for a given

operator matrix M . The first order perturbation equations are given by:

(δk) (B0σ10 +A10)U00 +A00U10 = 0 → Ā10b = −σ10B̄0b

(d) (B0σ01 +A01)U00 +A00U01 = 0 → Ā01b = −σ01B̄0b.
(S8)

It is straightforward to show that Ā01 = 0, B̄0 = −Im
(
ω2
tΓtHM

)
and Ā10 = iIm (LM), where M =

(
1 i
i −1

)
and

L = −
∫
dx E− · ∂qΘk+qE+ (in particular, −∂qΘk+q = 2i e−ikx∇eikx for E = Ezz waves). We then have:

σ01 = 0, σ10 = i
L

ω2
tΓtH

or σ10 = i

(
L

ω2
tΓtH

)∗
. (S9)

Since 0 is a maximum of Re[σ(δk, 0)], σ01 is purely imaginary and the two eigenvalues are identical. So Ā10+σ10B̄0 = 0
and b is not determined by first order equations. Note that iσ10 is simply the slope of ω(k) at the lasing k. We can
also see that:

U01 = −
∑

bpgp +
∑

clvl, U10 = −
∑

bpA
−1
00 (σ10B0 +A10)vp +

∑
c̃lvl, (S10)

where g5p = 2DtRe
(
Γta
∗e+p ·E∗+

)
and the first fourth components of gp are zero. cl and c̃l are arbitrary complex

coefficients that will not affect our results. Note also that the fifth component of U10 is equal to zero.

The second order perturbation equations are now given by:

(δkd) σ11B0U00 + (A10 + σ10B0)U01 +A01U10 +A00U11 = 0

(δk2)
(
A20 + σ20B0 + σ2

10C
)
U00 + (A10 + σ10B0)U10 +A00U20 = 0

(d2) (A02 + σ02B0)U00 +A01U01 +A00U02 = 0.

(S11)

We start by solving the three equations independently. From results of first-order perturbation we can see that
wtj(A10 + σ10B0)U01 = 0 and wtjA01U10 = 0. The equation of order δkd then gives σ11 = 0.

Multiplying the equation of order δk2 by wtj we get:

− σ20B̄0b =
(
Ā20 + σ2

10C̄ + P̄
)
b = Re (XM) b, where P = (σ10B0 +A10)A−100 (σ10B0 +A10), (S12)

where eigenvalues are simply related to the curvature of ω(k) at the lasing k (= iσ20):

σ20 = i
X

ω2
tΓtH

or σ20 = −i
(

X

ω2
tΓtH

)∗
, b = (1,∓i). (S13)
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The degeneracy is artificially due to the separation of the real and imaginary parts of the field, so X can be easily
recovered from the non-degenerate perturbation theory of ω(k) in k. We obtain:

X =

∫
dx E− ·�E+, � = ∂2qΘk+q −

σ2
10

2
∂2G+ (i∂qΘk+q + σ10∂G)(−Θk +G)−1(i∂qΘk+q + σ10∂G),

G(ωt) = ω2
t

[
εc + i

σc
ωt

+DtΓ(ωt)

]
and ∂2qΘk+q = −I for E = Ezz waves.

(S14)

Finally, multiplying the equation of order d2 by wtj we get (using aΓ∗t = a∗Γt):

− σ02B̄0b =
(
Ā02 − Q̄

)
b, with Q̄ =

[
wtjA01gp

]
jp

= Re
[
ω2
tΓt|a|2I (M ′ +M)

]
and Ā02 = 0, (S15)

where M ′ =

(
1 −i
i 1

)
. The eigenvalues are then given by:

σ02 = 0, b = (0, 1) or σ02 = 2|a|2Im

(
I

H

)
, b = (−Im[I/H],Re[I/H]). (S16)

We see that we obtain different eigenvectors in (S13) and (S16). This means that the expansion in (S5) depends on
the path (δk, d). If d = o(δk), the expansion is determined by (S13); while it is determined by (S16) if δk = o(d). A
critical behaviour is obtained along the linse δk = αd for which the second order term is given by σ2d

2 and the three
equations in (S11) have to be combined. In this case, the second order perturbation eigenproblem becomes:

− σ2B̄0b =
[
α2Re (XM)− Q̄

]
b, (S17)

and the eigenvalues are given by:

σ2 = Im
(
α2θ + ηI

)
±
√
|ηI |2 − [Re (α2θ + ηI)]

2
, θ = − X

ω2
tΓtH

, ηI = |a|2 I
H
. (S18)

Note that θ is simply the band curvature at threshold (ω(k) ≈ ωt + iσ10δk + θδk2).
The presence of the square root function clearly shows the non-analyticity of σ. In particular, the there is an

eigenvalue crossing for α2
c = (−Re (ηI)± |ηI |) /Re (θ). The stability condition (σ2 ≤ 0) can also be immediately

retrieved:

α2
s = −2Re (ηI/θ) ≤ 0. (S19)

We can simplify the stability condition in the limit of small loss. In this case, H ≈ 2ωt
∫
εcE− · E+/Γt, E− ≈ E∗+

and Im (θ) ≈ 0. The stability condition Re (ηI) Re (θ) + Im (ηI) Im (θ) ≥ 0 becomes equivalent to:

Re (θ) (ωt − ωa) & 0. (S20)

This means that the sign of the detuning (ωt−ωa) should be the same as the sign of the band curvature (Re[θ]). For
example, when lasing at a bandedge, this means that ωa should be inside the bandgap.

As mentioned in the beginning of the section, in the case of degenerate lasing, the previous analysis should also be
carried out at q0 = −2k (or eqivalently at 2k). (Note that we are not considering the special case of a degeneracy
that comes for a wavevector other than −k. However, this situation can be studied in a similar way by computing
a perturbation expansion of σ around multiple adequate q0s.) It is easy to see that the solutions of the zeroth order
problem A−2kU00 = 0 are related to solutions of SALT at k ± 2k. Two separate cases should then be considered.

a. ka = π/2 : In this case, the problems at −k and 3k are equivalent (separated by a lattice vector) and the
zeroth order problem is degenerate. The eigenvectors are given by:

vp = eiπx/a
(

Re
(
e−iπx/ae−p

)
, Im

(
e−iπx/ae−p

)
, DtRe

(
e−iπx/aΓte

−
p

)
, DtIm

(
e−iπx/aΓte

−
p

)
, 0
)
, (S21)

while solutions of the transverse problem become:

wp = e−iπx/a
(

Re
(
eiπx/ae+p

)
, −Im

(
eiπx/ae+p

)
,
ω2
t

γ⊥
Re
(
eiπx/aΓte

+
p

)
, −ω

2
t

γ⊥
Im
(
eiπx/aΓte

+
p

)
, 0

)
. (S22)
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We now have g5p = 2Dte
iπx/aRe

(
Γta
∗e−iπx/ae−p ·E∗+

)
and Q̄ = Re

[
ω2
tΓt|a|2(KM ′ + JM)

]
, where:

J =

∫
dx Dt(E

∗
+ ·E−)(E+ ·E+) and K =

∫
dx e2iπx/aDt(E

∗
− ·E+)(E+ ·E+). (S23)

We can then obtain the eigenvalues of the problem (S17) for δk = q + 2k = αd:

σ2 = Im
(
α2θ + ηJ

)
±
√
|ηK |2 − [Re (α2θ + ηJ)]

2
, ηJ = |a|2 J

H
, ηK = |a|2K

H
. (S24)

The stability condition is now equivalent to:

α2
s = −Re

(ηJ
θ

)
+

√∣∣∣ηK
θ

∣∣∣
2

−
∣∣∣ηJ
θ

∣∣∣
2

+ Re
(ηJ
θ

)2
non-real or real negative. (S25)

b. ka 6= π/2 : In this case, the problems at −k and 3k are different, and only −k has a solution. The zeroth
order problem for q0 = −2k is now not degenerate and eigenvectors are given by:

v = (1, −i, DtΓt, −iDtΓt, 0)E−, w =

(
1, i,

ω2
tΓt
γ⊥

, i
ω2
tΓt
γ⊥

, 0

)
E+. (S26)

The dimension of our problem is now one and we have g5 = 2DtΓta
∗E∗+ · E−, B̄0 = 2iω2

tΓtH, A20 = 2X and

Q̄ = 2ω2
tΓt|a|2J . The unique eigenvalue of (S17) is now equal to:

σ2 = −i(θα2 + ηJ). (S27)

This simply means that there is no eigenvalue crossing and that the expansion of σ does not depend on the path
(δk, d). Note that σ∗2 is also an eigenvalue around q0 = 2k (which is is simply due to the facts that our operators A,B
and C are real as indicated in the main text). The stability condition is immediately given by:

Im (ηJ) ≤ 0, (S28)

since we already have Im (θ) ≤ 0 (Im[ω(k)] has a maximum at k). Note that this stability condition is equivalent to
having a stable lasing close to threshold for the single unit-cell problem.

Finally, some useful points to mention:

• We have ηI = GD/H + ω2. It is also straightforward to use perturbation theory to show that ωl2 = −GD/H
where ωl2 is the slope (in D0/Dt − 1) of the eigenfrequency of the linear problem at the threshold without gain
saturation (ωl ≈ ωt + ωl2(D0/Dt − 1)). By definition, threshold should be reached from below the real axis, so
Im
(
ωl2
)
≥ 0. Since ω2 is real, we conclude that Im (ηI) = −Im

(
ωl2
)
≤ 0. This means that σ02 ≤ 0 and that the

single unit-cell lasing problem is always stable near threshold in absence of degeneracy.

• For TM waves (E = Ezz), we have I = J . This means that Im (ηJ) ≤ 0 and that the single unit-cell lasing
problem is also stable in the degenerate case when k 6= π/2. This is an analytical proof for part of the stability
result conjectured in Ref. 1. Note that k = π/2 is equivalent to the condition n = 4` in Ref. 1.

• For TM waves and k 6= π/2, we conclude that σ2 ≤ 0 when expanding around −2k. So the stability is only
determined by the expansion around 0 (−Re (ηI/θ) ≤ 0.)

II. NUMERICAL VALIDATION

Here, we present a numerical validation of the analytical perturbation-theory results discussed in the previous
section.

Figure S1 shows results for the 1d structure studied in the main text. Figs. S2–S3 are for the same structure, but
with ωa lying below the lasing band edge, outside the bandgap, leading to instability near threshold as predicted
above. In both cases, the numerical simulations show near-perfect agreement with the analytical results.

Figures S5–S4 show results for the 2d structures presented in the main text with a positive and negative laser
detuning, respectively. Again, numerical simulations are in agreement with the analytical results.
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FIG. S1. Same 1d structure in the main text. Numerical simulation (stars and dashed contour lines) are in agreement with
analytical results (solid lines). Since the lasing mode is at a bandedge, we have σ10 = 0. Black line corresponds to δka = αcd
and represents the line of eigenvalue crossing (transition from two real to two complex conjugate eigenvalues). αc ≈ 0.018 and
α2
s ≈ −4.2× 10−4.
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FIG. S2. Same 1d structure in the main text but with ωaa/2πc = 0.306 and γ⊥/2πc = 0.08. The lasing mode is still at the
band edge but the laser detuning (ωt − ωa) is now positive.
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FIG. S3. Same 1d structure studied in the main text but with ωaa/2πc = 0.306 and γ⊥/2πc = 0.08. Numerical simulation
(stars and dashed contour lines) are in agreement with analytical results (solid lines). Black line corresponds to δka = αcd and
represents the line of eigenvalue crossing (transition from two real to two complex conjugate eigenvalues). Magenta solid line
corresponds to δk = αsd from analytical perturbation results and matches Re (σ) = 0 from numerical simulation. αc ≈ 0.022
and αs ≈ 3× 10−3.
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FIG. S4. Same 2d structure in the main text with ωaa/2πc = 0.625 and ωta/2πc ≈ 0.65. Left: q0 = 0. Right: q0 = −2k.
Contour lines (dashed) are from numerical simulation. Black solid line corresponds to δk = αcd from analytical perturbation
results and represents the line of eigenvalue crossing (transition of σ−σ10δk from two real to two complex conjugate eigenvalues)
when expanding around q0 = 0. The analytical line matches results of numerical simulation. Expansion around −2k does not
show a critical line in agreement with perturbation theory (case ka 6= π/2). We have αc ≈ 0.05, α2

s ≈ −0.018 and σ10 ≈ 0.59i
when expanding around q0 = 0 (opposite sign for iσ10 when expanding around q0 = −2k).
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FIG. S5. Same 2d structure in the main text with ωaa/2πc = 0.675. Left: q0 = 0. Right: q0 = −2k. The lasing mode is
slightly shifted to ka/2π ≈ 0.1944 but still with ωta/2πc ≈ 0.65. Contour lines (dashed) are from numerical simulation. Black
solid line corresponds to δk = αcd and magenta solid line corresponds to δk = αsd from analytical perturbation results when
expanding around q0 = 0. Majenta line (analytical) matches Re (σ) = 0 from numerical simulation. Expansion around −2k
does not show a critical line in agreement with perturbation theory (case ka 6= π/2). We have αc ≈ 0.21, αs ≈ 0.088 and
σ10 ≈ 0.59i when expanding around q0 = 0 (opposite sign for iσ10 when expanding around q0 = −2k).
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